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ABSTRACT

Brain dynamics can be modeled as a temporal brain network starting from the activity of different brain

regions in functional magnetic resonance imaging (fMRI) signals. When validating hypotheses about

temporal networks, it is important to use an appropriate statistical null model that shares some features

with the treated empirical data. The purpose of this work is to contribute to the theory of temporal null

models for brain networks by introducing the Random Temporal Hyperbolic Graph Model (RTH), an

extension of the Random Hyperbolic Graph (RH), known in the study of complex networks for its ability

to reproduce crucial properties of real-world networks. We focus on temporal small-worldness which, in

the static case, has been extensively studied in real-world complex networks and has been linked to the

ability of brain networks to efficiently exchange information. We compare the RTH Graph Model with

standard null models for temporal networks and show it is the null model that best reproduces the

small-worldness of resting brain activity. This ability to reproduce fundamental features of real brain

networks, while adding only a single parameter compared to classical models, suggests that the RTH

Graph Model is a promising tool for validating hypotheses about temporal brain networks.

AUTHOR SUMMARY

We show that the Random Temporal Hyperbolic Graph (RTH) is a suitable null model for testing

hypotheses about brain dynamics, after comparing it with the current state of the art and two other

geometric null models. The static version of this theoretical model captures properties of various

real-world networks, and its temporal version exhibits the temporal small-world property, for which we
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propose a new proper temporal definition. In particular, we show that the model best reproduces the

temporal small-worldness measured in the empirical temporal network extracted from fMRI signals.
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INTRODUCTION

The brain is always active, even when it is not performing a cognitive task. Therefore, it is interesting to

investigate its fluctuations starting from this case: the resting state condition (Karahanoğlu & Van

De Ville, 2017; Maltbie, Yousefi, Zhang, Kashyap, & Keilholz, 2022; Preti, Bolton, & Van De Ville,

2017; Thompson, Brantefors, & Fransson, 2017). In this context, functional Magnetic Resonance

Imaging (fMRI) techniques allow us to study the underlying functional architecture of the brain and its

temporal evolution. We can represent cerebral activity by extracting and manipulating the

Blood-Oxygenation-Level Dependent (BOLD) signal from the scans.

To test certain hypotheses about observed functional connectivity, after modeling brain activity as a

complex temporal network (Bahrami, Laurienti, Shappell, Dagenbach, & Simpson, 2022; Sizemore &

Bassett, 2018; Thompson et al., 2017), it is important to compare it with an appropriate null model (Lurie

et al., 2020; Váša & Mišić, 2022). A null model is a random statistical object that has certain properties

in common with the empirical data under consideration and is used to evaluate whether the latter has

noteworthy features or properties that cannot be attributed to randomness or other constraints.

In the complex temporal networks of brain activity just mentioned, each node corresponds to a brain

region, and edges represent the presence of interactions greater than a certain threshold between two

connected regions. As the graph evolves over time, edges may appear and disappear, meaning that the

interaction between two brain regions jumps over and below a certain value. Complex networks can be

found across different fields such as biology, sociology, epidemiology and brain dynamics (Costa et al.,

2011). They are graphs with non-trivial topological properties, two main properties that have come to

define them are scale-freeness and small-worldness (Bassett & Bullmore, 2017; Chung & Lu, 2006;

Tomasi, Shokri-Kojori, & Volkow, 2017).

In this paper, the common property of the null model and the real data we focus on is small-worldness,

which expresses the efficiency of information exchange between nodes. It is defined as the ratio between

two properties of the network: the clustering coefficient and the average path length. The clustering

coefficient measures how many connections exist among a node’s neighbors, which reflects the local

connectivity of the network. The average path length measures the average number of steps it takes to

travel from one node to another, which reflects the global connectivity of the network. Given the fact that
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we are considering temporal brain networks, the temporal version of small-worldness can be interpreted

as a measure of efficient communication among brain regions. We propose a new definition of temporal

small-worldness S = C/L as the ratio of the temporal clustering coefficient C and the temporal path

length L. The temporal clustering coefficient C is the time average of the clustering coefficients

computed at each time step. The temporal path length L is the average of the fastest temporal paths

between all pairs of nodes. S differs from SSB, the temporal small-worldness definition of Sizemore and

Bassett (2018), as it replaces the temporal version clustering coefficient with the temporal correlation

coefficient TC, which measures the change between two consecutive time steps. In the Measures Section

we will discuss the reasons behind the adoption of this new definition.

Until recently, neuroscientists mainly analyzed the static version of brain networks (Bassett &

Bullmore, 2017; Fornito, Zalesky, & Bullmore, 2016; Liao, Vasilakos, & He, 2017; Váša & Mišić, 2022),

as the temporal extension of graph models is a recent research topic even in computer science. Currently,

the temporal null models, that have been considered in the literature, are the randomized edge model and

the randomly permuted times model, which are based on empirical data (Sizemore & Bassett, 2018). For

consistency with the other models used in this work, we will refer to them as the Random Temporal Egde

Graph (RTE) Model and the Random Temporal Permuted Times Graph (RTPT) Model. In the RTE

graph, each edge is rewired at each time step by changing one of its endpoints in the original graph. In

the RTPT graph, the temporal structure is deteriorated by randomly permuting the time at which edges

occur. However, as we show in this work, these random models do not reflect the typical structure of

small-world networks, which exhibit short average path lengths and low clustering coefficients (Watts &

Strogatz, 1998).

Lately, in the research community of real-world complex networks, the Random Hyperbolic Graph

Model (RH) has become famous because it can exhibit both a high-tail degree distribution and

small-worldness (Bode, Fountoulakis, & Muller, 2014; Fountoulakis, 2012; Fountoulakis & Müller,

2016; Krioukov, Papadopoulos, Kitsak, Vahdat, & Boguñá, 2010). It is a geometric model whose nodes

are points that lie in the hyperbolic space. The latter cannot be embedded in Euclidean space, due to the

exponential growth of its volume. It also happens in the case of functional brain networks, that are best

represented in the hyperbolic disc as shown by Whi, Ha, Kang, and Lee (2022). A temporal version of
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the RH Graph Model has recently been considered (Hartle, Papadopoulos, & Krioukov, 2021; von Looz

& Meyerhenke, 2018).

We also consider two other temporal geometric graphs, the Random Temporal Square Graph (RTS)

Model and the Random Temporal Torus Graph (RTT) Model as possible good candidates for null models.

We compare them to the state of the art and to the networks extracted from the signals contained in the

empirical data of 1047 subjects from the WU-Minn Human Connectome Project (WU-Minn HCP 1200

Subjects Data Release Reference Manual, 2018), which we collected in a dataset that we made publicly

available (Rossi, Deslauriers-Gauthier, & Natale, 2023). We test whether our random temporal models

have small-worldness values close to those of empirical data at different connectivity thresholds. In

particular, we show that the RTH Graph Model is a suitable null model with respect to the

small-worldness property, especially when compared to the previous RTPT and RTE graph null models

considered by Sizemore and Bassett (2018).

METHODS

Extracting temporal brain networks

In this section, we describe the fMRI preprocessed data we started from and the process we implemented

to extract the temporal brain networks from them (Rossi et al., 2023).

Data. The data we used were taken from the Human Connectome Project (WU-Minn HCP 1200

Subjects Data Release Reference Manual, 2018), specifically, the 3 Tesla Siemens fMRI dataset of 1047

selected resting state subjects (rfMRI) scanned at the University of Washington or the University of

Minnesota. The data are preprocessed and minimally preprocessed according, respectively, to Smith et al.

(2013) and Glasser et al. (2013), and had artifacts removed using ICA-FIX (Griffanti et al., 2014;

Salimi-Khorshidi et al., 2014). During the acquisition of the brain images, the patients would lie quietly

in a darkened room with their eyes open, looking at a fixed bright point on a dark background, without

performing any tasks. This is arguably the simplest case one can imagine, and it is natural to start the

investigation from this point because even when the subject does nothing, brain regions are activated and

the signal fluctuates. Understanding this scenario is important to proceed with the comparison between
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this state and more complicated situations, such as when the patient has some neural disease or is

performing cognitive tasks involving memory and attention (Liao et al., 2017).

The rfMRI data were acquired in four runs of 14 minutes and 33 seconds each. The data were captured

in both right-to-left (RL) and left-to-right (LR) phase encoding, with two scans per direction. We used

only one of the two left-to-right scans. Regarding the temporal resolution of the data, the total number of

time steps is 1200 and the interval between two time steps is 0.72 seconds. Regarding the spatial

resolution, there are 91 voxels in the x and z axis and 109 in the y axis, making the total number of

voxels 902629. The dimension of a voxel is 2× 2× 2 millimeters.

Processing. The pipeline we implemented takes the BOLD signals of the rfMRI scan for each voxel of

the brain and transforms them into temporal graphs (Van Dijk et al., 2010). We release them in the

publicly available dataset Rossi et al. (2023). The first step of the pipeline is to perform a linear

regression on the movement parameters of the data, which reduces the contribution of the subject’s

movements during the 14-minute procedure. The data also contains some noise caused by the patient’s

involuntary respiratory and cardiac rates. This problem is mitigated by applying a bandpass filter that

isolates the BOLD fluctuations within a range of 0.01− 0.08 Hz (Van Dijk et al., 2010). To obtain the

division of the brain into regions, that correspond to the nodes of our temporal networks, we use a brain

atlas, such as the Gallardo (2018), Glasser et al. (2016) or Schaefer et al. (2018). Using an atlas we

extract groups of voxels from gray matter areas that differ by anatomical and functional criteria. By

averaging their signal, a time series is created for each brain region. Using the sliding window method,

we individuate rectangular windows of length 60 seconds with an overlap of 30 seconds (Preti et al.,

2017), each window being equivalent to a one-time step of the network. The Pearson correlation

coefficient is calculated between each pair of brain region time series within each window; the resulting

correlation value is the weight of the edge between the respective brain region nodes. In this way, we

obtain an adjacency matrix for each window. The rows and columns of the matrix are ordered so that

regions of the left hemisphere are grouped in the first block and regions of the right hemisphere are

grouped in the second block (see the adjacency matrix in Figure 1). The two more correlated blocks

(corresponding to the lighter pixels in the figure), upper left and lower right, represent strong

intrahemispheric connectivity, while the two extra-diagonal blocks correspond to weaker
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interhemispheric connections. Three diagonals can be distinguished, the middle one representing the

correlation of a region with itself. The other two sub-diagonals correspond to the connectivity of each

region with its counterpart in the opposite hemisphere (Fornito et al., 2016). The values range between -1

and 1. If they are high (close to 1), the interpretation is clear: the two areas are synchronously activated,

thus more likely to communicate. On the other hand, there is no consensus on the interpretation of

negative indices. Given that many measures are defined for unweighted graphs, it is also common to

threshold the data (Fornito et al., 2016). Currently, there is no consensus on the most appropriate

threshold, so we analyze the data according to different positive thresholds applied to the Pearson

correlation coefficient. The sequence of the obtained matrices defines the temporal brain networks.
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Figure 1: Steps of the pipeline to extract temporal brain networks from an fMRI signal for each voxel

of the brain. The first step is linear regression and bandpass filtering of the data. The second step is the

division of the brain into regions according to an atlas. The third step is the sliding window method, which

individuates rectangular windows within which, in the fourth step, the Pearson correlation coefficient is

computed between each pair of brain region time series. The last step is the thresholding of the data.
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Random graph models

In this paper, we consider five temporal random graph models. The first two models are the Random

Temporal Permuted Times Graph Model (RTPT) and the Random Temporal Edges Graph Model (RTE)

(Sizemore & Bassett, 2018), which are constructed by randomizing empirical data; in particular, the

RTPT graph is obtained by randomizing the time at which each edge appears, while the RTE graph is

obtained by randomly reassigning an edge endpoint to a different node within each time step. The other

three models are the Random Temporal Square Graph Model (RTS), the Random Temporal Torus Graph

Model (RTT), and the Random Temporal Hyperbolic Graph Model (RTH), which do not depend on

empirical data. They are synthetic graphs obtained by randomly placing nodes on different spaces: the

square, the torus, and the hyperboloid, respectively. At each time step, the temporal graph is constructed

by connecting the nodes depending on their position. From one timestep to the next, the node positions

are updated according to a movement model. Both the adjacency and their movement are computed

according to the geometry of the underlying space. A summary of the five models and their parameters

can be found in Table 1. Next, we provide their formal mathematical definitions. In the next section, we

will compare them to the temporal brain networks extracted from data.

Temporal graph. A temporal graph, denoted as G(V,ET ), is given by a set of nodes V and a set of

temporal edges ET . Each temporal edge is a triple (u, v, t) where u, v ∈ V are the endpoints of the edge

and t ∈ [1, . . . , T ] is the time at which the edge appears thus ET = {(u, v, t) : u, v ∈ V, t ∈ [1, . . . , T ]}.

Random Temporal Permuted Times Graph Model (RTPT(G)). The Random Temporal Permuted Times

Graph Model (Sizemore & Bassett, 2018) is obtained by taking the temporal graph G(V,ET ) of a subject

(see Figure 2a) and randomizing the time at which each edge appears (see Figure 2b). We construct a

G(V,E ′T ) from RTPT(G) model by sampling a permutation π uniformly at random and defining the set

E ′T = {(u, v, π(t)) : (u, v, t) ∈ ET}.

Random Temporal Edges Graph Model (RTE(G)). The Random Temporal Edges Graph Model (Sizemore

& Bassett, 2018) is obtained from the temporal graph G(V,ET ) of a subject (see Figure 2a) by

reassigning one endpoint of an edge to another node in each window time step (see Figure 2c). We
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(a) A temporal graph.

(b) A RTPT graph.

(c) A RTE graph.

Figure 2: Example of 4-time steps illustrating how the RTPT and RTE graphs are obtained from a given

temporal graph. The RTPT graph is obtained by randomizing the time each edge appears over different

time steps. The RTE graph is obtained by reassigning one endpoint of an edge to a different node within

each window time step.

construct a G(V,E ′T ) from RTE(G) by sampling a permutation σ uniformly at random of the set V and

by setting (u, σ(v), t) ∈ E ′ for each contact (u, v, t) ∈ E.

Random Square Graph Model (RS(r)). A RS(r) graph G(V,E) (Penrose, 2003) is obtained by

distributing nodes independently and uniformly at random on a unit square [0, 1]2 and connecting each

pair of nodes whose Euclidean distance is less than radius r (see nodes contained in orange balls in
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(a) A RS graph. (b) A RT graph.

Figure 3: Showing the main difference between the RS and the RT graphs. In both cases, the nodes are

connected if they are at a distance less than a radius r. In the RS graph the nodes are distributed on a

square, hence the node on the bottom right and the node on the top left are not connected; on the torus, on

the contrary, they are connected.

Figure 3a). The set of edges is thus E = {(u, v) : (u, v) ∈ V × V, ||pu − pv||2 ≤ r} where pu and pv are

the coordinates of the positions of the points u and v.

Random Torus Graph Model (RT(r)). A RT(r) graph G(V,E) is obtained by distributing nodes

independently and uniformly at random on a torus [0, 1]2 and connecting each pair of nodes that are at

distance less than radius r (see nodes contained in orange balls in Figure 3b). On the torus [0, 1]2, the

distance between two nodes pA, pB with coordinates, respectively (xA, yA), (xB, yB), is defined as

d(pA, pB) =

√(
1
2
−
∣∣∣∣12 − |xA − xB|∣∣∣∣)2

+

(
1
2
−
∣∣∣∣12 − |yA − yB|∣∣∣∣)2

.

Temporal version of Random Square and Torus Models. To obtain the temporal version of both the RS and

RT graphs models, which we will refer to them as RTS(r, v) and RTT(r, v) graph models, we can define a

movement model according to which the positions of the points are updated and the distances are

recomputed. The number of updates is set equal to the number of time steps of the real data. The new

position of a point is determined by applying a displacement vector to it, whose direction is chosen

uniformly in [0, 2π) and whose length is chosen uniformly in (0, v). v is called the speed parameter. In

the case of RT graph, there is no problem of updating the point position, since there are no boundaries. In
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the case of the unit square, boundaries need to be taken into account. If a point happens to move outside

the boundary of the unit square, its trajectory is reflected inwards, meaning that its position is updated as

if it had bounced off the boundary.

Random Hyperbolic Graph Model (RH(ζ, α,R)). Krioukov’s method for generating a Random

Hyperbolic graph is to distribute nodes quasi-uniformly within a disk of radius R centered on the upper

half of a hyperboloid of given negative curvature K = −ζ2 (Krioukov et al., 2010). Writing the node

positions in polar coordinates (r, θ), where r ∈ [0, R] and θ ∈ [0, 2π], we have that the angular density is

ρ(θ) = 1
2π

and the radial coordinate density is ρ(r) = α sinh(αr)
cosh(αR)−1 . The α parameter controls the spread

of the point positions. If α = ζ , the points follow a uniform distribution. If α > ζ , the points are more

likely to be near the border of the disk, otherwise, they are more likely to be near the center (see Figure

4a). Two nodes u and v are connected if they are at a hyperbolic distance dH less than R, where,

considering the polar coordinate of u = (ru, θu) and v = (rv, θv), dH is defined as

dH((ru, θu), (rv, θv)) =
1

ζ
acosh(cosh ζru cosh ζrv − sinh ζru sinh ζrv cos(π − |π − |θu − θv||)).

Thus, the parameter R affects the average degree of the graph. The higher the value of R, the larger the

distances between the nodes and the lower the average degree (see Figure 4b). As for the curvature

parameter ζ , we set it to ζ = 1, since (Lemma 1.1 of Bode et al. (2014)) if two RH graphs have the same

ratio ζ
α

and the other parameters equal then they produce the same distribution on graphs.

To obtain a temporal version, which we will refer to it as the RTH(ζ, α,R, v) Graph Model we update

the point position as many times as the number of time steps of the real data we want to compare with.

The point position update is chosen in such a way that guarantees that the marginal distribution of each

time step is the same as the initial one. Specifically, the polar coordinate is updated by adding to the

previous value a number chosen according to a uniform distribution over (0, v), and then computing the

modulo 2π. For the radial coordinate, we add to the previous value a number chosen according to a

uniform distribution over (−v, v), and we reflect the result in the interval [0, 1] to keep the distribution

uniform in [0, 1] (Hartle et al., 2021). Thus, this parameter controls the movement of the points, and the

higher the value of v, the more the points move and the lower the percentage of edges that remain the

same between two consecutive time steps (see Figure 4c).
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(a) Representations of the RTH graph on the Poincaré disk for different values of the parameter α.

(b) Example showing how the parameterR affects the average

degree of the RTH graph when the other parameters are fixed

α = 1.2, ζ = 1 and v = 0.9.

(c) Example showing how the parameter v affects the percent-

age of edges that remain the same between two consecutive

time steps when the other parameters are fixed α = 0.5, R =

4.5 and ζ = 1.

Figure 4: Behavior of the RTH Graph Model parameters.

Measures

In this section, we introduce some measures to define a temporal version of small-worldness. The first

static qualitative definition of small-worldness was introduced by Watts and Strogatz (1998) as the

combination of a high clustering coefficient, as in lattice graphs, and a short average path length, as in

random graphs. Humphries and Gurney (2008) combined the previous measures into a quantifiable ratio:
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Name Acronym Data-based or Synthetic Topological space Parameters References

Random Temporal Permuted Times RTPT Data-based - G Sizemore and Bassett (2018)

Random Temporal Edges RTE Data-based - G Sizemore and Bassett (2018)

Random Temporal Square RTS Synthetic Square [0, 1]2 r, v Penrose (2003)

Random Temporal Torus RTT Synthetic Torus [0, 1]2 r, v Penrose (2003)

Random Temporal Hyperbolic RTH Synthetic Hyperboloid with ζ < 0 ζ, α,R, v Krioukov et al. (2010),

von Looz and Meyerhenke (2018)

Table 1: Summary of the random temporal graph models described in the Random graph section.

clustering coefficient divided by average path length, normalized by the corresponding measure

calculated on a random graph, formally Cg

Lg

/
Crand

Lrand
. If the ratio is greater than 1, it indicates a significant

small-world property of the network. The extension to temporal complex networks requires adapting the

previous measures to capture the time evolution. The path length can naturally be extended to the average

length of the fastest time-respecting path between each pair of nodes. Tang, Scellato, Musolesi, Mascolo,

and Latora (2010) replaced the local clustering coefficient with the temporal correlation coefficient,

which was also considered by Sizemore and Bassett (2018), which we will define in the next paragraph.

Temporal clustering coefficient. The clustering coefficient is defined as the ratio between the total

number of closed triplets and the total number of triplets (open and closed). More specifically, closed

triplets are sub-triangles in the graph that are counted three times, and open triplets are paths of length

two, as illustrated in Figure 5.

Figure 5: Open and closed triplets. The open triplet in

this graph is the green path, instead, the orange triangle

is a closed triplet.

The clustering coefficient at a

given time t is denoted by C(t) and is required

to compute the temporal clustering coefficient.

C(t) =

∑
i,j,k Aij(t)Ajk(t)Aki(t)∑

i ki(ki − 1)
(1)

where ki =
∑

j Aij(t) and Aij(t) is the value

of the binary adjacency tensor of the network
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at time t corresponding to nodes i and j. The

formula (1) is equivalent to the one introduced by Watt and Strogatz: the clustering coefficient is the

average over all nodes of the local clustering coefficient

Ci =
2|{ejk : vj, vk ∈ Ni, ejk ∈ E}|

ki(ki − 1)
,

Ci measures the tendency of neighbors of a node to form a clique. Some examples are shown in Figure 6.

The temporal clustering coefficient C is the average of the clustering coefficient computed at each time

step:

C =
1

T

∑
t

C(t).

Figure 6: Local clustering of the orange node. In (a) the clustering coefficient is equal to zero because

there are zero connections among the neighbors of the orange node, over three possible ones. In (b) there

is one connection over three. In (c) there are all possible connections, hence the clustering coefficient has

value 1, which is the maximum.

Temporal path length. The temporal path length is defined as the average of the fastest paths between all

pairs of nodes. Paths are taken across time. Only one edge can be used at each time step, and pauses are

allowed at nodes (i.e., an edge can be not selected to move forward in a time step). The temporal path

length L is thus defined as follows

L =
1

N(N − 1)

∑
i 6=j

lij,
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where lij is the minimum time needed to get from i to j starting at time 0. If there is no path between two

nodes, the distance is set to the maximum distance, which is the number of time steps. Fornito et al.

(2016) suggest other ways to address the latter case, such as considering only paths that exist or choosing

a threshold that yields only connected graphs.

Temporal correlation coefficient. The temporal correlation coefficient quantifies how much the temporal

structure changes over time. In particular, it shows the tendency of a node’s neighbors to remain

connected to it over successive time steps. The higher the coefficient, the smaller the changes over time

(Sizemore & Bassett, 2018). The temporal correlation coefficient of a node i is defined as

TCi =
1

T − 1

T−1∑
t=1

∑
j Aij(t)Aij(t+ 1)√∑
j Aij(t)

∑
j Aij(t+ 1)

.

We can thus write the temporal correlation coefficient for the whole temporal network as

TC =
1

N

∑
i

TCi.

Temporal small-worldness. In the static case, which corresponds to a graph that remains unchanged at

each time step, the average path length is retrieved from the temporal path length. On the contrary, in the

latter case, the temporal correlation coefficient does not coincide with the clustering coefficient. For this

reason, the temporal correlation coefficient does not seem to properly generalize the clustering coefficient

by Watts and Strogatz to the temporal setting, while our definition appears to be consistent with the latter.

To illustrate the differences between the two measures, consider the following simple examples of

temporal graphs with 4 time steps. In the first, shown in Figure 7a, we have a 5-node star graph that does

not change over time in which the temporal correlation coefficient is 1, while the temporal clustering

coefficient is 0 because there are no closed triplets. In the second case, we have a 6-node temporal graph

in which a 3-node triangle subgraph alternates between two configurations, as shown in Figure 7b. In this

case, the temporal correlation coefficient is 0, while the temporal clustering coefficient is 0.5. As a

consequence, in our experiments, we consider and compare two versions of small-worldness:
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(a) A 5-node star graph. Its temporal correlation coefficient is 1, while its temporal clustering coefficient is 0.

(b) A 6-node temporal graph. Its temporal correlation coefficient is 0, while its temporal clustering coefficient is

0.5.

Figure 7: Small examples of temporal graphs where the temporal correlation coefficient differs from the

temporal clustering coefficient in a significant way.

The temporal small-worldness is the ratio between the clustering coefficient and the temporal path

length, without normalization; formally

S =
C

L
.

The Sizemore and Bassett temporal small-worldness is the ratio between the temporal correlation

coefficient and the temporal path length, without normalization; in formulas

SSB =
TC

L
.

EXPERIMENT SETUP

In this section, we provide some technical information, such as the details of the machine on which we

run the experiments, the inputs of the pipeline, and we describe the optimization methods we used to

choose the model parameters.

Computing Platform
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We run the pipeline on the Nef Cluster Computing Platform of Inria Sophia Antipolis. By

setting the parameters described below, the average execution time of our pipeline for a subject is 250

seconds, on a 64-core node with the following technical characteristics:

AMD dual-EPYC 7542 processors,

1024 GB of RAM.

Pipeline

The pipeline is implemented in Python. As explained in the Method Section, it transforms the BOLD

signal into a temporal graph. The code, which is available at the following link

https://github.com/aurorarossi/TemporalBrainNetworksCode, takes various

parameters as input, which are described in the next sections.

Atlas. Regarding the type of atlas, it is possible to choose among Gallardo (2018), Schaefer et al.

(2018) or Glasser et al. (2016). For the first two, it is possible to select the number of regions into which

the brain is divided, starting from 102 nodes up to a maximum of 1002 nodes. The Glasser atlas instead

has 362 regions. In our experiment, we chose the Schaefer atlas with 302 nodes. Using an atlas with a

higher number of regions could potentially introduce errors due to the small size of the regions, which

could result in regions not matching across different subjects.

Windows. Several parameters describe the windows, such as the seconds corresponding to the window

length and the window overlap, which we chose to be 60 and 30 seconds, respectively. Among the

different types of windows, we chose to work with rectangular windows.

Correlation. As correlation measure we chose the classical Pearson’s correlation.

Thresholds. Since there was no consensus on the most appropriate threshold, we consider different

values. Specifically,we consider all the thresholds from 0.2 to 0.9 with a step of 0.05 and from 0.9 to 0.98

–18–
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with a step of 0.02. The output is a binary temporal network. The latter is sparse for high threshold

values and dense for low values.

Generators and measures

All temporal graph generators and measures are written in the Julia programming language. In addition

to optimizing the execution of serial code, we applied parallel programming techniques such as

multithreading, which were exploited to make the scripts efficient. These scripts take as input 532

gigabytes of data generated by the pipeline starting from 975 gigabytes of raw data.

Optimization: fitting parameters

After creating the temporal graphs with the pipeline, our goal is to compare them with the random

temporal models, which all depend on some parameters. The latter should be chosen to share as much as

possible some common properties with the real data. In particular, we aim to have the same number of

nodes, average degree, and similar temporal small-worldness values. We thus choose the set of

parameters for which the random temporal models best match the aforementioned properties in the

empirical data. In the RTPT and RTE Graph Models, the number of nodes and the average degree are

inherited from the real data by construction and they do not depend on other parameters. For the RTS and

RTT Graph Models, the number of nodes can be set directly and, by changing the connection parameter

r, it is possible to obtain any average degree, instead, the velocity parameter v has to be optimized. For

the RTH Graph Model, the number of nodes has to be set, the average degree is obtained by changing R

and the parameters to be optimized are α and v, while ζ is set to 1, because, as explained in the Methods

Section, we can fix ζ and vary just α. We used two different optimization methods to find the best values

of the parameters.

The first finds a set of parameters for the three random temporal models that would fit the

small-worldness values of the real data for some average degree values in the interval 0− 170 (see Figure

8). To obtain different average degrees for the real data networks we use different threshold values, the

higher the threshold value, the lower the average degree. For the other models, we mention how to set it

in the previous paragraph.
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The second optimization method is to select a set of parameters for each random model that minimizes

the area between the temporal small-worldness curves of the empirical data and the random temporal

model over all different average degrees. The curves are obtained by linear interpolation of the temporal

small-worldness values at different average degrees (see Figure 9). For the RTH Graph Model, two

different sets of parameters are shown, one optimizing each definition of temporal small-worldness,

while for the RTS and RTT Graph Models, only one set of parameters is shown, corresponding to the

result of optimization with respect to our definition of temporal small-worldness.

RESULTS

This section discusses the result of all the temporal measures described in this work, applied to the

processed data from the Human Connectome Project (WU-Minn HCP 1200 Subjects Data Release

Reference Manual, 2018) and to the random temporal models. We have calculated the values over

different average degrees, namely in the range 0− 170. Those of the empirical data vary by changing the

threshold values. Consequently, this happens also for RTPT and RTE graph models. As for the RTS and

RTT graph models, this property depends on the radius of the connection: the higher the radius, the

higher the average degree. In the hyperbolic case, as shown in the section above, it depends on R, which

is the connection radius.

The plots in Figure 8 show the results of the first optimization method. The real data of all 1047

patients are shown in blue, the RTH Graph Model in red, and the RTT and RTS graph models in orange

and green, respectively. Figure 8a shows that for any average degree value we can find a set of parameters

for the RTH Graph Model that can approximate the real data value of our definition of temporal

small-worldness, while this is not the case for RTT and RTS graph models. Figure 8b shows that for any

average degree value we can find a set of parameters for all the random models that can approximate the

real data value of the temporal small-worldness value of Sizemore and Bassett (2018).

In the plots of Figure 9, as above, the real data are shown in blue. RTT and RTS graph models are

shown in orange and green, respectively. RTPT and RTE graph models are shown in grey and pink.

There are also two RTH graph models with different parameters. The one with

α = 0.65, v = 0.6 and ζ = 1, illustrated in violet, better matches the small-worldness S value of the real

data, while the one with α = 0.8, v = 0.9 and ζ = 1, illustrated in red, better fits the definition of
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(a) (b)

Figure 8: Result of the first optimization method: comparison between empirical and random networks

with 302 nodes at each average degree for the two definitions of small-worldness.

small-worldness SSB, which is based on the temporal correlation coefficient TC. For all models, the

lines are the medians and the shadows correspond to the values between the first and third quartiles.

Looking at the random models, the median of the RTPT Graph Model always has higher values with

respect to those of the RTE Graph Model for all measures except the temporal path length (see Figure

9e). Note that for RTT, RTS and RTH graph models the shadows are barely visible due to the fact that the

variance is very small. The quantitative results describing the plots 9a and 9b are given in Table 2 and

Table 3, respectively. These tables illustrate the comparison between the median of the empirical data and

that of the models. This comparison is made in two ways: by measuring the area between the curves, as

explained in the Optimization subsection, and by using different types of norms, namely minimum,

maximum, mean absolute, and mean Euclidean distance norms. The latter are computed across the

differences between the linear interpolation of the empirical data and the model data values of S and

SSB. These differences are computed on 16861 equispaced points in the range [0, 170]. The minimum

captures the smallest difference between the curves, while the maximum captures the largest. The mean

absolute value norm considers the absolute value of all differences at the selected points and then

calculates their average. Analogously, the mean Euclidean distance norm calculates the Euclidean

distance between the curves at the selected points and then calculates their average. The best results are
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highlighted in bold and the second best is underlined. In Table 2 we can see that the RTH Graph Model

with α = 0.65, v = 0.6 is the one that best approximates the small-worldness S value of the real data, and

the second best one is the other RTH Graph Model. In Table 3 we can see that the RTH Graph Model

with α = 0.8, v = 0.9 is the one that best approximates the small-worldness SSB value of the real data,

while the second best one is the RTPT Graph Model.

In all plots, the situation is more noisy in the sparse regime. For the sake of completeness, we did not

remove this part even though these regimes are rarely considered in the literature in neuroscience.

Model Area Minimum Maximum Mean Absolute value Mean Euclidean distance

RTH α = 0.8, v = 0.9 2.84 0.0000014 0.067 0.017 0.00018

RTH α = 0.65, v = 0.6 2.73 0.0000011 0.040 0.016 0.00015

RTS v = 0.1 8.02 0.0052702 0.166 0.048 0.00053

RTT v = 0.2 9.88 0.0000023 0.169 0.059 0.00057

RTE 33.92 0.0115314 0.248 0.201 0.00160

RTPT 21.42 0.0128656 0.166 0.127 0.00102

Table 2: Distances between the median of the empirical data and the one of the model for the temporal

small-worldness S, as discussed in Result Section. The best results are highlighted in bold and the second

best is underlined.

DISCUSSION AND CONCLUSIONS

The main focus of this work is to investigate a novel appropriate null model for testing hypotheses about

brain dynamics. A good null model must have similar properties to the empirical data under

consideration. In this context, the two most important properties present in complex networks such as

those modeling brain activity are small-worldness and scale-freeness. In this work, we focus on the

small-worldness property.

To transform the data into temporal networks, the empirical data is collected in time and processed

using the window sliding method. The main challenge is to adapt all definitions of measures and models
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(a) (b)

(c) (d)

(e)

Figure 9: Results of the second optimization method: comparison between empirical and random net-

works with 302 nodes for different measures.
–23–
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Model Area Minimum Maximum Mean Absolute value Mean Euclidean distance

RTH α = 0.8, v = 0.9 4.46 0.0000006 0.067 0.026 0.00024

RTH α = 0.65, v = 0.6 9.60 0.0093862 0.096 0.057 0.00050

RTS v = 0.1 37.23 0.0000018 0.266 0.221 0.00174

RTT v = 0.2 17.91 0.0136169 0.130 0.106 0.00084

RTE 20.56 0.0396405 0.142 0.122 0.00095

RTPT 7.25 0.0000087 0.060 0.043 0.00035

Table 3: Distances between the median of the empirical data and the one of the model for the temporal

small-worldness SSB, as discussed in Result Section. The best results are highlighted in bold and the

second best is underlined.

to their temporal versions. In particular, we provide a new definition of temporal small-worldness that is

consistent with its static version: if the time steps of the temporal network are all identical, the temporal

small-worldness is equal to the static small-worldness.

We compare five different temporal models by looking at how close their temporal small-worldness

values are to the ones of the data at different thresholds. In Figure 8 we compare the model at each

threshold individually, while in Figure 9 we compare them across different thresholds. The two models

introduced by Sizemore and Bassett (2018) perform worse than the other three models for the S measure.

This may be not surprising given the fact that they do not have any parameters to optimize but depend

only on the data. The RTS and RTT graph models perform better than the other two models, and the

measures computed on them are consistently very close to each other. This similarity may be explained

by the fact that the two graphs look locally the same for all points that are not close to the border of the

square or the torus, since the connectivity only differs in the latter area (see Figure 3). The RTH Graph

Model is the one that not only achieves the closest values of the temporal small-worldness, but its curve

of values follows the same trend as that of empirical data across different average degrees. This result is

consistent with the fact that RTH is a popular complex network model that exhibits both small-worldness

and scale-freeness.
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This analysis could be similarly extended to the more challenging investigation of a temporal version

of the scale-freeness property. It would be interesting to see if the RTH Graph Model is still preferable.

In this work, we focus on the resting state fMRI in healthy patients. A further development could be the

comparison with patients with diseases that affect the functionality of the whole brain. For example, we

could consider diseases such as Alzheimer’s and Parkinson’s but also ADHD, depression and

schizophrenia. Again, the main question is whether the best model to fit the data remains the same across

different parameter ranges. Another condition that could be investigated is the case of non-resting state,

where patients are engaged in cognitive processes generated by tasks involving memory, learning, and

attention. On the null models side, as future work, one could consider the case in which one starts from

phase randomization and autoregressive randomization null data of brain dynamics, transform them in

temporal networks and then apply the same analysis as in this work. This would allow to compare the

results of the two different approaches(Liégeois, Laumann, Snyder, Zhou, & Yeo, 2017; Liégeois, Yeo, &

Van De Ville, 2021).
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TECHNICAL TERMS

Temporal graph: a graph in which edges and nodes change over time. It can be represented as a

sequence of graphs, each corresponding to a time step of the network at a given time.

Lattice graph: a graph which contains a regular pattern.

Null model: a theoretical model used to test hypotheses about empirical data, sharing certain

properties with them.

Node degree: number of edges incident to a node.

High tail distribution: a distribution that presents a significant number of extreme events.

Brain atlas: subdivision of the gray matter of the brain into smaller areas that share a common

property.

Adjacency matrix: a square matrix representing the graph structure, where the indices of rows and

columns represent the nodes and the entries correspond to the edge weight between the respective

nodes.

Time-respecting path: a finite or infinite sequence of distinct edges, ordered in time, connecting a set

of distinct nodes.

Threshold: a criterion value that determines whether values above it are taken into account and

values below it are not.

Binary temporal graph: a temporal graph whose edges have weights of 1 or 0.
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