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SOLVING LINEAR TIME-FRACTIONAL DIFFUSION EQUATIONS WITH

A SINGULAR SOURCE TERM

YAVAR KIAN1 AND ÉRIC SOCCORSI2,∗

Abstract. This article deals with linear time-fractional diffusion equations with time-dependent

singular source term. Whether the order of the time-fractional derivative is multi-term, dis-

tributed or space-dependent, we prove that the system admits a unique weak solution enjoying

a Duhamel representation, provided that the time-dependence of the source term is a distri-

bution. As an application, the square integrable space-dependent part and the distributional

time-dependent part of the source term of a multi-term time-fractional diffusion equation are

simultaneously recovered by partial internal observation of the solution.

1. Introduction and settings

1.1. Time-fractional derivatives. In the present article, Ω is a bounded and connected

open subset of Rd, d > 2, with Lipschitz boundary ∂Ω. Given K ∈ L1
loc(R+, L

∞(Ω)) ∩

C∞(R+, L
∞(Ω)), where R+ := (0,+∞), we introduce the integral operator

(IKg)(t, x) :=

∫ t

0
K(t− s, x)g(s, x)ds, g ∈ L1

loc(R+, L
2(Ω)), x ∈ Ω, t ∈ R+.

For any complete locally convex topological vector space X, we denote by D′+(R, X) (resp.,

S ′+(R, X)) the set of X-valued distributions (resp., tempered distributions) in D′(R, X) (resp.,

S ′(R, X)) that are supported in [0,+∞). Notice that any distribution in D′+(R, X ′), where X ′

is the topological space dual to X, may be regarded as a continuous linear form in Da(R, X) :=

{ψ ∈ C∞(R, X); ∃R > 0, suppψ ⊂ (−∞, R)}, endowed with the associated canonical LF-

topology. We denote by 〈·, ·〉a,X or simply by 〈·, ·〉 when there is no ambiguity, the correspond-

ing duality pairing. Thus, bearing in mind that s 7→
∫ +∞

0 K(t, ·)ψ(t + s, ·)dt ∈ Da(R, L2(Ω))

when ψ ∈ Da(R, L2(Ω)), we extend IK as a continuous linear map from D′+(R, L2(Ω)) to
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D′+(R, L2(Ω)) by setting

〈IKv, ψ〉 :=

〈
v(s, ·),

∫ +∞

0
K(t, ·)ψ(t+ s, ·)dt

〉
, v ∈ D′+(R, L2(Ω)), ψ ∈ Da(R, L2(Ω)),

where, as usual, L2(Ω) is identified with its dual space. Next, with reference to the definition

[32, Chapter 6, Section 5, Eq. 15] of non-integer order distributional derivatives, we introduce

the Riemann-Liouville (resp., Caputo) fractional derivative Dt,K (resp., ∂t,K) with kernel K

as Dt,Kv := ∂tIKv (resp., ∂t,Kv := IK∂tv) for all v ∈ D′+(R, L2(Ω)).

1.2. Initial boundary value problem with a singular source term. We consider the

following initial boundary value problem (IBVP) with initial state u0 and source F ,
(∂t,K +A)u(t, x) = F (t, x), (t, x) ∈ R+ × Ω

u(t, x) = 0, (t, x) ∈ R+ × ∂Ω

u(0, x) = u0(x), x ∈ Ω.

(1.1)

Here and below, we set

Au(x) := −
d∑

i,j=1

∂xi
(
ai,j(x)∂xju(x)

)
+ q(x)u(x), x ∈ Ω,

where q ∈ L
d
2 (Ω) is non-negative and a := (ai,j)16i,j6d ∈ L∞(Ω,Rd2)∩H1(Ω,Rd2) is symmetric

and satisfies the ellipticity condition:

∃c > 0,

d∑
i,j=1

ai,j(x)ξiξj > c|ξ|2, x ∈ Ω, ξ = (ξ1, . . . , ξd) ∈ Rd. (1.2)

Let u0 ∈ L2(Ω) and F ∈ D′+(R, L2(Ω)).

Definition 1.1. A weak-solution to (1.1) is any u ∈ S ′+(R, L2(Ω)) satisfying the two following

conditions simultaneously:

(i) 〈Dt,Ku+Au, ψ〉a,D(Ω) = 〈K+u0 + F,ψ〉a,L2(Ω) for all ψ ∈ Da(R, D(Ω)), where K+(t, x) :=

K(t, x)1R+(t) and 1R+ is the characteristic function of R+.

(ii) For all p ∈ C+ := {z ∈ C; Rz > 0}, the Laplace transform (with respect to t) of u at

p, defined for a.e. x ∈ Ω by û(p, x) :=
〈
u(t, x), e−pt

〉
S′+(R),S+(R)

where S+(R) := {ϕ ∈

C∞(R); ϕ|R+
∈ S(R+)}, lies in H1

0 (Ω).
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1.3. Anomalous diffusion processes. In this article we study the existence and the unique-

ness issues of a weak solution to (1.1) in the presence of a singular source term F , for each of

the three following classical types of diffusion models:

1) Time-fractional diffusion equations of space-dependent variable order α ∈ L∞(Ω) fulfilling

0 < α0 6 α(x) 6 αM < 1, x ∈ Ω,where αM < 2αM .

These models are defined by the IBVP (1.1) associated with

K(t, x) :=
t−α(x)

Γ(1− α(x))
, t ∈ R+, x ∈ Ω. (1.3)

2) Distributed order time-fractional diffusion models with a non-negative weight function µ ∈

L∞(0, 1) obeying

∃α0 ∈ (0, 1), ∃ε ∈ (0, α0), ∀α ∈ (α0 − ε, α0), µ(α) ≥ µ(α0)

2
> 0.

They are described by (1.1) when

K(t, x) :=

∫ 1

0
µ(α)

t−α

Γ(1− α)
dα, t ∈ R+, x ∈ Ω. (1.4)

3) Multiterm time-fractional diffusion equations of orders α1 < . . . < αN , where N ∈ N :=

{1, 2, . . .}, α1 > 0 and αN < 1, with density functions ρj ∈ L∞(Ω) satisfying

0 < c0 6 ρj(x) 6 C0 < +∞, a.e. x ∈ Ω, j = 1, . . . , N.

Such models can be expressed by (1.1) with

K(t, x) :=

N∑
j=1

ρj(x)
t−αj

Γ(1− αj)
, t ∈ R+, x ∈ Ω. (1.5)

Anomalous diffusion in a heterogeneous medium is a growing issue of scientific research, with

numerous applications areas such as geophysics, hydrology or biology, see e.g., [1, 5, 8]. Some

typical examples are fluid flow in porous media, propagation of seismic waves, and protein

dynamics. In this framework the variations of permeability in different spatial positions caused

by the heterogeneities of the medium induce location dependent diffusion phenomena which

are correctly described by the space dependent model (1.1) associated with the kernel (1.3).

On the other hand, (1.4) is used for modeling ultra slow diffusion processes whose mean square

displacement scales like a log with respect to the time variable. For instance, such phenomena

were observed in polymer physics or the kinetics of particles moving in quenched random force

fields, see e.g. in [28, 33]. Finally, the behavior of viscoelastic fluids and rheological material
3



is commonly described by the multi-term time-fractional diffusion equation (1.1) associated

with (1.5), see e.g. [6].

2. Singular sources and the well-posedness issue

2.1. What we are aiming for. The well-posedness issue of constant-order fractional diffusion

equations (these are equations of the form (1.1) with K(t, x) := t−β

Γ(1−β) for some fixed β ∈

(0, 1)) has received a great deal of attention from the mathematical community over the last

decades, see e.g. [4, 31, 20] and the references therein. Similarly, several techniques were used

in [18, 24, 23, 25, 23] to build a solution to variable-order, distributed or multi-term time-

fractional processes, and we refer the reader to [13] for a global comparative analysis of these

different approaches. All the above mentioned works assume that the source term F is within

the class L1
loc(R+, L

2(Ω)) but, recently, the well-posedness of constant-order time-fractional

diffusion systems was examined in [35] when t 7→ F (t, ·) lies in a negative order Sobolev space.

The aim of this article is to extend the study carried out in [35] in two main directions: Firstly,

by adapting the analysis to the wider class of diffusion equations described in Section 1.3 and,

secondly, by considering source terms with distributional temporal dependence, that is to say

source terms F such that t 7→ F (t, ·) is not necessarily a function but rather a distribution.

2.2. Statement of the result. We start with the definition of R∗ v when v ∈ D′+(R, L2(Ω))

and R ∈ L1
loc(R,B(L2(Ω))) ∩ D′+(R,B(L2(Ω))), where B(L2(Ω)) is as usual the set of linear

bounded operators in L2(Ω). Let us denote the adjoint operator to R(t) by R∗(t) . Then,

bearing in mind that for all ϕ ∈ Da(R, L2(Ω)),

s 7→
∫
R
R(t)∗ϕ(t+ s, ·)dt =

∫ +∞

0
R(t)∗ϕ(t+ s, ·)dt ∈ Da(R, L2(Ω)),

we define R ∗ v ∈ D′+(R, L2(Ω)) by

〈R ∗ v, ϕ〉a,L2(Ω) :=

〈
v(s, ·),

∫
R
R(t)∗ϕ(t+ s, ·)dt

〉
a,L2(Ω)

, ϕ ∈ Da(R, L2(Ω)).

As an immediate consequence we obtain that ∂mt (R ∗ v) = R ∗ (∂mt v) for all m ∈ N.

This being said, let K be given by either (1.3), (1.4) or (1.5). Next, we fix θ ∈ (π2 , π) and

δ ∈ (0,+∞), put

γ0(δ, θ) := {δ eiβ, β ∈ [−θ, θ]}, γ±(δ, θ) := {s e±iθ, s ∈ [δ,∞)}, (2.1)
4



and introduce the following contour in C,

γ(δ, θ) := γ−(δ, θ) ∪ γ0(δ, θ) ∪ γ+(δ, θ),

oriented counterclockwise. Then, with reference to [13, 18, 23], we set for all ψ ∈ L2(Ω),

Sj,K(t)ψ :=
1R+(t)

2iπ

∫
γ(δ,θ)

etp
(
A+ pK̂(p, ·)

)−1
K̂(p, ·)1−jψdp, j = 0, 1, (2.2)

where A is the self-adjoint operator in L2(Ω) acting as A on its domain

D(A) := {h ∈ H1
0 (Ω); Ah ∈ L2(Ω)}.

Notice that the right hand side on (2.2) is well-defined as −pK̂(p, x) is in the resolvent set of

A for all p ∈ γ(δ, θ) and a.e. x ∈ Ω. Now, applying [16, Lemma 6.1] and [13, Lemmas 2.1, 3.1

and 4.2], we get that

Sj,K ∈ L1
loc(R, L2(Ω)) ∩ S ′+(R,B(L2(Ω))), j = 0, 1.

Moreover, it is clear that for all F ∈ D′+(R, L2(Ω)),

u(t, ·) := S0,K(t)u0 + S1,K ∗ F (t, ·), t ∈ R, (2.3)

lies in D′+(R, L2(Ω)).

In the peculiar case where F ∈ L1
loc(R, L2(Ω)) ∩D′+(R, L2(Ω)), the identity (2.3) reads

u(t, ·) = S0,K(t)u0 +

∫ t

0
S1,K(t− s)F (s, ·)ds, t ∈ R.

Furthermore, by assuming in addition that (1 + t)−NF ∈ L1(R+;L2(Ω)) for some N ∈ N,

we obtain from [13, Theorems 1.3, 1.4 and 1.5] that the distribution u defined in (2.3) is

a weak solution to the IBVP (1.1) in the sense of Definition 1.1. The main achievement

of this short article is the following generalization of this result to the case of source terms

F ∈ S ′+(R, L2(Ω)).

Theorem 2.1. Let u0 ∈ L2(Ω), let F ∈ S ′+(R, L2(Ω)) and let K be defined by either (1.3),

(1.4) or (1.5). Assume (1.2). Then, the distribution expressed by (2.3) is the unique weak

solution to (1.1) in the sense of Definition 1.1.

The proof of Theorem 2.1 is given in Section 3.

Notice that Definition 1.1 of a weak solution to diffusion equations with a variable,

distributed or multi-term fractional derivative, and a possibly singular source term F in

D′+(R, L2(Ω)), generalizes the ones given in [4, 13, 18, 21, 23] and in the references therein,
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in the context of more specific diffusion processes. Moreover, the representation formula of

the weak solution used in [13, 18, 23] is a byproduct of the Duhamel formula (2.3) that is

established in Theorem 2.1 for a wider set of source terms lying in S ′+(R, L2(Ω)).

It is worth pointing out that Theorem 2.1 holds provided that the elliptic part A of the

diffusion equation (1.1) is symmetric. This can be explained by the fact that suitable resolvent

estimates for symmetric operators established in either [18, Proposition 2.1] or [13, Lemma

4.1], depending on whether K is given by (1.3) or (1.5), are needed by the proof of Theorem

2.1. But, as these estimates extensively rely on the symmetry property of A, it is not clear yet

how the statement of Theorem 2.1 could be adapted to elliptic operators with a non-symmetric

advection term.

For further reference we also stress out that Theorem 2.1 provides a unique weak solution

enjoying the Duhamel representation formula (2.3), to anomalous diffusion processes governed

by the IBVP (1.1) with a discrete-in-time source term of the form

F (t, x) =
N∑
j=1

δ
(kj)
tj

(t)fj(x), t ∈ R, x ∈ Ω, (2.4)

where N ∈ N, 0 6 t1 < t2 < . . . < tN < +∞, k1, . . . , kN are non-negative integers, and

f1, . . . , fN are in L2(Ω). The general expression given by (2.4) is inspired from the one that is

used in [2, 3] (in the special case where kj = 0 for all j = 1, . . . , N) for modeling rock fractures

in an inverse seismic source problem.

2.3. Target models and related inverse problems. The Duhamel formula (2.3) is a not

only useful for describing and studying the weak-solution to the IBVP (1.1) but it is also a

powerful tool for solving numerous inverse problems appearing in the context of anomalous

diffusion processes. For instance, such a representation formula was successfully used in [16,

18] for the identification of the weight function K (which is indicative of the nature of the

undergoing anomalous diffusion process), in [15, 17] for the determination of unknown physical

parameters such as the velocity field or the density, and in [10, 11, 12, 19, 34] for the detection

of a source term.

One of the benefits of the Duhamel formula (2.3) of Theorem 2.1 is that it allows the

analysis carried out in [10, 11, 12, 19, 34] to be extended to the case of time-singular source

terms. As a matter of fact, assuming that the source term F in (1.1) is the tensor product (in
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the distributional sense)

F (t, x) = σ(t)⊗ f(x), t ∈ R+, x ∈ Ω, (2.5)

where f is square integrable and σ is a compactly supported distribution, we will establish

that either of the two unknowns σ or f can be retrieved by partial internal measurement of

the solution u to (1.1). The corresponding result can be stated as follows.

Theorem 2.2. Let K be given by (1.5) with N = 1 and ρ1 ≡ 1, and let F be defined by (2.5)

where f ∈ L2(Ω) and σ ∈ D′(R) satisfies supp (σ) ⊂ (0, T1) for some T1 > 0. Denote by u

the unique weak solution in the sense of Definition 1.1 to (1.1) with u0 ≡ 0, that is given by

Theorem 2.1. Then, for any T > T1 and any (non-empty) open subset ω of Ω, we have the

implication:

u|(0,T )×ω ≡ 0 =⇒ σ ≡ 0 or f ≡ 0. (2.6)

The inverse problem solved by Theorem 2.1 has important applications in geology, with

the detection of hydraulic cracks in fractured rocks through anomalous diffusion, see e.g., [29],

or in applied mechanics with the localization of patterns of moisture in viscoelastic polymers,

see e.g., [30]. But, as far as we know, this problem was treated only for L1 time-dependent

admissible sources of time-fractional partial differential equations (this the regularity requested

by [10, 11, 12, 19] but it is raised to C1 in [34]), since time integrability of the function F

was needed to write a representation formula of the solution to the system under examination.

As will appear in the proof of Theorem 2.2, below, the critical tool enabling us to solve the

inverse problem of determining a discrete-in-time source of a sub-diffusive equation, is the

Duhamel formula given in Theorem 2.1. Moreover, we believe that it should allow us to tackle

the same inverse source problem as in Theorem 2.2, where the data are replaced by boundary

measurements, and to take advantage of the “memory effect” exhibited by the system (1.1)

(see [9, 16]) to downsize the observation window to (T − ε, T ), where ε > 0 is arbitrary small.

2.4. Outline. The structure of the remaining part of this article is as follows. Section 3 is

devoted to the proof of Theorem 2.1, while Section 4 contains the analysis of the inverse

problem and the proof of Theorem 2.2.

3. Proof of Theorem 2.1

Prior to showing Theorem 2.1, we establish a technical result needed by the proof.
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3.1. Preliminaries. The result is as follows.

Lemma 3.1. Let K be as in Theorem 2.1. Then, for all u ∈ S ′+(R, L2(Ω)) we have IKu ∈

S ′+(R, L2(Ω)) and it holds true that

ÎKu(p, ·) = K̂(p, ·)û(p, ·), p ∈ C+, (3.1)

where û still denotes the Laplace transform of u.

Proof. For all ϕ ∈ Da(R, L2(Ω)), we have

〈IKu, ϕ〉a,L2(Ω) = 〈u, ϕK〉S′+(R,L2(Ω)),S+(R,L2(Ω)) ,

where ϕK(t, ·) :=
∫ +∞

0 K(s, ·)ϕ(s+ t, ·)ds. Since suppu ⊂ [0,+∞), it follows from this that∣∣∣〈IKu, ϕ〉a,L2(Ω)

∣∣∣ 6 C sup
t∈[0,+∞)

‖(1 + t)m2∂m1
t ϕK(t)‖L2(Ω) , (3.2)

for some natural numbers m1 and m2. Here and in the remaining part of this proof, C denotes

a generic positive constant which may change from line to line.

Furthermore, since K is defined by either (1.3), (1.4) or (1.5), we have

K ∈ L1(0, 1;L∞(Ω)) ∩ L∞(1,∞;L∞(Ω)),

hence we obtain for all t ∈ [0,+∞) that

‖(1 + t)m2∂m1
t ϕK(t)‖L2(Ω)

6
∫ +∞

0
‖K(s, ·)‖L∞(Ω) ‖(1 + t+ s)m2∂m1

t ϕ(s+ t, ·)‖L2(Ω) ds

6 C sup
t∈[0,+∞)

∥∥(1 + t)m2+2∂m1
t ϕ(t)

∥∥
L2(Ω)

,

where C can be taken equal to ‖K‖L1(0,1;L∞(Ω)) + ‖K‖L∞(1,∞;L∞(Ω))

∫∞
1 (1 + s)−2ds From this

and (3.2) it then follows that
∣∣∣〈IKu, ϕ〉a,L2(Ω)

∣∣∣ 6 C supt∈[0,+∞)

∥∥(1 + t)m2+2∂m1
t ϕ(t)

∥∥
L2(Ω)

.

Therefore, IKu can be extended by density to some vector in S ′+(R, L2(Ω)).

Moreover, for all p ∈ C+ we have

ÎKu(p, ·) =

〈
u(t, ·),

∫ +∞

0
K(s, ·)e−p(t+s)ds

〉
S′+(R),S+(R)

=

〈
u(t, ·),

(∫ +∞

0
K(s, ·)e−psds

)
e−pt

〉
S′+(R),S+(R)

=

(∫ +∞

0
K(s, ·)e−psds

)〈
u(t, ·), e−pt

〉
S′+(R),S+(R)

,

which yields (3.1). �
8



Armed with Lemma 3.1 we are now in position to prove Theorem 2.1.

3.2. Completion of the proof. With reference to [13, Theorems 1.3, 1.4 and 1.5], we may

assume without loss of generality that u0 = 0 in Ω. We shall examine the uniqueness and the

existence problems separately. We start with the uniqueness issue.

Uniqueness. Let u be a weak solution, in the sense of Definition 1.1, to (1.1) associated with

F = 0 in R+ × Ω and u0 = 0 in Ω. Then, we have Dt,Ku = ∂tIKu ∈ S ′+(R, L2(Ω)) by Lemma

3.1 and Au ∈ S ′+(R;D′(Ω)). Moreover, since D̂t,Ku(p, ·) = pÎKu(p, ·) = pK̂(p, ·)û(p, ·) and

Âu(p, ·) = Aû(p, ·) for all p ∈ C+, we get upon applying the Laplace transform to both sides

of (1.1), that

pK̂(p, x)û(p, x) +Aû(p, x), p ∈ C+, x ∈ Ω.

From this and the condition û(p, ·) ∈ H1
0 (Ω) for all p ∈ C+, imposed by Definition 1.1(ii),

it then follows that û(p, ·) = 0 in Ω, according to [18, Proposition 2.1] and [13, Lemma 4.1].

Thus, we have u = 0 in R+ × Ω by injectivity of the Laplace transform. This proves that a

weak solution to (1.1), if any, is unique.

Existence. Let us establish that the distribution u ∈ D′+(R, L2(Ω)), which is expressed by

(2.3), is a weak solution to the IBVP (1.1). For this purpose we apply [7, Theorem 8.3.1] to

F ∈ S ′(R, L2(Ω)) and get F1 ∈ L1
loc(R, L2(Ω)) such that F = ∂N1

t F1 for some N1 ∈ N and

(1 + t2)−N2F1 ∈ L∞(R, L2(Ω)) for some N2 ∈ N. Thus, applying (2.3) with u0 = 0, we obtain

that

u = S1,K ∗ F = S1,K ∗ (∂N1
t F1) = ∂N1

t (S1,K ∗ F1), (3.3)

where for all t ∈ R, we have S1,K ∗F1(t) =
∫ t

0 S1,K(t− s)F1(s)ds because F1 ∈ L1
loc(R, L2(Ω)).

Next, since K is defined by either (1.3), (1.4) or (1.5), we know from [13, Lemmas 2.1, 3.1 and

4.2] that

‖S1,K(t)‖B(L2(Ω)) 6 C max(1, t−r1), t ∈ R+,

where r1 ∈ (0, 1) and C is a positive constant C. It follows readily from this and (1+t2)−N2F1 ∈

L∞(R, L2(Ω)) that S1,K ∗ F1 ∈ S ′+(R, L2(Ω)). Therefore, we have u ∈ S ′+(R, L2(Ω)) directly

from (3.3).

The next step is to infer from (1 + t2)−N2F1 ∈ L∞(R, L2(Ω)) that (1 + t)−2N2−2F1 ∈

L1(R+, L
2(Ω)), and then to apply [13, Propositions 2.2, 3.2 & 4.5]: We get that

L (S1,K ∗ F1) (p, ·) =
(
A+ pK̂(p, ·)

)−1
F̂1(p, ·), p ∈ C+, (3.4)

9



where L stands for the Laplace transformation with respect to t. Further, in view of (3.3) we

have

û(p, ·) = L
(
∂N1
t S1,K ∗ F1

)
(p, ·) = pN1L (S1,K ∗ F1) (p, ·), p ∈ C+,

so we deduce from (3.4) that

û(p, ·) =
(
A+ pK̂(p, ·)

)−1
pN1F̂1(p, ·) =

(
A+ pK̂(p, ·)

)−1
L
(
∂N1
t F1

)
(p, ·)

=
(
A+ pK̂(p, ·)

)−1
F̂ (p, ·). (3.5)

Since F̂ (p, ·) ∈ L2(Ω) for all p ∈ C+, (3.5) yields that û(p, ·) ∈ D(A). Thus, bearing in mind

that D(A) ⊂ H1
0 (Ω), this shows that u fulfills Definition 1.1(ii). Finally, in light of (3.5) and

Lemma 3.1, we see that v := DK
t u+Au ∈ S ′+(R, D′(Ω)) satisfies

v̂(p, ·) = (A+ pK̂(p, ·))û(p, ·) = (A+ pK̂(p, ·))
(
A+ pK̂(p, ·)

)−1
F̂ (p, ·) = F̂ (p, ·), p ∈ C+.

This leads to Dt,Ku + Au = F in S ′+(R, D′(Ω)) by injectivity of the Laplace transform L,

which establishes that u fulfills Definition 1.1(i) as well. As a consequence u is a weak solution

to (1.1).

4. Proof of Theorem 2.2

One of the two main ingredients of the proof of Theorem 2.2 is the analyticity of the

solution to (1.1) with respect to the time variable t. We start by establishing this technical

property.

4.1. Time-analyticity of the solution. We aim to establish the following byproduct of

Theorem 2.1.

Lemma 4.1. Under the conditions of Theorem 2.2, the L2(Ω)-valued weak solution u to (1.1)

with initial state u0 ≡ 0, is real-analytic with respect to t ∈ (T1,∞).

Proof. Pick θ1 ∈ (0,min(π−θ, θ−π/2)), θ ∈ (π/2, π) being the same as in Section 2.2, in such

a way that R(zp) < 0 whenever z ∈ Cθ1 = {τeiψ : τ ∈ (0,∞), ψ ∈ (−θ1, θ1)} and p ∈ γ±(δ, θ),

where γ±(δ, θ) is defined in (2.1). Then, with reference to (2.2), we get by arguing as in the

proof of [14, Theorem 3.3.] or [19, Proposition 2.1], that the map t 7→ S1,K(t) extends to

a B(L2(Ω))-valued holomorphic function z 7→ S1,K(z) in Cθ1 . Therefore, for all s ∈ (0, T1),

z 7→ S1,K(z − s) is holomorphic in Oθ1 = {T1 + τeiψ : τ ∈ (0,∞), ψ ∈ (−θ1, θ1)}.
10



Next, bearing in mind that supp (σ) ⊂ (0, T1), we introduce for all z ∈ Oθ1 , the linear

bounded operator Uσ(z) in L2(Ω), as

Uσ(z)h = 〈σ, S1,K(z − ·)h〉E ′(0,T1),C∞(0,T1) , h ∈ L
2(Ω), (4.1)

where E ′(0, T1) denotes the space of compactly supported distributions in D′(R), with support

in (0, T1). Evidently, Uσ lies in H (Oθ1 ,B(L2(Ω))), the space of B(L2(Ω))-valued holomorphic

functions in Oθ1 , and the expected result follows from this since the weak solution u to (1.1)

with u0 ≡ 0, satisfies

u(t) = Uσ(t)f, t > T1,

according to (2.3). �

Armed with this lemma, we may now complete the proof of Theorem 2.2.

4.2. Completion of the proof. First, we deduce from Lemma 4.1 and the assumptions

u|(0,T )×ω ≡ 0 and T > T1, that

u(t, x) = 0, t ∈ R+, x ∈ ω. (4.2)

In order to show that either σ or f are uniformly zero, it is enough to prove that f ≡ 0

whenever σ 6≡ 0. To this purpose, we suppose that σ 6≡ 0. Next, with reference to Definition

1.1 and the proof of Theorem 2.1, we notice that the Laplace transform û(p, ·) of the solution

u to (1.1), computed at p ∈ R+, solves (pα +A)û(p, x) = σ̂(p)f(x), x ∈ Ω

û(p, x) = 0, x ∈ R+ × ∂Ω,
(4.3)

where σ̂ is the Laplace transform of σ. Similarly, it follows readily from (4.2) that for all

p ∈ R+,

û(p, x) = 0, x ∈ ω. (4.4)

Since p 7→ σ̂(p) is holomorphic in C, by Schwartz’s Paley-Wiener theorem, and since σ 6≡ 0

by assumption, there exist two real numbers 0 < r1 < r2 such that σ̂(p) 6= 0 for all p ∈ [r1, r2].

Thus, putting

v(τ, x) =
û(τ

1
α , x)

σ̂(τ
1
α )

, τ ∈ [rα1 , r
α
2 ],

11



we infer from (4.3)-(4.4) ,
(τ +A)v(τ, x) = f(x), (τ, x) ∈ [rα1 , r

α
2 ]× Ω

v(τ, x) = 0, (τ, x) ∈ [rα1 , r
α
2 ]× ∂Ω

v(τ, x) = 0, (τ, x) ∈ [rα1 , r
α
2 ]× ω.

(4.5)

Now, let us introduce the C([0,+∞), H1
0 (Ω)) ∩ C1([0,+∞), L2(Ω))-solution w to

(∂t +A)w(t, x) = 0, (t, x) ∈ (0,∞)× Ω,

w(t, x) = 0, (t, x) ∈ (0,∞)× ∂Ω,

w(0, x) = f(x), x ∈ Ω.

(4.6)

Then, ŵ, the Laplace transform (with respect to t) of w, is well-defined on R+, and we have

ŵ(τ, ·) = v(τ, ·), τ ∈ [rα1 , r
α
2 ],

by uniqueness of the solution to the two first lines of (4.5). Therefore, we have

w(t, x) = 0, (t, x) ∈ (0,∞)× ω,

from the third line of (4.5) and the injectivity of the Laplace transform. From this and the first

line of (4.6), we get upon applying the unique continuation principle for parabolic equations,

that w ≡ 0. As a consequence, we have f ≡ 0, and the proof is complete. �
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