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Abstract—Designing smart mechanisms to facilitate and accel-
erate service deployment and management is one of the most
challenging aspects for network infrastructure providers. This
is due to the massive amount of traffic that they are expected
to support, the decentralized nature of the architectures, and
the services they run to meet quality targets and avoid Service
Level Agreement (SLA) violations. Therefore, Communications
Service Providers (CSPs) are devoting much of their efforts
on reducing energy consumption and reducing carbon foot-
print of their network infrastructures. In future communication
networks, traditional management mechanisms, and centralized
legacy solutions show their limitations in ensuring revenue for
the infrastructure providers, the service providers, and a good
Quality of Experience (QoE) for the end-users. The deployment
of these services requires, typically, an efficient allocation of
Virtual Network Function Forwarding Graph (VNF-FG). In
this context, we propose an intelligent energy efficient VNF-
FG embedding approach based on multi-agent attention-based
Deep Reinforcement Learning (DRL). Our contribution uses a
semi-distributed DRL mechanism for VNF-FG placement. The
proposed algorithm is shown to outperform previous state-of-the-
art approaches in terms of acceptance rate, power consumption,
and execution time.

Index Terms—Energy efficiency, Deep Reinforcement Learn-
ing, Attention, Multi-Agent, Virtual Network Function Embed-
ding.

I. INTRODUCTION

The widespread interconnection of millions of devices
increases energy consumption and thus, carbon emissions.
Furthermore, factors such as the production of billions of
devices, their shipment, and the excessive use of data centers
and network resources, all contribute to an increase in power
consumption. In this context, the role of network management
and control technology is to contribute to energy savings.
Boosting transmit power between the increasing number of
connected devices in order to increase communication capacity
may result in expensive operating costs. Because energy is
a crucial OPerating EXpenditure (OPEX) factor, its smart
control is regarded as necessary for network expansion and
function. Network providers face the challenge of power
supply to their large-scale networks.

Network Function Virtualization (NFV) [1] decouples net-
work functions from dedicated hardware devices (the tradi-
tional middleboxes). This decoupling enables the hosting of
network services, known as Virtualized Network Functions

(VNFs), on commodity hardware (such as servers), facili-
tates and accelerates service deployment and management by
providers, improves flexibility, leads to efficient and scalable
resource usage, and reduces costs.

For network management in NFV environments, researchers
emphasize the importance of AI-native network slicing
for VNF-FG embedding. Reinforcement Learning (RL) ap-
proaches can be used to improve decision-making speed and
accuracy when dealing with large requests for dynamically
constructing and updating end-to-end (E2E) slices (or VNF-
FG) across multiple infrastructures. The development of an
efficient distributed machine learning-based handover decision
algorithm aids in the resolution of energy savings and scalabil-
ity issues. A holistic intelligent management and orchestration
system with self-diagnosis, self-healing, and self-configuration
is required to reduce operational costs and complexity.

A widely used Multi-Agent Reinforcement Learning
(MARL) paradigm known as Centralized Training and Decen-
tralized Execution (CTDE) [2], learns agent policies centrally
and executes the derived policies decentrally. Several CTDE
learning approaches have been proposed, including both policy
gradient and value-based methods [3] shown to achieve reason-
ably good performance in challenging tasks. Despite its suc-
cess, the execution of fully decentralized policies suffers from
limitations, particularly when agents have partial observability
in a stochastic environment. In fact, during decentralized
sequential execution, an agent’s uncertainty about the states
and actions of other agents can be aggravated and lead to sub-
optimal policies.

Motivated by these observations, in this paper, we de-
sign MA3C, a novel deep MARL architecture with a semi-
distributed fashion, that can significantly improve energy ef-
ficiency by using a Multi-Agent Actor-Attention-Critic mech-
anism for smart cooperation between agents without degrad-
ing accuracy and performance. MA3C combines multi-head
attention [4] and makes decisions on VNF-FG embedding
by learning a centralized joint action-value function and by
using it to guide the optimization of decentralized policies
at each agent. Compared to the existing methods, the main
contributions of this paper can be summarized as follows:

• We formulate the VNF-FG embedding problem as an
optimization model and establish a reward function aim-
ing to solve a trade-off between maximizing acceptance
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rate (and thus the providers’ revenue) and minimizing the
power consumption.

• We propose a novel attention mechanism-based Deep
Deterministic Policy Gradients (DDPG) framework, using
the Actor-Critic network structure.

• Our model takes into consideration the features of phys-
ical hosts and links and outputs the mapping decision of
VNFs on physical hosts and steering inter-VNF traffic
across the hosts with verification of constraints.

• Through extensive simulation experiments, we show that
our MA3C method outperforms the state-of-the-art algo-
rithms in terms of acceptance ratio, power consumption,
and execution time.

The remainder of this paper is organized as follows. Sec-
tion II describes related work and provides an overview
of existing works on energy-efficient VNF forwarding and
MARL methods. Section III formulates the VNF-FG embed-
ding problem and Section IV describes the proposed model.
Section VI reports performance evaluation and simulation
results, and Section VII summarizes the main findings.

II. RELATED WORK

The need to dynamically deploy virtual network services on-
demand, through VNF-FG embedding, is identified as a core
technology of 5G/6G networks. Therefore, this issue has been
at the very center of academic and industrial research in recent
years. As comprehensive surveys are already given in [1] and
[5], we only give a short summary of VNF-FG embedding
related works, as well as the use of RL in networking and
especially in the VNF-FG placement and chaining domain.

A. Combinatorial optimization theory for NFV

VNF-FG embedding is formulated as an Integer Linear
Programming (ILP) in [6]–[8] to find exact solutions for
hosting the VNFs of the requested service graph. As the
addressed problem is NP-Hard, the exact solutions do not scale
with size and require an excessive amount of time to find the
optimal solutions. Heuristic algorithms [9]–[11] are typically
and consequently proposed to scale better with problem size
by solving the problem iteratively and to find good solutions
much faster. Unfortunately, this is accomplished at the expense
of quality of the solutions. Note that the above works based on
combinatorial optimization theory cannot cope with real-time
dynamic network variations [12].

B. Deep Reinforcement Learning for NFV

Since VNF-FG embedding problem can be well described
as a Markov Decision Process (MDP), then Reinforcement
Learning (RL) (more precisely, Deep RL (DRL)) is an appro-
priate framework to use to find approximate optimal solutions
and realize long-term reward. The DRL agent learns by inter-
acting with the environment. Using the experience gathered,
the DRL agent is able to optimize some objectives given in
the form of cumulative rewards. Some recent works [12]–[14]
propose DRL-based approaches for VNF-FG embedding.

However, none of the aforementioned works take the im-
pact of surrounding nodes’ resources on network states into
account. In fact, the DRL model distinguishes the importance
of neighbors to the learning agent based on their remaining
resources. The attention mechanism allows for the selection
of neighbor nodes with sufficient resources and contributes to
the generation of neighbor interaction behaviors.

C. Investigations on Energy-Awareness VNF-FG placement
methods

VNF-FG deployment has been optimized through various
objectives and aspects. However, the primary consideration of
energy remains an open challenging topic, particularly in a
graph-structured Service Function Chain (SFC) environment.
In [15], authors modeled the energy-efficient graph-structured
SFC as a combinatorial optimization problem, where a Graph
Convolutional Network GCN-based DRL was proposed to
minimize the energy consumption and autonomously select
nodes with adequate resources. It is worth noting that [16]
is one among few attempts to address the problem of ser-
vice function chaining with the goal of minimizing energy
consumption. Several heuristics were proposed consisting in
iteratively placing the VNFs in series using the nearest search
procedure. In [17], a sampling-based Markov approximation
(MA) approach, using replications, is proposed for the energy-
efficient VNF placement problem. This method needs a long
time to find a near-optimal solution which makes it unpractical.
In fact, the solutions which consider multiple parameters as in
[16], [17] seem to have limited applicability and are more
efficient in cases of small numbers of user nodes, due to
their complexity costs. Heuristics are a good alternative in
systems where the context is not very changing. In systems
where constraints and objectives are changing, these types of
approaches are not very suitable since they generally require
a total redesign of the heuristic. Moreover, with heuristics, we
have a rapid convergence at the price of the risk of sticking
to a local minimum that may not be effective.

D. Our Contribution

To deal with the high-dimensional and time-varying network
state, as well as the complex network environment, we are mo-
tivated to use the Deep Deterministic Policy Gradient (DDPG)
[18] algorithm. A DRL agent will not typically pay equal
attention to all available placement nodes. The agent usually
chooses the current action based on higher levels of cognitive
skill information and ignores other perceptible information.
We introduce the concept of attention mechanism to simulate
the agent’s action for DDPG. We discover that during the
DDPG training process, the attention mechanism will auto-
matically focus on the most likely neighbor node, which may
influence the agent’s selection behavior. It ultimately helps to
reduce attention to other unnecessary nodes and improve the
model’s training efficiency. With this motivation, in this paper,
we propose an intelligent energy-efficient approach to address
VNF-FG placement and chaining with VNFs shared across
multiple tenants to optimize resource usage, reduce energy
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consumption, and increase provider revenue. Our proposed
algorithm MA3C solves the VNF-FG embedding problem by
applying an attention mechanism combined with an Actor-
Critic DRL architecture.

III. PROBLEM FORMULATION

The VNF-FG placement and chaining optimization problem,
extensively addressed in the literature, corresponds to the
placement of the requested VNFs and flow paths in the hosting
infrastructure.

Fig. 1: Mapping of the VNF-FG in the NFV-I.

A. Substrate Graph or NFV Infrastructure Model

The physical infrastructure network is modeled as an undi-
rected weighted graph GI = (NI , EI) where NI is the set
of physical network nodes and EI is the set of physical
communication links. Each physical node, nIu ∈ NI , is
characterized by its available processing capacity (i.e., CPU)
denoted by CIu which represents the physical resources of
the node (such as computing resources), and its type T Iu :
switch, server or Physical Network Function (PNF). The
PNFs are the traditional physical middleboxes implementing
network functions. An example of such an infrastructure,
known as the NFV-I, including two PNFs, two switches, and
some interconnected servers is presented in Figure 1. Physical
communication links are represented by EI , where eIuv ∈ EI
is the physical link connecting two physical nodes nIu and
nIv . For each physical link eIuv ∈ EI , we denote by BIeuv

the available bandwidth capacity of the link, and LIeuv
the

transmission delay of the link.
The power consumption, at time t, of a physical

node/machine nI ∈ NI is estimated as defined in [19] based
on the following equation:

Pt(n
I) = P i(nI) +

(
PM (nI)− P i(nI)

)
× Ut(n

I) (1)

where P i(nI) is the power consumption where the machine
nI is at the idle state. PM (nI) is the maximum power
consumption. It is reached when the physical machine is fully
used. Ut(nI) is the usage rate (i.e., a value between 0 and 1)
of the initial CPU capacity.

B. VNF Forwarding Graph (VNF-FG) or SFC Graph Model

The client request (i.e., a requested Service Function Chain
(SFC)), is modeled as a directed graph Gv = (Nv, Ev) where
Nv is the set of virtual nodes and Ev is the set of virtual
links in the requested graph. Each virtual node, nvi ∈ Nv , is
characterized by its required processing capacity cvi and its
type tvi : VNF or switch (i.e., ingress or egress). Each virtual
link evij ∈ Ev is described by its required bandwidth bveij .
Note that we can also consider instead the end-to-end latency
if this is the desired criterion to be taken into account. Our
model is generic and can be adjusted based on the client’s
criteria and requirements. We associate a VNF-type to each
VNF to represent the network service or function type (e.g.,
firewall, Network Address Translation (NAT), Deep Packet
Inspection (DPI), etc.). The VNFs can be hosted only by
servers or PNFs having the same type. The ingress and egress
nodes can be hosted only by switches. Figure 1 depicts two
Network Forwarding Paths (NFP) or chains. Each Forwarding
Path NFP describes the ordered VNF sequence the traffic must
pass through. From the VNF forwarding graph Gv , we derive
an intermediate request graph called the Network Connectivity
Topology graph NCTv . The NCTv = (Nv, Ev) is a weighted
undirected graph having exactly the same set of nodes and
edges as Gv . The key attribute of an NCT node nvi ∈ Nv is
its requested processing capacity cvi . The weight (or demanded
bandwidth bveij ) of an NCT virtual link evij ∈ Ev is the sum of
the requested bandwidths of all the VNF flows passing through
it.

C. VNF-FG Embedding Problem

The VNF-FG (Virtual Network Function-Forwarding
Graph) Embedding [20] is a problem in the field of computer
networking. It involves finding an optimal way to map (i.e.,
place and chain) the virtual network functions (VNFs) of a
network onto physical network resources, such as servers,
switches, and storage devices, while satisfying various con-
straints such as resource utilization, network bandwidth, and
security. The goal of VNF-FG placement and chaining is to
ensure that the VNFs (considered as nodes in a flow graph)
are placed in a way that minimizes the use of resources and
meets the performance requirements of the network. This is
important because virtual networks can become congested and
slow down if the VNFs are not placed in an optimal manner.

Figure 1 depicts a placement/embedding solution for the
VNF-FG highlighted by the dashed lines, starting from the
ingress switch 1, crossing the VNF 1, VNF 2, and VNF 3
(hosted respectively in Server 1, PNF 1, and Server 2), and
ending at the egress switch 2. The Agent located at each
physical node will have access to local information from the
neighbors to make a better decision. Our case is a dynamic
scenario where we do not know in advance the incoming flows.

Based on various state-of-the-art approaches, the infrastruc-
ture providers can map the VNFs using multiple objectives:
such as minimizing mapping costs [12], improving energy
efficiency [15], [21], maximizing acceptance ratio [22], [23],
and improving provider gains [24], [25]. In this paper, our
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objective is to jointly minimize the power consumption of
NFV providers and maximize the acceptance rate of requests.

IV. MULTI-AGENT ATTENTION ACTOR-CRITIC (MA3C)

The main idea behind our multi-agent RL approach is to
learn the critic for each agent by selectively paying attention
to information from other neighboring agents. This is the same
paradigm of training critics centrally and executing learned
policies decentrally.

1) Attention mechanism: The attention mechanism func-
tions in a manner similar to the differentiable key-value
memory model [26]. Each agent intuitively queries the other
agents for information about their observations and actions and
incorporates that information into the estimation of its value-
function. To calculate the Q-value function Qψi (o, a) for the
agent i, the critic receives the observations, o = (o1, ..., oN ),
and actions, a = (a1, ..., aN ), for all agents indexed by
i ∈ {1...N}.
Qψi (o, a) is a function of the agent i’s observation and

action, as well as other agents’ contributions:

Qψi (o, a) = fi(gi(oi, ai), xi) (2)

where fi is a two-layer multi-layer perceptron (MLP), while
gi is a one-layer MLP embedding function. The contribution
from the other agents, xi, is a weighted sum of each agent’s
value:

xi =
∑
j ̸=i

αjvj =
∑
j ̸=i

αjh(V gj(oj , aj)) (3)

where the value, vj is a function of agent j’s embedding,
encoded with an embedding function and then linearly trans-
formed by a shared matrix V . Note that h is an element-wise
non-linearity (Leaky Rectified Linear Unit, or Leaky ReLU
was used in our case).

The attention weight αj compares the embedding ej with
ei = gi(oi, ai), using a bilinear mapping (i.e., the query-key
system) and passes the similarity value between these two
embeddings into a softmax function.

αj = exp(Wqei(Wkej)
T ) (4)

where Wq transforms ei into a “query” and Wk trans-
forms ej into a “key”. The matching is then scaled by the
dimensionality of these two matrices to prevent vanishing the
gradients [4]. In our experiments, we have used multiple atten-
tion heads [4]. In this case, each head, using a separate set of
parameters (Wk,Wq, V ), generates an aggregated contribution
from all other agents to the agent i and we simply concatenate
the contributions from all heads as a single vector. Importantly,
each head can concentrate on a different weighted mixture of
agents.

Note that the weights for extracting selectors (i.e., queries),
keys, and values are shared across all agents, which encour-
ages a common embedding space. Because multi-agent value-
function approximation is essentially a multi-task regression
problem, the critic parameters can be shared between agents
even in adversarial settings. This parameter sharing allows

our method to learn effectively in environments where local
rewards for individual agents are different but share common
features. This method can easily be extended to include
additional information, beyond local observations and actions,
at training time, including the global state if it is available,
simply by adding additional encoders as in [27]. In fact, we
do not consider this case in our experiments, however, as our
approach is effective in combining local observations (i.e.,
received from the neighboring agents) to predict expected
returns in environments where the global state may not be
available (the idea is to avoid using a fixed adjacency matrix
that represents the global view of the network topology graph
(NFV-I) indicating the set of agents, as well as the set of direct
links between them).

2) Learning with Attentive Critics: All critics are updated
together to minimize a joint regression loss function, due to
the parameter sharing:

LQ(ψ) =
N∑
i=1

E(o,a,r,o′)∼D

[
(Qψi (o, a)− yi)

2
]
, (5)

where yi = ri+γEa′∼πθ̄(o
′)

[
Qψ̄i (o

′, a′)− α log(πθ̄i(a
′
i|o′i))

]
ψ̄ and θ̄ are the parameters of the target critics and target

policies respectively. Note that Qψi , the action-value estimation
for agent i, receives observations and actions for all agents. α
is the temperature parameter determining the balance between
maximizing entropy and rewards. The individual policies are
updated by ascent with the gradient technique that aims to
estimate the gradient of an agent’s expected returns with
respect to the parameters of its policy.

Note that we are sampling all actions a, from all agents’
current policies in order to calculate the gradient estimate
for agent i, unlike in the MADDPG algorithm [28], where
the other agents’ actions are sampled from the replay buffer,
potentially causing over-generalization where agents fail to
coordinate based on their current policies.

3) Semi-distributed Actor-Critic Architecture: This sec-
tion presents the actor-critic architecture used for our semi-
distributed model. Our setting combines global critics Qgi,j
with a set of agents Ai,j distributed inside the N nodes. In
particular, a critic (or a number of critics) is centrally learned
with information from all agents. As the input of the critic
is the distribution of actions and the state of the network, it
should be able to model with precision the future behavior (and
so the future reward) of the network. The global/discounted
reward R can be expressed as the average combination of local
rewards ri,j (R = 1

N2

∑
i,j ri,j).

V. STATES, ACTIONS, AND REWARDS

States: The traffic matrix has been used as the system’s
states in routing problems. In fact, the traffic matrix can be
seen as the client’s requests to the physical networks. We
adopt a similar idea to the VNF-FG embedding problem where
the client requests are represented in the form of VNF-FGs.
Therefore, the descriptions of VNF-FGs can be formulated
as the states as in [29]. A VNF-FG can be expressed as
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the chain of VNFs where each VNF has specific resource
requirements. Besides VNFs, Virtual Links (VLs) have specific
Quality of Service (QoS) requirements, (such as latency, end-
to-end delay, etc). The VNF-FGs can be described as a vector
that expresses the demanded computing resources of VNFs,
as well as the QoS requirements of VLs. The DRL agent
receives this vector and analyzes the remaining resources of
the physical nodes and links in order to select an action that
reflects the VNF-FGs mapping into the physical networks.

Actions: Our action represents the mapping of VNF-FG
graphs into the substrate networks. We introduce auxiliary
variables an

I ,nv

t ∈ [0, 1] that indicate the priority of assigning
VNF nv at substrate node nI in time-step t. Furthermore,
we introduce the auxiliary variables we

I ,ev

t as the weights of
links which will be exploited by Dijkstra’s algorithm based on
available bandwidth to find the path for VL ev at time-step t.
In fact, the Dijkstra algorithm takes into account all weights
to identify the substrate candidate path for each virtual link.

Rewards: We adopt both the acceptance rate and the power
consumption as the reward for an action. A VNF-FG is
deployed when all VNFs and VLs are deployed successfully.
The requests of VNFs and VLs at time-step t are described
by st and the allocation of VNFs and VLs in the substrate
network is described by at. The acceptance ratio (AR) has
recently been adopted to assess the performance of VNF-FG
embedding algorithms [30]. The reward at time-step t, (rt)
depends on the requests states (st) and allocation action (at).
Unlike previous approaches, which just use the acceptance
ratio as a simple reward function, we introduce in our proposed
algorithm MA3C, as shown in Equation 6, a constrained
reward expression to penalize decisions if the consumed
power at time t, PG(t) violates a tolerable bound, called the
Reference Power. Equation 6 presents the reward expression
used for comparisons in the performance evaluation.

R = AR− λ× c(s, a) (6)

where c(s, a) = |ReferencePower − CurrentPower(s, a)| is
the penalty term. The constrained reward uses parameter λ
to penalize actions violating the power consumption limit.
In our case, we implement the RCPO [31] algorithm, which
includes the SLA requirements and constraints directly in the
optimization (i.e., in the modeling framework), to find optimal
λ values (i.e., Lagrangian multipliers). In fact, we adopt the
same approach as RCPO and embed in the reward function
penalty when the power consumption target is violated or not
met to provide performance guarantees.

VI. PERFORMANCE EVALUATION

This section presents the evaluation methodology and the
simulation results. The algorithms are compared using ex-
tensive simulations where both the requests and hosting in-
frastructures are drawn using standard graph generation tools
(such as the GT-ITM Tool) and real infrastructure topologies
(such as the Germany50 network topology [32]). We evaluate
the performance of our proposed algorithm and compare it
with NFVdeep [12]: a state-of-the-art approach for VNF-FG

Placement and Chaining problem. NFVdeep method is a type
of RL technique that relies upon optimizing parameterized
policies concerning the expected return (long-term cumulative
reward) by gradient descent, and EE-TCA [33]: an Energy
Efficient Tree search-based Chain placement Algorithm that is
an extension of the Monte Carlo Tree Search (MCTS) method.

Our Multi-Agent Attention Actor-Critic (MA3C) solution
was evaluated using an experimental platform where the
algorithms have been deployed and evaluated at small scale.
Then, the second evaluation relies on a simulation of the
requests and the infrastructure at much larger scale to complete
the performance analysis (i.e., our approach was tested against
a wide variety of different topologies to show that the proposed
solution works independently of a fixed topology).

A. Evaluation using an experimental platform

To conduct experiments in a real cloud environment, we
use 50 servers from the Network and Cloud Federation (NCF)
platform, which constitute our dedicated private infrastructure
[34]. Our proposed algorithms are integrated in the smart
placement module, acting as one key component of the cloud
framework, responsible for VNF-FGs embedding.

The Germany50 network topology [32] was used for the
first assessment (with 50 nodes). The capacities of physical
nodes and links are generated randomly in the [100, 120]
interval. The size of the VNF-FG requests is arbitrarily set
to 5 nodes. The requested CPU of each VNF depends on its
type: Firewall (4 CPUs), Proxy (2 CPUs), NAT (1 CPUs),
and IDS (8 CPUs). We generate 1000 VNF-FG requests with
various VNFs combinations selected randomly. The lifetime of
each request follows an exponential distribution with a mean
of 1000 time units. The VNF-FG requests are generated using
a Poisson process with an average arrival rate λ of 5 requests
per 100 time units. We experimentally evaluate the acceptance
rate of the incoming requests, and the energy consumption
of our algorithm. We extended the service lifecycle manager
of our experimental framework [34] by integrating MA3C
our new smart energy-efficient VNF-FG placement module
coupled with a PyTorch environment for the machine learning
framework where the DRL actor-critic based approaches have
been implemented and used to conduct the evaluation. This
framework is used as a benchmarking environment for smart
placement algorithms.

B. Metrics and performance indicators

1) Acceptance Rate: is the acceptance rate of the incoming
requests during the simulation. In other terms, the rate of VNF
chain requests that have been accepted due to the physical
resource shortage (i.e., available CPU).

2) Power Consumption: The global consumed power at
time t, PG(t), is equal to the sum of the power consumption
of the activated servers. Formally, PG(t) =

∑
nI∈NI

Pt(n
I).

3) Execution time: is the time needed to find an embedding
solution for one VNF-FG request. This metric reflects the
ability of the algorithms to scale with problem size.
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TABLE I: MA3C parameters
Actor learning rate 10−3

Critic learning rate 10−2

Batch size 32

τ target network update rate 0.1

γ discount factor 0.9

Number of hidden layers 2

Dimension of hidden layers 64

Temperature parameter used for
entropy-based exploration 10−3

Policy refreshing period (time period) 10s

The hyper-parameters used for the performance evaluation
of our algorithm are specified in Table I.

C. Evaluation Results

The performance of the algorithms is reported for the
Germany50 network topology for small scale problems (50
nodes) and for randomly generated network topologies for
larger problems involving hundreds of nodes and links.

Fig. 2: Germany50 network topology results.

1) Realistic topology evaluation: From the results col-
lected on the experimental platform using 50 servers, reported
in Figure 2, we see that our proposed algorithm outperforms
all other algorithms in all the assessed performance metrics
(power consumption, and acceptance rate). For the power
consumption metric, MA3C consumes less than half of the
power used by the other algorithms over all the evaluation
period (i.e., more precisely, less than 1000 watts). In terms
of acceptance rate, the same behavior can be observed where
our MA3C algorithm outperforms the NFVdeep and EE-TCA
based solutions by accepting more requests (more than 90%)
in short and long-term.

2) Large-scale evaluation: To analyze the behavior of
the algorithms and their scalability with problem size, larger
hosting infrastructures (NFV-Is with 200 nodes) are randomly
generated (using the GT-ITM Tool) and used in this second
performance assessment. This evaluation should confirm the
previous results and reveal the ability of the algorithms to
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= up to 500, VNF-FG size = 5).

scale with increasing problem size. In addition to the previous
performance metrics, we report the execution time of each
algorithm to shed light on their scalability.

Figure 3 and 4 report the power consumption and average
acceptance percentage of the algorithms as a function of
increasing VNF-FG request sizes (from 5 to 20) and confirm
the previous findings. Our MA3C algorithm outperforms the
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NFVdeep and EE-TCA based solutions by accepting more
requests and consuming less than half of the power used
by the other algorithms over all the evaluation periods and
scenarios. At high load (case where VNF-FG size of 20 nodes),
MA3C is also less power consuming and can even reduce
power consumption in extreme saturation conditions thanks to
consolidation and smart inter-agent cooperation. The results
in Figure 3 and 4, presented with a 95% confidence interval,
depict a high similarity with results in Figure 2(a) and 2(b)
(more precisely for VNF-FG size of 5 nodes).

3) Execution time (Convergence time): Figure 5 reports
the execution time performance of the algorithms with problem
size to gain insight on their scalability and complexity. We
generate 1000 VNF-FG requests and vary the substrate graph
sizes from 100 to 500 nodes. The MA3C-based algorithm
has significantly better execution time compared with the
NFVdeep and EE-TCA execution times.

VII. CONCLUSION

This paper proposes a smart energy-efficient algorithm for
VNF-FG embedding in NFV-enabled infrastructures. Using an
attention-based multi-agent DRL mechanism, our solution re-
duces the global data center power consumption through con-
solidation at the hardware level and optimizes the QoE/QoS
for the clients by optimally sharing the VNFs across multiple
tenants at the service level. Performance evaluation using a
real testbed cloud environment confirms the energy efficiency
of our MA3C algorithm. Simulation results for large-scale
topologies highlight the scalability of our proposal ensured
by the semi-distributed architecture philosophy. Our approach
also ensures a tradeoff between energy savings and scalability.
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