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Abstract: The optical diameter of the surface snow grains impacts the amount of energy absorbed 
by the surface and therefore the onset and magnitude of surface melt. Snow grains respond to sur-
face heating through grain metamorphism and growth. During melt, liquid water between the 
grains markedly increases the optical grain size, as wet snow grain clusters are optically equivalent 
to large grains. We present daily surface snow grain optical diameters (𝑑௢௣௧) retrieved from the 
Greenland ice sheet at 1 km resolution for 2017–2019 using observations from Ocean and Land Col-
our Instrument (OLCI) onboard Sentinel-3A. The retrieved 𝑑௢௣௧ are evaluated against 3 years of in 
situ measurements in Northeast Greenland. We show that higher 𝑑௢௣௧ are indicative of surface melt 
as calculated from meteorological measurements at four PROMICE automatic weather stations. We 
deduce a threshold value of 0.64 mm in 𝑑௢௣௧ allowing categorization of the days either as melting 
or nonmelting. We apply this simple melt detection technique in Northeast Greenland and compare 
the derived melting areas with the conventional passive microwave MEaSUREs melt flag for June 
2019. The two flags show generally consistent evolution of the melt extent although we highlight 
areas where large grain diameters are strong indicators of melt but are missed by the MEaSUREs 
melt flag. While spatial resolution of the optical grain diameter-based melt flag is higher than pas-
sive microwave, it is hampered by clouds. Our retrieval remains suitable to study melt at a local to 
regional scales and could be in the future combined with passive microwave melt flags for increased 
coverage. 

Keywords: Greenland ice sheet; Sentinel-3; OLCI; optical remote sensing; snow optical grain diam-
eter; surface melt 
 

1. Introduction 
The darkening of snow and ice surfaces in the industrial era has caused the increased 

absorption of solar energy by the Earth surface [1] and accelerated the mass loss from 
polar ice caps and glaciers and their contribution to sea level rise [2–4]. On the Greenland 
ice sheet, a highly reflective snow cover accumulates on the surface each winter. Surface 
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snow then undergoes melt in the spring and summer, until it either melts away and ex-
poses a dark underlying glacial ice [5,6], or until the melt stops. The surface melt intensity 
is governed by sensible heat flux and absorption of solar radiation at the surface [7] and 
the latter is largely controlled by the snow optical properties: the shape and size of its 
grains, the presence of water and the concentration of light-absorbing impurities [8–11]. 

Among the snow optical characteristics, the size of the ice grains within the top layer 
of snow has a direct impact on the snow albedo and on how much solar energy is absorbed 
by the snowpack [9]. Larger grains increase the incoming light-path length within ice crys-
tals and therefore increase the probability for the light to be absorbed. Conversely, snow 
with smaller grains increases the probability of light exiting the snowpack. Beyond its 
importance for the snow shortwave reflectivity, snow grain size can be important for pas-
sive microwave remote sensing, radar and laser altimetry and snow physical and hydro-
logical modelling. Indeed, microwave emissivity of snow can be used to estimate snow 
surface melt [12] or snow wetness [13] but such retrievals are complicated by the devel-
opment of large grains at or under the surface [14]. Knowledge of snow grain size is also 
required to interpret radar altimetry data as the penetration of laser and radar signals into 
snow depends on grain size [15–17]. Eventually, multilayer snow models are usually used 
in combination with climate models to simulate surface melt and meltwater infiltration 
and runoff. These models need surface snow grain size at the surface as boundary condi-
tions. Therefore, snow models would benefit from increased knowledge and observation 
of the surface grain size [18]. 

Due to the diversity of snow grain shapes found in natural snowpacks, the geomet-
rical snow grain size is ambiguous and difficult to determine in the field [19–21]. On the 
contrary, the effective optical grain diameter (𝑑௢௣௧) is defined as the diameter of spheres 
which have the same volume-to-surface ratio as the nonspherical snow particles [22,23]. 
Those spheres are usually referred to as optically equivalent spheres. 𝑑௢௣௧ is commonly 
used in remote sensing [24,25] and as a prognostic variable in snow models [26]. 𝑑௢௣௧ is 
interchangeable with the snow-specific surface area (SSA) through: 𝑆𝑆𝐴 =  ଺ௗ೚೛೟ ఘ೔೎೐, (1)

where 𝜌௜௖௘ is the ice density (917 kg m−3). 𝑑௢௣௧ increases and SSA decreases with time 
through dry and wet metamorphisms [27]. Under the action of wind, large snow grains 
can be broken into smaller grains resulting in a decrease of 𝑑௢௣௧ and increase in SSA [28]. 
When surface melt occurs, some meltwater is held between the surface snow grains. Since 
water and ice have similar refractive index, this sudden appearance of water around the 
grain reduces air/ice interface scattering and translates into a sharp increase in 𝑑௢௣௧. The 
potential of using remotely sensed 𝑑௢௣௧ to map surface melt has been mentioned in pre-
vious studies (e.g. [24,29]) but no grain-diameter-based surface melt detection method has 
been presented to date. 

Retrievals of snow grain size and albedo from spaceborne multispectral observations 
usually rely on snow radiative transfer models [30]. These models can directly, or after 
inversion, calculate the snow grain size and impurity concentration from reflectance 
measurements at certain wavelengths given certain assumptions about the snow surface. 
For instance, numerous models assumed spherical snow grains and used Mie scattering 
theory and radiative transfer equation to retrieve the snow optical characteristics [21,31–
36]. The spherical grain assumption was motivated by the successful estimation of spectral 
hemispherical reflectances of snow with nonspherical ice particles when representing 
them as spherical grains of a similar volume-to-surface-area [37]. While this technique has 
been widely applied, it has been noted that the spherical assumption was limited in ac-
counting for the directional variation of snow reflectance [38–45] and therefore would lead 
to errors when used on remotely sensed directional reflectance. Several models using the 
nonspherical grains assumption have been applied to snow characteristics retrievals, for 
example on data from the Sea and Land Surface Temperature Radiometer (SLSTR) 
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onboard the Sentinel-3 satellites [43,44] or on data from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) onboard the Terra and Aqua satellites [29,38]. The asymp-
totic radiative transfer theory allows the retrieval of the snow albedo and optical grain 
diameter for snow with nonspherical grains and has been applied to MODIS data 
[24,30,46–48], AATSR and MERIS data from the ENVISAT satellite [47,49] and OLCI data 
from Sentinel-3 satellites [50,51]. These studies have carefully presented the theoretical 
background of their snow retrieval algorithms and validated their output against the 
available in situ measurements. However, little emphasis was brought to the description 
of estimated 𝑑௢௣௧, its temporal and spatial variations and its capacity to indicate surface 
melt. 

The detection of surface melt on the Greenland ice sheet has been performed using 
passive microwave remote sensing [12,52–55]. The evaluation of these surface melt detec-
tion algorithms was nevertheless limited by the scarcity of in situ surface melt estimation. 
Remotely sensed melt maps consequently relied on positive air temperature periods at 
few automatic weather station locations and regional climate model output for evaluation 
[12,54]. Additionally, the spacing of passive microwave observations along a scan is coarse 
(2.5–25 km, [56]) and requires grid enhancement to achieve higher spatial resolution [55]. 
The use of optical remote sensing to map surface melt, using the response of grain size to 
the presence of meltwater, can achieve a much higher spatial resolution (10 m–1 km) than 
from passive microwave observations. 

Here, we present the 𝑑௢௣௧ retrieved via the Pre-operational Sentinel-3 Snow and Ice 
(SICE) toolchain [57] from the OLCI instrument onboard the Sentinel-3A satellite. We pre-
sent the SICE 𝑑௢௣௧ dataset in Greenland for 2017–2019 and evaluate it against ground ob-
servations. We describe the response of 𝑑௢௣௧ to surface warming and melt using Auto-
matic Weather Stations (AWS) observations and build a surface melt flag based on 𝑑௢௣௧ 
at a 1 km spatial resolution. Eventually, we compare our melt flag with available melt 
maps derived from passive microwave measurements. 

2. Methods 
2.1. OLCI Instrument and Data Pre-Processing 

The OLCI instrument, onboard the European Space Agency (ESA) Sentinel-3 A and 
B satellites, is an along-track multispectral imager recording the Earth’s radiance in the 
visible to near-infrared spectrum at 21 bands ranging from 400 to 1020 nm with a 2% ra-
diometric accuracy [58]. It is composed of 5 cameras arranged in fan with a combined field 
of view of 68.6°, producing a 1270 km across-track image swath on the ground. To mini-
mize sun glint, OLCI is tilted across track 12.58° away from the sun. The cameras cumulate 
3700 detectors across-track, allowing a spatial resolution of ~350 m at nadir. Scenes con-
taining Greenland between years 2017 and 2019 are identified and the corresponding 
OLCI L1B products [59] are obtained through the Copernicus Open Access Hub 
(https://scihub.copernicus.eu/, accessed on 3 January 2022). 

We convert the satellite top of the atmosphere (TOA) radiance measurement 𝐿(𝜆) 
into TOA reflectances 𝑅்ை஺(𝜆) via SNAP software [60] as: 𝑅்ை஺(𝜆) = గ௅(ఒ) ௭మ௭బమிబ(ఒ)௖௢௦ఏೞ, (2)

where the reference solar irradiance 𝐹଴(𝜆) is from [61], adjusted for the wavelength and 
sensitivity of each of the OLCI detectors and for the Earth–Sun distance [62]. In Equation 
(2), 𝐹଴(𝜆) which is measured at solar noon, is scaled by the cosine of the solar zenith angle 𝜃௦ and adjusted for the Earth–Sun distance z at acquisition day compared to the reference 
solar irradiance measurement at the reference distance 𝑧଴ [63]. 𝐹଴(𝜆)𝑧଴ଶ/𝑧ଶ is provided 
for each pixel in the L1B product. 
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2.2. Cloud Identification 
Cloud masking is performed after the Simple Cloud Detection Algorithm (SCDA) 

v2.0 that consists of five tests using reflectances at 0.55 µm (R1) and 1.6 µm (R5) and bright-
ness temperatures at 11 µm (BT8), 12 µm (BT9), 3.7 µm (BT7) from the Sentinel-3 Sea and 
Land Surface Temperature Radiometer (SLSTR) after [64], implemented in the SICE tool-
chain after [65]. A main cloud discrimination test exploits the brightness–temperature (BT) 
difference between 11 µm and 3.7 µm that yields negative values for clouds given the 
strong 3.7 µm solar reflection. A radiometric “vicarious calibration” factor of 1.12 was 
applied to R5 after [66]. 

The Normalized-Difference Snow Index is taken as: 𝑁𝐷𝑆𝐼 =  ோଵିோହ ோଵାோହ , (3)

Then, a pixel is considered cloudy if at least one of the following four tests is positive: 

[1] 𝑅ଵ  > 0.30 𝑎𝑛𝑑 ே஽ௌூோభ < 0.8 𝑎𝑛𝑑 𝐵𝑇ଽ  ≤  290 𝐾 

[2] BT8 − BT7 < −13 K and R1 > 0.15 and NDSI ≥ −0.30 and R16 > 0.10 and BT9 ≤ 293 K 

[3] BT8 − BT7 < −30 K 

[4] BT8 − BT7 < THR and ே஽ௌூோభ  < S and −0.02 ≤ NDSI ≤ 0.75 and BT9 ≤ 270 K and R1 > 0.18 

with 

S = 1.1 if R1 > 0.75; 1.5 otherwise 

THRmax = −5.5 K if (R1 < 0.75 and BT9 > 265); −8 K otherwise 

THR = min (0.5 × BT9 − 133, THRmax) 

The OLCI TOA reflectances are filtered from the identified clouds with an additional 
buffer radius of 5 km in effort to remove shadows and reflected illumination due to the 
presence of clouds. 

2.3. Mosaic Construction 
Swath data are combined into 1 km EPSG:3413 projection daily mosaics over the 

Greenland ice sheet. When a region is covered by multiple OLCI scenes the same day, the 
pixel that is cloud-free and presents the minimal solar zenith angle is used in the mosaic. 
A lookup table identifies the scene ID of each pixel in each daily mosaic. Grids of solar 
zenith and azimuth angles, viewing zenith and azimuth angles and ozone are extracted 
from each OLCI scene and assembled according to the same look-up table as the daily 
reflectance mosaics [57].  

2.4. The SICE Retrieval of Snow Albedo and Optical Grain Size 
The SICE 𝑑௢௣௧  retrieval uses the asymptotic radiative transfer (ART) theory 

[50,51,67]. The ART considers a vertically homogeneous, semi-infinite snow layer seen as 
a horizontally homogeneous plane parallel turbid medium, where geometrical optics can 
be used to derive local optical snow characteristics. Only pixels completely covered by 
snow are considered. Impurities (dust, soot, etc.) are assumed to be located outside of ice 
grains. Given those assumptions, the ART provides an analytical solution to the radiative 
transfer equation and relates the snow surface reflectance and albedo to the snow-grain 
diameter 𝑑௢௣௧ and impurity concentration and type [39,45,68,69].  

The SICE retrieval uses wavelengths that are not significantly affected by water va-
por, ozone or oxygen light-absorption effects. The TOA reflectances measured by OLCI at 𝜆ଵ = 865 nm (band 17) and 𝜆ଶ = 1020 nm (band 21) wavelengths are well suited for this 
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purpose and can be used as estimation of surface reflectance after the correction for the 
minor light absorption by ozone: 𝑅்ை஺,௖௢௥ ைయ(𝜆) = 𝑅்ை஺ 𝑇ைయ(𝜆), (4)

where the ozone transmittance 𝑇ைయ(𝜆) is estimated from the European Centre for Me-
dium-range Weather Forecasts (ECMWF) total column ozone level provided for each 
OLCI pixel and a reference ozone optical depth spectrum defined by [51].  

The pure snow reflectance 𝑅௦ , which for our two wavelengths of interest equals 𝑅்ை஺,௖௢௥ ைయ, can be decomposed into the reflectance R0 of a nonabsorbing snow surface and 
a factor that accounts for the light absorption in ice, for the shape of the ice crystals, and 
for the dependence of reflectance on illumination and observation angles [39,45,50,67–70]: 𝑅௦(𝜆) =  𝑅଴ 𝑒𝑥𝑝 ൭− 𝑢(𝜇଴)𝑢(𝜇)𝑅଴  𝑦(𝜆)൱, (5)

where u, the escape function, is evaluated at the cosine of the solar or observation zenith 
angles (𝜇଴ and 𝜇, respectively). We use the following approximation [71] 𝑢(𝜇) = ଷ଻ (1 +  2𝜇). (6)

The similarity parameter y can be presented as 𝑦 =  4ට௞ೌ್ೞ/௞೐ೣ೟ଷ (ଵି௚) , (7)

for weakly absorbing media in the visible and near infrared regions of the electromagnetic 
spectrum such as snow. In Equation (7), 𝑘௔௕௦ and 𝑘௘௫௧ are the coefficients of absorption 
and extinction of the snow and g is the asymmetry parameter defined as the average co-
sine of the scattering angle inside the snowpack. 𝑘௔௕௦ and 𝑘௘௫௧ can be expressed, using 
the geometrical optics approximation for weakly absorbing grains [69], as: 𝑘௔௕௦ =𝐵 𝛼(𝜆) 𝐶௩ and 𝑘௘௫௧ = 3 ஼ೡௗ೚೛೟ where Cv is the volumetric concentration of ice grains, dopt is 

the effective optical diameter, 𝐵 is the absorption enhancement factor that accounts for 
the grain shape and 𝛼(𝜆) is the bulk absorption coefficient of ice. 𝛼(𝜆) is calculated at 
a given wavelength (𝜆) from the imaginary part of the ice’s refractive index (𝜒) compiled 
by [72]: 𝛼(𝜆) = 4𝜋𝜒𝜆 . (8)

In our formulation, the effective optical diameter dopt is defined as dopt =3v/2s [69], 
where v is the average volume of ice grains and s is their geometrical cross section per-
pendicular to the incident light direction (equal to A/4 for convex particles in random 
orientation, where A is the surface area of particles). For monodispersed spherical snow 
grains, dopt equals the physical grain diameter while for other shapes dopt is the diameter of 
spheres that have similar volume to surface ratio (also called Sauter diameter). Using the 
definitions of 𝑘௔௕௦ and 𝑘௘௫௧, Equation (7) can be rewritten as: 𝑦 = ට𝛼(𝜆)  16 𝐵9 (1−𝑔)  𝑑𝑜𝑝𝑡 = ඥ𝛼(𝜆) 𝑙, (9)

where 𝑙 =  16 𝐵9 (1 − 𝑔) 𝑑௢௣௧, (10)

is the effective absorption length as used by [50,51,67]. It is the effective absorption length 𝑙 that is retrieved from the OLCI reflectance measurements. Indeed, using the ozone-cor-
rected observed surface reflectance 𝑅௦ and Equation (5) at 𝜆ଵ = 865 nm and 𝜆ଶ = 1020 
nm we can derive 𝑅଴ and 𝑙 as [50]: 
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𝑅଴  =  𝑅௦(𝜆ଵ) భభషඥഀ(ഊభ)/ഀ(ഊమ) 𝑅௦(𝜆ଶ) భభషඥഀ(ഊమ)/ഀ(ഊభ),  (11)

 𝑙  =  [ ௟௡( ೃೞ(ഊమ)ೃబ )ೠ(ഋబ)ೠ(ഋ)ೃబ ]ଶ  ଵఈ(ఒమ). (12)

In Equations (11) and (12) above, the snow reflectances 𝑅௦ are derived from satellite 
measurements, 𝛼 can be calculated using Equation (8), 𝑢(𝜇଴)𝑢(𝜇) can be calculated us-
ing Equation (6). Eventually, the optical grain diameter 𝑑௢௣௧ can be calculated from Equa-
tion (12): 𝑑௢௣௧ =  𝑙 ଽ (ଵି௚)ଵ଺ ஻  =  [ ௟௡( ೃೞ(ഊమ)ೃబ )ೠ(ഋబ)ೠ(ഋ)ೃబ ]ଶ  ଵఈ(ఒమ) ଽ (ଵି௚)ଵ଺ ஻ ,  (13)

While  𝑙 in Equation (13) is derived from the OLCI measurements, the fraction ஻(ଵି௚) 
cannot be retrieved from the observed reflectances. The value of ஻(ଵି௚) depends on the 
grain shape and ranges from 7.4 for fractal particles to 11.5 for spherical grains [73]. The 
author of [74] derived the value of ஻(ଵି௚) from an experiment conducted by [75]: simulta-
neous measurements of shortwave infrared reflectance and specific surface area of snow 
samples (spanning from fresh dendritic to aged faceted grains) allowed the calculation of 
both 𝑙 and 𝑑௢௣௧ and consequently the ratio ஻(ଵି௚), which had an average value of 9.2. We 
use this value as in [50]. Similar values were also used by [39]. 

The SICE retrievals also include surface albedo, which variation can then be com-
pared to the variation in retrieved 𝑑௢௣௧. The planar (blue sky) albedo is the integral of Rs 
for all viewing zenith and azimuthal angles and for a given angle of incident light from 
the Sun, i.e. for clear sky conditions, when remote sensing is possible. The planar albedo 
can be simplified to a function of the bulk absorption coefficient 𝛼(𝜆) and absorption 
length 𝑙: 𝑟௣ = 𝑒𝑥𝑝(−ඥ𝛼(𝜆) 𝑙 𝑢(𝜇଴)) (14)

If the retrieved grain size is smaller than 0.1 mm, a residual cloud contamination is 
possible, and we flag the pixel accordingly. Due to limitation of the ART for low sun con-
ditions, pixels that have a solar zenith angle greater than 75° are not considered for re-
trieval. We also limit our retrieval to the snow covered part of the ice sheet and for the 
pixels that have been classified as “clean snow” by the SICE retrieval [51]. An extension 
of this retrieval for polluted snow pixels [50] is also included in the SICE dataset. 

2.5. Comparison with Ground Optical Measurements of Snow Grain Diameter 
As part of the surface program at EastGRIP in Northeast Greenland [76], the SSA was 

measured daily using the IceCube instrument [77] in the summers of 2017 (81 days), 2018 
(92 days) and 2019 (65 days). The IceCube device measures the reflectance of a 6.0 cm 
diameter, 2.5 cm depth cylindrical surface snow sample when illuminated with a 1310 nm 
laser diode underneath an integrating sphere. The reflectance is then converted into SSA 
and 𝑑௢௣௧ (see Equation (1)). The snow samples were taken every 10 m along a 90 m-long 
transect, producing 10 daily samples. The IceCube has a reported accuracy of 10–12% for 
SSA [77]. The IceCube 𝑑௢௣௧ measurements are compared the retrieved 𝑑௢௣௧. 

2.6. Surface Melt and Snowfall Detection 
2.6.1. Automatic Weather Station Data and Surface Energy Balance Modelling 

To study the response of 𝑑௢௣௧ to the meteorological forcing and surface melt, we 
used data from the PROMICE AWSs [78]. Out of the 20 PROMICE AWSs on the Green-
land ice sheet, we could not use: (i) the AWSs located in cloudy regions such as eastern 
Greenland, because retrievals are infrequent in those regions; (ii) the AWSs that are buried 
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during the winter and that cannot capture the onset of melt; (iii) the AWSs located in re-
gions where either a thin snowpack or intense melt expose the underlying glacial ice 
shortly after the onset of melt. The highest elevation AWSs (KPC_U, KAN_U, EGP and 
CEN, Table 1) were therefore selected and provided data over 3 years (2017–2019) to eval-
uate the response of 𝑑௢௣௧ to surface melt. 

Table 1. Automatic weather station used for the investigation of surface melt. 

Station Latitude (deg. N) Longitude (deg. E) Elevation (m a.s.l.) 

KAN_U 67.0003 −47.0243 1840 

KPC_U 79.8345 −25.1665 870 

EGP 75.6247 −35.9748 2700 

CEN 77.1826 −61.1127 1886 

The surface melt rates are calculated using the GEUS surface energy balance (SEB) 
and firn model [79]. This used, as input, a gapless time series of air temperature, humidity, 
wind speed, downward and upward shortwave radiation and downward longwave ra-
diation, along with instrument heights and snowfall. To increase the coverage of the AWS 
during 2017–2019, we gap-filled the AWS data with adjusted data from the nearest cell of 
the regional climate model RACMO2.3p2 [4]. We did not account for rainfall as no in situ 
data are currently available. Snowfall was calculated from increments in surface height 
and adjusted to springtime snow pit measurements as detailed in [79,80]. 

The SEB model initially developed by [81] was then used and evaluated in [79,80,82]. 
The model closes the energy budget iteratively by adapting the surface temperature. The 
budget at the surface is defined as the sum of downward and upward shortwave radia-
tion, downward and upward longwave radiation, latent and sensible heat fluxes, and sub-
surface conductive heat flux. The first three energy fluxes are given as input while the 
other energy fluxes are calculated as a function of surface temperature and other input 
meteorological variables, according to, respectively, the Stefan–Boltzmann Law, Monin–
Obukhov similarity theory and Fourier law across the top layer of the firn model. Subsur-
face shortwave radiation penetration is neglected, as the top layer of the snow model has 
a minimum water equivalent (w.e.) thickness of 4 cm. If it is not possible to find a sub-
freezing surface temperature that nullifies the sum of energy fluxes, then surface temper-
ature is set to 0 °C and the sum of all energy fluxes is then used to melt surface snow or 
ice. The SEB model is coupled to the GEUS firn model, a multilayer snow and firn model 
that calculates the temperature, density, grain size and water content for each model layer. 
At each time step, the model column is updated for snow accumulation, temperature dif-
fusion, firn compaction, grain growth and meltwater infiltration. Further SEB and firn 
model details appear in [79,80,82] and references therein. 

2.6.2. Passive Microwave Remote Sensing of Surface Melt and Melt Flag Comparison 
To map surface melt over the Greenland ice sheet between 2017 and 2019, we used 

the MEaSUREs Greenland daily surface melt flag [12,83]. It used, for that period, data 
from the SSM/I F17 and F19 sensors on board the Defense Meteorological Satellite Pro-
gram (DMSP) satellites [84] and a snowpack microwave emission model and dynamic 
threshold adjusted for each year to detect melting/nonmelting surface conditions. It is 
available at a 25 km resolution on an EASEv2 grid and only fully glaciated pixels are con-
sidered. 

For each year, between 1st of May and 30th of September, we compared the detected 
melt from remotely sensed 𝑑௢௣௧ and MEaSUREs melt flag to the reference melt calculated 
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at the PROMICE AWS, using four metrics. The yearly coverage of a melt flag is the fraction 
of days between 1st of May and 30th of September for which a flag value is available. The 
accuracy of a melt flag is the fraction of available days that is accurately classified, either 
as melt or nonmelt. The omission error is the fraction of true melt days, as estimated from 
AWS data, that are not detected by a given flag. The commission error is the fraction of 
true nonmelt days, as estimated from AWS data, that are classified as melt by a given flag. 

3. Results 
3.1. Evaluation of the Grain Size Rretrieval 

The SICE retrievals of 𝑑௢௣௧ ranged from 0.10 to 0.47 mm while the measured 𝑑௢௣௧ 
derived from in situ SSA measurements at EGP ranged from 0.08 to 0.30 mm correspond-
ing to SSA between 22 and 85 m2 kg−1 (Figure 1). The retrieved 𝑑௢௣௧ is on average 0.06 mm 
(30%) larger than the in situ measurements (Table 2, Figure 1). The daily standard devia-
tion of measurements (error bars in Figure 1) relates to the spatial variability of 𝑑௢௣௧ along 
the 90 m transect and has an average of 0.03 mm. The spatial variability within the 90 m 
transect is therefore insufficient to explain the difference between the in situ measure-
ments and retrieved 𝑑௢௣௧. This difference could also be due to the deeper penetration of 
light within the snow at the 865 nm wavelength used for the SICE retrieval (down to ~3 
cm, Figure 1 in [85]). The IceCube device uses a laser at a wavelength (1310 nm) corre-
sponding to a sampling depth of less than 2 cm below the surface. In springtime, 𝑑௢௣௧ is 
minimal at the surface and increases with depth when snow grains have time to undergo 
metamorphism [29,86,87]. Consequently, a systematic difference of sampling depth in the 
SICE retrieval and IceCube measurement will lead to a systematic difference in the grain 
size they estimate. Measurements and retrievals show linear correlation with Pearson’s 
correlation (r) ranging from 0.50 to 0.62 depending on the year (Table 2). 

Table 2. Comparison statistics between the measured and retrieved snow optical grain diameter at 
EastGRIP: Mean difference (MD), Root Mean Squared Difference (RMSD), Pearson’s correlation co-
efficient (r) and number of days used for comparison (N). 

year MD (mm) RMSD (mm) r N 

all 0.06 0.17 0.68 145 

2017 0.07 0.20 0.62 59 

2018 0.05 0.14 0.59 57 

2019 0.05 0.16 0.50 29 
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Figure 1. Observed and retrieved snow optical grain diameter (𝑑௢௣௧) at EastGRIP during May–Oc-
tober 2017–2019. Error bars indicate the daily standard deviation along the 90 m transect for obser-
vation and within a 2 km radius for the retrieval. Sonic ranger-derived snowfall and melt rate cal-
culated from the PROMICE EGP AWS data. 

A short and low intensity (2 mm w.e.) surface melt episode on 22 June 2017 is associ-
ated with an increase in both the ground observation and the satellite retrieval optical 
snow grain diameter (Figure 1). The ground observation and retrieved 𝑑௢௣௧ continued to 
increase for the 2–3 following days when melt was not calculated but warm temperatures 
continued to heat the surface. This melt event is small, with less than 2 mm w.e. for the 
full day. Such surface melt rates represent minor changes at the surface and limited gen-
eration of liquid water. Consequently, the 𝑑௢௣௧  increases on 22 June 2017 were only 
slightly more pronounced than other increases that occurred during periods when melt 
was not calculated at the weather station. Major snowfall events recorded by the AWS led 
to a decrease of grain size by a factor of two or more (Figure 1). In some occurrences (e.g. 
18 July 2018), the 𝑑௢௣௧ decreased without the AWS recording any precipitation. A possi-
ble cause is wind transporting small grains to the site, as also hypothesized by [29]. How-
ever, no clear covariation of 𝑑௢௣௧ and wind speed measured at the AWS could be found 
at EastGRIP. 

3.2. The SICE Snow Optical Grain Diameter Dataset 
The SICE toolchain provides daily snapshots of optical snow grain diameter at a 1 

km resolution. The main challenge for shortwave optical remote sensing is the impossi-
bility of retrieval during cloudy conditions. The average cloud-free coverage was 45% in 
2017, 31.8% in 2018 and 40% in 2019 (Figure 2). The ice-sheet-wide snow-covered area-
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only mean 𝑑௢௣௧ was around 0.3 mm at the beginning of the season and peaked above 0.6 
mm around late July or early August, when surface melt is widespread. The smaller stand-
ard deviation in May indicates the relative homogeneity of cold, dry snow grains at the 
surface in the early melt season. As melt starts on the southern and low-lying ice sheet, 
the standard deviation increases and reaches its maximum synchronously with the aver-
age 𝑑௢௣௧, at the peak of the melt season. The warm year of 2019, during which melt was 
well above average [88], also had the highest Greenland-wide average 𝑑௢௣௧: 0.45 mm com-
pared to 0.36 mm for both 2017 and 2018. That year (2019) also has the maximum daily 
mean value (1.08 mm on 31 July 2019; Figure 2), as compared to a respective maximum of 
0.71 mm and 0.81 mm in 2017 and 2018. 

 
Figure 2. Greenland-wide average snow optical grain diameter (𝑑௢௣௧), ±1 standard deviation, and 
retrieval coverage as percent of Greenland ice sheet pixels for which retrieval was possible. 

During the melting season, the melt is triggered initially in southern and low-eleva-
tion areas before it spreads northward and to more-elevated areas. 𝑑௢௣௧ follows a similar 
evolution (Figures 3 and S1). At the beginning of the season, before the melt onset, the 
retrieved 𝑑௢௣௧ is relatively low and homogeneous across the ice sheet (e.g., low standard 
deviation of grain diameters in May 2018, Figure 2) and does not show a visible gradient 
with elevation (e.g., northern and western regions in Figures 3 and S1). Where and when 
surface warming and melting started, the lowermost areas saw an increase of 𝑑௢௣௧ and of 
its spatial heterogeneity (Figures 3 and S1), while higher areas still had a relatively low 
and homogeneous 𝑑௢௣௧. In the southern areas and in warm years such as 2019, the grain 
diameter spatial gradients are visible already in May, when the first retrievals are availa-
ble (e.g. southwestern regions in Figure 3). As the surface heating and melt progresses to 
higher elevations, the 𝑑௢௣௧ increase propagates to the ice sheet interior (Figures 3 and S1). 
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Figure 3. Monthly average of retrieved snow optical grain diameter (dopt). Black lines indicate 1000 
m elevation contours [89]. 

3.3. Optical Grain Diameter as an Indicator of Melt Affected Snow 
At the four PROMICE AWS (Table 1), the calculated melt rates can be compared to 

the median 𝑑௢௣௧ retrieved within a 2 km radius of each AWS (Figure 4). The magnitude 
of melt calculated from the AWSs allows a better understanding of the covariation of 𝑑௢௣௧ 
and surface melt than at EastGRIP alone (Figure 1). The retrieved 𝑑௢௣௧ reacted closely to 
the presence and absence of surface melting. At most sites, the 𝑑௢௣௧ had values at or be-
low 0.5 mm at the beginning of the season, when no melt was calculated. At melt onset, 𝑑௢௣௧ jumps above its premelt values at all sites (Figure 4). Some exceptions such as large 𝑑௢௣௧ in the absence of melt or small 𝑑௢௣௧ retrieved during the melt period can be noticed. 
These punctual decoupling of surface grain diameter and surface melt can be caused by 
errors in the retrieval, for instance due to cloud contamination or errors in the melt calcu-
lation due to inaccurate AWS measurements. A last potential explanation for mismatch 
cases is that the satellite retrieval may have been taken at an hour of the day when the 
surface was not melting, (Sentinel 3 overpass time is 10 am local time at nadir), but surface 
melt occurred later on that day. 
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Figure 4. Retrieved snow optical grain diameter (dopt, purple dots) and melt (red line and crosses) 
calculated from PROMICE AWS measurements. 

The relation between the retrieved snow 𝑑௢௣௧ and the surface melt rate is complex. 
Pearson’s coefficient of correlation is 0.49, which reveals a co-variation of the two variables 
although a linear regression is incomplete in explaining the relationship. As an alternative, 
we look for the 𝑑௢௣௧ value that is most representative of melting conditions and so plot 
the calculated daily melt as a function of retrieved 𝑑௢௣௧ for our four sites over 2017–2019 
(Figure 5). An analysis of variance indicates that a threshold of 0.64 mm in 𝑑௢௣௧ splits the 
samples into two coherent classes. The samples that have retrieved 𝑑௢௣௧ below 0.64 mm 
have a median melt of 0 mm w.e. and an average that is not significantly different from 
zero. The samples that have a retrieved 𝑑௢௣௧ > 0.64 mm have an average daily melt of 7.11 
mm w.e., significantly greater than zero and greater than the average of the first class (p-
value < 0.001, Figure 5). Additionally, 81.3% of the dopt retrieval above 0.64 mm corre-
sponds to daily melt greater than 1 mm w.e. and 95.2% of the 𝑑௢௣௧ retrieval below or 
equal to 0.64 mm corresponds to daily melt lower than 1 mm w.e. This simple threshold 
approach classifies appropriately the majority of the days, either as melt days, when the 
retrieved 𝑑௢௣௧ is above that threshold, and non- or low-melt days when the retrieved 𝑑௢௣௧ 
is below that threshold. This stepwise approach nevertheless misclassifies 18.8% (12 out 
of 64) of samples as melt days when no or little melt was calculated those days. Similarly, 
4.8% (32 out of 660) of days classified as non- or low-melt actually had more than 1 mm 
of melting calculated from the AWS data. 
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Figure 5. Daily melt calculated at the PROMICE AWSs and the retrieved snow optical grain diam-
eter. Boxplots present statistics for 0.32 mm wide bins of optical grain diameter. The optical grain 
diameter threshold for melt detection is the dashed red line. In each boxplot, the whiskers represent 
the 5th and 95th percentiles, the edge of the box the 25th and 75th percentile and the solid red line 
represents the mean. 

To assess the robustness of this threshold, we fitted similar stepwise functions to (i) 
each station-year (except CEN and EGP which did not present sufficient melt), (ii) all sam-
ples but removing each station iteratively and (iii) 2017, 2018 and 2019 separately (Sup-
plementary Table S1). The thresholds found in these test cases have an average of 0.61 mm 
and a standard deviation of 0.10 mm, consistent with the threshold found when pooling 
all samples. However, the threshold found for these subsets are more sensitive to the er-
rors that occur at each site arising from the difference of footprint between the satellite 
retrieval and the AWS measurements, erroneous measurements from the AWS that lead 
to improper melt calculation as well as cloud contamination that leads to improper 𝑑௢௣௧ 
estimation. We expect that by pooling all these measurements, random noise will be re-
duced, and a more robust threshold value can be found. 

3.4. Application to a Heat Wave in Northeast Greenland and Comparison to the MEaSUREs 
Melt Flag 

We now focus on the 10–18 July 2019 in Northeast Greenland (Figure 6), in the vicin-
ity of the Northeast Greenland Ice Stream (NEGIS). In this area, warm air masses from the 
northern Atlantic are being pushed onto the Greenland ice sheet through the surface de-
pression created by the NEGIS [90]. As an independent estimate of melting areas, the 
MEaSUREs melt flag, derived from passive microwave remote sensing, is also considered 
and compared to our 𝑑௢௣௧-based melt flag. 

On the 10th, the majority of the area shows relatively small 𝑑௢௣௧. Only a narrow band 
below 650 m a.s.l. has a larger 𝑑௢௣௧ (Figure 6). KPC_L is located below that elevation and 
already showed a too thin snowpack by this point of the season and could not be used for 
this analysis. KPC_U is located at 870 m a.s.l. and was still snow-covered and untouched 
by melt as can be seen from the high albedo (~0.8) and the subfreezing air temperature 
measured before the start of the event (Figure 7). The MEaSUREs melt flag also indicates 
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nonmelting conditions at KPC_U (Figure 6). On the 11th, both melt flags indicate non-
melting conditions at KPC_U. However, the AWS starts to detect minor melt for that day 
(Figure 7). This amount of melt is either below the detection limit of both melt flags or 
occurred during a narrow timespan and was missed by both satellites. On the 12th and 
the following days, the warming continues and the AWS, the 𝑑௢௣௧-based flag and the 
MEaSUREs flag all indicate melt at KPC_U (Figures 6 and 7). However, different spatial 
patterns can be seen in the two melt flags. On the 12th, MEaSUREs flag reaches altitudes 
up to 2000 m a.s.l. The 𝑑௢௣௧-based flag shows a main melting area reaching up to 1600 m 
a.s.l. and isolated melting patches up to 1800 m a.s.l. On the 13th and 14th, it is in turn the 𝑑௢௣௧ -based melt flag that reaches the highest altitudes (up to 2400 m a.s.l.) while the 
MEaSUREs melting area does not reach higher than 2200 m a.s.l. (Figure 6). On the 18th, 
the melt stops at higher elevation and continues at below 1600 m a.s.l. According to the 
MEaSUREs flag and below 1200 m a.s.l. for the 𝑑௢௣௧-based flag. During the entire period, 
the EGP AWS did not show any sign of melt either as calculated from the AWS data (Fig-
ure 1) or according to the two melt flags (Figure 6).  

 
Figure 6. Optical snow grain diameter retrieval and associated surface melt flag (areas within the 
black line) and MEaSUREs melt flag for a 10–18 June 2019 heat wave in Northeast Greenland along 
with AWS locations (red stars) and elevation contours (gray lines, 1000 and 2000 m a.s.l.). 
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Figure 7. Retrieved snow grain optical diameter, plane broadband albedo, melt and air temperature 
at KPC_U AWS during the Northeast Greenland heat wave of June 2019. 

From this specific case, the SICE 𝑑௢௣௧-based flag agrees with MEaSUREs melt flag on 
the overall spatial variation of the surface melting area. However, substantial differences 
between the two were highlighted. Unfortunately, no in situ melt data is available in the 
area where the two melt flags disagree. Additionally, the KPC_U AWS quickly loses its 
snowpack which limits the number of days for which both 𝑑௢௣௧-based and MEaSUREs 
melt flags are available. At KAN_U however, melt is frequent, and the snow never melts 
out, making it an appropriate location to evaluate the two melt flags against the melt esti-
mated from AWS data (Figure 8). As expected, there are more days where retrieval was 
impossible for the 𝑑௢௣௧-based flag because of cloud cover: retrieval was possible for only 
45% of days during May-September of 2017–2019. Considering the AWS-derived melt es-
timate as ground truth, accurate melt flagging, false positives and false negatives can be 
found for both melt flags (Figure 8, Table 3). The 𝑑௢௣௧-based melt flag has a very low 
commission error, indicating very few false positives. The higher omission error indicate 
that some melt events are not flagged, but apart for 2018, omissions of the 𝑑௢௣௧ flag are 
comparable with the ones of MEaSUREs flag. 

Table 3. Comparison statistics of dopt-based and MEaSUREs melt flags. AWS-derived daily melt 
greater than 1 mm w.e. is taken as ground reference. The coverage is the fraction of days between 
1st May and 30th of September for which a flag value is available. The accuracy is the fraction of 
days correctly classified by a flag. The omission error is the fraction of true melt days not detected 
by a flag. The commission error is the fraction of nonmelt days classified as melt by a flag. 

 MEaSUREs Melt Flag 𝒅𝒐𝒑𝒕 Melt Flag 

Year 
Coverage 

(%) 
Accuracy 

(%) 
Omission 
Error (%) 

Commission 
Error (%) 

Coverage 
(%) 

Accuracy 
(%) 

Omission 
Error (%) 

Commission 
Error (%) 

2017 99.2 77.7 65.6 6.7 51.6 90.5 27.8 2.2 

2018 94.3 82.6 26.8 12.2 31.1 76.3 81.8 0 

2019 98.4 63.3 56.4 0 52.5 60.9 53.2 0 

All 97.3 74.4 50.3 7.3 45.1 75.8 51.3 1.1 
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Figure 8. Comparison of three melt flags at KAN_U: (i) from MEaSUREs dataset; (ii) derived from 
a 0.64 mm threshold on the retrieved snow optical grain diameter (𝑑௢௣௧); and (iii) derived from the 
energy budget at the KAN_U AWS. The melting/nonmelting binary flag is shown in the upper part 
of each panel while retrieved snow optical grain diameter (purple dots), its 0.64 mm threshold value 
(dashed gray line) and the hourly AWS-derived melt (red line) are shown in the lower part of each 
panel. 

4. Discussion 
To achieve a reasonable processing time and memory use, we resampled the OLCI 

images from ~350 m to a 1 km resolution. This spatial resolution is comparable to other 
snow optical grain diameter or SSA products [24,44]. When using the retrieved dopt to iden-
tify surface melt, the resulting 1 km resolution melt map represents a significant improve-
ment compared to the 25 km resolution of surface melt maps produced from passive mi-
crowave data [12,53]. Recent efforts were made to enhance the resolution of the passive 
microwave observations [55]. Nevertheless, the in situ validation, at one AWS in [55], re-
mained limited and the contamination of coarse passive microwave observations by land 
near the ice sheet margin remains problematic.  

Our approach reveals spatially discontinuous and patchy melt areas (Figure 6). Nev-
ertheless, even at the relatively fine 1 km resolution, melt may be spatially inhomogeneous 
within a pixel. This spatial heterogeneity complicates the comparison with pointwise 
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AWS observations. Additionally, the nonmelting/melting binary flagging cannot repre-
sent the transformation of a melt-free pixel to a pixel where different snow patches can be 
melting at various intensities and finally to a fully melting pixel. Further, most of the 
PROMICE stations are located in lower ablation areas where the snowpack rapidly ablates 
and glacial ice is revealed, reducing the time over which spaceborne retrieval is relevant. 
CEN and EGP AWS are exceptional by being in the accumulation area and rarely seeing 
melt. Only two AWS, KPC_U and KAN_U, are located close to the equilibrium line and 
allow to assess the response of 𝑑௢௣௧ to surface melt. Future in situ estimation of surface 
melt, from AWS or other techniques, at the equilibrium line altitude could help to further 
document the relation between 𝑑௢௣௧ and either the presence or the intensity of surface 
melt. 

The threshold that was found to identify melting conditions, 𝑑௢௣௧ = 0.64 mm, corre-
sponds to an SSA of 0.11 m2 kg−1. It is consistent with previous values identified for melt-
ing surfaces such as 0.6 mm by [29] and ~0.5 mm in [24] (Figure 6 therein). Previous studies 
also used the optical characteristics of snow, such as albedo, as a proxy for melt and mass 
loss [91,92]. But such an approach only worked on annual averages. In our study, we have 
related daily changes in 𝑑௢௣௧ as a response to the presence or absence of meltwater at the 
surface estimated using the high-temporal-resolution AWS data. 

In theory, it is possible that large melt-affected snow grains remain at the surface after 
the melt stops and consequently that our melt flag would show false positives after the 
end of the melt event. Although it is a plausible scenario, we do not see this occurring 
often in our dataset, potentially for two reasons. First, the pervasive action of wind on the 
ice sheet may quickly erode the surface layer. Small windblown snow grains then cover 
the melted snow and the 𝑑௢௣௧-based flag is reset to nonmelting. Second, the end of the 
melt period coincides with cooler temperatures and consequently solid precipitation. The 
reflective fresh snow deposited at the surface has the potential to shut down the melt. In 
that situation, once the site becomes cloud-free again, our retrieval will identify fine 
grained fresh snow and nonmelting conditions. We note again that the presented flag only 
works for snow surfaces with low light-absorbing particle concentrations. More in situ 
observation will be needed to assess the performance of our 𝑑௢௣௧ retrieval for melting 
and non-melting polluted snow and to assess whether the same threshold on 𝑑௢௣௧ can be 
used to identify melt. Little is known about the optical properties of natural glacier ice 
surfaces, even less under melting conditions, and further research is needed to constrain 
radiative transfer models in those areas.  

The penetration of solar radiation into surface snow implies that the SICE retrieval 
samples the first centimeters below the surface. The penetration depth also depends on 
the grain size [86] and shape [40] and on snow density. As a result, the thickness of the 
layer that is being sampled by our retrieval evolves throughout the season. Our retrieval 
assumes a vertically homogeneous snowpack, but since the near-surface snow grain size 
may vary vertically [21], multilayer snow models may be more suitable [38]. Nevertheless, 
multilayer radiative transfer models are computationally expensive and not convenient 
for near-real-time retrievals. Our retrieval also assumes a nonspherical grain shape (char-
acterized by a shape factor ஻(ଵି௚)  = 9.2 as in [50]). Although this assumption has been 
producing satisfactory results, it is far from the diversity of snow grain shapes in natural 
snowpacks [20,43,44]. Recent remote sensing efforts have included diverse grain shapes 
within the radiative transfer model [38,43,44]. Unfortunately, in situ measurements of 
grain shape at the relevant spatial scale for remote sensing product evaluation are not 
readily available to this day. In this absence of ground truth, the grain shape could only 
be used as a tuning parameter within radiative transfer models to minimize the difference 
between calculated and observed surface reflectances. 

A recent report from the European Organisation for the Exploitation of Meteorolog-
ical Satellites (EUMETSAT) evaluated the accuracy of the OLCI instruments onboard Sen-
tinel-3A and B when measuring ocean reflectance [93]. They concluded that the OLCI 
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measurements of surface reflectance at wavelength 865 nm were within the 2% accuracy 
defined in the mission requirements. However, the measured reflectances at 1020 nm were 
~9% and ~6% too bright for Sentinel-3A and Sentinel-3B, respectively. These biases have 
been derived over dark ocean surfaces and cannot be used over bright snowy surfaces. 
No reference dataset is currently available for a vicarious calibration of OLCI over bright 
surfaces. The magnitude of this systematic bias should be subject of future research. How-
ever, since our melt detection threshold is chosen empirically, the melt maps derived here 
should remain unchanged by any future change of calibration, as the threshold could be 
accordingly re-evaluated. 

When comparing our retrievals at 1 km resolution to in situ measurements, either for 𝑑௢௣௧ or for surface melt, the spatial representativity of these observations can be ques-
tioned. At EastGRIP, the surface type is relatively homogeneous, stemming from a smooth 
topography: the elevation does not vary by more than 7 m and the slope by more than 
0.24° in the 1 km2 surrounding the station (derived from the GIMP DEM, [89]) suggesting 
uniform temperatures and incident shortwave radiation. At this site, the standard devia-
tion of the 𝑑௢௣௧ along the 90 m observation transect, representative of the spatial hetero-
geneity, was 0.03 mm, which is significantly smaller than the difference between the ob-
served and retrieved 𝑑௢௣௧: 0.06 mm on average. Capturing the spatial heterogeneity in 
these dry snow regions is therefore less important than addressing the assumptions made 
in the retrieval procedure (e.g., grain shape or radiometric calibration). In the areas where 
surface melting is more prevalent, no in situ observation of 𝑑௢௣௧, and of its spatial heter-
ogeneity, is currently available for the Greenland ice sheet. Regarding the detection of 
surface melt, no observation currently allows bridging between point estimations at AWS 
sites and microwave melt flags at 12–25 km resolution [12,54]. We consequently compare 
point observations to gridded retrievals and let to future work bridging these scale gaps 
such as recently done for surface albedo measurements [94,95]. 

5. Conclusions 
We presented the optical snow grain diameter (𝑑௢௣௧) retrieved for 3 years of Sentinel-

3 OLCI observations over the Greenland ice sheet. After ensuring that the remotely sensed 𝑑௢௣௧ matches with in situ observations at EastGRIP, we analyzed the response of retrieved 𝑑௢௣௧ to surface warming and melt at four PROMICE automatic weather stations where 
melt can be calculated from meteorological measurements. We established that the re-
trieved 𝑑௢௣௧ and the in situ estimation of melt covary, which leads to a binary melt flag 
that can be constructed around the threshold 𝑑௢௣௧ of 0.64 mm with a high likelihood of 
melting above this threshold. We applied this threshold to our 𝑑௢௣௧ dataset and derived 
melt maps for daily 1 km mosaics of Greenland. We found that the spatiotemporal evolu-
tion of our melt flag compares well with the passive microwave MEaSUREs melt flag dur-
ing a heat wave in Northeast Greenland and at the KAN_U PROMICE AWS. Although 
the two flags identify the same general periods and areas as melting, some spatial and 
temporal mismatches remain. For the dates when 𝑑௢௣௧  and the melt flag could be re-
trieved, it showed comparable accuracy (fraction of correct flags, 76%), omission (fraction 
of false negative, 51%) and commission (fraction of false positive, 1%) as the MEaSUREs 
melt flag (74%, 50% and 7% for the same metrics). Although our retrieval is not possible 
under cloud cover, which limits the coverage of the dataset, its 1 km spatial resolution is 
a great improvement compared to the MEaSUREs melt flag. 𝑑௢௣௧ can therefore be used 
at a regional scale or in combination with passive microwave to describe melt dynamics 
on the Greenland ice sheet at high spatial resolution. 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/article/10.3390/rs14040932/s1. Reference [96] is cited in the Supplementary Materi-
als. 
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