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Abstract

We investigate the distribution and multiple occurrences of extreme

events stochastic processes constructed by sampling the solution of a

Stochastic Differential Equation on R
n. We do so by studying the ac-

tion of an annealead transfer operators on ad-hoc spaces of probability

densities. The spectral properties of such operators are obtained by em-

ploying a mixture of techniques coming from SDE theory and a functional

analytic approach to dynamical systems.
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1 Introduction

In the last decades modeling based on Stochastic Differential Equations has
been used extensively in different scenarios whenever the statistical properties
of extreme events is particularly important, ranging from economy (see e.g.
[16]) to climate science (see e.g. [10]). In this case the SDE model becomes a
forecasting tool: one can investigate the likelihood of extreme events, as well as
the typical behaviour of such systems. Here we focus on the former.

We consider a system whose evolution is described by a stochastic differential
equation of the following type

{

dXt = b (Xt) dt+ dWt

X0 = x,

where the domain of definition is Rn and Wt is the Brownian motion defined on
a probability space (Ω,F ,P) . It is well known that under suitable assumptions
(see Section 2 for the details of our setup) the problem above has a unique solu-
tion (Xx

t )t≥0 and the resulting stochastic flow has a unique stationary measure
µ.

We consider a specific unbounded observable gx0 : Rd → R, encoding the
appearance of an extreme event, and sample the evolution of gx0 along the
trajectories of Xt at discrete times. This is done by choosing a time step h ≥ 0,
a sequence of times tn = hn and the process gx0(X

x
tn).

It is well known that pinpointing a single extreme event is still, if possible at
all, beyond the reach of current techniques, yet there are various possibilities to
investigate the distribution, either temporal or spatial, of such events also in the
sense of their clusterization. Here we consider the distribution of the extreme
events for the process gx0(X

x
tn); in particular we would like to find a sequence

{un}n∈N such that the following limit exists

lim
n→∞

P⊗ µ

({

(ω, x) : max
k=0,...,n−1

gx0

(

Xx
tk

)

≤ un

})

∈ (0, 1) (1)

where the ⊗ represents the product of measures. The limit above encodes the
notion of extreme event, as long as un → ∞ for the process gx0(X

x
tn) where
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the initial conditions x vary in the full set Rd and are weighted according to µ.
Theorem 2 solves this problem i.e. it is possible to characterize such sequences
and find an exponential distribution for the probability of not exceeding the
thresholds un, as it is usually done in the extreme values theory.

In the literature, such limit is often referred to as Extreme Value Law (EVL);
its existence and its properties are strictly connected to the distribution of the
hitting time of the process to a sequence of (properly renormalized in measure)
shrinking sets, see [8] for an extensive introduction to such relation.

Successively, we will consider the distribution of the occurrences of our event
in the rare set and in a given time interval. More precisely we will count the
number of visits of the time discretized solution of our stochastic differential
equation to a decreasing sequence of balls Bn among the first n steps of length
h. We will show that the distribution of the number of visits will converge to a
standard Poisson distribution in the limit of large n. Our main results will be
stated precisely in Section 2.

It is worth to remark that for both results our construction is rooted in the
functional approach of [14, 15, 12]. The tools we use to get the results are related
to the study of the functional analytic properties of the transfer operator Lh
associated to the SDE system acting on suitable functional spaces. In particular
we will relate the probability of occurrence of the rare events with the response
of the dominating eigenvalue of Lh to the perturbation of the system done by
adding a small hole corresponding to the rare event, transforming the initial
system into an open one.

1.1 Literature Review

The study of extreme events has already been carried out in various framework
and there is an extensive literature. Comprehensive surveys can be found in the
book [18], with a particular focus on dynamical systems and in [19] with a focus
on stochastic processes.

Let us comment on some works which are closer to the present one which
allow us also to present the main novelties of our study.

In the paper [6], an Extreme Values Law in continuous time is found in the
case of one dimensional stochastic differential equations, using the properties of
the Ornstein-Uhlenbeck process (see also [19] for another point of view on these
results).

For diffusion processes of gradient field type in Rd, the Ph.D thesis results
of Kuntz [17, Prop. 2.1, Theorem 2.4], prove exponential upper/lower bounds
for P (MT ≤ R), for large R, which can be turned into Extreme Values Law
estimates.

In the paper [20] the hitting time distribution for random walks in the line
is described. This kind of results are equivalent to EVL as proved in [8].

Most of the preceding works obtained an extreme value distributions for con-
tinuous time processes beginning with particular SDE, while in the present work
we focus on discrete time but for a rather general class of Stochastic Differential
Equations. In this case we show not only how the distribution of the first visit
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in a rare event behave, but also the distribution of multiple visits (the Poisson
statistics). We will comment more about the relation between continuous and
discrete time at the end of this article by outlining a few perspectives.

We also like to reiterate the fact that our approach is directly based on
the spectral properties of the transfer operators associated to the system and
its response to suitable small perturbations representing the rare events. This
technique, as already pointed out in [15], allows us to get EVL for determinis-
tic dynamical systems whose transfer operator is quasi-compact (on a suitable
Banach space), and therefore admits a spectral gap. The same technique has
been generalized to random dynamical systems perturbed in an annealed way
in [2, 4] and the recent paper [1] developed a spectral approach for a quenched
extreme value theory that considers random dynamics and random observations.

2 Main Results

We consider a stochastic differential equation on R
d of the following type

{

dXt = b (Xt) dt+ dWt

X0 = x,
(2)

Here Wt is the Brownian motion defined on a probability space (Ω,F ,P). We
make the following assumptions on b:

H There is K such that ∀x, y ∈ Rd

|b(x)− b(y)| ≤ K|x− y|.

AD (dissipativity) We assume that there exists constants L1, L2 ∈ R with
L2 > 0 such that for all x ∈ Rd

〈b(x), x〉 ≤ L1 − L2‖x‖
2. (3)

Remark 1. The previous assumptions include the fundamental case when

b(x) = Ax+B(x)

where A is a matrix such that there exists ν > 0 with the property that

〈Ax, x〉 ≤ −ν ‖x‖2 (4)

for all x ∈ Rd, and B : Rd → Rd is Lipschitz continuous and fulfills

〈B(x), x〉 = 0 (5)

or more generally

〈B (x) , x〉 ≤ C1 + C2 ‖x‖
2

for all x ∈ R
d (6)
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for some constants C1 ∈ R and C2 < ν. Indeed assumption H is obviously
satisfied and assumption AD holds because

〈Ax +B(x), x〉 ≤ C1 − (ν − C2) ‖x‖
2 .

Condition (4) is motivated for instance by the finite dimensional discretiza-
tion of Partial Differential Equations (PDE henceforth) of parabolic type, where
A is the discretization of the Laplacian or, more generally, of the second or-
der strongly elliptic part. Condition (5) is motivated by the discretization of
nonlinear operators like the inertial (convective) operator of the Navier-Stokes
equations; we impose the Lipschitz continuity on B for simplicity. 1 The gener-
alization of Condition (6) may help to accommodate linear first order operators
in the discretization of a PDE.

Let x0 ∈ Rd be a chosen point of the phase space. Let gx0 : Rd \ {x0} → R

be
gx0(x) := − log d(x, x0) (7)

where d is the euclidean distance.
The observable gx0 hence measures how far we are from our chosen x0 on a

logarithmic scale. Let h > 0 and let

tn := nh. (8)

Given the assumptions H and AD, the system (2) has a unique invariant
measure µ (see Section 4.1 for more details).

We now consider the problem (1), and about this problem for the reader
convenience we state below the first main result of our work.

Theorem 2. Let h, τ > 0 and let Xt be the solution of (2) at time t. Let un
be a real sequence such that

nµ(Bn) → τ (9)

where Bn is the ball B (x0, e
−un). Let the sequence of discrete times in which

we sample the process be denoted as tk := kh. Then

lim
n→∞

P⊗ µ

({

(ω, x) : max
k=0,...,n−1

gx0

(

Xx
tk

)

≤ un

})

→ e−τ . (10)

Remark 3. Analogous results holds if the system (2) is defined on Td. As many
of the constructions presented here are either not necessary or can be simplified
in such case, the explicit discussion of this case will appear somewhere else.

The second main result we prove is a refinement of the first one and is about
the distribution of multiple occurrences of the extreme events. Let Bn be again a
ball centered at z ∈ R

d and of radius e−un .We are now interested in studying the
distribution of the number of visits to the set Bn in a prescribed time interval.

1This is not satisfied by quadratic operators, therefore an additional Lipschitz cut-off is
necessary to get a finite dimensional operator as above.
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We follow the strategy recently used in [12] for this kind of results. We argue
that the exponential law given by the extreme value distribution describes the
time between successive events in a Poisson process. We begin by introducing
the following random variable

Sn :=

n−1
∑

i=0

1Bn
(Xx

ih),

which counts the number of visits of the time sampled solution of our stochastic
differential equation to the ball Bn among the first n iterations of the process.
In order to get a limiting distribution when n → ∞ we have to rescale time as
we did in (9) and therefore we pose:

Definition 4. Let us take τ > 0 and n ≥ 1. We define the sequence of discrete
random variables

Sn,τ :=

⌊ τ
µ(Bn)

⌋
∑

i=0

1Bn
(Xx

ih). (11)

We say that Sn,τ converge in distribution to the discrete random variable W,
possibly defined on a different probability space and with distribution νW , if we
have for any k ∈ N :

lim
n→∞

P⊗ µ





⌊ τ
µ(Bn)

⌋
∑

i=0

1Bn
(Xx

ih) = k



 = νW ({k}). (12)

The second main result of this work is the following result establishing the
convergence toward a standard Poisson distribution:

Theorem 5. Let τ > 0, Xt be the solution of (2) on Rd, let Bn the ball
B (x0, exp (−un)) and let un such that nµ(Bn) → τ . Then

lim
n→∞

P⊗ µ





⌊ τ
µ(Bn)

⌋
∑

i=0

1Bn
(Xx

ih) = k



 =
e−τ τk

k!
.

As mentioned before, the proof of Theorems 2 and 5 relies on the spectral
perturbation results of [14] and [15]; we recall the main results we are going to
use for completeness in Proposition 24. Let us say once more, at this stage, that
the general strategy we follow is to relate the distribution of rare events we want
to estimate to the behavior of the leading eigenvalues of a perturbed transfer
operator associated to the system, where the (small) perturbations which are
applied, encode the rare events we want to count (see Sections 4.2, 5).

To apply this strategy we consider the transfer operator Lh associated to
the evolution of the system for a fixed time h > 0.

We find Banach spaces such that Lh, restricted to these spaces, satisfies a
Lasota-Yorke type inequality which in turns, if the spaces also embeds com-
pactly, implies a spectral gap. A key inequality will be obtained by exploiting
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the regularizing effect of the noise in the stochastic differential equation and the
presence of the dissipative assumption (AD). Since the ambient space is Rd i.e.
a non compact space, we introduce BVα: spaces of bounded variation densities
decaying at infinity with a certain power law of exponent α.

The reason for considering spaces akin to bounded variation spaces is the
representation of rare events, which are roughly modeled here as small holes
in the space Rd: the perturbed (by the hole) transfer operator will necessarily
create discontinuities when acting on densities.

Once collected all the necessary estimates, the proofs of Theorem 2 and
Theorem 5 are spelled out respectively in Section 4.2 and Section 5.

2.1 Organization of the paper

The plan of the paper is as follows: in Section 3 we set up the functional analytic
framework necessary to study our problems and we perform the regularization
estimates.

Section 4 recalls the main abstract tool we use: Proposition 24.
Section 4.2 shows how from Proposition 24 we can recover the extreme event

laws stated in Theorem 2.
Section 5 shows how from Proposition 24 we can recover the Poisson statistics

stated in Theorem 5.

3 Transfer operators, Banach spaces and regu-

larization lemmas.

We first define and study the basic properties of the transfer operators associated
to our system in sections 3.1 and 3.2. In section 3.3, we introduce a weighted L1

space and bounded variation spaces which we will use to carry out the necessary
estimates. In sections 3.4 and 3.5 we study the regularization properties of the
transfer operators when applied to these suitable functional spaces.

Recall the SDE (2) on the euclidean space Rd, assuming the regularity as-
sumption (H) and the dissipative assumption (AD).

For this kind of stochastic differential equations it is known (see [9], [23])
that the equation has the properties of strong existence of the solutions and
pathwise uniqueness.

Moreover, Menozzi, Pesce and Zhang [21] prove bounds on the transition
probabilities for these systems (so called Aronson type estimate) in this setup.
Such estimates imply that the transfer operator associated to the system has a
regular kernel, and hence regularizing properties. Let θt, for t ≥ 0 be the flow
solving

{

θ̇t(x) = b(θt(x))
θ0(x) = x.

for a function b of the system considered. Let λ ∈ (0, 1], t > 0 and gλ be the
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Gaussian distribution

gλ(t, x) := t−
d
2 e

−λ|x|2

t .

Theorem 6 ([21], Theorem 1.2 and Remark 1.3.). Let us fix T > 0. For each
0 < t ≤ T and x ∈ Rd let Xt(x) be the unique solution of (2) starting from x
at time t. Then Xt(x) has a density which for each y ∈ R

d can be expressed as
a function St(x, y) which is continuous in both variables. Moreover St satisfies
the following:

1 (Two sided density bounds) There exist λ0 ∈ (0, 1], C0 ≥ 1 depending on
T, k, d such that for any x, y ∈ Rd, t < T

C−1
0 gλ−1

0
(t, θt(x)− y) ≤ St(x, y) ≤ C0gλ0(t, θt(x) − y).

2 (Gradient estimates) There exist λ1 ∈ (0, 1], C1 ≥ 1 depending on T, k, d
such that for any x, y ∈ Rd, t < T

|∇xSt(x, y)| ≤ C1t
− 1

2 gλ1(t, θt(x) − y),

|∇ySt(x, y)| ≤ C1t
− 1

2 gλ1(t, θt(x)− y).

3.1 The Kolmogorov operator and the transfer operator

In this section we define the transfer operators associated to the evolution of
a SDE and show some of the basic properties of these operators. The proper-
ties of the transition probabilities St inherited by [21] will be used to define a
Kolmogorov operator (composition operator) associated to our system.

Definition 7. The Kolmogorov operator Pt : L
∞(Rd) → C0(Rd) associated to

the system (2) is defined as as follows. Let φ ∈ L∞(Rd) then ∀x ∈ Rd

(Ptφ)(x) := E[φ(Xt(x))].

In the literature this is also known as stochastic Koopman operator. Since
in our case Xx

t has density St(x, y) absolutely continuous w.r.t to Lebesgue,
we let

(Ptφ)(x) =

∫

Rd

φ(y)St(x, y)dy.

By this we see that
‖Ptφ‖∞ ≤ ‖φ‖∞. (13)

Now we define the transfer operator Lt : L
1(Rd) → L1(Rd) by duality. If ν

is a Borel signed measure on Rd

∫

Rd

(Ptφ)(x)dν(x) =

∫

Rd

∫

Rd

φ(y)St(x, y)dydν(x)
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supposing that ν has a density with respect to the Lebesgue measure f ∈ L1(Rd)
i.e dν = f(x)dx we can thus write

∫

Rd

(Ptφ)(x)dν(x) =

∫

Rd

φ(y)

(∫

Rd

St(x, y)f(x)dx

)

dy. (14)

We can then define the transfer operator associated to the system and to
the evolution time t as

Definition 8 (transfer operator). Given f ∈ L1(Rd) we define the measurable
function Ltf : Rd → Rd as follows. For almost each y ∈ Rd let

[Ltf ](y) :=

∫

St(x, y)f(x)dx. (15)

By (14) we then get the duality relation between the Kolmogorov and the
transfer operator

∫

(Ptφ)(x)dν(x) =

∫

φ(y)[Ltf ](y)dy. (16)

Lemma 9. The operator Lt preserves the integral and is a weak contraction
with respect to the L1 norm.

Proof. The first statement directly follows from (16) setting φ = 1. For the

second, we can work similarly using (13) and (16) with φ = [Ltf ]
|[Ltf ]|

.

Since clearly Lt is a positive operator, we also get that Lt is a Markov
operator having kernel St.

In the following we will define suitable spaces where operators Lt have nice
spectral properties, allowing the study of their leading eigenvalues.

3.2 Perturbed operators

To prove the extreme event laws shown in Theorem 2 we will use the construction
outlined in [14, 15] (see Section 4) adapted to our case.

This is based on the idea of considering the target set Bm as a hole in the
phase space and the system as an open system. We study the associated open
system by the related transfer operators. We define these operators and study
its basic properties in this section.

Definition 10. Let t ≥ 0, x ∈ D and un → 0 be a real sequence. We de-
note by Bn the ball B (x, exp (−un)). We define the ”perturbed” versions of the
Kolmogorov and transfer operators by setting

(Pt,nφ)(x) := E[1Bc
n
(Xx

t )φ(X
x
t )], φ ∈ L∞(Rd)

(Lt,nf)(x) := 1Bc
n
(x)(Ltf)(x), f ∈ L1(Rd).

(17)
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Analogously to what is done in Section 3.1 one can prove that the perturbed
operators enjoy the following duality relation:

∫

(Pt,nφ)(x)f(x)dx =

∫ ∫

φ(y)1Bc
n
(y)St(x, y)f(x)dydx (18)

=

∫

φ(y)1Bc
n
(y)

∫

St(x, y)f(x)dxdy (19)

=

∫

φ(y)
[

1Bc
n
(y)(Ltf)(y)

]

dy =

∫

φ(y)(Lt,nf)(y)dy.

(20)

The iterates of the perturbed operator inherits its properties from the fol-
lowing lemma.

Lemma 11. For every t, s ≥ 0, φ ∈ L∞
(

R
d
)

Pt,n (Ps,n (φ)) (x) = E
[

1Bc
n
(Xx

t ) 1Bc
n

(

Xx
t+s

)

φ
(

Xx
t+s

)]

.

Proof.

Pt,n (Ps,n (φ)) (x) = E
[

1Bc
n
(Xx

t )Ps,n (φ) (X
x
t )
]

= E

[

1Bc
n
(Xx

t )E
[

1Bc
n
(Xy

s )φ (X
y
s )
]

y=Xx
t

]

= E
[

1Bc
n
(Xx

t )E
[

1Bc
n

(

Xx
t+s

)

φ
(

Xx
t+s

)

|Ft
]]

by Markov property,

= E
[

E
[

1Bc
n
(Xx

t ) 1Bc
n

(

Xx
t+s

)

φ
(

Xx
t+s

)

|Ft
]]

= E
[

1Bc
n
(Xx

t ) 1Bc
n

(

Xx
t+s

)

φ
(

Xx
t+s

)]

by the basic properties of the conditional expectation (see [24, Section 9.7]).

Remark 12. In particular, given generic s, t ∈ R

Pt+s,n (φ) (x) 6= Pt,n (Ps,n (φ)) (x)

namely Pt,n is not a semigroup. However notice that if t1 < t2, then (we take
t = t1 and t+ s = t2 above)

Pt1,n (Pt2−t1,n (φ)) (x) = E
[

1Bc
n

(

Xx
t1

)

1Bc
n

(

Xx
t2

)

φ
(

Xx
t2

)]

.

Thus, for P
(n)
t we have the following

Corollary 13. For every x ∈ R
d, 0 = t0 < t1 < ... < tn, φ ∈ L∞

(

R
d
)

, we have

(

Pt0,n ◦ Pt1−t0,n ◦ · · · ◦ Ptn−tn−1,n

)

(φ) (x) = E
[

1Bc
n

(

Xx
t0

)

· · · 1Bc
n

(

Xx
tn

)

φ
(

Xx
tn

)]

.
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3.3 Functional Spaces: quasi-Hölder space on Rd

We now define suitable functional spaces on which the transfer operators intro-
duced in the previous sections have a regularizing behavior and nice spectral
properties.

We construct spaces which are suitable for our noncompact environment,
imposing a controlled behavior far away from the origin by using weight func-
tions growing at infinity. These spaces will be denoted as BVα and L1

α. Let
α > 0 and define the weight function

ρα (|x|) =
(

1 + |x|2
)α/2

. (21)

Let L1
α

(

Rd
)

be the space of Lebesgue measurable f : Rd → R such that

‖f‖L1
α(Rd) :=

∫

Rd

ρα (|x|) |f (x)| dx <∞.

Note that, L1
α ⊂ L1 and if f ∈ L1

α then ‖f‖L1 ≤ ‖f‖L1
α
. Moreover for α = 0,

L1
0 = L1.
We now adapt the Bounded Variation spaces used in [3] to the cases at

hand.2 For a Borel subset S ⊆ Rd let us define

osc(f, S) = ess sup
x∈S

f − ess inf
x∈S

f.

We now define the seminorm:

‖f‖osc(Rd) = sup
ǫ≤ǫ0

ǫ−1

∫

Rd

osc(f,Bǫ(x))dψ(x),

where ǫ0 is a positive number which is not restrictive to choose equal to 1 in
our case 3

Here the measure ψ is a Radon probability measure on Rd and we require
that:

(Aψ1) ψ is absolutely continuous with respect to the Lebesgue measure, having
a continuous bounded density ψ′ such that ψ′ > 0 everywhere.

We can define a ‖ · ‖BVα
norm by setting

‖f‖BVα
:= ‖f‖L1

α(R
d) + sup

ǫ∈(0,1]

ǫ−1

∫

Rd

osc (f,Bǫ (x)) dψ(x). (22)

2These kind of spaces have also been used already in the context of extreme value theory
(see [7, 5]).

3By inspecting carefully the proof of next Lemma 15 and Proposition 21 we see that our
choice of ǫ0 = 1 in the definition of oscillation does not impose any limitation. Since we are
considering a localization scheme through Bn(x0) it sufficient to choose ǫ large enough to
include sets Bn(x0). Moreover by Lemma 18 we see that, beside the discontinuities created
by our 1Bn

, the oscillation of Ltf can be easily controlled, as Ltf is regularized to C1. This
setup is different from those originally of Keller and Saussol, where ǫ0 was tied to the size of
the partitions and the expansions of the considered maps, and had to be chosen accordingly.
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It is not difficult to show that ‖ · ‖BVα
indeed defines a norm and the set of L1

α

functions for which this norm is finite is a Banach space which we denote by
BVα

(

Rd
)

.4

We prove that our weighted bounded variation space is compactly immersed
in L1.

Theorem 14. BVα
(

Rd
)

→֒ L1
(

Rd
)

is a compact embedding.

Proof. We prove that given a sequence gn ∈ L1 such that ||gn||BVα
≤ M for

some M there is a subsequence gnk
and g ∈ L1 such that ||gnk

− g||L1 → 0.
Let us consider a sequence Bm = Bm(0) of balls centered in the origin with

radius m, eventually covering Rd. Let us fix m. By the fact that on a compact
domain the usual BV topology is equivalent to BVα and the space BV (Bm) has
a compact immersion in L1(Bm) there is a subsequence gnm,k

and a function
fm : Bm → R such that gnm,k

restricted to Bm converges to fm in the L1

topology.
Let us define the extension fm of fm to Rd by

fm(x) =

{

fm(x) if x ∈ Bm
0 if x /∈ Bm.

Since ‖gnm,k
‖L1 ≤ M we also have ‖fm(x)‖L1 ≤ M . Once found gnm,k

and
fm, now consider Bm+1 and from the sequence gnm,k

let us draw a subse-
quence gnm+1,k

converging on Bm+1 to some fm+1. Being a subsequence of
the previously extracted sequence, gnm+1,k

will converge to fm on Bm and then
fm = fm+1 on Bm. We can then continue inductively and define for each m ≥ 0
a sub sequence gnm,k

and a function fm with gnm,k
→ fm on Bm. Further-

more we will also have an extension fm on Rd for each m ≥ 0. What we have
seen shows that the sequence m → fm converges pointwise to some function
f : Rd → R. The sequence

∣

∣fm(x)
∣

∣ is an increasing sequence and then by the
monotone convergence theorem f ∈ L1 and ||f ||L1 ≤M .

Now for each m consider km such that
∫

Bm

|gnm,km
− fm|dx ≤

1

m
.

Since ‖gnm,km
‖L1

α
is uniformly bounded we have that there is some M2 in-

dependent of m such that
∫

Rd\Bm
|gnm,km

|dm ≤ M2

ρα(m) . We have that

||gnm,km
− fm||L1 ≤

1

m
+

M2

ρα(m)

and thus gnm,km
→ f in the L1 topology.

4The proof can be obtained by adapting Propositions B.4 and B.5 in B. Saussol PhD thesis
([22]). First of all one notices that L1

α(R
d) is complete. Then, if fn is a Cauchy sequence

in BVα, it is also Cauchy in L1
α(R

d) and therefore in L1(ψ), since ψ′ ∈ L∞(Rd). Then one
finally applies Propositions B.4 and B.5 in Saussol’s thesis which explicitly uses L1(ψ) for the
oscillatory part.
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Let us suppose now that f ∈ BVα and let K be a compact set in Rd. We
will need later on an estimate of the L∞(ψ) norm of f on K, designated as
||f ||L∞(ψ,K).

Proposition 15. For any compact set K ⊂ R
d we have

||f ||L∞(ψ,K) ≤
max

(

||ψ′||L∞(Rd), 1
)

dK
||f ||BVα

. (23)

Where ψ′ denotes the density of ψ with respect to the Lebesgue measure and
dK = essinfx∈Kψ(B1(x)). (We remark that by Aψ1 we have dK > 0.)

Following Proposition B.6 in [22] we can write for any x ∈ K and y ∈ B1(x) :
|f(x)| ≤ |f(y)|+ osc(f,B1(x)). By integrating in y over B1(x) we get

|||f(·)|ψ(B1(·))||L∞(ψ,K) ≤ ||f ||L1(ψ) + ǫ||f ||osc(Rd) ≤ ||f ||L1(ψ) + ||f ||osc(Rd).
(24)

By using the fact that ||f ||L1(ψ) ≤ ||ψ′||L∞(Rd)||f ||L1
2(R

d), we finally get the
statement.

Remark 16. From now on we will denote with ||f ||L∞(B) the L
∞ norm with re-

spect to the Lebesgue measure restricted to the compact set B. By the assumption
(Aψ1), ||f ||L∞(B) differs from L∞(ψ,B) by a multiplicative constant depending
only upon B.

3.4 Regularization properties for the transfer operator.

In this section we see how the properties of the SDE (2) we consider, such those
derived from the Brownian motion, have a regularizing effect at the level of the
associated transfer operators.

In the following lemma the notation L1
2 stands for the space L1

α when α = 2.

Lemma 17. Given h > 0, there exist constants A,B > 0 and λ ∈ (0, 1) (also
depending on h) such that

‖Lnhf‖L1
2
≤ Aλn ‖f‖L1

2
+B ‖f‖L1 (25)

for every f ∈ L1
2 and every n ∈ N.

Proof. Step 1. Call L1
dens the set of all probability density functions, namely

the elements p ∈ L1 such that p ≥ 0 a.s. and ‖p‖L1 = 1.
The statement of the lemma is equivalent to prove there exist constants

C,D > 0 and λ ∈ (0, 1) such that inequality

‖Lnhp‖L1
2
≤ Cλn ‖p‖L1

2
+D (26)

holds true for every p ∈ L1
dens ∩ L

1
2. That the statement of the lemma implies

this new one is obvious (with the same constants). Let us prove the converse.
Take f ∈ L1

2 and call f+ = f ∨ 0, f− = (−f) ∨ 0 (thus f = f+ − f−). Since

13



|f± (x)| ≤ |f (x)|, we have f± ∈ L1
2 ⊂ L1. Call Z± = ‖f±‖L1 and assume

Z± > 0 (the case when one or both are zero is easier). Call p± = Z−1
± f±,

elements of L1
dens ∩ L

1
2. By assumption,

∥

∥Lnhp
±
∥

∥

L1
2
≤ Cλn

∥

∥p±
∥

∥

L1
2
+D

hence, by linearity of Lnh and homogeneity of the norms,

∥

∥Lnhf
±
∥

∥

L1
2
≤ Cλn

∥

∥f±
∥

∥

L1
2
+ Z±D.

Again by linearity of Lnh,

‖Lnhf‖L1
2
=

∥

∥Lnh
(

f+ − f−
)∥

∥

L1
2
≤

∥

∥Lnhf
+
∥

∥

L1
2
+
∥

∥Lnhf
−
∥

∥

L1
2

≤ Cλn
(

∥

∥f+
∥

∥

L1
2
+
∥

∥f−
∥

∥

L1
2

)

+
(∥

∥f+
∥

∥

L1 +
∥

∥f−
∥

∥

L1

)

D

≤ 2Cλn ‖f‖L1
2
+ 2D ‖f‖L1

where in the last step we have used the fact that |f± (x)| ≤ |f (x)|, and the
definition of the norms in L1

2 and L1. Therefore (25) holds with A = 2C and
B = 2D.

Step 2. Let us prove (26). Given p ∈ L1
dens ∩ L

1
2, on a suitable probability

space choose a random initial condition X0 with density p, independent of the
Brownian motion. Call Xt the solution of the Cauchy problem with initial
condition X0. Recall that the Kolmogorov operator Pt is defined by means of
the solutions Xt (x) of the same Cauchy problem but with deterministic initial
condition x, (Ptφ) (x) = E [φ (Xt (x))]. A simple disintegration argument proves
that

∫

Rd

(Ptφ) (x) p (x) dx = E [φ (Xt)] (27)

where Xt, as defined above, is the solution with initial condition X0. We shall
use now this relation together with the duality relation between the Kolmogorov
operator and the transfer operator. We have (recall that Lnh = Lhn)

‖Lnhp‖L1
2

=

∫

Rd

(

1 + |x|2
)

|(Lhnp) (x)| dx

=

∫

Rd

(

1 + |x|2
)

(Lhnp) (x) dx

because p is a probability density and Lhnp is thus non-negative,

=

∫

Rd

(Phnφ) (x) p (x) dx

by the duality relation mentioned above, where φ (x) = 1 + |x|2,

= E [φ (Xhn)]

14



by (27). We have thus proved that

‖Lnhp‖L1
2
= E

[

1 + |Xnh|
2
]

.

Hence inequality (26) reduces to prove

E

[

1 + |Xnh|
2
]

≤ CλnE
[

1 + |X0|
2
]

+D. (28)

Step 3. In this step we prove the inequality

E

[

|Xt|
2
]

≤ e−2L2E

[

|X0|
2
]

+
2L1 + d

2L2
(29)

where L1, L2 are the constants in the assumption on b and d is the space dimen-
sion. It is straightforward to see that (29) implies (28), completing the proof of
the lemma.

It is well known that, when E

[

|X0|
2
]

<∞, we have

sup
t∈[0,T ]

E

[

|Xt|
2
]

<∞

for every T > 0 (also with the supremum inside the expectation). For complete-
ness we give the proof of this statement in Step 4 below. Here we shall use this
fact.

By Itô formula,

|Xt|
2
= |X0|

2
+

∫ t

0

2 〈Xs, b (Xs)〉 ds+

∫ t

0

2 〈Xs, dWs〉+ Tr (I) t.

Assume E

[

|X0|
2
]

< ∞. Then E
∫ T

0 |Xt|
2
dt < ∞ for every T > 0 and thus, by

the properties of Itô integrals, E
∫ t

0
2 〈Xs, dWs〉 = 0. Then

E

[

|Xt|
2
]

= E

[

|X0|
2
]

+

∫ t

0

2E 〈Xs, b (Xs)〉 ds+ Tr (I) t.

This identity and the fact that the function s 7→ E 〈Xs, b (Xs)〉 is continuous,

imply that the function t 7→ E

[

|Xt|
2
]

is of class C1 and

d

dt
E

[

|Xt|
2
]

= 2E 〈Xt, b (Xt)〉+ d.

From the assumptions on b,

d

dt
E

[

|Xt|
2
]

≤ −2L2E

[

|Xt|
2
]

+ 2L1 + d.
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This implies

E

[

|Xt|
2
]

≤ e−2L2tE

[

|X0|
2
]

+

∫ t

0

e−2L2(t−s) (2L1 + d) ds

≤ e−2L2tE

[

|X0|
2
]

+
2L1 + d

2L2
.

Step 4. Given R > 0, let τR be the first time |Xt| exceeds R, infinity if this
never happens. We have

|Xt∧τR |
2
= |X0|

2
+

∫ t∧τR

0

2 〈Xs, b (Xs)〉 ds+

∫ t∧τR

0

2 〈Xs, dWs〉+ Tr (I) t ∧ τR

= |X0|
2
+

∫ t

0

1{s≤τR}2 〈Xs, b (Xs)〉 ds+

∫ t

0

1{s≤τR}2 〈Xs, dWs〉+ Tr (I) t ∧ τR.

Since E
∫ t

0 1{s≤τR}2 〈Xs, dWs〉 = 0 we get

E

[

|Xt∧τR |
2
]

≤ E

[

|X0|
2
]

+ E

∫ t

0

1{s≤τR}2 〈Xs, b (Xs)〉 ds+ Tr (I) t

≤ E

[

|X0|
2
]

+ E

∫ t

0

1{s≤τR}

(

2L2 |Xs|
2
+ 2C1

)

ds+ Tr (I) t

≤ E

[

|X0|
2
]

+ E

∫ t

0

(

2L2 |Xs∧τR |
2
+ 2C1

)

ds+ Tr (I) t.

By Gronwall lemma this implies, given any T > 0,

E

[

|Xt∧τR |
2
]

≤
(

E

[

|X0|
2
]

+ 2TC1 + Td
)

e2L2T =: C

for every t ∈ [0, T ]. By Fatou lemma,

E

[

lim
R→∞

|Xt∧τR |
2
]

≤ C.

Now, a.s., limR→∞ τR = +∞, because the solution Xt exists globally. Hence
limR→∞ |Xt∧τR |

2 = |Xt|
2 and the proof is complete.

In the following Lemma we see how the presence of the noise, and then the
possibility to see the transfer operator as a kernel operator, also provides a form
of regularization.

Lemma 18. For every t > 0, Lt is bounded linear from L1
(

Rd
)

to C1
(

Rd
)

; in
particular there exists Ct > 0 such that

‖Ltf‖C1(Rd) ≤ Ct ‖f‖L1(Rd) . (30)

Moreover if f ∈ L1
2 then

‖Ltf‖BV2
≤ Ct,2 ‖f‖L1

2(R
d) . (31)

16



Proof. The estimate (30) follows by the definition of the transfer operator (15)
and the estimate on its derivatives at item 2 of Theorem 6. The estimate (31)
follows from (22) considering that ‖Lt(f)‖L1

2
is estimated by Lemma 17 and

for f ∈ C1 it holds

‖f‖osc(Rd) = sup
ǫ≤1

ǫ−1

∫

Rd

osc(f,Bǫ(x))dψ(x)

≤ 2‖f‖C1

∫

Rd

dψ(x) ≤ C‖f‖C1

(32)

since ψ is a probability measure. Finally by (30) we can bound ‖f‖osc(Rd) by
the L1 norm and then by the L1

2 norm of f .

By Lemma 17 and Lemma 18 we get

Lemma 19. Given h > 0, there exist constants A,B > 0 and λ ∈ (0, 1) (also
depending on h) such that

‖Lnhf‖BV2
≤ Aλn ‖f‖BV2

+B ‖f‖L1 (33)

for every f ∈ BV2 and every n ∈ N.

Proof. By Lemma 18
‖Lnhf‖BV2

≤ C||Ln−1
h f ||L1

2
(34)

and by Lemma 17

||Ln−1
h f ||L1

2
≤ Aλn−1 ‖f‖L1

2
+B ‖f‖L1 . (35)

Putting together these two inequalities we get the statement.

Remark 20. As it is well known (see e.g [11]) the Lasota-Yorke-Doeblin-Fortet
inequality proved in Lemma 19 together with the compact embedding proved in
Theorem 14 implies that the operator Lh acting on BV2 is quasicompact (see
Section 4 for more details). The use of (31) together with Lemma 17, and
Theorem 14 also implies that Lt is quasicompact when acting on L1

2.
It is worth to remark that since the phase space is Rd (and thus not bounded)

Lt is not in general a compact operator when acting on L1
2 and hence we cannot

rely on a simple spectral perturbation theory for such operators.
For simplicity let us illustrate this in the particular case where b(x) = −x

and h small enough. We will find a bounded sequence fn ∈ L1
2 such that Ltfn

has no converging subsequences. If h is small enough for each x0 ∈ Rd by
Theorem 6 one can find a radius r0 < 1 and a point y0 such that if a den-
sity f0 with ||f0||BV2 = 1 is supported on B(x0, r0) then Lh(f0) is such that
∫

B(y0,1)
Lh(f0)dx ≥ 0.9

∫

Rd f0dx (think about r0 being very small and f0 concen-

trated around a certain point x0, then Lh(f0) will be concentrated in a certain
neighborhood, of y0 = θh(x0) and the distribution will be dominated by gaussians
depending on h). Still by Theorem 6 and the fact that b(x) = −x we can get

17



that if h is small enough we can choose y0 such that |y0| ≥ 0.7|x0|. Thus, if
|x0| ≥ 10

∫

B(y0,1)

Lh(f0)[|x|
2 + 1]dx ≥

1

2
||f0||L1

2
=

1

2
. (36)

Now we can find f1 with support far enough from the support of f0 such that:
||f1||L1

2
= 1, the support of f1 is near to a point x1 with |x1| ≥ 10 as before, there

is a point y1, such that
∫

B(y1,1)
Lh(f1)dx ≥ 0.9

∫

Rd f1dx and B(y1, 1)∩B(y0, 1) =

∅. This mean that ||Lh(f1) − Lh(f0)||L2
1
≥ 1

2 . One can then find similarly f2
with support far enough from f0, f1 such that ||Lh(fj) − Lh(fi)||L2

1
≥ 1

2 for
i 6= j ∈ {0, 1, 2} and so on, finding a sequence fi on the unit ball such that Ltfi
has no converging subsequences.

3.5 Regularization for the perturbed operators

In this section we prove a uniform Lasota Yorke inequality for the perturbed
operators with strong and weak spaces BV2, L

1
2.

Proposition 21. There is 0 < λ < 1 and two positive constants A′, B′ such
that for any f ∈ BV2(R

d), n ≥ 1 and m ≥ 1, we have

||Lmt,nf ||BV2 ≤ A′λm||f ||BV2 +B′||f ||L1(Rd).

The proof of the Proposition is based on the following two preliminary re-
sults.

Proposition 22. There are λ < 1, A,B ≥ 0 such that for each f ∈ L1
2, m,n ≥ 1

||Lmt,nf ||L1
2
≤ Aλm||f ||L1

2
+B||f ||L1 . (37)

We first consider the simplified case in which f ≥ 0.

Lemma 23. There are λ < 1, B ≥ 0 such that for each f ∈ L1
2 with f ≥ 0,

m,n ≥ 1
||Lmt,nf ||L1

2
≤ Aλm||f ||L1

2
+B||f ||L1 . (38)

Proof. Consider f ≥ 0. We have that Lt,nf = 1Bc
n
Lt(f) and Ltf = Lt,nf +

1Bn
Lt(f). We define the sequence gn in the following way: gm = Lmt f − Lmt,nf .
Since f ≥ 0 and clearly also gn ≥ 0 we have that

‖Lmt,nf‖L1
2
=

∫

|Lmt,nf |ρ2dx ≤

∫

(Lmt,nf + gm)ρ2dx = ||Lmt f ||L1
2
,

by Lemma 17 we have then (38).

Proof of Proposition 22. Let f = f+ − f− be decomposed into its positive and
negative part (where f+, f− ≥ 0). It holds

||f ||L1
2
=

∫

|(f+ − f−)|ρ2dx = ||f+||L1
2
+ ||f−||L1

2

18



and by Lemma 23 we get

||Lmt,nf ||L1
2

≤ 2Aλn(||f+||L1
2
+ ||f−||L1

2
) + 2B(||f+||L1 + ||f−||L1)

≤ 2Aλn||f ||L1
2
+ 2B||f ||L1 .

Proof of Proposition 21. The BV2 norm is the sum of the oscillation part and
of the L1

2 part. For the latter we use Lemma 23. For the oscillation we integrate
[3, Proposition 3.2 (ii)] with respect to our norm. Namely

‖1Bc
n
Ltf‖osc ≤ sup

0<η≤1

1

η

∫

Osc(Ltf,B
c
n ∩Bη(x))1Bc

n
(x)dψ(x)+ (39)

sup
0<η≤1

1

η

∫

2
[

supBη(x)∩Bc
n
|Ltf |

]

1Bη(Bn)∩Bη(Bc
n)
(x)dψ(x), (40)

where Bη(x) is a ball centered at x and with radius η and given a set A, Bη(A) =
{x; dist(x,A) ≤ η}. There are now two cases. We suppose first than η < e−un ; in
this case the only points x contributing to the rightmost integral in the previous
inequality, are those belonging to a 2η-closed neighborhood of the boundary of
the ball Bn; we call Sn such an annulus. The Lebesgue measure of Sn will
be bounded by a constant C̃ (depending on d) times η.5. In the second case,
η ≥ e−un only the points belonging to B2η(Bn) will contribute to the integral
and the measure of these points is the volume of the hyper sphere of radius η
which is O(ηd). The term supBη(x)∩Bc

n
|Ltf | will be bounded using Lemma 15

and 18, therefore By calling Kn the closed ball of radius 2e−un and by using
Proposition 15, we continue to bound the quantity in (40) as

sup
0<η≤1

C̃η

η
||Ltf ||L∞(ψ,Sn)ψ(Sn) ≤ 2ĈC̃||f ||L1

2(R
d)||ψ

′||L∞(Rd), (41)

where we used the bound of order η given by the first case, which includes also
the second case of higher order ηd−1. The constant Ĉ maximizes the constant on
the right hand side of (23), depending on ψ and on its strictly positive infimum
over Sn, and the constant entering formula (31).

The right-hand side of (39) is bounded by ‖Ltf‖osc and the latter is again
bounded as in (31). Therefore we get:

||1Bc
n
Ltf ||osc ≤ (Ĉ + 2ĈC̃||ψ′||L∞(Rd))||f ||L1

2(R
d).

If we now iterate this one we have, calling c∗ = Ĉ+2ĈC̃||ψ′||L∞(Rd), it holds

||Lmt,nf ||osc ≤ ||Lt,nL
m−1
t,n f ||osc ≤ c∗||Lm−1

t,n f ||L1
2(R

d)

5The volume of Sn is bounded by the volume of the corresponding annulus of size 2η
around an hypersphere of radius 1. In this case the lowest order of such a volume is η times
a constant depending on d.
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and using Lemma 23 we continue as

||Lmt,nf ||osc ≤ c∗Aλm−1||f ||L1
2(R

d) + c∗B||f ||L1(Rd)

If we now define A′ = max(c∗/λ,A), B′ = max(c∗, B), we finally have

||Lmt,nf ||BV2 ≤ A′λm||f ||L1
2(R

d) +B′||f ||L1(Rd), (42)

which implies the desired result.

4 Rare Events Via Transfer Operator

For completeness, we remind here the statement of a result due to Keller and
Liverani [14] which is fundamental to our general construction. We consider a
Banach spaces (B, ‖ · ‖) and we denote with B∗ its dual. Then let Lǫ : B → B
be a family of uniformly bounded linear operators, where ǫ ∈ E, and E is the
interval E = (0, ǫ] for some ǫ > 0.6.

4.0.1 Perturbative hypotheses

R1 The operators Lǫ, ǫ ∈ E, must satisfy the spectral decomposition

λ−1
ǫ Lǫ = ϕǫ ⊗ νǫ +Qǫ

where λǫ ∈ C, ϕǫ ∈ B, νǫ ∈ B∗, Qǫ : B → B is a linear operator verifying

∞
∑

n=0

sup
ǫ∈E

‖Qnǫ ‖ <∞. (43)

Moreover, Lǫϕǫ = λǫϕǫ, νǫLǫ = λǫνǫ, νǫ(ϕǫ) = 1, νǫQǫ = 0, Qǫ(ϕǫ) = 0.

We also require that ν0(φǫ) = 1 and

sup
ǫ∈E

‖φǫ‖ <∞. (44)

R2 When ε is small, Lε is a small perturbation of L0, in the following sense:

πǫ := sup
f∈B,‖f‖≤1

|ν0((L0 − Lǫ)(f))| → 0, ǫ→ 0.

6In general the set E could be taken as a closed set of parameters with ǫ = 0 as an
accumulation point. Moreover, as Keller wrote in [15] ”It is assumed that E is a closed subset
of R, but again the parameter ǫ enters the estimates only via the derived quantities πǫ and
∆ǫ (see our conditions R2 and R3 below), so that also this result is valid for more general
sets of parameters.”
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R3 We now set
∆ǫ := ν0((L0 − Lǫ)(φ0)).

Then we require that

πǫ‖(L0 − Lǫ)ϕ0‖ ≤ constant |∆ǫ|.

where the constant is independent of ǫ.

R4 Let us consider the following quantities

qk,ε :=
ν0((L0 − Lε)L

k
ε(L0 − Lε)(ϕ0))

∆ǫ
.

We will assume that for each k ≥ 0 the following limit exists

lim
ǫ→0

qk,ε = qk,

and we pose

θ = 1−
∞
∑

k=0

qk.

Proposition 24 (Proposition[14]). If R1−R4 are satisfied then

λǫ = 1− θ∆ǫ + o(∆ǫ). (45)

4.0.2 Sufficient conditions to check assumptions R1 and R2

We now give sufficient conditions to check R1 and we will show how to rewrite
R2 in a form adapted to our current setting. We begin to introduce a second
Banach space (Bw, ‖ · ‖w) which we qualify as weak when compared with the
strong Banach space B. We will first suppose

R0’ For all f ∈ B , ‖f‖w ≤ ‖f‖ i.e. the weak norm is bounded by the strong
norm and the unit ball of B is compact in Bw. Moreover ∃G ≥ 0 s.t.

∀ǫ ∈ E ∀f ∈ B, ∀n ∈ N : ‖Lnǫ f‖w 6 G ‖f‖w.

We then require that R1 be satisfied for ǫ = 0. To achieve the same result for
ǫ > 0 we need two ingredients which will allow us to apply another perturbative
result by Keller and Liverani, [13]. The first ingredient asks that:

R1’ The operators Lǫ satisfy a uniform, with respect to ǫ ∈ E, Lasota-Yorke
(or Doeblin-Fortet) inequality: there exists α ∈ (0, 1), D > 0 such that

∀ǫ ∈ E ∀f ∈ B ∀n ∈ N : ‖Lnǫ f‖ 6 Dαn‖f‖+D‖f‖w (46)

Finally we ask the closeness of the operators in the so-called triple norm ||| · |||,
namely there exists an upper semi-continuous function uǫ : [0,∞) → [0,∞),
uǫ > 0, such that
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R2’
|||L0 − Lǫ||| := sup

f∈B,‖f‖≤1

‖(L0 − Lǫ)(f)‖w ≤ uǫ → 0, ǫ→ 0. (47)

By assuming the previous conditions, it now follows from [13], see also [15],
that the quasi-compactness condition (4.0.1) holds for any ǫ ∈ E, ǫ > 0. More-
over there will be 0 < ρ < 1 such that for any ǫ ∈ E, the spectral radius of Qǫ
is bounded by ρ, which implies (43). Finally (44) follows immediately from (46).

Condition R2 could be easily worked out when the ν0 will be a measure
because in this case we could write

πǫ ≤ sup
f∈B,‖f‖≤1

∫

|(L− Lǫ)(f)|dν0. (48)

If the weak norm is strong enough to bound this integral, condition R2’ implies
condition R2. More precisely, if we have that there is some C such that

∫

|(L − Lǫ)(f)|dν0 ≤ C‖(L0 − Lǫ)(f)‖w

then R2’ implies R2. We will see that in our case this holds.

4.1 Verifying the perturbative assumptions in our case

In this section we verify the perturbative assumptions needed to apply Propo-
sition 24. In order to do this, we will get information on the spectral picture of
Lt when applied to BV2 and show that the perturbed operators Lt,n (see (17))
can be seen as a small perturbations in some sense of the operator Lt (see (15)).

We denote again by Bn the ball B(x0, exp(−un)) and we remind that

(Lt,nf)(x) = 1Bc
n
(x)(Ltf)(x).

We now check that the perturbative assumptions listed in Sections 4.0.1 and
4.0.2 apply to these operators choosing L1 as the weak norm and BV2 as the
strong one.
Assumption R0’ comes directly from the definitions of the norms given in
Section 3.3, from the compact embedding result proved at Theorem 14 and
finally from Lemma 9
Assumption R1 . We first prove it for ǫ = 0, then we extend it to ǫ ∈ E, ǫ > 0
once R1’ will be proved, see below. Assumption R1 for ǫ = 0 is verified by
classical results on the spectral picture of regularizing linear operators. The
compact immersion proved at Theorem 14 and the Lasota Yorke inequality
proved at Lemma 19 for L0, allows to apply the Ionescu-Tulcea-Marinescu the-
orem (see for instance [11]), and therefore the operator Lt has the following
spectral decomposition Lt =

∑

i υiΠi +Q, where all υi are eigenvalues of L of
modulus 1, Πi are finite-rank projectors onto the associated eigenspaces, Q is
a bounded operator with a spectral radius strictly less than 1. They satisfy
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ΠiΠj = δδijΠi, QΠi = ΠiQ = 0. By this theorem we also get that 1 is an
eigenvalue and therefore the transfer operator will admit finitely many abso-
lutely continuous stationary measures. Furthermore, the peripheral spectrum
is completely cyclic. Then we need to show that 1 is a simple eigenvalue of Lt
and that there is no other peripheral eigenvalue. This is achieved by the strict
positivity of the Markov kernel St (see (15)) provided by Theorem 6. 7.Notice
that the projector Π1 will be the linear functional ν0 in the assumption R1.
Assumption R1’ verified in Proposition 21.
Assumption R2’ is verified in the following proposition

Proposition 25. The operator Lt,n is a small perturbation of Lt, in the fol-
lowing sense: there is a monotone sequence πn → 0such that

||Lt,n − Lt||BV2→L1 ≤ πn.

Proof. We have ||Lt,n−Lt||L1 = ‖1Bn
(Ltf)‖L1 ≤ Leb(Bn)||Ltf ||∞. Notice that

by Lemma 18 the C1(R) norm of Ltf, and therefore its L∞ norm is bounded
by Ct‖f‖L1(Rd). We could finally take πn = CtLeb(Bn).

Since in our case ν0 is nothing but the integral with respect to the Lebesgue
measure, and the weak norm is the L1 norm, R2’ implies R2 as remarked at the
end of Section 4.0.2.
Assumption R3 in our setting can be stated in the following way:

Proposition 26. Let f0 denote the invariant density of the invariant measure
µ; then there exists a constant C′ such that

πn‖(Lt − Lt,n)f0‖BV2 ≤ C′µ(Bn).

We saw above that πn could be taken as CtLeb(Bn); moreover by Proposition
21 the quantity ‖(Lt − Lt,n)f0‖BV2 = ‖1Bn

Ltf0‖BV2 is bounded by a constant

K̃. Therefore πn‖(Lt −Lt,n)f0‖BV2 ≤ CtK̃Leb(Bn) ≤ CtK̃
µ(Bn)

infBn f0
, which gives

the desired result since the density f0 is strictly positive on any finite domain
of Rd, as it is proved in the next lemma.

7Here is the argument. Consider first the operator Lf(y) =
∫
Sh(x, y)f(x)dx, where Sh(·, ·)

is the Markov kernel defined on R2 and is bounded from below on any compact setK ∈ R2.We
want to show that there exists only one fixed point for L. Suppose there are two, say h1, h2.
Define ĥ = min(h1, h2). Notice that h1 − ĥ is nonnegative on a set Ω of positive Lebesgue

measure; moreover from a classical trick, we have easily that L(h1 − ĥ) = h1 − ĥ. Take now
a sequence of monotonically increasing compact sets Kn such that the first verifies K1 ⊂ Ω,
Leb(K1∩Ω) > 0 and

⋃
n
Kn = R2 (use the regularity of the Lebesgue measure). Then take y ∈

Kn and we get h1(y)− ĥ(y) ≥
∫
x∈Kn∩Ω

Sh(x, y)(h1(x)− ĥ(x))dx. Notice that the right hand

side is strictly positive. So we have that h1(y) > h2(y), y ∈ Kn ⇒
∫
Kn

h1dx >
∫
Kn

h2dx.

By passing to the limit we have
∫
h1dx >

∫
h2dx, which is impossible. Call h the unique fixed

point of L. Consider now the peripheral spectrum of L which consists of a finite union of finite
cyclic groups. For each of those eigenvalues call g one of the corresponding eigenvector. There
exists k ≥ 1 such that 1 is the unique peripheral eigenvalue of Lk : Lkg = g. But Lkh = h,

and by repeating the proof above we see that g = h.
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Lemma 27. Let f0 be the density of the unique invariant measure. Then

inf
x∈B

f0 (x) > 0,

where B is any bounded subset of Rd.

Proof. For t > 0, part 1 of Theorem 6 gives, for (x, y) ∈ Rd :

D(x, y) := C−1
0 gλ−1

0
(t, θt(x)− y) ≤ St(x, y).

The invariant measure µ = f0dx satisfies f0 (x) =
∫

Rd St (x, y) f0 (y) dy. Then

take a compact K̂ such that
∫

K̂
f0dy > 0.5, which is possible by the regularity

of the Lebesgue measure. Therefore, for x ∈ B

f0 (x) ≥ min
x∈B,y∈K̂

D(x, y)

∫

K̂

f0(y)dy > 0.5 min
x∈B,y∈K̂

D(x, y)

and the minimum on D is strictly positive by the smoothness of g−1
λ0
.

Assumption R4 needs some more work. The next proposition will show that
all the quantities qk defined in the Assumption R7 are equal to 0. In the present
setting they are defined as the limit for n→ ∞ of the following quantities:

qk,n =

∫

(Lt − Lt,n)L
k
n(Lt − Lt,n)(f0)dm

µ(Bn)

where m is the Lebesgue measure on Rd.

Proposition 28. For each k ≥ 0 we have

lim
n→∞

qk,n = 0.

Proof. Let us introduce the function fk,n :=
Lk

n(Lt−Lt,n)(f0)
µ(Bn)

; we have

lim
n→∞

qk,n = lim
n→∞

∫

(Lt−Lt,n)fk,ndm = lim
n→∞

∫

1Bn
Ltfk,ndm ≤ lim

n→∞
m(Bn)‖Ltfk,n‖∞.

As in the proof of Proposition 25, by Lemma 18, the C1(Rd) norm of Ltfk,n,
and therefore its infinity norm, is bounded by Ct‖fk,n‖L1(Rd). On the other hand

Ct‖fk,n‖L1(Rd) ≤
CtLeb(Bn)
µ(Bn)

by proposition 25. The ratio Leb(Bn)
µ(Bn)

is bounded by

a constant, as shown in the proof of Proposition 26. Then we get

lim
n→∞

qk,n ≤ Leb(Bn)
CtLeb(Bn)

µ(Bn)
→ 0.
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4.2 Proof of Theorem 2

In this section we can collect all the previous estimates and finally prove the
main result of the paper.

Proof of Theorem 2. We recall some notations. We consider a given point in
the phase space x0 and a sequence un going to 0; then we denote by Bn
the ball B (x0, exp (−un)). To compact notation we will write g for gx0 :=
− log(d(x, x0)). We will denote with Lt the unperturbed transfer operator at
time t (see (15)) and with Lt,n the perturbed transfer operator (see (17)). Let
us also denote as h > 0 the time discretization step introduced in (8).

Now, we rewrite (1), using the notation above and remembering that tk =
kh, as

P⊗ µ
(∥

∥Xx
tk

− x0
∥

∥ ≤ exp (−un) for every k = 0, . . . , n− 1
)

= P⊗ µ
(

Xx
tk

∈ Bcn for every k = 0, . . . , n− 1
)

=

∫

Ω×Rd

1Bc
n

(

Xx
t0(ω)

)

· · · 1Bc
n

(

Xx
tn−1

(ω)
)

dωdµ(x)

=

∫

Rd

E

[

1Bc
n

(

Xx
t0

)

· · · 1Bc
n

(

Xx
tn−1

)]

dµ(x).

(49)

Thus we can reformulate (1) by identifying sequences {un}n∈N such that

lim
n→∞

∫

Rd

E

[

1Bc
n

(

Xx
t0

)

· · · 1Bc
n

(

Xx
tn−1

)]

dµ(x) ∈ (0, 1) . (50)

By using Corollary 13 together with (18), after recalling that the invariant
measure µ is absolutely continuous w.r.t to Lebesgue with density by f0, we are
finally able to write the distribution of the maxima in an operator-like way as

P⊗ µ

((

max
k=0,...,n−1

gx0

(

Xx
tk

)

)

≤ un

)

=

∫

D

E

[

1Bc
n
(Xx

t0) · · · 1Bc
n
(Xx

tn−1
)1(Xx

tn−1
)
]

f0(x)dx

=

∫

(

Pt0,n ◦ Pt1−t0,n ◦ · · · ◦ Ptn−tn−1,n

)

(1)(x)f0(x)dx =

∫

Lnh,nf0dx

(51)

where Lnh,n denotes the n-th power of the operator Lh,n.

Now we apply Proposition 24 to the transfer operator Lh and to its pertur-
bations Lh,n. We consider as a strong space the space B(Rd) = BV2 and L1(Rd)
as a weak space. The assumptions of section 4.0.1 are verified by Lh and by
Lh,n thanks to the sufficient conditions quoted in section 4.1; therefore we have
the following spectral decomposition for the perturbed operator Lh,n :

λ−1
h,nLh,n = fh,n ⊗ µh,n +Qh,n (52)
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where fh,n ∈ BV2, µh,n ∈ (BV2)
′ and Qh,n : BV2 → BV2 is a bounded op-

erator with spectral radius uniformly bounded in n by some ρ < 1. Moreover
Lh,nfh,n = λh,nfh,n and µh,nLh,n = λh,nµh,n.

By denoting with 〈µh,n, g〉 the action of the linear functional µh,n over g ∈
BV2, we have

Lng = λh,nfh,n〈µh,n, g〉+ λh,nQh,n(g); (53)

moreover we use the normalization
∫

fh,ndx = 1 and 〈µh,n, fh,n〉 = 1. Thus it
is sufficient to control

∫

(Ln+1
n f0)(x)dx by plugging (53) in it. Since we have a

direct sum decomposition of our operator, we can iterate and get

∫

(Lnnf0)(x) dx = λnh,n〈µh,n, f0〉+ λnh,n

∫

(Qnh,nf0)(x) dx. (54)

Now, 1 is the largest unique eigenvalue of the unperturbed operator Lh and
by proposition 24 and proposition 28 we have θ = 1, therefore:

λn = 1− µ(Bn) + o(µ(Bn)). (55)

Then by substituting (55) in (54) we have

∫

(Lnnf0)(x) dx = en log(1−µ(Bn)+o(µ(Bn))

[

〈µh,n, f0〉+

∫

Qnh,nf0 dx

]

= e−nµ0(Bn)+no(µ0(Bn))

[

〈µn, f0〉+

∫

Qnh,nf0 dx

]

.

(56)

Let us now recall that by [14, Lemma 6.1] we have 〈µn, f0〉 → 1. Moreover
by (43) we a uniform exponential convergence to zero of

∫

Qnh,nf0 dx ≤ ‖Qnh,nf0‖L1 ≤ ‖Qnh,nf0‖BV2 ≤ Const ρn.

Now, as assumed in the statement of Proposition 2, we choose the sequence
{un}n∈N and a τ ∈ R, τ > 0 such that

nµ(Bn) → τ. (57)

Thus
∫

Lnnf0 dx→ e−τ (58)

proving (10).
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5 Poisson statistics

Proof of Theorem 5. For this proof, similarly to the proof of Theorem 2 we will
apply 24. We start by computing the characteristic function of the random
variable Sn =

∑n−1
i=0 1Bn

(Xx
ih) :

Φn(s) =

∫

eisSndPdµ =

∫

E(eisSn)f0dx, (59)

where f0 is the density of µ. We then introduce the perturbed operators for
f ∈ BV2(R

d) :8

Lt,nf(x) = eis1Bn (x)Ltf(x), (60)

Pt,nf(x) = E(eis1Bn (Xx
h)f(Xx

h)) (61)

By using (15) we get, for f ∈ BV2(R
d), g ∈ L∞ :

∫

E(eis1Bn (Xx
h)g(Xx

h))f(x)dx =

∫

Pt,ng(x)f(x)dx =

∫

Lt,nf(x)g(x)dx. (62)

We then observe that Lemma 11 holds for the new operator Pt,n just by
replacing the characteristic function 1Bn

with eis1Bn .

Lemma 29. For every t, s ≥ 0, φ ∈ L∞
(

R
d
)

Pt,n (Ps,n (φ)) (x) = E

[

eis1Bn (Xx
t )eis1Bn(Xx

t+s)φ
(

Xx
t+s

)

]

.

Using this and the equalities (62), we have

Φn(s) =

∫

eisSndPdµ =

∫

Lnt,nf0(x)dx, (63)

where f0 is the density of the stationary measure. We now apply Theorem 24
to the operators Lt,n, using BV2 and L1 as a strong and weak space . In order
to do this, we check the assumptions (R1) to (R4), in particular (R1’), (R2’),
(R3), (R4). We will omit some detail, as the proofs are similar to what is done
in Section 4.1.

• (R1’) Lasota-Yorke inequality. We follow Propositions 21 and Proposition
22. Let first compute the norm ‖Lmt,nf‖L1

2
, m ≥ 1. We have

‖Lmt,nf‖L1
2
= ‖Lt,nL

m−1
t,n f‖L1

2
= ‖LtL

m−1
t,n f‖L1

2
≤

‖Lt|L
m−1
t,n f |‖L1

2|
≤ ‖L2

t |L
m−2
t,n f |‖L1

2
≤ · · · ≤ ‖Lmt |f |‖L1

2
.

8We now require that our functions have valued in C; in this case the oscillation is defined
as osc(f, S) = esssup|f(x) − f(y)|, x, y ∈ S. With this definition the function spaces and the
norms considered extend straightforward to the complex case. We will keep denoting these
spaces as L1

α(R
d) and BVα(Rd) also in the complex valued case.
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We finally apply lemma 17 to the rightmost quantity to get the equivalent
of Proposition 22. We now need the equivalent of Proposition 21, in
particular we have to estimate the oscillation seminorm of eis1BnLtf. Using
the formula9, we get

‖eis1BnLtf‖osc(Rd) = sup
0<η≤1

1

η

∫

osc(Ltf,Bη(x))dψ+

sup
0<η≤1

1

η

∫

osc(eis1Bn , Bη(x)) sup |Lf |dψ := (I) + (II)

The first piece (I) on the right hand side is ‖Ltf‖osc(Rd) and is bounded as
in (31). For the second one, we now distinguish two cases. We suppose first
than η < e−un ; the oscillation in the integral will contribute only when the
balls Bη(x) will cross at the same time the ball Bn and its complement.
In this case the oscillation will be constant and equal to |eis − 1| on the
2η-neighborhood of the ball Bn. If we call Sn such a neighborhood as in
the proof of Proposition 21, the Lebesgue measure of Sn will be bounded
by a constant C̃ (depending on d) times η. In the second case, η ≥ e−un

only the points belonging to B2η(Bn) will contribute to the integral and
the measure of these points is the volume of the hyper sphere of radius
η which is O(ηd). Then we get as in (41), where we also introduced the
constant Ĉ :

(II) ≤ sup
0<η≤1

C̃η

η
||Ltf ||L∞(ψ,Sn)ψ(Sn) ≤ 2ĈC̃||f ||L1

2(R
d)||ψ

′||L∞(Rd)

Therefore we get

‖eis1BnLtf‖osc(Rd) ≤ Ct,2‖Ltf‖osc(Rd)+C||f ||L1
2(R

d) ≤ [Ct,2+C] ‖f‖L1
2(R

d) ,

where C = 2ĈC̃||ψ′||L∞(Rd).We then put C@ := Ct,2+C and we continue
as

‖Lmt,nf‖osc(Rd) = ‖Lt,nL
m−1
t,n f‖osc(Rd) = ‖eis1BnLt(L

m−1
t,n f)‖osc(Rd) ≤

C@‖Lmt,nf‖L1
2(R

d) ≤ C@‖Lm−1
t |f |‖L1

2
.

We therefore bound the right hand side of the previous inequality with
lemma 17 and this will finally give us the Lasota-Yorke inequality, since
‖Lmt,nf‖L1(Rd) ≤ ‖f‖L1(Rd).

• (R2’) We have to bound the quantity ||Lt,n−Lt||BV2→L1 ≤ πn, where the
quantity πn was defined at item R2 in section 4.0.1.

We have for f ∈ BV2 and using Lemma 18:

9if u, v ∈ BV2 and B a measurable set, then osc(uv, B) ≤ osc(u,B)esssupBv +
osc(v, B)essinfB |u|.
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||(Lt,n − Lt)(f)||L1 =

∫

Bn

|eis − 1||Ltf |dx ≤ 2Leb(Bn)‖Ltf‖C1(Rd) ≤

2Leb(Bn)Ct‖f‖L1(Rd) ≤ 2Leb(Bn)Ct‖f‖BV2 ,

with πn = 2Leb(Bn)Ct.

• (R3’) The closeness of the two operators is also quantified by

∆n =

∫

(Lt − Lt,n)f0dx = (1 − eis)µ(Bn).

We have now to show that

πn‖(Lt,n − Lt)(f0)‖BV2 ≤ constant |∆n|.

Since the density f0 is locally bounded away from zero, see Lemma 27,
it will be enough to show that the quantity ‖(eis1Bn − 1)Lt(f0)‖BV2 is
bounded by a constant independent of n. This follows by exactly the same
arguments which allowed us to bound the BV2 norm of eis1BnLt in item
(R1’).

• (R4) The quantities qk
10. associated to this perturbation will therefore

have the form

qk = lim
n→∞

1

∆n

∫

(Lt − Lt,n)L
k
n(Lt − Lt,n)(f0)dx, (64)

provided the limits exists. We now show that all these quantities are zero,
just by repeating the proof of Proposition 28. Let us consider the function

gk,n :=
Lk

t,n(Lt−Lt,n)(f0)

(1−eis)µ(Bn)
. We have

qk = lim
n→∞

∫

(Lt − Lt,n)gk,ndx = lim
n→∞

∫

Bn

(1− eis)Ltgk,ndx ≤

lim
n→∞

|1− eis|Leb(Bn)‖Ltgk,n‖∞.

By using lemma 18, we have that ‖Ltgk,n‖∞ ≤ Ct‖gk,n‖L1(Rd), and it is
immediate to check that ‖gk,n‖L1(Rd) ≤ 1. In conclusion the limit defining
qk will tend to 0 when n→ ∞.

As in the proof of the Gumbel’s law, we need that, given the number τ, the
measure of the set Bn scales like nµ(Bn) → τ, n→ ∞.

Then we get for the top eigenvalue ιn of Lt,n, see Proposition 24

ιn = 1− (1−
∞
∑

k=0

qk)∆n + o(∆n) = 1− (1 − eis)µ(Bn) + o(µ(Bn)).

10We use the same symbol as for the qk introduced in item R4 in section 4.0.1
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Since the assumptions of section 4.0.1 are verified by Lt and by Lt,n thanks to
the sufficient conditions quoted in section 4.1, we could repeat the steps from
eq. (53) to (56) showing that the leading term in the growing of Ψn(s) is just
given by the n-th power of ιn. Therefore

lim
n→∞

Φn(s) = lim
n→∞

∫

eisSndPdµ = lim
n→∞

ιnn = e−(1−eis)τ := Φ(s).

Notice that this is just the pointwise limit of the characteristic function of
the random variable

Sn,τ :=

⌊ τ
µ(Bn)

⌋
∑

i=0

1Bn
(Xx

ih).

Since Φ(s) is continuous in s = 0, it is the characteristic function of a random
variableW to which Sn,τ converges in distribution. But such a limiting variable
W has the Poisson distribution

νW ({k}) =
e−ττk

k!
.
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[20] Françoise Pène, Benôıt Saussol, and Roland Zweimüller. “RECURRENCE
RATES AND HITTING-TIME DISTRIBUTIONS FORRANDOMWALKS
ON THE LINE”. In: The Annals of Probability 41.2 (2013), pp. 619–635.
url: http://www.jstor.org/stable/23469427 (visited on 06/14/2023).

[21] X. Zhang S. Menozzi A. Pesce. “Density and gradient estimates for non
degenerate Brownian SDEs with unbounded measurable drift”. In: J. Diff.
Eq. 272 (2021), pp. 330–369.

[22] B. Saussol. “Absolutely continuous invariant measures for multidimen-
sional expanding maps. Etude statistique de systèmes dynamiques dila-
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