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Abstract

We investigate and prove the mathematical properties of a general class of one-dimensional
unimodal smooth maps perturbed with a heteroscedastic noise. Specifically, we investigate the
stability of the associated Markov chain, show the weak convergence of the unique stationary
measure to the invariant measure of the map, and show that the average Lyapunov exponent
depends continuously on the Markov chain parameters. Representing the Markov chain in terms
of random transformation enables us to state and prove the Central Limit Theorem, the large
deviation principle, and the Berry-Esséen inequality. We perform a multifractal analysis for the
invariant and the stationary measures, and we prove Gumbel’s law for the Markov chain with an
extreme index equal to 1. In addition, we present an example linked to the financial concept of
systemic risk and leverage cycle, and we use the model to investigate the finite sample properties
of our asymptotic results
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1 Introduction

In this paper, we investigate and prove some mathematical properties – detailed below – for the
following discrete time dynamical system:

ϕt = T (ϕt−1) + σn(ϕt−1)Yt−1. (1)

Here ϕt, t ∈ N≥1, is a sequence of real numbers in a bounded interval of R, T is a deterministic map on
[0, 1] perturbed with the additive and heteroscedastic1 noise σn(ϕt−1)Yt−1, being n ∈ N≥1 a parameter
that modulates the intensity of the noise; n is such that one retrieves the deterministic dynamic as
n → ∞. Finally, Yt, t ∈ N≥1, is a sequence of independent and identically distributed (i.i.d.) real-
valued random variables defined on some filtered probability space (Ω,F , (Ft)t≥0,P) satisfying to the
usual conditions. The precise assumptions on T , σn, and Yt, t ∈ N>0, will be given in Section 2. The
peculiarity of the model in Equation (1) is that the law of the random perturbation, particularly its
variance, depends on the position ϕt−1 of the point, and therefore of its iterates by the dynamics. The
model in (1) can be used to describe situations where a slow deterministic dynamics interacts with a
fast random one, and more generally when the two systems interact with a separation of time scale.
For this reason, in the present paper, we put it in a very general setting. In Section 7, we will present
an example taken from a specific financial problem whose dynamics can be brought back to (1).

To study the mathematical properties of (1), we describe the dynamics of ϕt, t ∈ N≥1, utilizing a
Markov chain parametrized by n; we will study the regime of finite n and the limit for n→ ∞. As far
as we know, the Markov chains with the kind of heteroscedastic noise we introduce are new (see [17]
for another type of heteroscedastic nonlinear auto-regressive process applied to financial time series).
In particular, in the first part of the paper, we prove the following results. First, we investigate the
stability of the Markov chain. It turns out that some specific properties of the stochastic kernel that
defines our model do not allow us to apply general results available in the literature, as e.g., [3] and
[34]. For instance, we do not know if our chain is Harris recurrent. We look, instead, at the spectral
properties of the Markov operator associated with the chain on suitable Banach spaces and prove the
quasi-compactness of such an operator. This result allows us to get finitely many stationary measures
with bounded variation densities. The uniqueness of the stationary measure is achieved when the

1A sequence of random variables is heteroscedastic if the variance is not constant.
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chain perturbs the map T , which is either topologically transitive on a compact subset of [0, 1] or an
attracting periodic orbit. Second, we show the weak convergence of the unique stationary measure
to the invariant measure of the map. This step is not trivial because the stochastic kernel becomes
singular in the limit of large n. Third, we introduce the average Lyapunov exponent by integrating
the logarithm of the derivative of the map T with respect to the stationary measure and show that
the average Lyapunov exponent depends continuously on the Markov chain parameters. The previous
result hinges on the explicit construction of a sequence of random transformations close to T , which
allows us to replace the deterministic orbit of T with a random orbit given by the concatenation of
the maps randomly chosen in the sequence. Notice that this construction is formally possible under
general assumptions, but getting “representations by special classes of transformations” is challenging,
as Y. Kifer pointed out in [28]. We believe this inference from the Markov chain to the random
transformations is interesting and illustrates very well how the Markov chain randomly moves the
states of the system. Representing the Markov chain in terms of random transformation enables us to
state and prove some important limit theorems, such as the Central Limit Theorem, the large deviation
principle, and the Berry-Esséen inequality. Fourth, for the class of unimodal maps T of the chaotic
type, we perform a multifractal analysis for the invariant and the stationary measures. Finally, we
develop an Extreme Value Theory (EVT, henceforth) for our Markov chain with finite values for the
parameter n. In particular, we prove Gumbel’s law for the Markov chain with an extreme index equal
to 1. Notice that an EVT for Markov chains with the spectral techniques we will use is, as far as we
know, a new result.

In the second part of the paper, we present an example linked to the financial concept of systemic
risk to which our theory applies. In this setting, ϕt in (1) represents the suitably scaled financial
leverage of a representative investor (a bank) that invests in a risky asset. At each point in time,
the scaling is a linear function of the leverage itself. The bank’s risk management consists of two
components. First, the bank uses past market data to estimate the future volatility (the risk) of its
investment in the risky asset. Second, the bank uses the estimated volatility to set its desired leverage.
However, the bank is allowed maximum leverage, which is a function of its perceived risk because of
the Value-at-Risk (VaR) capital requirement policy. More specifically, the representative bank updates
its expectation of risk at time intervals of unitary length, say (t, t+ 1] with t ∈ N≥1, and, accordingly,
it makes new decisions about the leverage. Moreover, the model assumes that over the unitary time
interval (t, t+1] the representative bank re-balances its portfolio to target the leverage without changing
the risk expectations. The re-balancing takes place in n sub-intervals within (t, t + 1]. In particular,
the considered model is a discrete-time slow-fast dynamical system; see [14] and [8]. After showing
that the dynamics of the scaled leverage follows – under suitable approximations – a deterministic
unimodal map on [0, 1] perturbed with additive and heteroscedastic noise of the type of Equation
(1), we perform a detailed numerical analysis in support of our theory. The numerical analysis also
investigates the finite-size validity of some of our asymptotic results. In addition, we provide a financial
discussion of the results. Notice that the example presented is a non-trivial extension of the models in
[11], [30] and [32], where the scaling of the leverage is constant. In particular, in [30], the authors were
also able to show that the constant-scaled leverage follows a (different) deterministic unimodal map
with heteroscedastic noise. Also, they were able to prove the existence of a unique stationary density
with bounded variation, the stochastic stability of the process, and the almost certain existence and
continuity of the Lyapunov exponent for the stationary measure. In the present paper, we prove and
extend the previous results but for a more general class of maps, and, as said, we generalize the model
in [30].

Organization of the paper. Section 2 presents and discuss the working assumptions of the dynamics
in (1). Section 3 details the construction of the Markov chain. Section 4 represents our model regarding
random transformations. In Section 5, we investigate the mathematical properties of our model. An
EVT theory for the Markov chain in 3 is provided in Section 6. In Section 7, we present the financial
model of a representative bank managing its leverage. We show that the model leads to a slow-fast
deterministic random dynamical system which can be recast into a unimodal deterministic map with
heteroscedastic noise of the type of Equation (1). We present and discuss some numerical investigation
of this system in connection with our theory.
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2 Assumptions

In this section, we define and discuss assumptions on T , σn and Yt, t ∈ N≥1, as in Equation (1).

(A1) The map T satisfies the following assumptions:

(a) T is a continuous map of the unit interval I
def
= [0, 1] with a unique maximum at the point

c such that ∆
def
= T (c) < 1.

(b) There exists a closed interval [d1, d2] ⊂ I which is forward invariant for the map and upon
which T and all its power T t, t ∈ N≥1 are topologically transitive2

(c) T preserves a unique Borel probability measure η, which is absolute continuous with respect
to the Lebesgue measure.

Notice that Assumption (A1)–(b) is necessary in order to prove the mathematical properties in Section
5; in general, one could ask for several transitive component but this would be an additional technicality
that would not add to the present work’s conceptual advancements. Assumption (A1)-(c) is used only
in the proof of the stochastic stability; see Subsection 5.1. We give now the following important

Example 2.1. An important class of maps susceptible to verify (A1) is given by the class of unimodal
maps T ([45] and [33]) with negative Schwarzian derivative3; notice that in this case, one has to
require that the maps are at least C3 on the interval I. Moreover, if T verifies T (∆) < c < ∆, then
the interval [T (∆),∆], called dynamical core, is mapped onto itself and absorbs all initial conditions;
in particular [d1, d2] in (A1)-(b) coincides with the dynamical core. The latter could exhibit motions
other than simply attracting fixed points or 2-cycles. In the general class of unimodal maps T with
negative Schwarzian derivative, one can distinguish two types:

(i) T is periodic if there is a globally attracting fixed point or a globally attracting cycle.

(ii) T is chaotic if (A1)-(b) and (A1)-(c) hold.

Perturbations of unimodal maps with uniform additive noise were studied in [4] and [6]. As we al-
ready mentioned in the Introduction, [30], instead, studies the perturbations of unimodal maps with
heteroscedastic noise.

Before presenting the assumptions on σn, we need to introduce the following quantities to which
in the following we will refer:

Γ
def
= 1−∆, (2)

i.e., the gap between T (c) and 1. A positive constant a satisfying one of the following two bounds:

a ≤ 1

σmax

Γ

2
, (3)

or

a ≤ 1

σmax
min

{
Γ

2
,
q

2
,
1

2
T

(
1− Γ

2

)}
, (4)

where σmax
def
= maxx∈I σn(x), and the positive constant q is the eventual intercept of the map T at

zero (see Assumption (B1.2)).

(B1) The function σn is a non-negative differentiable function for x ∈ (0, 1) such that ∀x σn(x) → 0
as n→ ∞.

2A map T on a topological space X is called topologically transitive if for all nonempty open sets U, V ⊂ X there
exists t such that T−t ∩ V ̸= ∅. Notice that the topological transitivity of T t, t ∈ N≥1 will be substantially used in
Subsection 5.2, 5.3, and 7.3.

3The Schwarzian derivative S(T ) of the map T is defined as S(T ) := T
′′′

T
′ − 3

2

(
T

′′′

T
′

)2

.
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We distinguish the following two sub-cases of (B1):

(B1.1) T (0) = 0, and so σn(0) = 0. In this case, we assume that for any fixed n ∈ N>0 there exists
εn ∈ R such that:

• T (x)− aσn(x) > 0 for x ∈ (0, 1− Γ/2].

• T (x)− aσn(x) > x for x ∈ (0, εn) (in particular, T
′
(0) > 0).

• T (x)− aσn(x) > εn for x ∈ (εn, 1− Γ/2).

Γ is defined in (2), and a satisfies (3).

(B1.2) T (0) = q > 0. In this case, the positive multiplicative constant in (B1.1) satisfies (4).

Assumptions (B1.1)-(B1.2) will allow us to define the transition probabilities for constructing our
Markov chain. Indeed, the probability density pn(x, ·) defining those probabilities will be supported
on [sa,−(x), sa,+(x)] with sa,±(x) = T (x) ± aσn(x); see Section 3. Moreover, (B1.1) requires T to be
C1.

Finally, we have that

(C1) Yt, t ∈ N≥1 is a sequence of i.i.d real-valued random variables defined on some filtered proba-
bility space (Ω,F , (Ft)t≥0,P) satisfying to the usual conditions. Their distribution function ga,

depending on the parameter a in (B1), is such that ∀ω ∈ Ω and x ∈ Ĩ, with Ĩ ⊃ I, we have
T (x)+σn(x)Y1 ∈ Ĩ. The interval Ĩ is slightly larger than I and will be precisely determined later.
Accordingly, the map T will be extended on Ĩ. The distribution function ga has the following
form:

ga(y)
def
= caχa(y)e

− y2

2 , y ∈ R, (5)

where χ is a C∞ bump function on [−a, a] and

ca =

(∫
R
χa(y)e

− ε2

2 dy

)−1

.

Assumption (C1) has two main objectives. On the one hand, the perturbation should not be too strong
so that T admits an extension to some compact interval Ĩ ⊃ I. On the other hand, the stochastic kernel
associated with our Markov chain must be uniformly bounded on some interval to prove the Markov
operator’s quasi-compactness. As the introduction states, the Markov operator’s quasi-compactness
will provide stationary measures for the chain.

From now on, we will denote by

Sn
def
= (T, σn, Y ) (6)

the triple composed by a map T satisfying ((A1)), perturbed with an additive heteroscedastic noise in
which the variance-like function σn and the noise verifies ((B1)) and ((C1)), respectively.

Under (A1), (B1), and (C1), we define the following stochastic process:

F
(n)
t (x) = T (x) + σn(x)Yt, t ∈ N≥1, x ∈ Ĩ . (7)

In addition, the random orbit associated with our initial difference equation is given by:

F
t,(n)
Y (x) = F

(n)
t ◦ F (n)

t−1 ◦ . . . ◦ F
(n)
1 (x), x ∈ Ĩ . (8)

Before proceeding, the following observation is in order. In Sections 3, we will see that several
results valid under Assumption (A1) could also be extended for the class of maps in Example 2.1 that
are periodic. This will be in particular relevant for the leading example in Section 7. The validity
of (A1) is much easier to verify for uniformly or even piecewise continuous maps. In principle, one
could also consider multimodal maps as having several critical points. However, in the latter case, one
has to handle the construction of the stationary measure as outlined in Section 5. Notice that such a
construction is also based on Assumption (B1) and (C1).
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3 Markov chain

In this section, we define a Markov chain that describes our model. We obtain it as a deterministic
map T satisfying Assumption (A1) perturbed with an additive noise as in Assumptions (B1)-(C1). In
particular, for fixed T we parametrize the chain by the intensity of the noise n, consequently indexing

with n the chain (X
(n)
t ), the transition probabilities P

(n)
x , and the stochastic kernel pn(x, y). According

to the theory of random transformations, a Markov chain can be constructed as follows; see, e.g., [28].
Take an initial point x ∈ I 4 and define the following stochastic process for any t ∈ N≥1:

X
(n)
t+1 = F

(n)
t+1(X

n

t ). (9)

Then, for x ∈ I the transition probabilities are defined as:

P (n)
x (A) = P(X(n)

t+1 ∈ A|X(n)
t = x) = P(Fnt+1(x) ∈ A) = P(F (n)

1 ∈ A), (10)

because all the F
(n)
t , t ∈ N≥1, have the same distribution. By Assumption (C1), and ∀x : σn(x) > 0,

we have:

P (n)
x (A) =

∫
R
1A(F1(x))ga(y) dy =

∫
R
1A(T (x) + σn(x)y)ga(y) dy

=

∫
R
1A(z)

1

σn(x)
ga

(
z − T (x)

σn(x)

)
dz

def
=

∫
A

pn(x, z) dz,

(11)

where pn(x, y) is the stochastic kernel and in the third equality, we use the following change of variable:
z = T (x) + σn(x)y. Instead, if for some x we have σn(x) = 0, the transition probability verifies
Px(A) = 1A(T (x)) (meaning Px = δT (x), where δT (x) is the Dirac mass at x). So, the stochastic kernel
is

pn(x, y) =
1

σn(x)
ga

(
z − T (x)

σn(x)

)
=

1

σn(x)
χa

(
z − T (x)

σn(x)

)
e
− (z−T (x))2

σ2
n
(x) , (12)

with
∫
pn(x, y) dy = 1 for every x ∈ I, σn(x) > 0. Therefore, z ∈ [sa,−, sa,+] with sa,± = T (x)±aσn(x).

Since the noise varies in a neighborhood of 0, we need to enlarge the domain of definition of the
map T to take into account the action of the noise. More precisely, we extend the domain of T to the

larger interval Ĩ
def
= [−Γ, 1]. On the interval [−Γ, 0], T is extended continuously and decreasing with

T (−Γ) < ∆ and with the same slope of T restricted to the interval [0, εn], where εn is given in (B1.1).
With abuse of language and notation, we will continue to call T the map after its redefinition, and we
put I = Ĩ. We have the following remark.

Remark 3.1. [6] consider a similar extension to allow perturbations with additive noise; in particular,
it was supposed that T admits an extension to some compact interval J ⊃ I, preserving all the previous
properties and satisfying T (∂J) ⊂ ∂J . Notice that, in our case and with these extensions, the map
T could lose smoothness in 0. However, this regularity persists on the interval (0, 1), and this will be
enough for the subsequent considerations, particularly for the construction of the stationary measure
whose support will be strictly included in (0, 1).

We look at the Markov operator corresponding to the transition probabilities. To this aim, we
denote by M the space of (real-valued) Radon measure on Ĩ, and by L : M → M the Markov
operator acting by

Lρ(A) =
∫
R
P (n)
x (A) dρ(x), ρ ∈ M,

for every Borel set A ∈ I, or, equivalently,∫
R
φdLρ =

∫
R

∫
R
φ(y)dP (n)

x (y)dρ(x)

4One could also consider the initial point as a random variable X0 independent of the Yt; in this case, the measurable
and bounded initial distribution is ρ0(A) = P(X0 ∈ A).
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for all φ ∈ C0, where C0 denotes the Banach space of continuous function on I with the sup norm. In
our case σn(x̃) = 0 in at most two points, x̃ = 0, 1. Therefore in such a case we could write∫

φdLρ =

∫∫
R×{{0}∪{1}}

φ(y)dPx(y)dρ(x) +

∫∫
R×{R/{0}∪{1}}

φ(y)dPx(y)dρ(x) =

[ϕ(T (0))ρ({0}) + ϕ(T (1))ρ({1}]) +
∫∫

R×{R/{0}∪{1}}
φ(y)pn(x, y)dydρ(x).

We note that L : L1 → L1 is an isometry, where L1 is intended, from now on, with respect to
the Lebesgue measure. In Subsection 5.1, we will be interested in stationary measures ρ, which are
absolutely continuous with respect to the Lebesgue measure and, therefore, non-atomic. If we denote
by h ∈ L1 the density of such a measure, it will be a fixed point of the operator L : L1 → L1, i.e.,

(Lh)(y) =
∫
R
pn(x, y)h(x) dx, h ∈ L1, (13)

where pn is the stochastic kernel in formula (12). In particular, it should satisfy

h(z) =

∫
R
pn(x, z)h(x) dx. (14)

We will return to the previous formula in Section 5. Now, in the next section, we present a slightly
different, yet equivalent (see, e.g., [28]), approach for representing the model in Equation (1), namely
the random transformation approach.

4 Random transformations

We consider the following identity:

Tη(x) = T (x) + σn(x)η, η ∈ [−a, a]. (15)

Assumption (C1) implies that Tη can be seen as a family of random maps of I into itself. Let

θ(η)
def
= ga(η) dη be the probability measure of η with density ga. Now, let ρ ∈ M (see Section 3 for

the definition of M) a measure with density h ∈ L1. By requiring its invariance, we have that:

Lρ(A) = ρ(A) =

∫
R
P (n)
x (A) dρ(A).

In addition, by using the definition of ρ(A), we have

ρ(A) =

∫
R
1A(x)h(x) dx =

∫
R

∫
R
1A(Tη(x))h(x) dx dθ(η)

=

∫
R
dθ(η)

∫
R
1A(Tη(x))h(x) dx =

∫
R
dθ(η)

∫
R
1A(x)Lηh(x) dx,

where Lη : L1 → L1 is the Perron-Fröbenius operator associated to the map Tη
5. By changing the

order of integration again, we finally get that the Markov operator in Equation (13) satisfies for any
h ∈ L1 the following identity

(Lh)(x) =
∫
(Lηh)(x) dθ(η). (16)

We now present a correlation integral that we will use to derive some statistical properties of our
model. In order to do this, let (ηt)t≥1 be an i.i.d. stochastic process where each ηt has distribution

θ, η̄t
def
= (η1, . . . , ηt), and θt(η̄t)

def
= θ(η1) × . . . × θ(ηt) the product measure. We call the following

5The Perron-Fröbenius operator associated to the map Tη is defined by the duality relationship
∫
R Lηh g dx =

∫
R hg ◦

Tη(x) dx, where h ∈ L1 and g ∈ L∞.

7



concatenation, or composition, of randomly chosen maps Tηt ◦ . . . ◦ Tη1 , where (ηs)
t
s=1 are i.i.d. with

distribution θ, as random transformation. In particular, the above-mentioned correlation integral reads
as ∫

R
(Lth)(x)g(x) dx =

∫
R

∫
R
h(x)g(Tη1 ◦ . . . ◦ Tηt)(x)dθ

t(η̄t) dx, (17)

where h ∈ L1 and g ∈ L∞. Notice that in [30], authors use the Lebesgue measure instead of the
probability measure θ. By using the latter, we do not need to modify the map T as in the Lebesgue
measure case.

5 Mathematical properties of the model

In this section, we investigate some mathematical properties of our model. In Subsection 5.1, we
show the existence and uniqueness of an absolutely continuous stationary measure and establish its
convergence to the invariant measure of the deterministic map. This result allows us to define the
Lyapunov exponent and prove its continuity with respect to the model parameters. We also discuss
some limit theorems in Subsection 5.3. Finally, Subsection 7.3 concerns a multi-fractal analysis of our
model.

5.1 Stationary Measure and Stochastic Stability

In this subsection, we establish the existence of a unique stationary measure for the Markov chain
associated with our model.

In Section 3, we extended the domain of definition of the map T to the set Ĩ = [−Γ, 1]. In particular,
if the constant a satisfies the bound in Equation (4), then the support of the stationary measure µn,
say supp(µn) ⊂ IΓ, where

IΓ
def
=

[
1

2
T

(
1− Γ

2

)
, 1− Γ

2

]
. (18)

Indeed, on the one hand, if we take a point z ∈
(
1− Γ

2 , 1
]
, then it will be surely greater than T (x)±

aσn(x), x ∈ I. In order to understand the left-hand side of the interval in Equation (18), suppose first
that T (0) = q > T

(
1− Γ

2

)
. If z ∈ supp(h), being h the density of µn, then T (x) ∈ [s̃a,−, s̃a,+] with

s̃a,± = z± aσn(x), where x ∈ supp(µn) too. If z is in a neighborhood of 0, then the values of x, which
could contribute in T (x) are smaller than

(
1− Γ

2

)
by choice of a. So, if we take z < 1

2T
(
1− Γ

2

)
and

we require that aσn(x) <
1
2T
(
1− Γ

2

)
, then z /∈ supp(h).

If, instead, the constant a satisfies Equation (3), then the interval Iεn,Γ
def
=
[
εn, 1− Γ

2

]
is invariant

for Tη, ∀η ∈ [−a, a] (see Equation (15)). In particular, if x ∈ Icεn,Γ, where I
c
εn,Γ

is the complementary
set of Iεn,Γ, then x will spend finitely many times in Icεn,Γ; note that x = 0 is a fixed point. In

particular, the chain X
(n)
t visits finitely many times any open set K in Icεn,Γ. Therefore, the chain is

not recurrent and µn(K) = 0.
The above considerations implies that the subspace {h ∈ L1 : supp(h) ⊂ IΓ} (resp. {h ∈ L1 :

supp(h) ⊂ Iεn,Γ}) is L-invariant, and that the stochastic kernel pn(x, z) has total variation of order
1

σn(x)
. Therefore, it is uniformly bounded6 when restricted to IΓ×IΓ (resp. Iεn,Γ×Iεn,Γ). In particular,

we can apply Proposition 4.2 and Theorem 4.3 in [30] to conclude that the following proposition hold.

Proposition 5.1. The random system in Equation (6) admits a unique stationary measure µn with
density hn of bounded variation and such that [d1, d2] ⊂ supp(hn). Moreover, for any observable
f ∈ L1, g ∈ BV , there exists 0 < r < 1 and C > 0, depending only on the system, such that, for all
t ∈ N≥0, we have ∣∣∣ ∫

R

∫
R
(Ltf)(x)g(x) dx−

∫
R
f dµn

∫
R
g(x) dx

∣∣∣ ≤ Crt∥f∥1∥g∥BV .

6In general, we say that a stochastic kernel p(x, y) has uniformly bounded variation if |p(x, ·)|TV ∈ L∞, i.e., there is
C > 0 such that |p(x, ·)|TV ≤ C for almost every x ∈ I.
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Proof. Let BV the Banach space of bounded variation functions on IΓ (or IΓ,εn) equipped with the
complete norm

∥f∥BV = |f |TV + ∥f∥1,
where |f |TV is the total variation of the function f ∈ L1. Because the stochastic kernel has uniformly
bounded variation on IΓ × IΓ (or on IΓ,εn × IΓ,εn), we have

∥Lρ∥TV ≤ C∥ρ∥1 and ∥Lρ∥BV ≤ (C + 1)∥ρ∥1;

see Lemma 4.1 in [30]. By the previous equation, we have

∥Lρ∥BV ≤ (C + 1)∥ρ∥1 ≤ η∥ρ∥BV + (C + 1)∥ρ∥1

for any η < 1; this is the Lasota-Yorke inequality for the operator L. The latter, plus the fact that BV
is compactly embedded in L1, implies that the operator L has the following spectral decomposition

L =
∑
i

viΠi +Q,

where all vi are eigenvalues of L of modulus 1, Πi are finite-rank projectors onto the associated
eigenspaces, Q is a bounded operator with a spectral radius strictly less than one. They satisfy the
following properties:

ΠiΠj = δijΠi, QΠi = ΠiQ = 0.

Standard techniques show that 1 is an eigenvalue and therefore the chain will admit finitely many
absolutely continuous ergodic stationary measures, with supports that are mutually disjoint up to
sets of zero Lebesgue measure. Moreover the peripheral spectrum is completely cyclic. We require
that 1 is a simple eingenvalue of L, and that there is no other peripheral eigenvalue, hence implying
that our Markov chain is mixing and therefore the norm of ∥Ltf∥BV goes exponentially fast to zero
when t → ∞, for f ∈ BV and

∫
R f dx = 0 (exponential decay of correlations). These properties,

which are consequences of the Ionescu-Tulcea-Marinescu theorem, are summarized by saying that the
operator L acting on BV is quasi-compact, see, e.g., [21]; we will implicitly assume in the following
that the operator has the mixing property too. In order to prove that 1 is a simple eigenvalue of
L, and that there is no other peripheral eigenvalue we first observe that the peripheral spectrum
of L consists of a finite union of finite cyclic groups; then there exists t ∈ N≥1 such that 1 is the
unique peripheral eigenvalue of Lt. It suffices then to show that the corresponding eigenspace is one-
dimensional. Standard arguments show there exists a basis of positive eigenvectors for this subspace,
with disjoint supports. At this point we use a simple generalization of Theorem 4.3 in [30] for the
powers of Ln plus the assumption on the topological transitivity of Tn, n ≥ 1 on [d1, d2] to get that
the basis is one dimensional.

We investigate now the stochastic stability of the system, which means to determine if a sequence
of stationary measure will converge weakly7 to the invariant measure of the unperturbed map. In our

case, the sequence of probability measure is given by µn
def
= hn dx. Notice that hn ∈ L∞, ∀n because

they have finite total variation. Nonetheless, to prove the above-mentioned stochastic stability, we
need the following assumption

(Ap) There exists p > 1 and Cp > 0 such that for all n ≥ 1 we have ∥hn∥p ≤ Cp; the L
p norm is taken

again with respect to Lebesgue.

We have the following

Proposition 5.2. For the random system in Equation (6), under Assumption (Ap), the sequence of
stationary measure µn converges weakly to the unique T invariant probability µ as n → ∞, in the
sense that for any real-valued function g ∈ C0(I), we have∫

R
gdµn →

∫
R
gdµ, as n→ ∞.

7Notice that this result could be strengthened by showing that ∥hn − h∥1 → 0, which is called the strong stochastic
stability.
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Proof. See Theorem 5.3 in [30].

We will see in the next section that with the preceding assumption we can prove the convergence
of the Lyapunov exponent (Proposition 5.5) and then verify it numerically on the examples in Section
7, which is an indirect indication of the validity of (Ap).

We conclude this section with the following observations.

Observation 5.3. Proposition 5.2 is proved by using the representation of the Markov chain in terms
of random transformation; in particular, one uses the correlation integral in Equation (17) and the
continuity of the map η → Fη ∈ C0(I).

Observation 5.4. Proposition 5.2 can be extended to periodic unimodal maps under the following
additional assumption:

(Ap.1) ∀n sufficiently large and ∀x ∈ supp(µn) we have that |T ′
(x)| < 1.

In particular, if T has a globally attracting periodic orbit carrying the discrete measure µ and satisfies
(Ap.1), then the sequence µn converges to µ in the weak-⋆topology as n → ∞. This requirement can
be strengthened by adding the following assumption

(Ap.2) If T is a unimodal periodic map (see Example 2.1) and the critical point of the map c does not
belong to the attracting periodic orbit, then hn → 0 uniformly in a neighbourhood of c as n→ ∞.

5.2 Lyapunov Exponent

As done in Subsection 4.3 of [30], we define the so-called average Lyapunov exponent ; see [16, 37]. If
the chain admits a unique stationary measure µn, then the average Lyapunov exponent is defined as:

Λ(µn) :=

∫
I

log |T
′
(x)|dµn. (19)

In particular, because the stationary measure µn has density of bounded variation, it is enough that
log |T ′ | ∈ Lp(µn) for some p ≥ 1. For instance, this is the case when T is chaotic or periodic unimodal
map (see Example 2.1) with a non-flat critical point8.

The average Lyapunov exponent in Equation (19) is introduced to prove that it converges to the
analogous quantity computed with respect to the invariant measure µ of T . The following proposition
holds.

Proposition 5.5. Suppose that one of the following conditions is satisfied:

(a) The random system in Equation (6) verifies (Ap) with the additional assumption that log |T ′ | ∈
Lp(µn) for some p ≥ 1, where µn is the unique stationary measure of the associated Markov
chain.

(b) The deterministic map T is a unimodal periodic map (see Example 2.1) and verifies Assumptions
(Ap.1) and (Ap.2).

Then, the average Lyapunov exponent in Equation (19) converges to the Lyapunov exponent of the
deterministic map T as n → ∞. Moreover, for n large enough, it is positive if T verifies (A1), and
negative if T is a periodic unimodal map (see Example 2.1, (i)).

Proof. See [30], Appendix B, Subsection B.5.

8A unimodal map T is said to have a non-flat critical point c of order ℓ if there is a constantD such thatD−1|x−c|ℓ−1 ≤
|T ′

(x)| ≤ D|x− c|ℓ−1. In this case, [38] prove that the invariant density for T is in Lq with q < ℓ
ℓ−1

.
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The average Lyapunov exponent was associated with the phenomenon of noise induced order [43],
which happens when the perturbed system admits a unique stationary measure depending on some
parameter, say θ, and the Lyapunov exponent depends and exhibits a transition from positive to

negative values. Denote by Θ
def
= {θ ∈ Θ̃ | Θ̃ is open and maxTθ < 1} the (extended) parameter space

of the map T . We use the term “extended” because also the parameter n belongs to Θ. Moreover,
let index the map T as Tθ to make explicit the dependence on the parameters. Suppose that Tθ(x) ∈
C3(Θ̃× I) and pθ(x, y) ∈ C2(Θ̃× I2), and let Θ̄ ⊂ Θ̃ be the set of parameters for which there exists a
unique stationary measure µn with a density of bounded variation. We can now state the following

Theorem 5.6. The mapping Θ̄ ∋ θ 7→ Λθ ∈ R is continuous.

Proof. See [30], Theorem 4.12.

5.3 Limit theorems

We will take advantage of the Markov chain description of our model to state a few important limit
theorems for fixed n. These limit theorems are relatively easy to obtain for a fixed n, but they could
become very technical for the unperturbed map T because they depend in a non-obvious way on the
parameters defining T ; see, e.g., [48, 45] for a discussion in the case of unimodal maps.

As observed above, if T satisfies Assumption (A1), then the Markov operator L associated with the
Markov chain is quasi-compact on the Banach space BV of bounded variation functions. The adjoint
operator U of L acts in the following way∫

R
f1(x)(Lf2)(x) dx =

∫
R
(Uf1)(x)f2(x) dx,

where f1 ∈ L∞ and f2 ∈ L1. In particular

(Uf1)(x) =
∫
R
f1(Tη(x))dθ(η),

where θ(η) is as in Section 4. In particular, we can write the correlation integral in Equation (17) in
terms of the adjoint operator:∫

R
(Lth)(x)g(x) dx =

∫
R

∫
R
h(x)g(Tη1 ◦ . . . ◦ Tηt)(x)dθ

t(η̄t) dx =

∫
R
(U tg)(x)h(x) dx (20)

We take now a function g ∈ BV such that
∫
R gdµn = 0. In addition, letWk(η̄k, x) = g(Tηk

◦. . .◦Tη1
)(x),

where η̄k = (η1, . . . , ηk), and

St =

t−1∑
k=0

Wk. (21)

We now apply the Nagaeev-Guivarc’s perturbative approach [36, 18]. This technique enables us to get
our limit theorem by twisting the transfer operator L; see [21]. Before stating the results, we precise

that the underlying probability is P̃n
def
= θ⊗N ⊗ µn. If we use this probability, then we should choose

a realization (ηt)t≥1 where any ηt
d∼ η, and the initial condition x ∈ I is chosen µn-a.s. The following

theorem holds:

Theorem 5.7. Suppose the deterministic map T satisfies Assumption (A1) and g ∈ BV . In addition,
let Tη be the random transformation in Equation (15). Then, we have:

(e1) The limit ι2
def
= limt→∞

1
tEP̃n(S

2
t ) exists and is equal to

ι2 =

∫
I

g2 dµn + 2

∞∑
t=1

g(U tg) dµn. (22)
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(e2) (Central Limit Theorem). Suppose ι > 0. The process
(

St√
t

)
t≥1

converges in law to N (0, ι2)

under the probability P̃n.

(e3) (Large Deviation Principle). There exists a non-negative rate function R, continuous, strictly
convex, vanishing only at 0, such that for every ε sufficiently small we have

lim
t→∞

1

t
log P̃n(St > tε) = −R(ε).

(e4) (Berry-Essén inequality). There exists D > 0 such that

sup
r∈R

∣∣∣P̃n( St√
t
≤ r

)
− 1

ι
√
2π

∫ r

−∞
e−

u2

2ι2 du
∣∣∣ ≤ D∥hn∥BV√

t
(23)

Proof. See [2], Section 3.

We conclude this section with the following

Remark 5.8. The previous theorem hinges on the following exponential decay of correlations (see
Proposition 5.1), which is a consequence of the spectral gap prescribed by the Markov operator’s quasi-
compactness and the uniqueness and mixing property of the absolutely continuous stationary measure.
For any observables, f ∈ L1 and g ∈ BV , there exists 0 < v < 1 and C > 0, depending only on the
system, such that, for all k ≥ 0,∣∣∣ ∫

R

∫
R
f(x)g(Tηt

◦ . . . ◦ Tη1
)(x) dη̄ dx−

∫
R
f dµn

∫
R
g(x) dx

∣∣∣ ≤ Crt∥f∥1∥g∥BV .

5.4 A multifractal analysis

We now focus on unimodal maps T of chaotic type, as defined in the Example 2.1, and preserving a
unique absolute continuous invariant measure µ. The latter is not essentially bounded, but its density
is in Lp(µ), for some p ≥ 1. The presence of divergent values for the density could generate a non-
trivial multi-fractal spectrum for the measure µ.

We start with a few reminders about multi-fractal theory; see, e.g., [40, 23, 39, 24, 7]. Let µ be a
probability measure, and B(x, r) the ball of center and radius r on the interval I. We denote by

dµ(x)
def
= lim

r→0

logµ(B(x, r))

log r
,

the local dimension of the measure µ at the point x, provided that the limit exists. Then, the generalized
dimension Dq(µ), or simply Dq, where q ∈ Z is obtained as

τ(q)
def
= Dq(q − a) = inf

α
{qα− f(α)}, (24)

where f(α) denotes the Haursdorff dimension of the set of points for which dµ(x) = α. The previous
quantity, also called Legendre transformation, can be linked to the scaling exponent of a suitable
correlation integral. In fact, for several dynamical systems (M,µ, T ), where M is a metric space, we
have that the following limit

lim
r→0

1

log r
log

∫
M

µ(B(x, r))q−1 dµ (25)

exists and coincides with τ(q) in Equation (24). Notice that for q = 1, the limit in Equation (25) is
replaced by

lim
r→0

1

log r

∫
M

logµ(B(x, r)) dµ, (26)
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by an application of the Hôpital’s rule. For unimodal maps of Benedicks-Carleson type9 preserving
an absolute continuous invariant measure µ, it is possible to compute the spectrum of generalized
dimensions. Authors in [5] prove the remarkable result that the density h of µ has the form

h(x) = ψ0(x) +
∑
k≥1

ϕk(x)χk(x)√
|x− zk|

,

with ψ0 ∈ C1, ϕk ∈ C1 is such that ||ϕk||∞ ≤ e−ak for some a > 0 and χk = 1[−1,zk] if f
k has a

local maximum at z0, while χk = 1[zk,1] if f
k has a local minimum at z0. For such a measure, one can

explicitly compute the generalized dimensions via the definition in Equation (24) (see [9]):

Dq =

{
1 if q < 2,

q
2(q−1) otherwise.

(27)

We think that a similar result holds for the class of unimodal maps considered in Example 2.1.
We said similar and not the same result because the non-constant part of Dq depends on the order
of divergence at the singular points zk of the density, which for the Benedicks-Carleson type maps,
behaves like |x− zk|−1/2. The values of Dq are constant for negative q whenever the invariant density
h is bounded away from zero, see [9]; in this case it is also very ease to see that all the dimensions are
less or equal to 1.

Now, it becomes interesting to explore the spectrum of the generalized dimensions for randomly
perturbed orbits. We do not expect any multifractal structure for the stationary measure when its
density is essentially bounded, so Dq = 1, q ∈ R. Nevertheless the density could become locally
very large when n → ∞ making it numerically indistinguishable from the unbounded density of the
deterministic map on the orbit of the critical point. To study the dimensions for the stationary measure
it is convenient to adopt the point of view of random transformations (see Section 4), and consider a
realization Tηt ◦ . . . ◦ Tη1 of a random orbit producing the following empirical measure for a given n:

νn,t =
1

t

t∑
j=1

δη̃t
, (28)

where η̃t = Tηt−1
◦ . . . ◦ Tη1

(x) for a suitable point x (see below). Again, each ηk has distribution θ.
From the ergodic theorem for random transformations, it now follows that∫

R
gd νn,t =

1

t

t∑
j=1

g(η̃t) →
∫
R
g dµn as t→ ∞, (29)

where µn is the stationary measure, g ∈ L1(µn), and the point x is chosen µn-a.e., and the sequence
(ηt)t≥1 is chosen θ⊗N-a.e.. Since the support of µn contains the dynamical core, by taking an arbitrary
point x in such a core and by fixing a realization (ηt)t≥1, the generalized dimensions of the stationary
measure µn could be computed directly via the correlation integral formula (25)by using the empirical
measure (28) for large t; see, e.g., [9].

6 Extreme values distribution

In this subsection, we develop an EVT for the Markov chain defined in 3 for finite values for the

parameter n. In particular, we consider the chain (X
(n)
t )t≥1 with the stochastic kernel pn(x, y),

endowed with the canonical probability Pn having initial distribution µn = hn dx. We focus on the

9A unimodal map T is of Benedicks-Carleson type if it is defined on the interval [−1, 1], is C4 and has negative
Schwarzian derivative. In addition, if c = 0 is the critical point and zk = Tk(0), then: (i) T is a Collet-Eckmann

unimodal map verifying |(Tk)
′
(T (c))| > λk

c , with λc > 1 ∀k > H0, where H0 is a constant larger than 1; (ii) T verifies

the Benedicks-Carleson property: ∃0 < γ < log λc
14

such that |Tk(c)− c| > e−λk, ∀k > H0.
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derivation of the Gumbel law for a particular observable by deriving the distribution of the first
entrance of the chain in a small set, which we name rare set10. To this aim, we index with t the rare

set defined as a ball of center z ∈ I and with radius e−ut , Bt(z)
def
= B(z, e−ut), where ut is a sequence

called boundary levels such that ut → ∞ as t→ ∞, and verifying

tµn(B(z, e−ut)) → τ as t→ ∞, (30)

where τ ∈ R>0. Then, we consider the observable

φ(x)
def
= − log(dist(x, z)), (31)

where x ∈ I, and dist( · ) denotes the usual distance on R. Then, we define the following random
variable with values in I

M
(n)
t

def
= max{φ ◦X(n)

0 , . . . , φ ◦X(n)
t−1}. (32)

We will be interested in the distribution Pn(M (n)
t ≤ ut) as t→ ∞. In particular, by the stationarity of

the Markov chain, this distribution is equivalent to the probability that the first entrance of the chain
into the ball Bt(z) is larger than t.

Condition (30) enables us to get verifiable prescriptions on the sequence of boundary levels ut. If
the stationary measure µn is non-atomic, then the measure of a ball is a continuous function of the
radius. Therefore, for any given τ ∈ R+ and t ∈ N≥1, we can find ut such that µn(B(z, e−ut)) = τ

t .

Now, we denote by Bc
t (z) the complement of the ball Bt(z), and define the perturbed operator L̃(t)

for g ∈ BV as

L̃(t)g
def
= L(g1Bc

t (z)
). (33)

It is straightforward to check that

Pn(M (n)
t ≤ ut) = Pn(X(n)

0 ∈ Bc
t (z), . . . , X

(n)
t−1 ∈ Bc

t (z))

=

∫
Bc

t (z)

hn dx0

∫
Bc

t (z)

pn(x0, x1) dx1 . . .

∫
Bc

t (z)

pn(xt−1, xt) dxt

=

∫
R
(L̃(t)hn)(x) dx.

(34)

We now show that the operator L̃(t) approaches L in a precise sense that allows us to control the
asymptotic behavior of the integral in (34). This result allows us to control the asymptotic behavior
of the integral in (34). In order to make the argument rigorous, we need more assumptions on the
operator L, in addition to the quasi compactness. The same quasi compactness property is shared by
the operator L̃(t), provided that t is large enough, and provided that L̃(t) is close to L in the following
sense

∥(L − L̃(t))(g)∥1 ≤ c(t)∥g∥BV , (35)

where c(t) → ∞ as t→ ∞. Indeed, we have∫
R
|(L − L̃(t))(g)| dx =

∫
R
|L(g1Bt

)| dx ≤
∫
R
L(|g|1Bt

) dx ≤ ∥g∥BV Leb(Bt), (36)

because the space BV is continuously embedded into L∞ with constant equal to one. We can apply
the perturbation theorem of Keller-Liverani, which gives the asymptotic behavior of the top eigenvalue
of L̃(n) around one; see [27, 26]. In addition, see, e.g., [31], Chapter 7, for an application of that theory
to Markov chains. At this point, we need a further assumption:

(E1) The density hn of the stationary measure is bounded away from zero on the rare set Bt(z).

10See, e.g., the monograph [29] for a general presentation of EVT.
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Therefore, we can prove that

Pn(M (n)
t ≤ ut) → e−θτ , as t→ ∞,

where the so-called extremal index (EI) θ satisfies

θ = 1−
∞∑
k=0

qk, (37)

with qk = limt→∞ qk,t, provided that the limit exists, with:

qk,t =
Pn(X(n)

0 ∈ Bt(z), . . . , X
(n)
k ∈ Bt(z), X

(n)
k+1 ∈ Bt(z))

µn(Bt(z))
. (38)

Namely, qk,t is the probability of µn-distributed stationary chain to start in Bt(z) and then return to
it after exactly (k + 1) steps. It is now easy to show that all the qk,t vanishes in the limit as t → ∞
since we have

qk,t ≤
Pn(X(n)

0 ∈ Bt(z), X
(n)
k+1 ∈ Bt(z))

µn(Bt(z))
≤ cnLeb(Bt(z))µn(Bt(z))

µn(Bt(z))
, (39)

where, to estimate the right-hand side of (39), we use the fact that for a fixed n, the stochastic kernel
pn(x, y) is uniformly bounded by a constant cn. In particular, the right-hand side converges to zero as
t→ ∞. We have just proved the following

Proposition 6.1. Suppose that our Markov chain is constructed upon a map T verifying Assumption
(A1), and that Pn is the canonical probability with initial distribution µn = hndx. Then, we get
Gumbel’s law:

lim
t→∞

Pn(M (n)
t ≤ ut) = e−τ ,

whereM
(n)
t is defined in Equation (32), φ(·) in Equation (31), the boundary level ut verifies µn(B(z, e−ut)) =

τ
t , and on the set B(z, e−ut) the density hn of the stationary measure is bounded away from zero for
large t (Assumption (E1)).

Our Markov chain visits infinitely often the neighborhood Bt(z) of any point z. Therefore, we
expect that the exponential law e−τ given by the extreme value distribution describes the time between
successive events in a Poisson process. To formalize this, we introduce the random variable

N (t)
z (s) :=

⌊ s
µn(Bt(z))

⌋∑
k=0

1Bt(z)(X
(n)
k ), (40)

and we consider the following distribution

Pn(N (t)
z (s) = k). (41)

We have the following

Proposition 6.2. Suppose that our Markov chain is constructed upon a map T verifying Assumption
(A1), and that Pn is the canonical probability with initial distribution µn = hndx. Then, we have:

lim
t→∞

Pn(N (t)
z (s) = k) =

tke−s

k!
, (42)

where the density hn of the stationary measure is bounded away from zero for large t on the set
B(z, e−ut) (Assumption (E1)).

Proof. See [19].
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In particular, we have shown that the EI is equal to 1. Such an index is less than one when clusters
of successive recurrences happen, which is the case, for instance, when the target point z is periodic.
Our heteroscedastic noise breaks periodicity, so we expect an EI equal to one.

We conclude this section with the following observation and example.

Observation 6.3. While we rigorously prove an EVT for the Markov chain, we are still determining
if a similar result holds for the deterministic map T with respect to its invariant measure. Moreover,
there are, in fact, only a few results on EVT for unimodal maps; see, for instance, [15, 10, 35].

7 An application to systemic risk

This section presents a stylized model of the leverage dynamics to which our theory applies. A part
from providing a potential application of the models considered in this paper, we will use the specific
model to perform numerical simulations of the maps and to test the finite size effect of some asymptotic
results presented above. The model is an extension of the one presented in [30] since we add here a
possible relation between liquidity and leverage, whereas in [30] liquidity was considered constant. The
description of the model follows the same lines as the presentation in [30].

A representative financial institution (hereafter a bank) takes investment decisions at discrete
times t ∈ Z, which defines the slow time scale of the model. At each time the bank’s balance sheet is
characterized by the asset At and equity Et, which together define the leverage λt := At/Et. The bank
wants to maximize leverage (by taking more debt) to increase profits, but regulation constraints the
bank’s Value-at-Risk (VaR) in such a way that λt =

1
ασe,t

, where α depends on the return distribution

and VaR constraint11, and σe,t is the expected volatility at time t of the asset, which in this model
is composed by a representative risky investment. Thus at each time t the bank recomputes σe,t and
chooses λt. Then, in the interval [t, t + 1] the bank trades the risky investment to keep the leverage
close to the target λt. The trading process occurs on the points of a grid obtained by subdividing
[t, t+ 1] in n subintervals of length 1/n (the fast time scale). The dynamics of the investment return
can be written as

rt+k/n = εt+k/n + et+(k−1)/n, k = 1, 2, . . . ,n, (43)

where εt+k/n and et+(k−1)/n are, respectively, the exogenous and endogenous component of the return.
The former is a white noise term with variance σ2

ϵ , while the latter depends on the banks’ demand for
the risky investment in the previous step. For each bank, the demand for the risky investment at time
t + k/n is the difference between the target value of At to reach λt and its actual value. Since the
bank’s asset is composed by the risky investment, an investment return rt+k/n modifies At and the
bank trades at each grid point to reach the target leverage. It is possible to show (see [11, 32]) that to
achieve this, at each time t+ k/n the bank’s demand for the risky investment is

Dt+k/n = (λt − 1)A∗
t+(k−1)/nrt+k/n,

where A∗
t+(k−1) is the target asset size in the previous step. If there are M identical banks, the

aggregated demand is MDt+k/n. The endogenous component of returns et+k/n is determined by the
aggregated demand by the equation

et+k/n =
1

γt

MDt+k/n

Ct+k/n
, (44)

where Ct+k/n = MA∗
t+(k−1)/n is a proxy of the market capitalization of the risky asset, and γt is a

parameter measuring at each point in time the investment liquidity. Notice that in [30] this parameter
is considered constant. Using the above expression, it is

et+k/n =
λt − 1

γt
et+(k−1)/n = ϕtet+(k−1)/n

11For example, if returns are Gaussian and the probability of VaR is 5%, it is α = 1.64.
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and thus in the period [t, t+1] the return rt+k/n follows an AR(1) process with autoregression parameter
ϕt = (λt − 1)/γt and idiosyncratic variance σ2

ϵ . In the present paper, we assume that γt is linked to
the level of the leverage λt by the following relation:

γt = γ0 + cλt, (45)

where γ0 is a positive constant, and |c| ≤ 1. As far as we know, there is not a unified consensus in the
literature on the type (linear or not), and the sign of the relationship between the market12 leverage
and liquidity. For instance, [46] states, “The relationship between market leverage ratio and liquidity
risk in the long term is negative and statistically significant only for commercial banks belonging to
the old EU countries”. In particular, it seems that there is no a universal statement on the sign of
c. As regards as the type of dependence, we decide for a linear relationship. Admittedly, the linear
relationship may seem too crude, but a non linear dependence would be an additional technicality that
would not add to the present work’s conceptual advancements.

To close the model, we specify how the bank forms expectations σe,t on future volatility at time t.
We assume that bank uses adaptive expectations, which implies that

σ2
e,t = ωσ2

e,t−1 + (1− ω)σ̂2
e,t,

where ω ∈ [0, 1] is a parameter weighting between the expectation at t− 1 and the estimation σ̂2
e,t of

volatility obtained by the return data in [t− 1, t]. As done in practice, this is obtained by estimating
the sample variance of the returns in [t− 1, t], i.e.

σ̂2
e,t = V̂ar

[
n∑

k=1

rt−1+k/n

]

=

(
1 + 2

ϕ̂t−1(1− ϕ̂nt−1)

1− ϕ̂t−1

− 2
(nϕ̂t−1 − n− 1)ϕ̂n+1

t−1 + ϕ̂t−1

n(1− ϕ̂t−1)2

)
nσ̂2

ϵ

1− ϕ̂2t−1

, (46)

where the last expression gives the aggregated variance of an AR(1) process as a function of the

AR estimated parameters ϕ̂t−1 and σ̂2
ϵ . In the following we will assume that these are the Maximum

Likelihood Estimators (MLE). We remind that when n is large, ϕ̂t−1 is a Gaussian distributed variable
with mean ϕt−1 and variance (1− ϕ2t−1)/n.

In conclusion, the leverage dynamics is described by the following equations: λt =
(
ω 1

λ2
t−1

+ (1− ω)α2V̂ar[
∑

n

k=1 rt−1+k/n]
)−1/2

,

rs = ϕt−1rs−1/n + ϵs, s = t− 1 + k/n, k = 1, 2, . . . ,n,
(47)

Since slow variables evolve depending on averages of the fast variables, the model is a slow-fast
deterministic-random dynamical system. By using the expression above for the variance, we can
rewrite the equation for the slow component only as

λt =

(
ω

1

λ2t−1

+ (1− ω)α2σ̂2
e,t

)−1/2

,

where the estimator σ̂2
e,t can be seen as a stochastic term depending on λt−1 and whose variance goes

to zero when n→ ∞.
If n is large, the above map reduces to

λt =

(
ω

1

λ2t−1

+
(1− ω)α2

nσ̂2
ϵ

(1− ϕ̂t−1)2

)−1/2

,

12In the financial literature, one finds also the notion of book leverage. Book leverage is defined as the ratio of total
assets to book equity, while market leverage is defined as the ratio of enterprise value (total assets - book equity +
market equity) to market equity. Empirically, book-measured leverage and market-measured leverage lead to different
inferences about the time series properties of leverage; see the debate between [1] and [20]. We here refer to the market
leverage in our discussion because in order to be consistent with our empirical application in [30].

17



When changing n also σ2
ϵ changes, since the AR(1) can be seen as the discretization of a continuous

time stochastic process (namely an Ornstein-Uhlenbeck process). A simple scaling argument shows
that the quantity Σϵ = σ2

ϵn is instead constant and independent from the discretization step 1/n.

With abuse of notation, we set: Σϵ
def
= limn→∞ nσ̂2

ϵ , and we define Σϵ
def
= (1− ω)α2Σϵ. At this point,

we observe that since in the large n limit the MLE estimator ϕ̂t−1 is a Gaussian variable with mean
ϕt−1 and variance (1− ϕ2t−1)/n, we can write

ϕ̂t−1 = ϕt−1 + ηt−1, ηt−1
d∼ N

(
0,

(1− ϕ2t−1)

n

)
.

By using the definition of γt in Equation (45), by defining ϕt
def
= λt−1

γt
, and by introducing the function

V : R2 → R given for any (u, v) ∈ R2 by

V (u, v)
def
=

(
ω(1− cu)2

(1 + γ0u)2
+

Σϵ

(1− (u+ v))2

)−1/2

, (48)

we get

ϕt =
V (ϕt−1, ηt−1)− 1

γ0 + cV (ϕt−1, ηt−1)

def
= F(ϕt−1, ηt−1) (49)

If the noise ηt−1 is small (i.e., n is large), we can perform a series expansion, obtaining:

V (ϕt, ηt) = A(ϕt) +B(ϕt)ηt,

where

A(u)
def
=

1 + γ0u

[ω(1− cu)2 +Σϵ(1− u)−2(1 + γ0u)2]1/2

B(U)
def
=

Σϵ(1− u)−1(1 + γ0u)
3

[ω(1− cu)2 +Σϵ(1− u)−2(1 + γ0u)2]3/2

Accordingly, Equation (49) becomes:

ϕt =
A(ϕt−1) + ηt−1B(ϕt−1)− 1

γ0 + cA(ϕt−1) + cηt−1B(ϕt−1)
.

By performing, again, a series expansion we obtain:

ϕt =
A(ϕt−1)− 1

γ0 + cA(ϕt−1)
+

(1− ϕt−12)
1/2(γ0 + c)B(ϕt−1)√

n(γ0 + cA(ϕt−1))
η̃t−1,

def
= T (ϕt−1) + σn(ϕt−1)η̃t−1

(50)

with η̃t−1
d∼ N (0, 1), t ∈ N≥1. Notice that we performed a series expansion for ηt−1 small, which is

justified whenever the variable ϕ stays far from one. Because we are going to iterate the map F in
Equation (49) for ϕ ∈ [0, 1] and |η| ≪ 1, it is enough to show that:

max
ϕ∈[0,1],|η|≪1

|F(ϕ, η)|, < 1.

because in this case all the successive iterates |F t(ϕ, η)|, t ∈ N≥1, satisfy the same bound. It is not
difficult to see that the bound holds true provided that γ0 is sufficiently large.
Now, we study the deterministic map T in Equation (50), which is the deterministic component of F
for η small. By arguing as above, we have that

∆
def
= max

ϕ∈[0,1]
|T (ϕ)| < 1, (51)

provided that γ0 is sufficiently large.
Figure 1 shows the map T for some suitably chosen parameters:
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Figure 1: Plot of the deterministic component T (ϕ), γ0 = 15.969, α = 1.64, Σϵ = 2.7 × 10−5. The value for
γ0 is taken from the empirical analysis in [30], Section 7.2, (where it is denoted simply by γ) . The value
α = 1.64 corresponds to a VaR constraint of 5% in case of a Gaussian distribution for the returns. The values
Σϵ = 2.7×10−5 is taken from [32], Table 1, and corresponds to the exogenous idiosyncratic volatility at the time
scale of portfolio decisions. The value for ω and c are randomly sampled from the dynamical core, once fixed
the other parameters. The Blue dot indicates the critical point c, the Green dot the intersection between the
map and the horizontal axis, the left-hand Red dot indicates the image of 0, the right-hand Red dot indicates
limϕ→1− T (ϕ) = − 1

γ0
. The support of the invariant density belongs to the so-called dynamical core [T (∆),∆].
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• γ0 = 15.969; this value is taken from the empirical analysis in [30], Section 7.2 (where it is
denoted simply by γ). It corresponds to the maximum value of the leverage computed over a
4,389 time series of US Commercial Banks and Saving and Loans Associations; see [30], Section
7.1, for a detailed description of the dataset.

• α = 1.64; it corresponds to a VaR constraint of 5% in case of a Gaussian distribution for the
returns.

• Σϵ = 2.7×10−5; this value is taken from the numerical analysis in [32], Table 1, and corresponds
to the exogenous idiosyncratic volatility at the time scale of portfolio decisions.

• The values for ω and c are free parameters and are randomly sampled (e.g., from the dynamical
core).

The figure shows that that T is a unimodal map with a negative Schwarzian derivative (see below).
In the figure, ∆ is the iterate of the unique critical point (Blue dot) c of T , i.e., ∆ = T (c). Therefore, if
we take the initial condition ϕ0 in the interval [∆, 1], then all the successive iterates |T t(ϕ0)|, t ∈ N>1

will stay in [0,∆].
By definition, the (re-scaled) leverage of the representative bank is a positive quantity. However,

as one can also notice from the graph in Figure 1, we have that limϕ→1− T (ϕ) = − 1
γ0
. Therefore, we

need to slightly modify the definition of our map by restricting it to the interval [0, b], being b the
point of intersection between the map and the horizontal axis (Green dot in Figure 1) Notice that
this definition makes sense when ∆ < b < 1. In addition, as we verified numerically, if we take the
initial condition in the interval [∆, b], then all the other iterates will stay in [0,∆]. In particular, the
previous redefinition is legitimate also if we consider the effect of the noise. Indeed, it is clear from
the considerations in Section 2 that if we symmetrize about the horizontal axis, the graph of T in
the interval [b, 1] to make it positive, then the equilibrium state for the chain, precisely its unique
stationary measure, has support that does not intersect the interval [b, 1] if a satisfies the bound in
Equation (4). Also, we verified numerically that the condition ∆ < b < 1 holds for a γ0 sufficiently
large. We continue to denote by T the map after this redefinition. We now modify the map T by
enlarging on the left its domain of definition to take into account the action of the additive noise. To
do so, we first notice that

T (0) = a =
1−

√
ω +Σϵ

γ0
√
ω +Σϵ + c

> 0;

see, the Red-left dot in Figure 1. With abuse of notation, (re)define13 Γ
def
= b − ∆, and extend the

domain of definition T to the larger interval [−Γ, b] so that T is continuous at 0 and on [−Γ, 0) is C4

smooth, positive and decreasing, with T (−Γ) < ∆. Again, with abuse of notation, we will still denote

by T the map after this second redefinition, and, hereafter, write I
def
= [−Γ, b].

The map T just-defined verifies Assumption (B1.2) and we choose the distribution of the random
variables (η̃t)t≥1 in order to satisfy Assumption (C1). We need to verify Assumption (A1)-(c). In
order to do so, we verify numerically the following important result taken from [25] (see, also, [21],
Theorem 12). Define the number

ℓT (x) = lim
t→∞

1

t
log |(T t)

′
(x)| = lim

t→∞

t−1∑
i=0

log |T
′
(T t(x))|, x ∈ I. (52)

Suppose T is a unimodal map with negative a Schwarzian derivative, and non-flat critical point with
ℓT (x) = κ > 0 for Leb-almost all x ∈ I, then T admits a unique absolutely continuous invariant
probability measure ν. In this case, κ will be the Lyapunov exponent of the map T with respect to ν.
Figure 2 represents the value of ℓT in the same parameters configuration of Figure 1.

Once we have verified that our systemic risk model in Equation (50) satisfies Assumptions (A1),
(B1), and (C1), we pass to investigate whether it satisfies, as it should be, the mathematical properties

13Cfr. Equation (44)
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Figure 2: Plot of the indicator in Equation (52). Parameters’ configuration: See the caption of Figure 1.

in Section 5 and the EVT in Section 6. The order in which we present the results reflects the order in
which they were presented in the latter sections.

7.1 Dynamics properties of the map

The bifurcation diagram of a dynamical system shows how the asymptotic distribution of a typical orbit
varies as a function of a parameter. For our map, either the memory parameter ω or the parameter
c can be employed as bifurcation parameter. Figure 3 shows the bifurcation diagram as a function of
c ∈ [−1, 1]. The choice of the parameter ω for this plot corresponds to a value of ω for which a specific
pair (c, ω) is in the dynamical core (ω = 0.669).

We now comment Figure 3. Moving backward, between 1 and 0.3 there is an attracting fixed
point. Then, as c gets smaller and smaller, the period one behaviour splits into period two and the two
values are getting further apart. The situation is more complex for c in [−0.48, 0.3] as small parameter
variations can change the dynamics from chaotic to periodic and back. Finally, when c is between
−0.48 and −1 there is an attracting fixed point. However, in this range, ϕt takes negative values and
this does not make sense in our financial application, since it would correspond to negative leverage.
Figure 4 shows how the graph of the map T changes as a function of c reflecting the description of the
bifurcation diagram.

To identify more precisely the signature of a chaotic behaviour, we compute the Lyapunov exponent
as a function of c. For the deterministic map, the Lyapunov exponent is positive if and only if
T admits an absolutely continuous invariant measure. Figure 5, from top to bottom, shows the
estimated Lyapunov exponent for the deterministic map, as well as for the random system for different
intensities of the noise. The Lyapunov exponent is not displayed for some values of the parameter c
because of some numerical issues we encountered to determine the intersection between the map and
the horizontal axis. For this reason, it is not possible to fully appreciate that the exponent becomes a
smooth function of c when add even a small amount of noise, in agreement with Theorem 5.6. Figure
5 shows also the validity of Proposition 5.5 and therefore indirectly of Assumption (Ap).

Finally, Figure 6 displays the random map in Equation (15) together with the quantiles of the
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Figure 3: Bifurcation diagram for T . Parameters’ configuration: (γ0, α,Σϵ, ω) = (15.969, 1.64, 2.7×10−5, 0.669)
and c ∈ [−1, 1].

distribution of the graphs of the maps associated with the random maps. Notice that we use a
different set for the parameters to emphasize the effect of the noise.

7.2 Limit theorems

We here investigate the validity of the Central Limit Theorem in Theorem 5.7-(e2). We proceed in
the following way. First, we choose as function g ∈ BV such that

∫
R g dµn = 0 the function

g(x) = sin(x)−
∫
R
sin(t) dt.

Notice that in principle we would like to have a function g with null average with respect the unknown
measure µn; the function in the previous equation verifies this property with respect the Lebesgue
measure. Nonetheless, we verify numerically the validity of the cited property also for µn. Then, we
generate 20,000 orbits of length 10,000 by using the random transformation. In this way, for each
t ∈ {1, . . . , 10000} we have a sample of the quantity St in Equation (21). Therefore, we can test if the
distribution of St√

t
becomes more and more Gaussian as t increases. In order to do so, we apply three

normality tests, namely the Shapiro ([44]), the normal test of D’Agostino and Pearson’s ([12, 13]), and
the Jarque-Bera’s test ([22]). They all tests the null hypothesis that a sample comes from a normal
distribution. Table 1 reports the results. Within each row, the two subrows are the value of the test
and, between brackets, the p-value From the table it is clear that the distribution of St√

t
becomes more

and more Gaussian as t increases, confirming the Central Limit Theorem stated above.

Normality Test
t

10 1000 5000 10000

Shapiro
0.952 0.968 0.997 0.998

(1.55× 10−17) (5.7× 10−14) (0.11) (0.86)

Normal Test
714.16 67.55 4.19 0.282

(8.34× 10−156) (2.15× 10−15) (0.12) (0.86)

Jarque-Bera
61.83 79.73 4.26 0.33

(3.7× 10−14) (4.85× 10−18 (0.11) (0.84)

Table 1: Normality tests for the variable
(

St√
t

)
for different values of t. Each row reports the value af the tests

and, between parentheses, the p-value.
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Figure 4: Plot of the deterministic component T (ϕ). Parameters’ configuration: (γ0, α,Σϵ, ω) =
(15.969, 1.64, 2.7× 10−5, 0.669). The specific value of c is reported in the title of each panel.
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Figure 5: Lyapunov exponent for deterministic and stochastic maps. Parameters’ configuration:
(γ0, α,Σϵ, ω) = (15.969, 1.64, 2.7× 10−5, 0.669).
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Figure 6: Random maps in Equation (15) together with the quantiles of the distribution of the graphs of the
maps associated with the random maps; n = 10, 100, 10000.

7.3 Multifractal Analysis

In this subsection, we compute the spectrum of the generalized dimension Dq as in Subsection 7.3 by
combining Equation (24) with Equations (25) and (26). The results are displayed in Figure 7. The
gray line represents the value for the comparison as computed in Equation (27). In order to compute
the other lines we proceed in the following way. For q > 1 we approximate the integral in Equation
(25) by considering the so called partition sums

Zr(q) =
∑

µ(B)̸=0

(µ(B))q,

where the sum runs over all intervals B of size r. In particular, we follow, e.g., [41] and we restrict
the variable r to a sequence rn in order to give meaningful results. Our values of r are defined by:
r = np.linspace(0.5× 10−5, 10−5, 100). For a fixed r, the occupation number ni(r) of the i-th interval
is defined as the number of sample points it contains out of N sample points from the trajectory of our
dynamical system. The measure µi of the interval Bi is the fraction of time which a generic trajectory
on the attractor spends in the i-th interval Bi and is roughly equal to ni(r)/N . Therefore, we compute
D(q) as the slope of a linear fit of

logZr(q) = log

(∑
i

(ni(r))
q

)

against log r; note that we have dropped the normalization factor N =
∑

i ni(r) since it is independent
of r. The computation of D(1) follows the same logic. Instead, for negative q we follow [42] and we
replace the occupation numbers ni(r) by the extended occupation numbers n∗i (r) which are defined by

n∗i (r) =
∑

j :Bj⊂B∗
i

ni(r),

that is the number of sample points contained in the interval Bi and its neighboring boxes. By looking,
again, at Figure 7, it is interesting to see that for n = 10 the quantity Dq for the random maps becomes
almost a constant equals to 0.8–0.9, whereas this quantity changes more for higher values of n and, in
particular, for the unperturbed map (proxied by n = 1015). In particular, as we suspected in section
7.3, the generalized dimension Dq becomes more and more pronounced when n grows as the stationary
measure converges (weakly) to the invariant measure of the deterministic map. In this respect, we
think that the previous multifractal analysis could help us in discriminating between chaotic and
random behaviors. Indeed, the invariant measure of a deterministic map has usually fine properties
which reveal themselves in a fractal or multifractal structure of the density. For our unimodal map T
this is due to the presence of countably many singularities for the density h. Instead, the equilibrium
measure of Markov chains are usually more uniform and indistinguishable from absolutely continuous
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Figure 7: Spectrum of the generalized dimension Dq, for different values of the noise level n. The gray line
is derived from Eq. (27). Notice that for our unimodal map the picture shows the order of divergence as the
square root of the singular points as for the Benedicks-Carleson type.

measures with bounded densities. Notice that the curves in Figure 7 resemble the curves in Figure 3
in [47], where authors investigate the multifractal features of liquidity in China’s stock market. They
claim that the liquidity time series at the studied time is no longer subject to a standard random
walk process, but subject to a fractal biased random walk process. This shows that, theoretically, it is
feasible to predict the liquidity of the Chinese securities market.

7.4 Extreme Value Theory

Finally we verify the validity of Proposition 6.1 on EVT. We proceed in the following way. We fix
values for the parameters characterizing the map (γ0, ω, c, α,Σϵ) as described above, for the initial
point of each orbit x0 and z chosen randomly in the dynamical core (x0 = 0.38 and z = 0.80), for
the parameter τ (τ = log(10)), and for the intensity of the noise (n = 103). Then, we determine
numerically the sequence ut in such a way that µn(B(z, e−ut)) = τ

t , where µn estimated from the
histogram constructed with a very long orbit. The Left Panel of Figure 8 shows the sequence ut as

a function of t and the Right Panel displays the estimated Pn(M (n)
t ≤ ut), where M

(n)
t is defined in

Equation (32), as a function of t, together with the theoretical value e−τ (Red horizontal line). The
estimated probability converges to the theoretical value, confirming our EVT results. From a financial
point of view, this means that we are able to compute what is the probability that, given an initial
leverage, the first time the leverage is “close” to a given target is larger than t.
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Figure 8: Top panel : the sequence ut as a function of t; Bottom panel : estimated Pn(M (n)
t ≤ ut), where M

(n)
t

is defined in Equation (32), as a function of log t, together with the theoretical value e−τ (Red horizontal line)
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