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ABSTRACT
This article introduces a novel method for generating random bi-

nary sequences from Random Polar Angles (RPA). These sequences

can be derived from an image, akin to QR-Codes, making them

suitable for cryptographic applications and information coding sys-

tems. The proposed method allows the generation of multiple codes

using the same image. It is based on the LPCN (Lowest Polar Angle

Connectivity Node) algorithm, which, in each iteration, selects a

node from a graph that forms the minimal polar angle with its

neighbor found in the previous iteration. The decision on the type

of bit to generate (0 or 1) is based on the nature of the angles found

(acute or obtuse). The primary objective of this research is to facil-

itate the transformation of a graph’s image representation into a

concealed binary code, thereby enhancing data security. We have

assessed the randomness of the generated codes through entropy

analysis, revealing greater unpredictability.
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1 INTRODUCTION
Generating random numbers from pictures is an emerging field

with applications in various domains, including cryptography, secu-

rity, and data encryption. In today’s world, QR codes have become

the most commonly employed method for copying information

without the need for manual data entry or keyboard input. For

publicly accessible, non-sensitive information, QR codes can be
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utilized without any concerns. However, when these codes are

used to conceal or safeguard sensitive data, as far as we are aware,

there is currently no established standard code designed to address

this particular requirement. In this paper, we introduce a novel ap-

proach known as Random-Polar-Angle (RPA) coding for generating

random codes that are inherently resistant to easy decipherment.

Generating random numbers from pictures is an evolving field,

with a wide range of potential applications. Researchers and practi-

tioners continue to explore new methods and techniques to harness

the inherent randomness present in visual data.

Cryptography relies heavily on the generation of secure and un-

predictable cryptographic keys. Traditional methods often use pseu-

dorandom number generators, but the security of such sequences

can be compromised. Over the years, researchers and cryptographic

practitioners have delved into a multitude of techniques and algo-

rithms to produce keys and binary streams that are both highly

secure and unpredictable. This pursuit of cryptographic robustness

has led to the development of innovative methods that harness

mathematical principles, complex algorithms, and even physical

phenomena. One such approach revolves around the use of graph-

based algorithms, where the structure of a graph is utilized to derive

secure binary sequences. In this context, the LPCN (Lowest Polar

Angle Connectivity Node) algorithm, as introduced in [14][19],

stands as a prominent example. By selecting nodes within a graph

based on minimal polar angles, the LPCN algorithm introduces

an element of randomness and complexity that enhances the se-

curity of generated binary sequences. This technique has gained

attention for its potential to transform graphical representations

into concealed binary codes, thereby bolstering data protection,

by transforming the type of the found angle in each iteration to a

binary value such as:

• acute angle = 1

• obtuse angle = 0

The rest of the paper is organized as follows. Section 2 presents

and discusses the related work. Section 3 describes the LPCN algo-

rithm. The proposed methodology is presented in Section 4. Sec-

tion 5 presents the implementation and results obtained by applying

the proposed method, followed by an assessment of the randomness

of the generated sequences. Finally, Section 6 concludes the paper

and offers perspectives for further exploration.

https://doi.org/XXXXXXX.XXXXXXX
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2 LITERATURE REVIEW
There has been a significant amount of work done in the domain of

generating random numbers from images. Image steganography [5]

is the practice of embedding hidden messages or data within digital

images without altering their visible appearance. This technique

is used for covert communication and information security. Chan-

dramouli and Memon [3] investigated the “steganographic capacity”
of image based steganography techniques. Steganographic capacity

refers to the maximum amount of data that can be concealed or

embedded within an image without causing noticeable or statis-

tically significant changes to that image. It is typically measured

in terms of bits. In other words, it answers the question of how

much information can be hidden in an image without making the

presence of the hidden data evident. The authors [3] analyzed LSB

(Least Significant Bits) steganography, which is a specific method

for achieving steganographic capacity. In LSB steganography, the

hidden data is inserted into the least significant bits of the pixels

in an image, while the most significant bits remain unchanged.

Since the least significant bits have the least impact on the visual

appearance of the image, this method aims to maximize the stegano-

graphic capacity while minimizing the noticeable alterations to the

cover medium. In order to increase information security, Wang

et al. [21] introduced a hybrid steganography method based on

least significant bit (LSB) replacement and Hamming code (HLAH).

As the sharp areas of the image can accommodate greater alter-

ations compared to the smooth areas, the HLAH method embeds a

higher volume of secret messages in edge regions and a minimal

amount in smooth regions. Experimental results [21] demonstrate

that the HLAH method offers both superior embedding capacity

compared to existing techniques and consistently maintains higher

image quality. Cheddad et al. [4] presented a state-of-the-art review

and analysis of the different existing steganography techniques.

More recently, the utilization of Generative Adversarial Networks

(GANs) [6] in image steganography research has shown significant

promise and potential. The GAN [6] may be trained adversarially

to ensure that the stego-images are visually identical to the cover

images. This adversarial training makes it challenging for exter-

nal parties to detect the presence of hidden data. The generator

in a GAN [6] can be used to embed the secret information into

an image. Instead of generating random images, the generator can

take the cover image and encode the hidden data in a way that

the output image appears visually similar to the original one. This

process ensures that the embedded information is perceptually in-

distinguishable from the original image. The GAN discriminator

is used to ensure that the generated stego-image appears similar

to real images and not distinguishable from authentic images. It

helps in maintaining the quality of the stego-image. Liu et al. [17]

conducted an extensive review of steganography techniques uti-

lizing GANs, systematically categorizing them into three distinct

data hiding strategies, encompassing cover modification, cover se-

lection, and cover synthesis. For a comprehensive survey of image

steganography, the reader is referred to [10].

In pixel-based methods, the randomness is extracted from the

pixel values of an image. The noise in an image, such as that from

a camera sensor or compression artifacts, can be a source of ran-

domness. Techniques involve analyzing pixel values for entropy,

employing hash functions, or applying statistical tests to determine

the randomness level. Hu and Han [8] introduced an efficient and

secure pixel-based scrambling method for safeguarding the distribu-

tion of digital medical images. In order to efficiently encrypt a sub-

stantial volume of digital medical images, their approach employs

a straightforward pixel-level XOR operation for image scrambling,

incorporating structural parameters of the encryption scheme into

the cryptographic key. This cryptographic key is derived from a

genuinely random number sequence generated from multi-scroll

chaotic attractors.

Visual Cryptography [9] is a technique that encrypts an image

into multiple shares, each containing partial information. Com-

bining these shares reveals the original image. The randomness

in these shares can be harnessed as a source of random numbers.

Gurunathan and Rajagopalan [7] drew inspiration from steganog-

raphy and introduced a technique for concealing a secret message

within a cover image. This method divides the cover image into

n blocks, each measuring 8x8 pixels, while the secret message is

partitioned into n segments. This approach enhances both image

quality and the capacity of the hidden message, bolstering its secu-

rity. In their proposed method [7], they utilize Cuckoo Search (CS)

to search for approximate and optimal solutions for transforming

each block of the message. This is in contrast to seeking a single

optimal substitution matrix for the entire cover image."

Random sequence generators typically fall into two categories:

true random number generators (TRNGs) and pseudorandom num-

ber generators (PRNGs). PRNGs rely on seeds and deterministic al-

gorithms to produce “pseudorandom” numbers, making them faster

and suitable when a significant quantity of random-like numbers is

needed. In contrast, TRNGs harness non-deterministic sources in

conjunction with post-processing functions, such as image noise,

to generate randomness. The resulting sequences from TRNGs

are recognized for their heightened level of randomness. Zhou

et al. [22] proposed an innovative True Random Number Gener-

ator (TRNG) that derives random bits from mouse movements,

which are captured as a 2D image. This method offers a practi-

cal, versatile, and cost-effective solution for personal computer

(PC) platforms. To mitigate regular patterns in mouse movements

stemming from user habits, the authors proposed three TRNGs

based on chaotic hash functions. Comprehensive experiments were

carried out to assess the speed, diffusion, and randomness char-

acteristics of these TRNGs. The results indicate that two of these

TRNGs exhibit satisfactory performance and are suitable for im-

plementation on standard PC platforms. Dragan and Mladen [15]

introduced a method for generating pseudo-random numbers us-

ing a discrete-space chaotic map based on permutation composi-

tions. The randomness of the generated pseudo-random sequences

is verified through NIST 800-22 and TestU01 tests. Notably, this

method [15] remains unaffected by dynamical degradation, en-

suring stable pseudo-random number generation. Its advantages

include an extensive key space, efficient memory usage, enhanced

security, and extended cycle lengths, making it suitable for memory-

constrained devices. Lakshman et al. [13] introduced an innovative

and straightforward pseudo-random number generation method

that utilizes one-dimensional discrete chaotic maps and a logo im-

age. The method combines sequences from chaotic maps and a logo

image to generate real numbers within the range of zero to one,
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establishing a strong connection between the two. This approach

yields numbers that exhibit high sensitivity to minor variations in

the underlying keys. The effectiveness of the generator is assessed

through a comprehensive set of statistical and security analyses.

Rongzhong Li [16] introduced a true random number generator

(TRNG) approach using the images taken by web or mobile phone

cameras. The proposed TRNG technique uses all three RGB color

channels to obtain the random numbers. The study also investi-

gated the physical and statistical properties of the random noise

in a digital images and made several approximations to efficiently

collect the best random signals from the pixels in the images to

map them to random sequences.

Amri et al. [2] introduced a novel quantum random number

generation method leveraging the inherent randomness of photon

emissions and the single photon counting capability of the Quanta

Image Sensor (QIS). The QIS, consisting of over one billion pixels

known as ’jots,’ is optimized for photon counting with sub-micron

pitch. This high-speed, low-power QIS technology has the potential

to generate high-quality random numbers at a remarkable data

output rate, surpassing conventional QRNG technologies.

Kawashima and Mito [12] proposed a method for generating

random numbers frommagnetic domain patterns within a magneto-

optical (MO) material. By capturing one hundred thousand chaotic

magnetic domain images using a transparent polarization micro-

scope, they applied post-processing techniques, including binariza-

tion, frequency adjustment, exclusive-OR operations, and offset

data reduction, to extract random numbers from the images. These

generated random numbers successfully passed the statistical test

(NIST SP-800-22).

Yas Abbas Alsultanny [1] introduced a 3-phase approach for

generating a highly random bit sequence. In the initial phase, im-

age data is read and partitioned into blocks. The second phase is

dedicated to generating a random key, and the third phase conducts

statistical tests to assess whether the key sequence exhibits the

characteristics expected of a genuinely random sequence. These

tests are probabilistic in nature, not deterministic. Users can choose

to accept the generated key based on a threshold value, indicating

the minimum number of successful tests required. If the key doesn’t

meet this criterion, the process can be repeated until a satisfactory

key is obtained. The algorithm employs five statistical tests: Fre-

quency, Serial, Poker, Runs, and Auto-correlation. According to the

author [1], 79% of the generated sequences successfully pass all five

statistical tests concurrently, with 94% passing at least four of them.

3 LPCN ALGORITHM
The LPCN (Least Polar-angle Connected Node) algorithm is used

to find a polygon hull of a set of connected points. It starts from

a node that belongs to the border. It is given as follows. Let 𝑉 be

a set of 𝑛 nodes of a network and ℎ be the number of points of

the polygon hull of 𝑉 . The algorithm finds the points 𝑃0, 𝑃1, ...,

𝑃ℎ−1 of the convex hull. First of all, we find a point 𝑃0 with the

minimum x-coordinate. Given the point 𝑃𝑖 , we wish to find the next

consecutive point 𝑃𝑖+1 on the hull, for each 1 ≤ 𝑖 ≤ 𝑘 − 1 which
is connected to them. This point 𝑃𝑖+1 is the one that has the least
polar angle with respect to 𝑃𝑖 . When we reach the highest point

𝑃ℎ−1, we have constructed the polygon hull of 𝑉 . The algorithm

stops once we reach again the point 𝑃0. It is given as follows:

1: procedure LPCN1(𝑉 , 𝐸)
2: 𝑃𝑐 ← point having the minimum x-coordinate

3: B← {𝑃𝑐 }
4: 𝑃𝑓 ← 𝑃𝑐
5: 𝑃𝑝 ← fictive point situated in the left of 𝑃𝑓
6: repeat
7: 𝑃𝑣 𝑖𝑠 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑝𝑎(𝑃𝑝 , 𝑃𝑐 , 𝑃𝑣) =
8: min{𝑝𝑎(𝑃𝑝 , 𝑃𝑐 , 𝑃 𝑗 ) :
9: 𝑃 𝑗 ∈ ℵ(𝑃𝑐 ) & 𝑃 𝑗 ∉ 𝐵 − {𝑃𝑓 }}
10: B← B ∪ {𝑃𝑣}
11: 𝑃𝑝 ← 𝑃𝑐
12: 𝑃𝑐 ← 𝑃𝑣
13: until 𝑃𝑣 = 𝑃𝑓
14: return B
15: end procedure

Figure 1: LPCN1 algorithm (version 1).

Figure 3 shows how the algorithm works. Let us consider the

graph of Figure 3(a) where 𝑉 = {𝐴, 𝐵,𝐶, 𝐷, 𝐸, 𝐹,𝐺, 𝐻 }. First, we
choose the node that has the minimum x-coordinate 𝑃𝑐 . In this

example, this node is 𝐴 (𝑃𝑐 = 𝐴) which is the first node of the

border B = {𝐴}.
The end of the algorithm is determined when the next border

node 𝑃𝑘 is equal to the first border node 𝑃𝑓 . In this example, the

first node is also 𝐴 (𝑃𝑓 = 𝐴). In the first iteration 𝑃𝑐 is always equal

to 𝑃𝑓 .

Let consider a fictive node 𝐴′ that has an x-coordinate smaller

than that of𝐴 (𝑃𝑝 = 𝐴′). Note, that other fictive nodes can be consid-
ered. Figure 3(b) shows the different starting nodes and their fictive

neighbors designed by the gray points and letters with apostrophes.

Next, we have to find the minimum polar angle formed by the

edge (𝑃𝑐 , 𝑃𝑝 ) (i.e., (𝐴,𝐴′)) and the edge formed by 𝑃𝑐 and each

edge of its neighbors ℵ(𝑃𝑐 ) (i.e., (𝐴, 𝐵), (𝐴,𝐶), (𝐴, 𝐷) and (𝐴,𝐺)).
In this example, the obtained neighbor is 𝑃𝑘 = 𝐶 (cf. Figure 3(c)).

Then, the second edge of the searched border is (𝐴,𝐶). Therefore,
B = {𝐴,𝐶}.

In the next iteration we will do the same procedure by searching

the minimum polar angle formed by the edge (𝐶,𝐴) and edges

formed by 𝐶 and its neighbors, i.e., (𝐶, 𝐵) and (𝐶, 𝐷) except (𝐶,𝐴),
the last found edge. The obtained node is 𝐷 (cf. Figure 3(d)). There-

fore, the obtained border is B = {𝐴,𝐶, 𝐷}. In the same way we de-

termine the other nodes. We found 𝐸 (cf. Figure 3(e)), 𝐻 (cf. Figure

3(f)),𝐺 (cf. Figure 3(g)) and finally 𝐴 (cf. Figure 3(h)). Since 𝐴 = 𝑃𝑓 ,

we stop the algorithm. The obtained border is B = {𝐴,𝐶, 𝐷, 𝐸, 𝐻,𝐴}
(cf. Figure 3(i)).

The first version of the algorithm LPCN can not work in some

graphs when and edge in the border intersect another edge of the

border. In case where the aim is to determine the border nodes,

this version can not be used, however, in the framework of this

paper, we can use it since the objectif is not to find the border nodes

but a sequence of nodes that can be used as a code. The following

algorithm 2 presents the second version of the LPCN algorithm
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(LPCN2) where the intersection is eliminated. It will be used in

this paper to compare and discuss the codes obtained from both

versions.

For simplicity, by considereing only the three first cases, the

proposed algorithm is defined as follows:

1: procedure LPCN2(𝑉 , 𝐸)
2: 𝑃𝑐 ← point having the minimum x-coordinate

3: B← {𝑃𝑐 }
4: 𝑃𝑓 ← 𝑃𝑐
5: 𝑃𝑝 ← fictive point situated in the left of 𝑃𝑓
6: repeat
7: if |ℵ(𝑃𝑐 ) | > 1 then
8: A = {𝑃𝑝 , 𝑃𝑓 }
9: else
10: A = {𝑃𝑓 }
11: end if
12: 𝑃𝑣 𝑖𝑠 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑝𝑎(𝑃𝑝 , 𝑃𝑐 , 𝑃𝑣) =
13: min{𝑝𝑎(𝑃𝑝 , 𝑃𝑐 , 𝑃 𝑗 ) : 𝑃 𝑗 ∈ ℵ(𝑃𝑐 ) & 𝑃 𝑗 ∉ A}
14: if intersection detected then
15: A = A ∪ {𝑃𝑣}
16: Go to 12

17: end if
18: B← B ∪ {𝑃𝑣}
19: 𝑃𝑝 ← 𝑃𝑐
20: 𝑃𝑐 ← 𝑃𝑣
21: until 𝑃𝑣 ≠ 𝑃𝑓
22: return B
23: end procedure

Figure 2: LPCN2 algorithm (version 2).

The LPCN algorithm demonstrates minimal energy consumption

[11][18], and its computational complexity is polynomial.

4 METHODOLOGY
In this section, we will present the proposed methodology. First,

a graph will be generated randomly by considering three main

parameters:

• The area 𝑎 : which represents a rectangular space where the

graph will be generated

• The number of nodes 𝑛 of the graph

• The range 𝑟 which represents the circular area around a

given node such that all the nodes belonging to the circle

will be connected to this node

Figure 4 shows an example of a linear graph with 𝑛 = 8 nodes.

When we apply the LPCN algorithm to this graph, starting from

node 1, we traverse the following angles. Additionally, each angle’s

type and corresponding binary value are provided.

• �(1, 2, 3): obtuse = 1

• �(2, 3, 4): acute = 0

• �(3, 4, 5): acute = 0

• �(4, 5, 6): obtuse = 1

• �(6, 7, 8): obtuse = 1

• �(7, 8, 9): obtuse = 1

This will lead to the generation of the binary stream 100111.

The proposed methodology is composed of two main steps:

• Image Transformation: One of the primary applications of

this method is the transformation of an image of the graph

into a hidden binary code. By scanning the graph in the

image and applying the LPCN algorithm, a binary sequence

is generated. This sequence can be embedded into the image

in a way that is imperceptible to the human eye, ensuring

data security.

• The Graph Representation: The first step involves represent-

ing the data as a graph, where nodes represent data points

or features, and edges represent connections between them.

This graph is used as the foundation for generating the bi-

nary sequence.

• LPCN Algorithm: The LPCN algorithm is employed to tra-

verse the graph and select nodes. At each iteration, the algo-

rithm identifies the node that forms the minimal polar angle

with its neighbor from the previous iteration. This unique

selection process introduces randomness and complexity

into the sequence generation.

• Iterative Selection: The LPCN algorithm iteratively selects

nodes, forming a sequence of nodes from the graph. These

selected nodes are then transformed into binary values, en-

suring that the generated binary sequence is both secure and

unpredictable.



RPA-Code for Secure Binary Sequence Generation from Graph-Based Scanning Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: LPCN algorithm illustration.

Figure 4: Generate binaries from angles.
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5 EVALUATION
To measure the quality of the generated sequences of bits, we use

the concept of entropy, first introduced by Shannon [20]. Sequences

with higher entropy are considered to be of higher quality in terms

of randomness and unpredictability.

The entropy of a generated sequence can be calculated using the

formula:

𝐻 (𝑋 ) = −
𝑛∑︁
𝑖=1

𝑃 (𝑥𝑖 ) · log2 (𝑃 (𝑥𝑖 )) (1)

Where:

𝐻 (𝑋 ) : Entropy of the sequence

𝑛 : Number of possible bit values

𝑥𝑖 : Each possible bit value

𝑃 (𝑥𝑖 ) : Probability of each bit value

We have generatedmany graphswith different connection ranges:

60, 100, 140, 180. For each graph, we have executed the LPCN al-

gorithm with (version 1) and without (veresion 2) intersections

to generate the binary sequence. Then, we have calculated the

corresponging entropy.

(a)

(b)

Figure 5: LPCN algorithm with (a) and without (b) intersec-
tions executed on a graph with 60 nodes.

Table 1 presents the computed entropy for binary sequences

(numbers) generated from each graph. Instances with intersection

(Yes) tend to exhibit slightly lower entropy values compared to

those without intersection (No), suggesting a potential influence

on the randomness of the sequences. Additionally, the variation

in entropy across different graph sizes indicates the sensitivity of

entropy to graph characteristics, highlighting the importance of

considering both intersection and graph size when assessing the

quality of the generated random sequences. In this experiment, the

best entropy is obtained by the graphs with 60 and 100 nodes.

(a)

(b)

Figure 6: LPCN algorithm with (a) and without (b) intersec-
tions executed on a graph with 100 nodes.

(a)

(b)

Figure 7: LPCN algorithm with (a) and without (b) intersec-
tions executed on a graph with 140 nodes.

6 CONCLUSIONS AND FUTUREWORK
The LPCN algorithm offers a promising approach to generating

secure binary sequences for cryptographic purposes. By leveraging

the unique node selection based on polar angles, this method en-

hances the unpredictability and security of generated sequences.
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(a)

(b)

Figure 8: LPCN algorithm with (a) and without (b) intersec-
tions executed on a graph with 180 nodes.

Table 1: Computed Entropy

Inter. Gr Size Number Size Entropy
(bits)

Yes 60 57 2.7733

No 60 102 2.8810

Yes 100 33 2.8621

No 100 1026 2.7226

Yes 140 33 2.3540

No 140 1131 2.5207

Yes 180 33 1.8437

No 140 180 2.6371

Furthermore, the ability to transform graph images into concealed

binary codes opens up innovative possibilities for data protection

and secure communication. Future research in this area may focus

on optimizing the LPCN algorithm for specific cryptographic appli-

cations, studiying the structure of graphs generating best binary

numbers and exploring additional methods for binary sequence

extraction from graphical representations.
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