
HAL Id: hal-04389196
https://hal.science/hal-04389196v1

Submitted on 11 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a Modular Deep Reinforcement Learning
Digital-Twins Framework: A Step towards optimal RMS

control
Abdelfatah Kermali, Madani Bezoui, Samir Ouchani, Ahcene Bounceur

To cite this version:
Abdelfatah Kermali, Madani Bezoui, Samir Ouchani, Ahcene Bounceur. Towards a Modular Deep
Reinforcement Learning Digital-Twins Framework: A Step towards optimal RMS control. The 7th
International Conference on Future Networks & Distributed Systems, Dec 2023, Dubai, United Arab
Emirates. �hal-04389196�

https://hal.science/hal-04389196v1
https://hal.archives-ouvertes.fr


Towards a Modular Deep Reinforcement
Learning Digital-Twins Framework:

A Step towards optimal RMS control
Abdelfatah Kermali

CESI LINEACT, UR 7527
Nice, France

akermali@cesi.fr

Madani Bezoui
CESI LINEACT, UR 7527

Nice, France
mbezoui@cesi.fr

Samir Ouchani
CESI LINEACT, UR 7527
Aix-en-Provence, France

souchani@cesi.fr

Ahcene Bounceur
Computer Science Department

KFUPM
Dhahran, Saudi Arabia

Ahcene.Bounceur@kfupm.edu.sa

ABSTRACT

This paper proposes a modular deep reinforce-
ment learning framework integrated with digital
twin technology for optimizing the control of Re-
configurable Manufacturing Systems (RMS). The
framework employs hierarchical deep reinforcement
learning agents for scheduling and reconfiguration
decisions across decentralized digital twins of indi-
vidual Reconfigurable Machine Tools (RMT). The
digital twins enable real-time monitoring, simula-
tion, and visualization to inform the reinforcement
learning agents. The modular architecture aligns
with RMS goals of adaptability and rapid reconfig-
uration. The reconfiguration agent selects optimal
machine configurations based on assessments of
job queues, tardiness costs, and due dates. The
scheduling agent optimizes job sequencing given
the current configuration. The RMS environment
coordinates the machine agents for overall opti-
mization. Predictive maintenance capabilities are
also incorporated within the digital twins. This
integration of digital twins and deep reinforcement
learning provides capabilities for optimal control
of resilient and efficient RMS, to be responsive to
dynamic manufacturing environments.

Keywords

Reconfigurable Manufacturing Systems (RMS);
Deep Reinforcement Learning (DRL); Digital
Twin Technology (DTT); Modern Manufacturing;
Multi/Hierarchical agents Systems; RMS control;
Industry 4.0

I. INTRODUCTION

The rapid pace of technological evolution and
fluctuating market dynamics continue to drive the
industrial and manufacturing sectors to seek in-
novative solutions to meet the growing demand
for product customisation and unpredictable market
trends [1]. One of the most notable solutions to
these challenges has been the emergence of Re-
configurable Manufacturing Systems (RMS), which
represent a remarkable shift in the manufacturing
paradigm, combining the high-throughput capabil-
ities of Dedicated Manufacturing Lines (DML)
with the adaptability and responsiveness of Flexible
Manufacturing Systems (FMS), enabling a robust
response to market changes with efficiency and
agility [2]. The transition from DML to FMS,
and ultimately to RMS, underscores a profound
change in manufacturing philosophy that prioritises



adaptability, modularity and rapid reconfiguration to
overcome the dynamic hurdles of today’s industrial
landscapes.

A core aspect of RMS revolves around three key
stages: design, implementation and optimisation.
The design phase lays the foundation by defining
the system architecture, which in drives the follow-
ing implementation and optimisation phases. Cru-
cial decisions about system components and possi-
ble reconfigurations are made during this phase [3].
Following the design phase, the implementation
phase brings the theoretical design to life and trans-
forms it into a functional and operational system.
This phase is full of complexities, involving the
integration of different system components, ensur-
ing operational coherence and addressing practical
considerations [4]. Finally, the Optimisation phase
continually refines system operations to increase
efficiency and productivity while reducing costs and
waste. This phase employs a variety of optimisation
tools and strategies, such as scheduling, machine
allocation and production planning, and requires
the consideration of real-time data and prospective
reconfigurations [5].

Recently, the fusion of Artificial Intelligence (AI)
and learning methods, in particular Reinforcement
Learning (RL), has received considerable attention
in solving complex problems in various domains.
These technologies have the potential to improve
decision making, system adaptation and optimisa-
tion, thereby addressing some of the critical chal-
lenges associated with RMS implementation.

The integration of Digital Twin Technology
(DTT) represents a new frontier in improving the
control and optimisation of RMS. By creating a
digital replica of the physical manufacturing system,
DTT facilitates real-time monitoring, analysis and
control, providing a robust platform for implement-
ing and evaluating RMS strategies. This merging of
DTT and RL promotes a holistic framework that not
only addresses the inherent challenges of RMS, but
also drives the system to new levels of efficiency,
adaptability and responsiveness.

II. LITERATURE REVIEW

RL’s suitability for RMS results from its opti-
mization capability through system interaction with-
out requiring an accurate model. Initial research by
Riedmiller et al. [6] showcased RL’s effectiveness
in acquiring dispatching policies for production
scheduling. Successive studies have implemented
reinforcement learning (RL) in RMS for dynamic
scheduling tasks, with Q-learning algorithms, as
seen in Aydin and Öztemel [7] and Wang and
Usher [8], demonstrating RL agents to outperform
heuristic methods. Additionally, RL has been em-
ployed for higher-level reconfiguration decisions in
RMS, with McDonnell et al. [9] optimizing machine
reconfiguration and Luo [10] utilizing deep RL to
solve complex scheduling problems. Advanced re-
inforcement learning (RL) algorithms, such as A2C,
demonstrate potential in optimizing scheduling and
reconfiguration in collaborative real-time energy
management systems (RMS), as demonstrated by
Yang and Xu [11]. Nonetheless, challenges like
managing extensive action spaces necessitate fur-
ther research. RL, including deep RL, represents a
critical tool for intelligent decision-making in next-
generation RMS that prioritises adaptability.

For modelling, simulation, and optimization of
RMS, digital twins (DTs) are gaining traction.
Huang et al. [12] and Liu et al. [13] proposed DT
frameworks enhancing smart manufacturing sys-
tems and RMS reconfigurability. Tang et al. [14]
and Zhong et al. [15] showcased DT frameworks
and algorithms for decision support and optimal
reconfiguration in RMS. Tao et al. [16] and Guo et
al. [17] extended DT applications to real-time mon-
itoring and predictive maintenance in RMS. Despite
progress, challenges such as managing uncertainty
of DTs and simplifying models continue. Exciting
future research avenues include integrating DTs
with AI and using them for quick RMS reconfigura-
tion. DT technology offers tremendous potential for
achieving the flexibility and responsiveness required
in next-generation RMS.

III. BACKGROUND

Reinforcement learning (RL) has emerged as a
subfield of machine learning that is particularly



well-suited to applications such as robot control and
adaptive manufacturing systems, where autonomous
online learning is critical. Unlike supervised learn-
ing methods that rely on labelled training data, RL
equips software agents with the ability to learn
optimal actions through trial-and-error interactions
in dynamic environments. This distinction makes
RL a versatile framework for creating self-learning
agents. At its core, RL is based on Markov Decision
Processes (MDPs), which provide the mathemati-
cal models that include key components such as
states, actions, transitions, and rewards. Finding
the optimal policy that maximises the cumulative
reward is the central challenge in RL. To enable
the decomposition of complex MDPs into more
tractable subproblems, Bellman’s equation provides
a recursive relationship between value functions that
facilitates iterative policy refinement. A seminal RL
algorithm called Q-learning, introduced by Watkins
in 1989, incrementally updates action values or ”Q”
based on the Bellman equation to incrementally
improve policies. To handle high-dimensional state
spaces, Deep Q-Learning (DQL) combines deep
neural networks with Q-learning. Crucially, inno-
vations such as experience replay, introduced by
Lin in 1993, and extensions such as Double DQN
and Dueling DQN have improved the effectiveness
of DQL in complex environments. Together, these
advances have firmly established RL as a versatile
framework for creating self-learning agents.

IV. DEEP REINFORCEMENT LEARNING -
DIGITAL TWIN CONTRIBUTION

A. Reinforcement Learning Environment Modelling

This section outlines the hierarchical deep re-
inforcement learning (DRL) control developed for
integrated management within the RMS. The top-
level RMS environment comprises several Recon-
figurable Machine Tool (RMT) sub-environments,
each containing two agents: a scheduling agent
(SCHED) and a reconfiguration agent (RECONF)
inspired from the work of yang and Xu [?].

Fig. 1. System environments and agents Modelling

Input: Initial State of RMS and RMTs, Job Queue
Output: Optimized Scheduling and Reconfiguration Decisions
Initialize: RMS, RECONF, and SCHED agents;
while Job Queue is not empty do

Digital Twin Data Acquisition:;
Collect real-time data from Digital Twins of RMTs;

RMS Hierarchical Environment:;
Select an RMT to assign the next pending job based

on aggregated state data;
Step the RMTs to simulate the manufacturing system;

Reward Function for RMS:;
Calculate the average reward from each RMT

environment;
Actions for RMS:;

Select one of the 5 actions to assign each pending job
to an RMT, considering Digital Twin insights;

State Features for RMS:;
Update state features with information from Digital

Twins;
RMT Multi-agent Environment:;

RECONF and SCHED agents make decisions,
incorporating Digital Twin recommendations;

Reconfiguration Agent (RECONF):;
Calculate reward function;
Select one of the 4 actions, considering Digital Twin

insights;
Update state features;

Scheduling Agent (SCHED):;
Calculate reward function;
Select one of the 5 actions, considering Digital Twin

insights;
Update state features;

end
Algorithm 1: DQL Solution for RMS with Dig-
ital Twin Integration
This hierarchical structure simplifies the control

problem by segregating scheduling and reconfigura-
tion tasks. It aligns with RMS objectives of modu-
larity and adaptability, facilitating the integration of
additional tasks like transportation or maintenance.

B. Reconfiguration Agent (RECONF)
1) Reward function: RECONF manages dy-

namic reconfiguration of manufacturing system



modules. Its action space comprises four distinct
actions (act1-act4) aimed at selecting the optimal
machine configuration based on various operational
conditions.

R = − 1

tS′ − tS
(TPBF + TPFNS) (1)

T PBF =
∑X
k=1

∑nk

j=1 αjzjS′ [tS′ −max (tS , dj)]

zjS′ =

{
1, if dj < tS′

0, else

T PFNS =
∑nFNS

j=1 αjzjC [Cj −max (tS , dj)]

zjC =

{
1, if dj < Cj

0, else

where TPBF , TPFNS are the newly added tar-
diness costs of jobs in queue buffers and finished
jobs i respectively in the reconfiguration interval
(tS , tS′) and αj , Cj , dj represent job unit tardiness
cost, completion time after scheduling, due date.

2) Reconfiguration Trigger: To reduce reconfig-
uration frequency, reconfiguration is triggered only
when:
• The current buffer is empty, or
• Overdue jobs exist and the current buffer has

relatively low average tardiness, or
• The number of finished jobs from the current

buffer exceeds a threshold and it has relatively
low average tardiness.

This heuristic aims to balance reconfiguration
and scheduling optimization. RECONF learns
when reconfiguration is beneficial based on the
manufacturing state.

3) Actions: it is imperative for Reconfigurable
Control Framework (RECONF) to adapt its
actions based on the specific machine production
status it encounters. To facilitate this adaptability,
RECONF’s action space must encompass a range
of candidate actions tailored to various operational
conditions. Furthermore, the design of this action
space should prioritize efficiency and simplicity.
RECONF achieves this by defining four distinct

actions, denoted as act1 through act4. Each of
these actions corresponds to a unique strategy for
selecting a candidate machine configuration (k)
from the set 1, 2, ..., X. Each strategy focuses
solely on jobs within the corresponding best-fit
(BFk) production mode. In situations where
multiple production modes exhibit equal merit
within a strategy, RECONF opts for the first-best
configuration available. Importantly, if the newly
selected configuration aligns with the current
configuration (k’), no machine reconfiguration is
initiated. These four RECONF actions (act1-act4)
are pivotal in ensuring adaptive and efficient control
within dynamic manufacturing environments.

The four RECONF actions (act1 − act4) are as
follows:

(1) act1: Select the machine configuration k that
has the largest total ψj , where ψj denotes the
current tardiness cost of job j:

act1 =k

 nk∑
j=1

ψj

 , k = 1, 2, ..., X (2)

Where ψj is calculated by:

ψj =

{
αj , if dj < tc

0, else

This action aims to switch to the configuration
currently accruing the maximum total tardiness cost
per second, in order to prioritize reducing delays for
those jobs.

(2) A2: Select the machine configuration k with
the largest average ψj :

act2 =k

 1

nk

nk∑
j=1

ψj

 , k = 1, 2, ..., X (3)

act2 has advantages when a mode does not have
the maximum total ψj due to few jobs, but has a
high average.

(3) act3: Select the machine configuration with
the largest number of jobs:

act3 =k (nk), k = 1, 2, ..., X (4)



Useful when no jobs are overdue or the number
of waiting jobs dominates the decision.

(4) act4: Select the machine configuration with
minimum average safe time STj :

act4 =k

 1

nk

nk∑
j=1

STj

 , k = 1, 2, ..., X (5)

Where:

STj = dj −
m∑
i=1

tij − tc (6)

The four actions provide expressive reconfigura-
tion capabilities based on assessments of tardiness
and waiting time across production modes.

4) State Features and Observation Space: A
DRL agent’s choice of action depends on its as-
sessment of the current state. It’s essential that state
features contain all relevant information needed for
action evaluation. To ensure accuracy and minimize
extraneous information, these state features should
be streamlined and closely linked to the actionable
data. In line with this principle, the Reconfigurable
Control Framework has introduced four distinct
state features, denoted as Feat1, Featt2, ..., Featt4,
which are directly tailored to the specifics of the
action space. These state features serve as essential
components in shaping the agent’s decision process.

Four state features (Feat1, F eat2, . . . , F eat4),
which are directly related to the action spaces,
are designed for RECONF. These features are as
follows (∀k = 1, 2, . . . , X :):

1 : The number of jobs in each BFk,

Feat1 = {n1, n2, . . . , nk, . . . , nX} .
2 : Total current unit tardiness cost of jobs in each BFk

Feat2 =


n1∑
j=1

ψj ,

n2∑
j=1

ψj , . . . ,

nk∑
j=1

ψj , . . . ,

nX∑
j=1

ψj} .

3 :Average current unit tardiness cost of jobs in each BFk

Feat3 =

 1

n1

n1∑
j=1

ψj ,
1

n2

n2∑
j=1

ψj , . . . ,
1

nX

nX∑
j=1

ψj


4 :Average safe time of jobs in each BFk.

Feat4 =

 1

n1

n1∑
j=1

STj ,
1

n2

n2∑
j=1

STj , . . .
1

nX

nx∑
j=1

STj


The average duration of safe time for jobs within

each best-fit production mode (BFk, where k ranges

from 1 to X) is a pivotal consideration. It’s worth
noting that each state feature is structured as an ar-
ray. To comprehensively capture the essence of each
state feature, four statistical measures—namely, the
maximum, minimum, average, and standard devia-
tion—are meticulously computed, offering insights
into the data’s characteristics. As a result, the cu-
mulative state space dimensions for Reconfigurable
Control Framework (RCF) amount to 16, given
that each of the four state features undergoes this
comprehensive analysis. In order to normalize the
state features effectively, the min-max normaliza-
tion technique is employed.

C. Scheduling Agent (SCHED)

SCHED optimizes job scheduling within the cur-
rent machine configuration. It possesses five actions
to select the next job based on different selection
strategies.

1) reward function: The increase in tardiness
over a scheduling step [ts, ts’] comes from jobs
waiting in the current buffer BFk’ It is calculated
as:

2) Actions: The SCHED agent has five actions
for selecting the next job to schedule from the
current buffer BFk’. Each action corresponds to
a different job selection strategy based on factors
like tardiness, due date, processing time, etc.
By providing diverse scheduling options tied to
assessments of the state, SCHED has expressive
capability to learn nuanced scheduling policies.

The five SCHED actions are:

The act1 selects a job with the max tardiness cost
starting from current system time:

(1) act1 = argmaxj (ψj) , j ∈ BFk′

The act2 selects a job with the max unit tardiness
cost:

(2) act2 = argmaxj (αj) , j ∈ BFk′

The act3 selects a job with the minimum safe time:
(3) act3 = argminj (STj) , j ∈ BFk′

The act4 selects a job with the nearest due date:



(4) act4 = argminj (dj) , j ∈ BFk′

The act5 selects a job with the minimum processing
time:

(5) act5 = argminj (
∑m
i=1 tij) , j ∈ BFk′

The diverse set of actions aim to provide SCHED
with flexibility in learning appropriate scheduling
policies across scenarios.

3) State Features and Observation Space:
The state features and observation space for the
SCHED agent aim to provide relevant information
about the current staus of machine to inform its
scheduling decisions. Carefully representing the
state enables SCHED to learn policies that map
conditions to appropriate job sequencing actions.

(1) feat1 = nk′ . The number of jobs in BFk′ .

(2) feat2 = {ψj} , j = 1, 2, . . . , nk′ . Current
unit tardiness cost of jobs in BFk.

(3) feat3 = {αj} , j = 1, 2, . . . , nk′ . Unit
tardiness cost αj of jobs in BFk.

(4) feat4 = {STj} , j = 1, 2, . . . , nk′ . Safe time
STj of jobs in BFk.

(5) feat5 = {dj} , j = 1, 2, . . . , nk′ . Due date
dj of jobs in BFk.

(7) feat7 = {
∑m
i=1 tij , } , j = 1, 2, . . . , nk′ .

Total processing time of jobs in BFk.

Several of the defined state features for SCHED
are arrays, such as the unit tardiness costs and
safe times of the waiting jobs. To extract useful
information from these arrays, statistical charac-
teristics are calculated, including the maximum,
minimum, average, and standard deviation. With
5 array features, this results in 5 * 4 = 20 state
variables. Additionally, for the unit tardiness costs
array, the number of zero values and non-zero
values are included as extra state features. In total
then, the SCHED state representation consists of
1+5∗4+2 = 23 dimensions. Like with RECONF,

min-max normalization is employed to scale the
state features to a standardized range between 0 and
1. This normalization prevents any single feature
from dominating. The 23-dimensional observation
aims to provide SCHED with sufficient relevant en-
vironment information to learn effective scheduling
policies.

R = − 1

ts′ − ts
(TPBFk′ ) (7)

TPBFk′ =
∑nk′
j=1 zjs′αj [ts′ −max(ts, dj)]

zjs′ =
{

1, dj < ts′

0, else

where zjs′ indicates whether job j is overdue at
ts′ .

By rewarding low incremental tardiness from
scheduling actions, SCD can learn when to schedule
which job to optimize sequencing.

D. RMS Hierarchical environment

The RMS environment coordinates the RMT sub-
environments, each modeling a machine with a
RECONF and SCHED agent. The decentralized
agent structure facilitates independent learning of
reconfiguration and scheduling policies.

E. Reward Function

The RMS reward is the average of the re-
wards obtained by each RMT environment at each
timestep. This aligns the global RMS objective
of maximizing manufacturing productivity with the
machine-level RMT rewards designed to minimize
job tardiness costs.

F. Actions

The RMS actions correspond to assigning each
pending job to one of the RMT environments. The
target RMT is selected based on aggregated state
measures to optimize system-level performance.

Specifically, there are 5 actions for the RMS
agent to choose from:

Select the RMT with the job’s configuration:



1) and minimum job’s configuration buffer
length

2) and maximum job’s configuration buffer safe
job time

3) and minimum job’s configuration buffer total
tardiness

4) and minimum job’s configuration buffer aver-
age tardiness

5) and already running the job’s configuration,
or the one with minimum configuration buffer
length

By dispatching jobs to machines based on factors
like queue occupancy, safe time, and tardiness costs,
the RMS can coordinate assignments to improve
system-level scheduling performance.

G. State Features

The RMS state representation summarizes high-
level state information across the underlying RMT
environments, including normalized measures of:

Job queue lengths per RMT Total tardiness costs
per RMT Average tardiness per RMT Job safe times
per RMT

It tracks RMT-level features like queue occu-
pancy and scheduling metrics to inform system-
level job assignment decisions. Additionally, it en-
codes current job configurations and selected RMT
configurations. This compact state representation
allows the RMS to assess global shop status for
effective joint reconfiguration and scheduling.

Input: Environment Configuration env config
Output: Trained policies and results

Initialization: Initialize environment with env config;
Initialize DDQN networks and replay buffer;
Initialize agent models and target networks;
Initialize Q-networks with weights θ and θtarget;
Initialize target network update frequency;
Initialize exploration strategy parameters;
for episode = 1 to num episodes do

Reset environment with reset function;
Initialize state s;
Initialize total episode reward R← 0;
while episode not finished do

for agent in agents do
// Get action from agent using

DDQN

act[agent]←
agent.get_ddqn_action(s);

end
// Execute actions in environment

obs, rew, terminateds, truncateds, info←
step(act);

for agent in agents do
// Update agent’s replay buffer

agent.update_replay_buffer(obs[agent],
act[agent], rew[agent], terminateds[agent]);

// Sample a random minibatch from

the replay buffer D

batch←
replay_buffer.sample_batch();

// Calculate target Q-values

using the target network:

Qtarget(s
′, a′)

Qtarget ←
target_network(batch.next states);

// Update Q-network using the

DDQN loss

L(θ)←
1
N

∑
i

(
Q(s, a)− (r + γQtarget(s

′, a′))
)2;

// Update the target network

weights θtarget
θtarget ← τθ + (1− τ)θtarget;
// Update state and episode

reward

s← s′;
R← R + r;

end
// Update exploration strategy

parameters

update_exploration_strategy();
end

end
Algorithm 2: RMT Multi-Agent Environment
training with DDQN



H. Digital Twin Architecture

To reflect the modularity and adaptability of
the physical Reconfigurable Manufacturing System
(RMS), a digital twin architecture is developed
where each Reconfigurable Machine Tool (RMT)
is represented as an individual digital twin. This
approach allows for a decentralized and modular
representation in line with the objectives of the
RMS.

Fig. 2. Illustration of RMT Digital Twin Architecture

The digitisation process of each RMT goes be-
yond the replication of its external appearance. It
involves the complete digitisation of three crucial
aspects:

1) Digitalization of Structure: This involves
creating a digital replica of the basic modules
and components of the RMT. This includes
modelling the physical structure and frame-
work that make up the RMT. The digital twin
captures the physical dimensions, materials
and geometric configurations of these com-
ponents, ensuring an accurate representation.

2) Digitalization of Configuration: Another
key facet is the digitisation of the RMT con-

figuration. This involves modelling the avail-
ability and arrangement of tools and fixtures
on the RMT.

3) Digitalization of Kinematics: Kinematics
refers to the study of motion and mechanical
behaviour within the RMT. Kinematics digi-
tisation involves the creation of mathematical
models that describe the movements, motions
and interactions of the components of the
RMT, including the Tool Approach Directions
(TADs) of the RMT.

By digitally capturing these aspects of each RMT,
the digital twin architecture enables a holistic repre-
sentation of the RMT’s behaviour, both structurally
and functionally. This comprehensive approach not
only facilitates real-time monitoring and simula-
tion, but also facilitates decision-making within the
RMS, in line with the system’s goals of adaptability
and modularity.

I. Network and Communication Protocol

To enable seamless and interoperable data ex-
change between the physical Reconfigurable Ma-
chine Tools (RMTs) and their digital twins, the
Open Platform Communications Unified Architec-
ture (OPC UA) standard is adopted. OPC UA
provides a platform-independent service-oriented
architecture with robust information modeling and
security capabilities suited for industrial control
systems. Within the Digital Twin framework, OPC
UA facilitates bidirectional communication between
the physical RMTs and virtual models using a
client-server architecture like illustrated in figure 3.



Fig. 3. Illustration of OPC UA Architecture [18]

The OPC UA server resides in the physical
RMT’s control system, making data such sensor
measurements and control signals available through
standard interfaces. This data is consumed by the
Digital Twin OPC UA client to update the virtual
model. Conversely, commands from the Digital
Twin OPC UA server are transmitted to orchestrate
the behavior of the physical RMT OPC UA client.
By leveraging OPC UA, the Digital Twin Architec-
ture enables seamless integration and interoperation
between diverse industrial assets and management
systems. Its platform-neutral design and focus on
interoperability make it an ideal communication
middleware for realizing the vision of adaptable and
intelligent Reconfigurable Manufacturing Systems.

J. Predictive Maintenance

Predictive maintenance is a critical aspect of the
Digital Twin’s role in the Reconfigurable Manufac-
turing System (RMS). By using real-time data and
advanced analytics, the Digital Twin enables proac-
tive maintenance strategies that can significantly
improve the reliability and uptime of the RMS. This
subsection outlines how predictive maintenance is
integrated into the Digital Twin architecture:

1) Condition Monitoring: The Digital Twin
continuously collects data from various sen-
sors placed within the RMS, including those

within each Reconfigurable Machine Tool
(RMT). These sensors monitor critical param-
eters such as job completion status and recon-
figuration status. The data from these sensors
are used to assess the current condition of the
RMTs and the overall RMS.

2) Maintenance Alerts and Recommenda-
tions: When the Digital Twin identifies po-
tential maintenance requirements, it generates
maintenance alerts. These alerts are commu-
nicated to the RMS operators or maintenance
personnel in real-time. The alerts provide
detailed information about the nature of the
issue, its severity, and recommended actions
for maintenance or repairs.

3) Historical Maintenance Data: Data on past
maintenance events and their outcomes are
stored and analyzed within the Digital Twin.
This historical data allows for continuous
improvement of maintenance strategies and
predictive models. Lessons learned from past
maintenance incidents contribute to more ac-
curate predictions and optimized maintenance
procedures over time.

Predictive maintenance, facilitated by the Digital
Twin, significantly enhances the overall reliability
and availability of the Reconfigurable Manufactur-
ing System. It reduces unplanned downtime, lowers
maintenance costs, and ensures that the RMS oper-
ates at peak efficiency by addressing maintenance
needs proactively.

V. CONCLUSION AND FUTURE WORK

In summary, our Modular Deep Reinforcement
Learning-Digital Twin Framework represents a
game-changing paradigm for the control and op-
timisation of reconfigurable manufacturing systems
(RMS). This framework embodies the convergence



of two transformative technologies: Deep Rein-
forcement Learning (DRL) and Digital Twin tech-
nology, all orchestrated within a modular architec-
ture. This combination produces a rich set of capa-
bilities that enable us to move towards full control
of RMS operations and significantly increase their
resilience in the face of dynamic manufacturing
environments.

The power of this combination lies in the com-
plementary strengths of each component. Digital
Twins, with their ability to replicate the structure,
configuration and kinematics of reconfigurable ma-
chine tools (RMTs), provide a holistic and real-
time representation of the RMS. This representa-
tion allows us to predict maintenance needs, simu-
late different operating scenarios and optimise job
scheduling and reconfiguration decisions with un-
paralleled accuracy. In essence, Digital Twins turn
the physical RMS into a digital playground where
we can proactively anticipate, adapt and optimise
operations.

On the other hand, Deep Reinforcement Learning
agents nested within the hierarchical structure of the
RMS give the system adaptability and intelligence.
These agents continuously learn from their interac-
tions with the digital twins and the physical RMS,
and adjust their decisions in real time. This adapt-
ability ensures that the RMS remains responsive
to changing conditions, aligns its operations with
production requirements, and handles unforeseen
challenges with grace.

In addition, our framework goes beyond opera-
tional efficiency by laying the groundwork for full
control of the RMS. The Digital Twins provide
a digital bridge between the physical and virtual
worlds, enabling operators and decision-makers to
visualise and fine-tune RMS behaviour with un-
precedented granularity. By combining the insights

of Digital Twins with the adaptability of DRL
agents, we create a dynamic and intelligent RMS
control system capable of responding precisely to
changing production needs.

In the context of resilience, our framework acts as
a bastion against unplanned downtime and produc-
tion disruptions. The predictive maintenance capa-
bilities derived from Digital Twins ensure that main-
tenance tasks are carried out proactively, reducing
costly interruptions. Meanwhile, the adaptability of
DRL agents ensures that the RMS thrives in unpre-
dictable and dynamic manufacturing environments,
ensuring consistent productivity.

REFERENCES

[1] R. Rajkumar, G. Ravi, and A. Zalzala, “Recent advances in
evolutionary and adaptable manufacturing systems,” Inter-
national Journal of Production Research, vol. 48, no. 22,
pp. 6675–6696, 2010.

[2] Y. Koren, U. Heisel, F. Jovane et al., “Reconfigurable
manufacturing systems,” CIRP Annals, vol. 48, no. 2, pp.
527–540, 1999.

[3] A. Bilberg, R. Malik, and K. Bøgh, “New model for
development and manufacturing of tailored solutions in
the industrial market,” Journal of Manufacturing Systems,
vol. 31, no. 3, pp. 367–374, 2012.

[4] Z. Li, L. Li, and A. Bilberg, “Design and implementation
of a reconfigurable manufacturing system,” International
Journal of Advanced Manufacturing Technology, vol. 39,
pp. 1181–1191, 2008.

[5] A. Dashchenko, Reconfigurable manufacturing systems
and transformable factories. Springer Science & Business
Media, 2006.

[6] S. Riedmiller and M. Riedmiller, “A neural reinforcement
learning approach to learn local dispatching policies in
production scheduling,” 07 2000.

[7] M. Aydin and E. Oztemel, “Dynamic job-shop scheduling
using reinforcement learning agents,” ROBOTICS AND
AUTONOMOUS SYSTEMS, vol. 33, 11 2000.

[8] Y.-C. Wang and J. Usher, “Learning policies for single ma-
chine job dispatching,” Robotics and Computer-Integrated
Manufacturing, vol. 20, pp. 553–562, 12 2004.

[9] P. McDonnell, S. Joshi, and R. Qiu, “A learning approach to
enhancing machine reconfiguration decision-making games
in a hierarchical manufacturing environment,” International
Journal of Production Research, vol. 43, pp. 4321–4334,
10 2005.



[10] S. Luo, “Dynamic scheduling for flexible job shop with
new job insertions by deep reinforcement learning,” Ap-
plied Soft Computing, vol. 91, p. 106208, 03 2020.

[11] S. Yang and Z. Xu, “Intelligent scheduling and reconfigu-
ration via deep reinforcement learning in smart manufac-
turing,” International Journal of Production Research, pp.
1–18, 2021.

[12] S. Huang, G. Wang, and Y. Yan, “Building blocks for
digital twin of reconfigurable machine tools from design
perspective,” International Journal of Production Research,
vol. 60, pp. 1–15, 12 2020.

[13] Z. Liu, T. Wang, Y. Zhou, W. Zhao, M. Zheng, Z. Ke,
and X. Zhao, “Digital twin-based reconfiguration time
point prediction method for reconfigurable manufacturing
systems,” Journal of Physics: Conference Series, vol.
2173, no. 1, p. 012058, jan 2022. [Online]. Available:
https://dx.doi.org/10.1088/1742-6596/2173/1/012058

[14] J. Tang, C. Emmanouilidis, and K. Salonitis, “Reconfig-
urable manufacturing systems characteristics in digital twin
context,” IFAC-PapersOnLine, vol. 53, pp. 10 585–10 590,
01 2020.

[15] J. Kombaya Touckia, N. Hamani, and L. Kermad, “Digital
twin framework for reconfigurable manufacturing systems
(rmss): design and simulation,” The International Journal
of Advanced Manufacturing Technology, vol. 120, 06 2022.

[16] Y. Cai, Y. Wang, and M. Burnett, “Using augmented
reality to build digital twin for reconfigurable additive
manufacturing system,” Journal of Manufacturing Systems,
vol. 56, 05 2020.

[17] S. Martinez, A. Mariño, S. Sanchez, A. Montes, J. Triana,
G. Barbieri, S. Abolghasem, J. Vera, and M. Guevara, “A
digital twin demonstrator to enable flexible manufacturing
with robotics: a process supervision case study,” Produc-
tion Manufacturing Research, vol. 9, pp. 140–156, 08
2021.

[18] OPC. (2008) Unified architecture. [Online]. Available:
https://opcfoundation.org/about/opc-technologies/opc-ua/


