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Abstract

Gaussian processes (GPs) are a Bayesian machine learning approach widely used
to construct surrogate models for the uncertainty quantification of computer sim-
ulation codes in industrial applications. It provides both a mean predictor and
an estimate of the posterior prediction variance, the latter being used to produce
Bayesian credibility intervals. Interpreting these intervals relies on the Gaussian-
ity of the simulation model as well as the well-specification of the priors which
are not always appropriate. We propose to address this issue with the help of
conformal prediction. In the present work, a method for building adaptive cross-
conformal prediction intervals is proposed by weighting the non-conformity score



with the posterior standard deviation of the GP. The resulting conformal pre-
diction intervals exhibit a level of adaptivity akin to Bayesian credibility sets
and display a significant correlation with the surrogate model local approxima-
tion error, while being free from the underlying model assumptions and having
frequentist coverage guarantees. These estimators can thus be used for evaluat-
ing the quality of a GP surrogate model and can assist a decision-maker in the
choice of the best prior for the specific application of the GP. The performance
of the method is illustrated through a panel of numerical examples based on var-
ious reference databases. Moreover, the potential applicability of the method is
demonstrated in the context of surrogate modeling of an expensive-to-evaluate
simulator of the clogging phenomenon in steam generators of nuclear reactors.

Keywords: Conformal prediction, Uncertainty quantification, Gaussian process
metamodel, Surrogate modeling, Non-conformity score, Adaptivity
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1 Introduction

1.1 Motivation and overview

In the field of the analysis and design of computer experiments (Fang, Li, & Sudjianto,
2006), the so-called “Verification, Validation and Uncertainty Quantification” (known
as “VV&UQ”) framework now became a gold-standard in many engineering fields in
order to rigorously assess the impact of various sources of uncertainty affecting some
input variables of numerical simulation models (De Rocquigny, Devictor, & Taran-
tola, 2008; Ghanem, Higdon, & Owhadi, 2017; Sullivan, 2015). To be more specific,
uncertainty quantification (UQ) relies on the definition of a computer model as a func-
tion ¢ which maps a d-dimensional input vector X € X C R? to an output variable
of interest, typically scalar Y € Y C R, by the input-output relationship ¥ = g(X).
These computer models play a key role in engineering as they are used for decision-
making regarding the management of industrial assets, with various applications from
maintenance scheduling to risk assessment of critical systems. Typically, g can be a
numerical solver for a system of partial differential equations, or a high-fidelity multi-
physics model. In this methodology, uncertainties are often treated in a probabilistic
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way, which means that one can draw samples according to the joint probability dis-
tribution of X in order to propagate the input uncertainties (typically, using Monte
Carlo sampling techniques, see, e.g., (Rubinstein & Kroese, 2008)) through the com-
puter model g in order to get the output empirical distribution. During this step, the
code g is often considered as a “black-box”, meaning that this procedure is completely
non-intrusive with respect to the code. As soon as ¢ is expensive-to-evaluate (e.g.,
from one hour to several days for a single call), standard UQ procedures often become
computationally intractable.

In this context, a so-called “metamodel” (also called “surrogate model”), denoted
by g, can be constructed to reduce the computational burden. The building strategy
of such metamodels require to choose an input design of experiments (DoE) for sam-
pling X and a family of metamodels. These choices are often guided by prior input
probabilistic modeling, computational cost constraints or potential prior knowledge
about the regularity of the computer code. Once the input probability distribution is
given, several techniques can be used to get the DoE, from basic Monte Carlo sampling
to more advanced space-filling techniques (see, e.g., (Fang et al., 2006)). Then, the
input-output DoE is used to train and validate the metamodel § in a similar fashion
as what is currently done in supervised machine learning (ML). Similar to ML algo-
rithms, a large panel of metamodels is available in the literature and many of them
are used in industrial practice (Cheng et al., 2023). Some of them are related to deter-
ministic approximation methods (e.g., polynomial chaos expansions (El Mogayd et al.,
2018; Jaber et al., 2023; Sudret, 2014) or artificial neural networks (Lefebvre et al.,
2023; Tripathy & Bilionis, 2018)), i.e., they may optimally account for the probabilis-
tic distribution of the inputs but do not model their discrepancy with respect to the
true response with the help of stochastic quantities. Others are probabilistic by nature
(typically, Gaussian processes or GPs (Rasmussen & Williams, 2006)) and naturally
equipped with stochastic approximations of their errors but blind to the underlying
distributions of the inputs (except through the DoE). Once a metamodel is built and
used as a surrogate of the original code, it serves either to speed up critical decision-
making processes or to facilitate intensive uncertainty analyses which are useful for
global sensitivity analysis or code calibration (with respect to experimental data). The
choice of a type of surrogate is driven by various considerations such as the size of the
training DoE, the dimension of the input and output spaces or the regularity of the
output with respect to the inputs. The present paper focuses primarily on GPs.

A crucial step in surrogate modeling is required to evaluate the “quality” of a
metamodel. Typically, in GP regression (also known as “Kriging”), various validation
metrics have been developed in the last decades in order to assess the predictive
quality of the fitted GP metamodel (Demay, Iooss, Le Gratiet, & Marrel, 2022; Marrel
& looss, 2023; Wieskotten, Crozet, looss, Lacaux, & Marrel, 2023). Some effort has
been put to propose validation metrics enabling to go beyond the measure of the
quality of the mean prediction (typically measured by the predictivity coefficient), for
instance by measuring the quality of the posterior predicted variance. As proposed
in (De Carvalho, Van Rosmalen, Wolff, Koffijberg, & Coupé, n.d.) and (Jaber et al.,
2023), additional cross-validation (such as K-fold, or LOO) techniques can be used
for assessing the robustness of the estimation on these validation indicators.



However, to the best of the authors’ knowledge, such a topic is still an open question
and no strong consensus has been reached regarding the metrics that should be used
in general for validating a GP metamodel or any other metamodel in general. Another
crucial ingredient of an efficient surrogate model should be its adaptivity to the level
of certainty of the local information. By conditioning on observed data, GP model
gains a better understanding of the underlying patterns and is less likely to be overly
confident in regions with limited or no data. The reliability of GP predictions is a
crucial aspect, especially when considering the Bayesian credibility intervals associated
with those predictions.

This reliability is influenced by the quality and quantity of the training data. In
regions where there is more observed and less noisy data, the GP tends to be more con-
fident and reliable in its predictions, leading to narrower credibility intervals. Properly
tuned hyperparameters and chosen covariance kernels can also enhance the reliability
of the GP, while poor choices may lead to overly optimistic or conservative uncertainty
estimates. Along these lines, an alternative approach, proposed by (Acharki, Berton-
cello, & Garnier, 2023) aimed at enhancing the predictive capacity of a GP metamodel
by optimizing the hyperparameters of the kernel in order to tackle model misspecifi-
cation and to obtain more robust Bayesian credibility intervals. However this method
still heavily relies on the assumption of Gaussianity of the original model.

Calibration of the credibility intervals is also very important for assessing the
reliability of uncertainty estimates. Indeed, well-calibrated intervals provide a true
measure of the model’s uncertainty, ensuring that, for a given confidence level, the
actual surrogate predictions fall within the predicted intervals.

In the present paper, another track is pursued: the idea relies on using conformal
prediction (CP) methods (Vovk, Gammerman, & Shafer, 2005) to quantify the GP
prediction uncertainty while not depending on any Gaussian assumption and well-
specification of the posterior kernel, two key elements which are required to fully
interpret the Bayesian credibility intervals. This complementary tool can thus be used
to assist a decision-maker on evaluating the general quality of a GP surrogate, in the
light of the application for which it is used.

CP has gained in the last decade a huge popularity within the ML community since
it allows to perform distribution-free UQ in both classification and regression applica-
tions (Angelopoulos & Bates, 2023; Vovk et al., 2005). The CP paradigm enables the
estimation of frequentist prediction intervals for any ML model (and, consequently,
any metamodel) that are agnostic to the specific family of models used during the
learning step. The prediction sets come with frequentist coverage guarantees, meaning
that, without any additional assumptions on the original model, the probability of the
true value of the computer code at a new point lying within the metamodel prediction
interval will be above a chosen confidence threshold. The only key assumption neces-
sary for constructing CP sets is the exchangeability of the dataset, which means that
the concatenation of the training data set with the new test point are interchangeable
in law, which is typically the case when dealing with independent and identically dis-
tributed (i.i.d.) samples such as those obtained from a crude Monte Carlo DoE in UQ
of computer models or as encountered in many standard ML datasets.



A primary challenge in CP lies in attaining adaptive prediction intervals, which
refers to the property of varying the interval width for different test points. The
concept of “adaptivity” (Romano, Patterson, & Candes, 2019) is intrinsically tied to
the expressivity of the metamodel, as the interval width should be small when the
metamodel prediction error is minimal and large otherwise. For the purpose of GP
quality evaluation therefore, adaptivity of CP interval candidates is a crucial feature.

Three main family of methods exist for building CP intervals: the historical
“full-conformal” paradigm (Vovk et al., 2005), the “split-conformal” case and the
“cross-conformal” setting (Angelopoulos & Bates, 2023). For the standard CP estima-
tors in these settings, adaptivity is often lacking and the exploration of non-conformity
scores for ensuring this property has been predominantly studied and developed in the
split-conformal case (Lei, G’Sell, Rinaldo, Tibshirani, & Wasserman, 2021; Romano
et al., 2019; Seedat, Jeffares, Imrie, & van der Schaar, 2023). This approach is not
practical in cases with limited budgets and/or database size (which can be the case
for costly-to-evaluate models in industrial applications). The split-conformal paradigm
necessitates the allocation of a calibration set, dividing the available data into three
parts for training the metamodel, calibrating the prediction sets, and testing, respec-
tively. Conversely, the cross-conformal paradigm LaTeX Info: Redefining andon input
line 1705. and especially the “Jackknife+” interval estimators (Barber, Candes, Ram-
das, & Tibshirani., 2021) allows for the utilization of the entire dataset but requires an
additional computational budget since it implies training multiple LOO metamodels.

In this paper, we propose a strategy for obtaining adaptive prediction intervals for a
GP in the pure cross-conformal case and use this in the context of GP metamodel qual-
ity assessment. We further demonstrate its ability for discriminating between different
choices of prior kernels on a number of numerical examples for reference databases, as
well as an industrial use case.

1.2 Related work

Within the full-conformal paradigm, the concept of “conformalizing” GPs can be
traced back to the Burnaev-Wasserman program (Vovk et al., 2005). A theorem
establishes a theoretical comparison between Bayesian credibility sets and CP sets,
assuming the Gaussianity of the original model (Burnaev & Vovk, 2014). This limit
theorem provides guarantees that the differences between the upper and lower end-
points of the two intervals follow a zero-mean Gaussian distribution asymptotically.
The conclusion drawn is that conformalizing under the Gaussian hypothesis is not
asymptotically “worse” than standard Bayesian credibility sets. Thorough numeri-
cal comparisons with Bayesian credibility sets in various scenarios are performed in
(Burnaev & Nazarov, 2016).

The full-conformal paradigm extends to spatial Kriging as well, as demonstrated in
(Mao, Martin, & Reich, 2023), where CP algorithms are developed for non-Gaussian
data by establishing conditions for approximate exchangeability. However, it is impor-
tant to note that full-conformal methods are computationally expensive, requiring a
complete grid search on the output space and can quickly become prohibitive (Bar-
ber et al., 2021; Papadopoulos, 2023; Vovk et al., 2005). To enhance efficiency, recent
work explores the idea of conformalizing GPs, as discussed in (Papadopoulos, 2023).



Moreover, the conformal paradigm finds application in enhancing Bayesian opti-
mization, particularly when GPs serve as query functions (Stanton, Maddox, & Wilson,
2023). This is particularly relevant when Bayesian credible sets obtained are deemed
unreliable due to model misspecification.

An idea for combining the use of a calibration set and the Jackknife+ for obtaining
adaptive intervals has been explored in the recent work of (Deutschmann, Rigotti,
& Martinez, 2023); however pure cross-conformal adaptive methods are not found in
recent literature.

1.3 Contributions and organization

In this work, we introduce a non-conformity score tailored for the use of GP surrogate
models within the cross-conformal Jackknife paradigm. Utilizing this score, we derive
an adaptive prediction interval named “J4+GP”, along with its min-max variant, and
establish their theoretical marginal coverage. The adaptivity of these set-estimators is
quantified, and we demonstrate that the length of these intervals is interpretable as a
good proxy for surrogate precision. This interpretation is supported by a significant
statistical correlation observed between the interval widths and the absolute value of
the metamodel error, showcasing their capability to assess the quality of a GP.

We provide a high-quality implementation of the methodology through a plug-
and-play GitHub repository that can be found at the following address: https://
github.com/vincentblot28/conformalized _gp. This repository is based on two pre-
existing Python libraries: OpenTURNS (Open source initiative for the Treatment
of Uncertainties, Risks’N Statistics), an open source UQ platform (Baudin, Dutfoy,
lIooss, & Popelin, 2017), and MAPIE (Model Agnostic Prediction Interval Estimator),
a library employed for CP (Cordier et al., 2023).

The rest of the paper is organized as follows. We recall the definition and main
properties of GPs and Conformal Predictors (Section 2). We then proceed in defining
the J+GP conformal predictor estimator and its variants (Section 3). A methodology
for validating the link with the error spread and the adaptivity is then presented.
Numerical comparisons between credibility intervals of the GP and the J+GP variants
are shown on a selection of databases for regression tasks (Section 4). Finally, Section 5
draws the main conclusions of this work and discuss a few perspectives.

2 Notations and background

In the rest of this paper we suppose fixed a probability space (€2, F,P). Random vari-
ables are denoted with capital letters. N'(11, %) denotes the Gaussian distribution with
mean 4 and standard deviation o while 7 (a,b, ¢) denotes the triangular distribution
centered in b € [a,c]. g : X — ) denotes a deterministic function where X C R? and
Y C R are regular domains. For a set D, 1 denotes the indicator function of D. The
cardinal of the output space will be denoted n4y,¢ = Card()). The Cartesian product
of the two spaces is denoted Z = X x ) and 2¢ will denote the set of subspaces of a
set L. For a given N € N we fix an i.i.d. dataset Dy of size N whose elements will be
written equivalently as Z; = (X, 9(X;)) = (X;,Y;) for all 4 € {1,..., N}. We denote
the features X = {X1,..., Xy} and similarly the labels g(X) = (¢(X1),...,9(Xn))
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and the dataset will sometimes be written Dy = (X, g(X)). As customary in super-
vised ML, the dataset in split into training and testing subsets, Dy = D,, UD,,, where
N = n+m are the respective size of the two subsets. We denote by g a metamodel of
g trained on D,, and g_; the corresponding LOO metamodel on D, \(X;, g(X;)) with
i € {1,...,n}. The Spearman correlation coefficient, corresponding to the Pearson
coefficient in the rank space, is denoted by r,. The space of continuous k-differentiable
functions on £ is denoted C¥(L). The space of square n x n matrices on a set £
will be denoted M,,(£). For an interval I C R we denote its length as £(I). For any
m € N, &(m) denotes the set of permutations over {1,...,m}. For any finite subset
{vi}i=1,....n of an ordered set, the (1 — «)-empirical-quantile, with « € (0,1), is given
by:

Gnto {vi} := the [(1 — a)(n + 1)]-th smallest value of vy, ..., v, (1)

with [-] denotes the ceil function. Similarly, the a-empirical-quantile is given by:
@no {vi} := the [a(n + 1) |-th smallest value of vy, ..., v, = =G, , {—v:i}  (2)
where || denotes the floor function.

2.1 Gaussian Process metamodels
2.1.1 General definitions

To build a GP surrogate model (Rasmussen & Williams, 2006) of function g, we start
by supposing that g is the realization of a certain process G = GP(M, K), where
M : X — ) is the mean of the process and K : X x X — R is the covariance kernel of
the process. Then, this process is conditioned on the available dataset D,,. By doing so,
this procedure is simply a Bayesian regression method while considering a Gaussian
prior on the function g in order to then obtain a posterior distribution. We sketch the
general principle of this type of regression in Figure 1. For simplicity we choose that
M = 0 (corresponding to the usual case of “ordinary Kriging”) and we use Matérn-v
kernels defined for all v = (2k +1)/2, k € N and z,2’ € X by:

K(.Z‘, Z‘/) = K(V,@,o’) (.I‘, Z‘/)
'l

o () ()

Here K, is a Bessel function of the second-type and I' is the Euler gamma function.
This kernel allows to better control the regularity of the process through its hyperpa-
rameter v since the corresponding sample paths will lie in CLv—1J (X) (Gu, Wang, &
Berger, 2018). The final conditional process G = G|D,, is a GP with posterior mean
and covariance functions defined for all z, 2’ € X as:

g(x) := k(z)T K~ 'g(X), and I?(am:r’) = K(z,2') — k(z)" K k(z"), (4)



where for all x € X:

k(z) = (K(z,X1),...,K(z,X,))" € R", and K := (K(Xi, X;))1<ij<n € Mu(R).
()

Dy, G~ GP(M,K) G =G|D, ~ GP(3,7)

Data Prior Posterior

Fig. 1 GP regression metamodeling illustration. The data obtained from the numerical code is
modeled with a prior GP and is then conditioned by the data. In the absence of noise, the posterior
process interpolates the data and produces credibility intervals.

The mean of the posterior process g will act as a metamodel for the deterministic
function g, thus in the case of GPs, g = ¢. For a choice of the regularity parameter v,
the hyperparameters (o2, 0) of the Matérn kernel can be optimized either through a
maximum likelihood estimation (MLE) or through cross-validation (CV) (Acharki et
al., 2023). In the case of ordinary Kriging, the MLE problem is:

(af/ILE, OMLE) € arg min (g(X)TKflg(X) + log(det K)) . (6)
(02,0)

The MLE procedure yields better results if the kernel type is well-specified; while
the CV method is more robust in case of misspecification (Acharki et al., 2023). For
x € X, the posterior standard deviation is denoted by:

F(z) = K2 (2, ). (7)

In this setting, it can be shown that for z = X,..., X, then (z) = 0 and g(z) = g(x)
and thus, the GP metamodel is interpolating. In the case where the results of the code
are perturbed with noise such that:

Y; = g(Xi) + e, ()

then the covariance matrix has to take into account a so-called nugget effect, meaning
that one needs to add a regularization term oI, such that:

K. =K +o.l,, (9)



modeling the noise dispersion. The new hyperparameter o. has to be tuned by con-
structing a full-likelihood and the resulting metamodel will no longer be interpolating
(Iooss & Marrel, 2019).

Moreover a “Full-Bayesian” approach exists for obtaining the posterior distribution
of the hyperparameters and updating the predictive distribution. This method is out
of the scope of this work and is likely infeasible for the purpose of constructing cross-
conformal predictors since it would involve tuning complex Monte Carlo Markov chain
algorithms on too many LOO metamodels.

For our purposes, we will be working with MLE-optimized hyperparameters of
Matérn-v kernels in the ordinary Kriging scenario (corresponding to zero prior mean)
and estimating empirically the nugget effect.

2.1.2 Bayesian credibility intervals

In Bayesian inference, a credibility interval is related to the distribution of a parameter
of the posterior law. For a certain credibility level 1 —« € (0, 1), the true value of the
parameter would lie in this interval with probability 1 — « given the available data.
In the case of GPs, the parameter is the mean of the posterior GP and for any new
point X,, 11 € X\ X, the credibility prediction interval is given by:

CRa(Xn-i-l) = [E(Xn+l) + ulfa/2§(Xn+1) ] ) (10)

where u;_q /9 is the (1—a/2)-quantile of the standard Gaussian distribution. Under the
Gaussian assumption on the original function, if g was truly modeled by our posterior
G|D,,, then we would have the conditional coverage:

P (9(Xnt1) € CRa(Xnt1) | Dn) =1 -« (11)

where CR,(X,+1) would be a prediction interval for the true function g. In practice we
do not have access to the distribution @ of the new point (X,,+1,g(Xn+1)). Therefore
there is not guarantee to have:

Q(Q(Xn+1) € CRQ(Xn+1)) =1-a. (12)

Even if the Gaussian assumption holds true, a common occurrence is the mis-
specification of the posterior model. This implies that the set of prior mean and/or
the family of kernels is proven to be incorrect. In essence, the practical reliability of
Bayesian credibility intervals, particularly for GPs, can be significantly compromised.

2.2 Conformal Prediction Intervals

2.2.1 General definition

CP is a finite-sample and distribution-free framework for building prediction sets with
a statistical guarantee on the coverage rate for any predictive algorithm. Suppose a
given dataset D,, and a new test point Z,, 11 = (Xy+1, Ynt1). It is assumed that the



n + 1 points are exchangeable (Vovk et al., 2005). Formally this means that for any
permutation 7 € &(n + 1), we have:

L
(217...,Zn+1) = (Zﬂ(1)7...,Zﬂ(n+1)). (13)

More concretely, this means that Z,4; could have been used as a training point and
that any training point could have been a test point. An i.i.d. dataset is a special case
of an exchangeable dataset. For any confidence level « € (0,1), a conformal predictor
of coverage 1 — « is any measurable function of the form (Vovk et al., 2005):

Co: Z"x X = 2Y

(14)
(Dr, X) = Cpo(X),
such that for a new test point Z,,11:
P(Yot1 € Cha(Xnt1)) >1—a. (15)

To build estimators of such set-functions, one relies on the use of a non-conformity
score. This score defined as a measurable function of the form (Vovk et al., 2005):

R:Z"x Z—R

(16)
(Dn, Z) = R(Dy, Z),

that quantifies how “strange” is the point Z compared to the dataset D,,. For example,
if a metamodel g of a code g has been trained on D,, then a straightforward non-
conformity score is given by the residuals:

R(Dn; Znt1) = [9(Xny1) = 9(Xnt1)l- (17)

It is noteworthy to insist that in practice the coverage property (15) is marginal, by
that meaning that it is averaged over all possible realizations of the training set D,,. A
more standard coverage is the training-conditional coverage property (Angelopoulos
& Bates, 2023), meaning that for a conformal predictor estimator énya, one has:

P (Yn+1 € Cra(Xni1) | Dn> >1-a. (18)

There are mainly three ways of estimating such conformal predictors: full-CP (Vovk
et al.,, 2005) (also called “transductive CP”), split-CP (Papadopoulos, Proedrou,
Vovk, & Gammerman, 2002; Papadopoulos, Vovk, & Gammerman, 2002) (also called
“inductive CP”), and cross-CP (Vovk, 2015).

10



Transductive CP is historically the first CP method introduced by (Vovk et al.,
2005). For any choice of a non-conformity score, it implies computing the following set:

3

an,a(Xn+1) = {Y ey: Card({i € {1,... 7n}7R(57;; Zi) > R(ﬁn, (Xn+1, Y}

(19)
where ﬁn = DpU{Z,4+1}. As mentioned in the introduction, transductive CP is com-
putationally intensive as it involves the training of one metamodel for each possible
value in ) as can be seen if the regular residual non-conformity score (17) is used. This
conformal predictor can be made computationally effective in the cases of Ridge and
Lasso regressions (Lei, 2019; Nouretdinov, Melluish, & Vovk, 2001), k-Nsearest neigh-
bors algorithm (Papadopoulos, Gammerman, & Vovk, 2008; Papadopoulos, Vovk, &
Gammerman, 2011) and more recently, GP regression (Papadopoulos, 2023).

Inductive — or split-CP — on the other hand, has a very low computational cost
as it requires a single training of the learning model. However, it needs a calibration
(or holdout) set which contains observations which have not been used during the
training phase. This set is then used for estimating the quantiles of the evaluated non-
conformity scores (usually, the residuals) on this set for constructing the intervals.
When only a few hundred observations are available, such a calibration set may be
impossible to obtain.

Unlike the first two techniques, cross-CP has a relatively low computational cost
and does not necessitate any holdout set. We now proceed in presenting the cross-
conformal predictors.

2.2.2 Cross-conformal prediction sets

The standard Jackknife prediction intervals require learning a metamodel g on a train-
ing dataset D,, and also n leave-one-out (LOO) metamodels g_;, with 1 < i < n. It
then makes use of the (1 — a))-empirical quantile of the LOO residuals defined by:

RzLOO = [g(Xi) — g-i(Xi)]- (20)

For a new point X,,+1 and a coverage level 1 — a, the standard Jackknife interval is
defined by: R
Cr{,a(Xn-Fl) = [a(Xn—&-l) + E]\n:‘,:a {R%OO}} . (21)
Unfortunately this prediction interval does not fulfill the coverage property (15),
especially in the case of a small dataset as mentioned in (Barber et al., 2021). To
circumvent this limitation, a more robust cross-conformal estimator is the Jackknife+
(Barber et al., 2021). In this case, the interval is not centered on the prediction of the
fully-trained metamodel but the LOO predictions are added in the empirical quantile.
The estimator is given by:

~

ClH (Xng1) = [G5 {G-i(Xns1) £ RO} (22)

This estimator has the universal coverage property of 1 —2«. As mentioned in Theorem
5 of (Barber et al., 2021), the factor “2” in 1 — 2« can be removed if the metamodel
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Jackknife Jackknife + Jackknife-minmax

- LOO . _ ~
§(Xn41) £ By G-1(Xnp1) £ R{O° Gmin(Xnt1) = REOC Gmax(Xng) i+ REOO
— LOO . . ~
9(Xnt1) £ R §-2(Xni1) + R3O0 Gmin (Xn11) = REOO Gonax (Xn1) i REOC
o ——> e o—— — e ——
9(Xui1) £ RO J-4i(Xn1) £ RFOC Gunin (X 1) — REOO G (X, i1) + RECO
. . PR VY —————
- : LOO o _ 00 ~
9(Xns1) Ry G-n(Xnyy) £ REOO Gmin (Xn11) = B Gouax (X1) i Ryr%f
® <t e > P —
! Y ~7 Y
~J ~NJ+ —mm
Cn,oz(XnJrl) Cn,a(XnJrl) Cn,a (X”ﬂ+1)
LOO ~
Ri = |g(Xz) 79—1(Xz)|
gmm(Xz) = min 9—j (Xi): Zimax(X ) =  max ?]\71 (Xl>

Fig. 2 Illustration of the different cross-CP methods.

satisfies the out-sample stability i.e., for any € > 0, one can find A € [0,1] such that
foralli e {1,...,n}:

P(|g(Xi) —g-i(Xi)| <€) > 1= A (23)
The authors of the present paper do not know whether such stability exists for GP
metamodels. The authors in (Barber et al., 2021) indicate that, in numerical appli-
cations, the empirical coverage barely drops below 1 — a unless the case-study is
somewhat “pathological”. More recently, it has been established that the training-
conditional property (33) is achieved under the out-sample stability (Liang & Barber,
2023). In most empirical cases however, the coverage property is respected.

Another way of achieving the 1 — « coverage is through the “Jackknife-minmax”
method (Barber et al., 2021) which is a more conservative implementation of the Jack-
knife+ method. This method differs from the latter as it does not use the prediction
of each LOO model but the minimum (resp., the maximum) predicted value to com-
pute the lower (resp., the upper) confidence bound. The Jackknife-minmax estimator
is given by the following expression:

CJ—mm (Xn+1) _ iquin

)

N-i(Xnr1)} =4 {RI°°},
(24)
Z_Zﬂllaxn {/g\*Z(XnJrl)} + an_‘,_a {RzLOO} .

An illustration adapted from (Barber et al., 2021) of the different Jackknife methods
can be found in Figure 2. Even if the Jackknife methods have a lower computational
cost than the full-CP, if one disposes of a dataset with more than a few thousand
observations, or in the case where the metamodel g is very long to train, these cross-
CP methods can still be too expensive. A recap of the different cross-CP methods
mentioned with their coverage and computational cost can be found in Table 1. One
drawback of this CP method is that there is no theoretical guarantee for adaptivity.
This is what will be addressed in the following with the help of GPs.

12



Table 1 Theoretical coverage and reminder of both training and evaluation costs for
CP methods (Barber et al., 2021).

Method Theoretical coverage Training cost Evaluation cost

Full >1—«a m - Ngrid N M- Ngrid
Split >1l—a 1 m
Jackknife+ >1-2«a n -m
Jackknife-minmax >1—« n -m

3 Conformalized GPs: the J+GP method

3.1 Motivations and estimator

The idea is to adapt the Jackknife+ method to GP metamodels for obtaining adaptive
prediction intervals. Suppose we have conditioned the Gaussian surrogate model on
a dataset D,, by optimizing the hyperparameters (03, ML) of a Matérn-v kernel
with given v. We thus have access to the posterior mean g as well as the posterior
standard deviation denoted by 7. We will also make use of different integer-powers of
the posterior variance as proposed in (Papadopoulos, 2023). For an integer 5, we will
write 7°(.) = I~{(, )B/2. For the respective LOO posteriors, we write g_; and 5_; for
all i € {1,...,n}. We proceed in defining the LOO Gaussian non-conformity score,
fixing a small § > 0 and an integer root 3:

LOOv . _ \g(sz) - E—i(Xz‘)\

& max ((57 75()(1))

, Yie{l,... n). (25)

The interest of § is to avoid the zero division when the metamodel is interpolating
(e.g., in absence of a nugget effect). For a new prediction point X,,1; € X and a
coverage rate 1 — « € (0, 1), we define the “J+GP” conformal predictors which are a
variant of the Jackknife+ estimator adapted to the GP metamodeling setting:

CLE" (Xoen) = (@it {3 (Xu) £ REOOT s max (855X ] (26)

This estimator enables adaptivity at different prediction points since the edges of the
intervals are controlled by a function of X, 1. Moreover, for this estimator, we achieve
the same theoretical coverage as the Jackknife+ as presented in the following theorem.

Theorem 1. Assume D,, is exchangeable. For a new point X, 11 € X and a coverage
level 1 —a € (0,1):

P (g(Xn+1) € 5J+GP(Xn+1)) >1 - 2a. (27)

n,x
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The proof is provided in Appendix A and is based mutatis mutandis on the proof
for the Jackknife+ in (Barber et al., 2021). We similarly propose the following “J-
minmax-GP” estimator:

CormCP (Xp) = | min gy =Gy { BFOOT xmax (6,55 (Xas0) ) }

max g+ E]\n—t_a {RzLOO X max (57 ﬁ—ﬁz(XnJrl)) }:| )

i=1,...,n

that inherits the same coverage guarantee as the standard min-max estimator, as
shown by the following theorem.

Theorem 2. Assume D,, is exchangeable. For a new point X, 11 € X and a coverage
level a € (0,1):

P (9(Xn1) € Corim™ O (X,10)) 2 1 - o (29)

The proof of the preceding theorem is found in the Appendix B and is similar to
the proof for the Jackknife-minmax in (Barber et al., 2021).

3.2 Methodology evaluation

To assess the capabilities of the J+GP and J-minmax-GP estimators in comparison
with the classical cross-CP and the Bayesian credibility sets, a two-step approach
is considered. In the following, let C; , denote any type of prediction interval. The
following computations are performed on the test subset D,,. We check whether the
empirical-coverage property is achieved for different values of the 1 — a coverage rate:

%iﬂ{g(Xi)eafw(Xi)}ml—m Vo<a<l. (30)
=1

Secondly, the correlation of the interval width and the model error is computed. Indeed,
for the intervals to be informative, they have to be small when the prediction error is
small and large otherwise. Therefore we could expect a significant correlation between
the two. This metric will quantitatively reflect the adaptive nature of our intervals. It
is thus valid to verify that, for a given coverage 1—a € (0, 1), the Spearman correlation
on the test database is non-null with statistical significance, i.e.:

0 <7y ({(U(C5 (X)), 190X0) = G(XD D bieq,m)) (31)

Here the Spearman correlation is chosen for avoiding the interpretation to be falsified
by outliers. For achieving statistical significance, we compute bootstrap intervals on
the estimation of the correlation metric.
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Concerning the quality of the metamodel, it is assessed with the help of the
predictivity coefficient (see, e.g., (Fekhari, Iooss, Muré, Pronzato, & Rendas, 2023)):

PR 6.0 gex)” (32)
—~  Var(g(X;))

Usually, this is the main index computed for assessing the predictive power of the
surrogate model and to ensure its validation. The closer the Q? is to 1, the more
predictive the metamodel is. Here, the analysis can be completed with the computa-
tion of the empirical coverage rates and of the correlations between the lengths of the
intervals and the residuals. Moreover, this strategy provides a pathway for a decision-
maker to assess which model suits his application best, since one can deploy it with
various priors on the covariane kernel and the mean in the scope of further enhancing
the predictive power for the final metamodel. In our numerical examples, we demon-
strate this by-product of our methodology by testing several GPs with different values
of Matérn regularity parameter v and show that it allows to discriminate between
them in order to choose the best one. Here, an emphasis is put on Matérn kernels
since they are widely used in practice. However this approach can also be deployed on
other families of kernels.

4 Numerical results

In order to test the proposed methodology, a series of numerical toy and use cases
are carried out. We choose standard regression benchmarks, both from the standard
ML and UQ literature, as well as a real engineering use case from nuclear engineering
provided by EDF, the French national electric utility company.

In what follows, the ML regression datasets are not generated from a computer
code g on a certain DoE but come from real-life observations. For these benchmarks,
the contribution of noise becomes non-negligible. This noise is thus taken into account
in the GP prior kernel through a nugget effect. As explained in Section 1, this nugget
effect could be optimized (see, e.g., (Iooss & Marrel, 2019)). In this work, we empir-
ically estimate the noise and add it by hand, leaving this nugget optimization aspect
for future work. As a preliminary step, standardization of the input data is recom-
mended. For cases for which we have access to the input distributions, we rely on the
means and standard deviations of these distributions, while for cases for which we
only hold a sample of data, we turn to empirical counterparts of these statistics.

In the case of analytical functions, artificial Gaussian noise is added with prescribed
standard deviations. For the deterministic codes (as for the EDF database), the noise
is assumed to be null and the error corresponds to the metamodel approximation error.

We start by going over the characteristics of each database and presenting the per-
formance of each GP by computing its predictivity coefficient as recalled in (32) and
the mean-squared error (MSE). Afterwards we proceed with a detailed study of three
databases namely the Computer Hardware (CPU) ML regression task (Feldmesser,
1987), the Morokoff & Caflisch function with noise (analytical UQ benchmark)
(Morokoft & Caflisch, 1995) and the EDF industrial use case (named “TPD” for
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“THY C-Puffer-DEPOTHYC?”, see (Jaber et al., 2023)). For each database, we present
the performances of the different prediction intervals, namely the GP credibility
intervals, the regular Jackknife+ and Jackknife-minmax, and finally our J+GP and J-
minmax-GP estimators. Three indices based on the prediction intervals are computed
on the test database: (a) the empirical coverage rate given in (30), (b) the average
width observed, and (c) the Spearman correlation between the width and the error of
the metamodel given in (31), all these three metrics being computed for three differ-
ent target-coverage levels (90%, 95% and 99%) and three different GP Matérn kernels
(namely v = 1/2,3/2,5/2). In order to have a more robust estimation of the Spearman
correlation, we perform a bootstrap estimation with 999 samples.

For the purpose of model-selection, a threshold has to be established in order to
validate the empirical coverage guarantee. One cannot expect to use a hard threshold
on the desired coverage rate as there can be some intrinsic fluctuations around this
value. To have a soft threshold, denoted by ¢, we use the result proven in (Vovk, 2012),
where it is shown that the distribution of the training-conditional coverage has the
following analytical form:

t=P (Yn+1 € Cr o (Xnt1) | Dn> ~Beta(n+1—1,1), with [ = [(n+ Da). (33)

This formula is valid under the training-conditional guarantee while standard cross-CP
estimators ensure the coverage over all possible sets of training data and test points
(what is called marginal coverage). Hence, even if it has not been proved that the
GPs achieve the out-sample stability required for guaranteeing the training-conditional
coverage (Liang & Barber, 2023), comparing our empirical coverage to the v-quantile
of the Beta(n + 1 —,1) distribution seems to be a reasonable proxy. In the following,
we have chosen v = 0.1 meaning that the threshold ¢ (above which we consider that
coverage is exceeded) is defined such that:

P(t>1—a)>1—uv, (34)

where 1 — o € (0,1) is the desired coverage which follows (33). Table 2 provides a
summary of all the thresholds used for GP selection on the various datasets while
considering a panel of confidence levels.

Table 2 Thresholds above which it is established
that the coverage rate is achieved for different
confidence levels.

Dataset 90% 95% 99%

CPU 0.875 0.931 0.986
Morokoff & Caflisch 0.882 0.938 0.985
TPD 0.886 0.940 0.985

In the rest of this section, we highlight, for every empirical coverage rate above
the imposed threshold ¢, the kernel whose GP model has the smallest average width
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and the surrogate with the highest Spearman correlation (i.e., correlation between
the width of the interval and the approximation error). In general, it is not the same
kernel that performs best on both metrics. In this case, the decision-maker has to
choose, depending on the targeted application, between more expressivity or more
conservatism.

4.1 Code description and availability

Our results have been obtained with a Python code built with the help of the Open-
TURNS (Baudin et al., 2017) and MAPIE (Cordier et al., 2023) open source libraries.
A wrapper around OpenTURNS has been implemented to make the Scikit-Learn
GP constructors (Pedregosa et al., 2011) compatible with it (i.e., with a fit and a
predict methods) since MAPIE handles such Scikit-Learn objects. Only few changes
have be made to the MAPIE library to make it compatible with our methodology
and it preserves all of its standard conformal methods. The corresponding GitHub
repository can be found at the following address: https://github.com/vincentblot28/
conformalized_gp.

4.2 Benchmark on ML regression datasets

4.2.1 Performance of the trained GPs

In Table 3, we present the different database sizes, the percentage used for training
and testing as well as the empirical value of the nugget effect. For the three different
Matérn regularity parameters, the corresponding predictivity coefficient and mean-
squared-error are displayed.

Table 3 Summary of the performance metrics of the GP

metamodels.

Matérn ‘ CPU Morokoff& Caflisch TPD

d 7 10 7
N 209 600 1000

%train 80 75 80

Yotest 20 25 20

Oc 0.1 10~4 0
1/2 Q? 0.845 0.923 0.990
MSE 8.3 x 103 2.33 x 10~3 1.46
3/2 Q? 0.856 0.935 0.996
MSE 7.7 x 103 1.98 x 103 0.54
5/2 Q? 0.854 0.937 0.997
MSE 7.8 x 103 1.93 x 103 0.46

4.2.2 CPU Dataset

This regression database involves predicting CPU performance with 7 features and a
dataset composed of N = 209 instances (Feldmesser, 1987), featuring integer values.
Employing an 80% — 20% split between training and testing, all the GPs consistently
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exhibit strong performance, with a predictivity coefficient showing only slight variation
for all the kernels regularity parameter values v as can be seen in Table 3. This scenario
underscores the potential interest for decision-makers of exploring different indices,
related to our prediction intervals.

In the comprehensive results presented in Table 4, our J+GP method consis-
tently achieves the smallest average width for the 90% (v = 3/2,8 = 1/2) and 95%
(v = 5/2,8 = 3/2) confidence levels. Notably, no empirical coverage is attained at
the 99% confidence level for any GP since the soft-threshold of 0.986 outlined in
Table 2 is not achieved by any of the estimators. The metamodel demonstrating the
highest correlation with model precision across all coverage rates is characterized by
the Matérn-1/2 kernel with the non-conformity score divided by a standard deviation
elevated to the power of 5 = 0.5. Figure 3 presents the bootstrapped Spearman corre-
lation box-plots for the Matérn-1/2, 8 = 0.5 on the different estimators. It can be seen
that the J-minmax-GP method gives the highest correlation, and is closely followed
by the GP credibility intervals and the standard J-minmax model. We observe that
the standard Jackknife4+ method provides non-adaptive intervals since the correlation
obtained is significantly low. However, with the use of the posterior standard-deviation
as in the J4+GP estimator, we see that this method can be made more adaptive. It is
interesting to point out that the standard minmax method in this setting is adaptive
as well given the high Spearman correlation value observed.

4.3 Benchmark on UQ analytical functions

The second example is the Morokoff & Caflisch function (Morokoff & Caflisch, 1995)
defined on the unit cube [0,1]% by:

d d
g(X) = % (1 + iz) H(X“))l/d. (35)

We choose d = 10 and use N = 600 samples drawn according to the multivariate nor-
mal distribution N (0, C) with the variance-covariance matrix C described in (Acharki
et al., 2023).

The output of the function is perturbed with an additive noise following a zero-
mean normal distribution with standard deviation 02 = 10~*. Here we use a 75%—25%
split of the database for training and testing respectively and an empirical nugget
. = 1074

As seen in Table 3, for all three regularity parameters the predictivity coefficient is
high with only a minor variation between v = 3/2 and v = 5/2. Here again, our method
is of interest for completing the GP quality assessment. It outperforms the standard
estimators on most soft coverage rates threshold outlined in Table 2. As can be seen
in Table 5, the J+GP method with Matérn-3/2 and 5 = 1 gives the smallest average
width for the 95% coverage rate and the Matérn-5/2 with a power 8 = 1 produces the
smallest widths for 1 — o = 99%. The Spearman correlation between the widths and
the approximation error is the most significant with the J-minmax-GP estimator on
all coverage rates with the Matérn-5/2 and 8 = 0.5 and 1 respectively (see Figure 4).
Moreover, a comparison is described the in Appendix C, where another GP model is
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Table 4 CPU dataset. Empirical coverage rate, average width and Spearman correlation for different
predictive intervals (standard Bayesian credibility, cross-conformal and the proposed estimator) for
different Matérn kernels and for three confidence levels. In red and underlined: lowest widths and
highest Spearman correlations obtained under the soft-coverage condition described in Table 2.

, Coverage Average width Spearman corr.
Method Matérn B | 90% 95% 99% | 90% 95% 99% | 90%  95% 99%
1/2 0.976 0.976 0.976|91.640 109.195 143.507| 0.720 0.720 0.720
GP credibility intervals  3/2 0.976 0.976 0.976 | 72.942 86.916 114.226| 0.492 0.492 0.492
5/2 0.976 0.976 0.976 |70.899 84.481 111.027| 0.626 0.626 0.626
1/2 0.905 0.905 0.976|29.753 40.752 358.625|-0.390 0.155 0.574
T4 3/2 0.952 0.952 0.976 | 30.446 51.964 278.951| 0.089 0.136 n.c
5/2 0.952 0.952 0.976 |32.203 51.954 267.514 |-0.250 -0.403 n.c
1/2 0.929 0.929 0.976 | 48.858 59.762 374.038 | 0.743 0.743 0.743
J-minmax 3/2 0.952 0.952 0.976 | 47.645 69.265 296.378 | 0.434 0.434 0.434
5/2 0.952 0.952 0.976 | 48.934 69.355 284.805| 0.511 0.511 0.511

0.5]0.905 0.905 0.976 | 28.142 38.662 268.953 | 0.627 0.762 0.717
1/2 1 10.881 0.905 0.976|25.390 36.992 204.518 | 0.741 0.749 0.717
1.5]0.881 0.905 0.976 | 25.983 32.639 157.892| 0.684 0.731 0.717

0.5|0.952 0.952 0.976|29.936 48.053 204.434 | 0.485 0.383 0.502

J+GP 3/2 1 [0.952 0.952 0.976 | 30.056 42.484 151.826 | 0.487 0.464 0.500
1.5]0.952 0.952 0.976|29.616 39.036 114.987 | 0.508 0.467 0.500

0.5]0.952 0.952 0.976 | 32.125 48.999 198.370| 0.533 0.376 0.632

5/2 1 10.952 0.952 0.976 | 31.355 42.255 148.834 | 0.607 0.606 0.635

1.5]0.952 0.952 0.976|29.587 38.569 113.974 | 0.573 0.592 0.635

0.5]0.929 0.952 0.976 | 47.310 57.670 285.721 | 0.782 0.779 0.751

1/2 1 10.929 0.952 0.976 | 44.336 56.077 221.599 | 0.774 0.776 0.747

1.5]0.952 0.952 0.976 | 45.221 51.342 174.991 | 0.775 0.758 0.745

0.5]0.952 0.952 0.976 | 47.156 65.644 221.724 | 0.470 0.484 0.504

. 1 10.952 0.952 0.976|47.376 59.539 168.792 | 0.488 0.473 0.501

J-minmax-GP 3/2

1.5]0.952 0.952 0.976 | 47.207 56.278 131.438 | 0.488 0.479 0.498

0.5]0.952 0.952 0.976 | 49.031 66.470 215.538 | 0.543 0.564 0.614
5/2 1 10.952 0.952 0.976 | 48.284 58.817 165.922 | 0.578 0.594 0.627
1.5]0.952 0.952 0.976 | 45.840 54.843 130.651 | 0.596 0.607 0.624

fitted with a nugget o = 0.1. We show that, while this metamodel achieves almost the
same Q? and MSE as our well-specified model, its correlations are significantly smaller.
This could be explained by the fact that the approximation error of the misspecified
model is driven essentially by the noise (as it is not well captured by the GP). This
example highlights the importance of examining the correlation between the errors
of the metamodel and the width of the prediction intervals. In the Appendix C, we
treat the case of an additional analytical function, namely the wing-weight function
(Forrester, Sébester, & Keane, 2008) and our methodology achieves similar results.

4.4 Benchmark on an industrial use case: the
THYC-Puffer-DEPOTHYC code

The following industrial test case is linked to the issue of clogging in steam generators
(SG) of pressurized water nuclear reactors. Over time, SGs of some reactors may face
the challenge of clogging, a deposition phenomenon that heightens the risk of mechan-
ical and vibration stress on tube bundles and internal structures. Additionally, it
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Boxplots for CPU dataset with Matérn(v = 1/2), = 0.5
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Fig. 3 Boxplots of the bootstrapped Spearman correlations obtained for the different methods used
to regress the CPU dataset.

affects their response during hypothetical accidental transients. For robustifying main-
tenance planning, EDF R&D has developed a numerical multi-physics computational
chain named “THYC-Puffer-DEPOTHYC” (TPD). The numerical tool utilizes spe-
cific physical models to replicate the kinetics of clogging, generating time-dependent
clogging rate profiles for specific SGs. Some input parameters of this code are subject
to uncertainties. For better understanding the sensitivity of the output uncertainty
with respect to the input variability, a full methodology using polynomial chaos expan-
sion surrogate models and advanced global sensitivity techniques has been proposed in
(Jaber et al., 2023). Here, we dispose of a database of 1000 Monte Carlo simulations,
with 7 features to predict the clogging rate at a specific time. The input distribution
of the features is recalled in Table 6. More information about the physical nature of
the features can be found in (Jaber et al., 2023).

The outcomes of the analysis are detailed in Table 7. The predictive capability of
the posterior GP proves exceedingly high (Q? > 0.99) for all regularity parameters,
making it challenging to pinpoint the optimal candidate. In the pursuit of establishing
which leads to a robust GP metamodel of THYC-Puffer-DEPOTHYC to speed-up
industrial studies on clogging, the different conformal predictors reveal an advantage
for a GP employing Matérn-3/2 and Matérn-5/2 prior kernels. Specifically, across
all soft-coverage rates, the J-minmax-GP intervals for v = 5/2 exhibit the smallest
average widths, while Bayesian credibility intervals fall short of meeting the required
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Table 5 Noisy Morokoff & Caflisch analytical function. Empirical coverage rate, average
width and Spearman correlation for different predictive intervals (standard Bayesian
credibility, cross-conformal and the proposed estimator) for different Matérn kernels and for
three confidence levels. In red and underlined: lowest widths and highest Spearman
correlations obtained under the soft-coverage condition described in Table 2.

i Coverage Average width Spearman corr.
Method Matérn 8| 90% 95% 99%| 90% 95% 99%| 90% 95% 99%
1/2 0.933 0.967 0.983/0.166 0.198 0.260| 0.119 0.119 0.119
GP credibility intervals  3/2 0.908 0.933 0.9580.127 0.151 0.198| 0.213 0.213 0.213
5/2 0.858 0.917 0.958(0.117 0.139 0.183| 0.253 0.253 0.253
1/2 0.875 0.942 0.992|0.138 0.177 0.319|-0.061 -0.118 0.075
J+ 3/2 0.917 0.950 0.983(0.143 0.183 0.312(-0.067 -0.260 -0.085
5/2 0.908 0.958 0.983|0.142 0.180 0.292|-0.203 -0.167 0.091
1/2 0.908 0.958 0.992(0.154 0.194 0.337| 0.068 0.068 0.068
J-minmax 3/2 0.958 0.975 0.992|0.168 0.210 0.340| 0.208 0.208 0.208
5/2 0.958 0.958 0.992|0.173 0.208 0.321| 0.266 0.266 0.266
0.5]0.883 0.942 0.992/0.138 0.173 0.316| 0.117 0.125 0.162
1/2 1 |0.883 0.942 0.983|0.138 0.172 0.302| 0.111 0.125 0.131
1.5/0.867 0.933 0.983]0.134 0.169 0.284| 0.115 0.122 0.118
0.5]/0.900 0.967 0.983/0.133 0.173 0.274| 0.208 0.225 0.206
J+GP 3/2 1 10.917 0.958 0.983|0.131 0.167 0.259| 0.213 0.220 0.211
1.5[0.900 0.950 0.975]0.133 0.172 0.256| 0.215 0.211 0.206
0.5]/0.883 0.967 0.983|0.134 0.177 0.261| 0.245 0.247 0.271
5/2 1 10.917 0.958 0.975|0.139 0.174 0.262| 0.261 0.259 0.257
1.5/0.917 0.942 0.967(0.145 0.183 0.249| 0.256 0.248 0.257
0.5/0.900 0.958 0.992/0.154 0.189 0.334| 0.126 0.132 0.146
1/2 1 0.917 0.950 0.992]0.154 0.188 0.319| 0.145 0.148 0.150
1.5/0.908 0.950 0.983]0.150 0.184 0.300| 0.148 0.150 0.147
0.5]/0.950 0.975 0.983|0.158 0.196 0.300| 0.259 0.264 0.264
J-minmax-GP 3/2 1 10.950 0.967 0.983]0.157 0.192 0.283| 0.259 0.260 0.253
1.5/0.942 0.975 0.983]0.158 0.197 0.280| 0.256 0.251 0.241
0.5]0.950 0.967 0.983|0.162 0.208 0.287| 0.300 0.306 0.301
5/2 1 10.950 0.958 0.992]0.166 0.203 0.290| 0.298 0.292 0.285
1.5(0.950 0.967 0.975]0.174 0.213 0.274| 0.288 0.282 0.277

threshold at this regularity parameter. Notably, the standard J-minmax estimator
demonstrates a noteworthy level of adaptivity, particularly for the coverage rates of
90% and 95%, surpassing correlations obtained with the Bayesian credibility interval
widths. This is most visible in Figure 5 where the minmax method for v = 5/2 achieves
the highest median Spearman correlation among all the other methods. It should be
emphasized however that the minmax method is more conservative and our J-minmax-
GP estimator produces smaller intervals for the same coverage rates. Additionally, the
J-minmax-GP estimator displays the highest correlation at the soft-99% level for the
different Matérn priors that is v = 3/2. Therefore in view of applications for speeding-
up industrial uncertainty studies of clogging, one can view the GP metamodel with
zero mean and Matérn-3/2 or 5/2 kernel optimized through MLE as the best candidate
for the metamodeling of THYC-Puffer-DEPOTHYC.
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Boxplots for Morokoff-Caflisch dataset with Matém(v = 5/2), 8 = 0.5
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Fig. 4 Boxplots of the bootstrapped Spearman correlations obtained for the different methods used
to regress the noisy Morokoff & Caflisch function.

Table 6 Distributions of the input variables of THY C-Puffer-DEPOTHYC.

Component Distribution Component Distribution
XM N(101.6, 4.0) X 7(0.5,5.0,10.0) x 10~6
x(2) N (0.0233,0.0005) X (6) 7(1.0,4.5,8.0) x 109
x(3) 7(0.2,0.3,0.5) x(7) 7(0.1,7.8,12) x 10~4
X4 7(0.01,0.05,0.3)

4.5 Synthesis of the results

We have shown that for a given confidence level, the study of the average width of the
prediction intervals and their Spearman correlation with the error enhances the evalu-
ation of the metamodel quality. This has been numerically exemplified with standard
ML datasets, analytical UQ functions and a complex computer-code industrial case
where the selection of different metamodels, for instance through different Matérn ker-
nels on the sole basis of the Q2 is not fully reliable. Indeed, our cross-conformal J+GP
and J-minmax-GP as well as the standard J-minmax conformal estimators usually
give the smallest prediction intervals width under the soft-empirical coverage condi-
tion and achieve better correlations than the standard Bayesian credibility intervals,
however good the Q2 is.
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Table 7 THYC-Puffer-DEPOTHYC industrial dataset. Empirical coverage rate, average width and
Spearman correlation for different predictive intervals (standard Bayesian credibility, cross-conformal
and the proposed estimator) for different Matérn kernels and for three confidence levels. In red and
underlined: lowest widths and highest Spearman correlations obtained under the soft-coverage
condition described in Table 2.

, Coverage Average width Spearman corr.
Method Matérn 8| 900, 95% 99%| 90% 95% 99%| 90% 95% 99%
1/2 0.960 0.975 0.975|4.717 5.621 7.387| 0.463 0.463 0.463
GP credibility intervals ~ 3/2 0.915 0.940 0.950|2.000 2.384 3.133| 0.353 0.353 0.353
5/2 0.850 0.885 0.945|1.632 1.944 2.555| 0.281 0.281 0.281
1/2 0.855 0.900 0.975|2.438 3.610 7.391| 0.266 -0.223 0.132
J+ 3/2 0.840 0.905 0.975|1.529 2.031 3.943|-0.355 0.043 0.202
5/2 0.840 0.920 0.965|1.353 1.836 3.109|-0.052 0.301 0.273
1/2 0.860 0.920 0.975|2.763 3.943 7.711| 0.666 0.666 0.666
J-minmasx 3/2 0.890 0.920 0.980 | 1.857 2.350 4.260 | 0.653 0.653 0.653
5/2 0.905 0.950 0.980|1.763 2.233 3.505| 0.606 0.606 0.606
0.5|0.840 0.885 0.975|2.346 3.396 6.889| 0.463 0.450 0.456
1/2 1 10.845 0.895 0.975|2.314 3.198 6.367| 0.469 0.466 0.458
1.5]10.835 0.895 0.975|2.284 3.047 6.126| 0.465 0.462 0.464
0.510.835 0.910 0.975]1.438 2.002 3.565| 0.364 0.338 0.348
J+GP 3/2 1 |0.840 0.925 0.955|1.523 2.058 3.215| 0.351 0.345 0.352

1.5/ 0.865 0.925 0.970|1.702 2.270 3.773| 0.356 0.353 0.355

0.5]0.855 0.910 0.960 | 1.326 1.765 3.113| 0.283 0.279 0.289
5/2 1 {0.845 0.905 0.970|1.509 2.072 3.689| 0.279 0.280 0.288
1.5/ 0.855 0.925 0.980|2.046 2.959 5.909| 0.280 0.279 0.282

0.5]0.870 0.925 0.975|2.674 3.732 7.228| 0.660 0.638 0.584
1/2 1 10.870 0.920 0.975]2.638 3.523 6.700| 0.617 0.592 0.546
1.5/ 0.865 0.910 0.975|2.612 3.376 6.460| 0.588 0.568 0.529

0.5]0.885 0.945 0.985|1.753 2.335 3.897| 0.596 0.558 0.489
3/2 1 {0.900 0.950 0.985|1.852 2.387 3.543| 0.519 0.489 0.449

J-minmax-GP 1.5]0.920 0.950 0.995|2.022 2.592 4.094| 0.482 0.456 0.421

0.5]0.910 0.955 0.985|1.730 2.178 3.503 | 0.487 0.456 0.397
5/2 1 {0.895 0.960 0.995|1.918 2.477 4.080| 0.424 0.390 0.349
1.5/ 0.915 0.970 0.995]|2.451 3.370 6.312| 0.383 0.357 0.322

5 Conclusion and perspectives

In this work, we explore the idea of conformalizing GPs in the cross-conformal pre-
diction paradigm in order to robustify the GP metamodel evaluation for industrial
applications. The idea is to make more reliable GPs prediction in a context in which
we are not sure that our surrogate model is well specified. To this end, we adapt the
classical LOO non-conformity score by weighting it with the local posterior standard
deviation of the GP raised to different powers. This method allows the conformal pre-
dictive intervals to endow a better adaptivity, thus having a varying interval span for
different new test points. Moreover, our J+GP prediction interval enjoys the same
theoretical marginal coverage property as the Jackknife+ and its min-max variant. In
order to quantify this adaptivity of the confidence interval, we evaluate the Spearman
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Boxplots for TPD dataset with Matém(v = 5/2), 8 = 0.5
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Fig. 5 Boxplots of the Spearman correlations obtained for the different methods used to regress the
THYC-Puffer-DEPOTHYC industrial testcase.

correlation between the width of the intervals and the absolute value of the meta-
model local error. We exhibit that our methods achieve a better adaptivity than both
standard cross-conformal methods and GPs credibility intervals. We demonstrate the
ability of our methodology for GP model selection between different prior regularity
parameters for the Matérn kernels. Moreover, we show how the proposed methodol-
ogy can help in assessing the validity of a GP metamodel for industrial applications
through a real use case related to nuclear engineering. In the case of very noisy data,
additional work is necessary for optimizing the nugget parameter of the GP prior in
order to achieve better correlations between the model precision and the constructed
predictive intervals. Future line of research would be to generalize this methodology
to families of deterministic metamodels like polynomial chaos expansions which do
not come equipped with an inherent stochastic structure such as the GPs or to more
general statistical models that come with a quantifiable notion of dispersion.

Appendix A Proof of theorem 1

Proof. Assume that:

Y =9(X)+e, (A1)
with e representing noise and that a statistical learning model g is trained on the
database D, = {(X;,Y:)} ;. Let (X;41,Yn41) € X X Y be a new point. We denote

i=1"
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by Dpy1 := DU {(Xng1,Yns1)}. Let g5y Vi # j € {1,...,n + 1}, be the statistical
learning D,,+1\{(X3,Y3), (X}, Y;)}. By exchangeability we have that g_ ;) = _(;,i)
and §_; = §_(i,n+1)- Let us denote by o(X;) an estimator of the standard-deviation
of g and assume ¢ > 0 and similarly for the corresponding LOQO. Similarly as for the
Gaussian non-conformity score we define:

RLOOG’ _ |Y; _g(Xl)| (A2)
R LC O

we then proceed and define R € M,,;1(R) as:

+00 if i = 7,
R = . . e, (A3)
’ {m—g_(i,j)(m/oii,j)(Xi) if i # j,

For simplifying the notations we will now fix 5 = 1. We proceed in defining the matrix
Ae M,1({0,1}):

It can be easily observed that A;; =1 < Aj; = 0. The strange set associated to A for
a € (0,1) is:

n+1
S(A)::{ie{l,...,n—i—l} : ZAiJ»Z(l—a)(n—i—l)}, (A5)

Jj=1

in other words, a point ¢ is strange if the residual R;; compared with R;; for all j # 4
is larger for a given fraction of comparisons.

We start by bounding the cardinal of S(A). Let i be a strange point. This point
can lose against at most a(n+ 1) — 1 other strange points, since it has to win at least
(1 —a)(n+1) times and it cannot win against himself. Let s = |S(A)|, we now group
pairs of strange points by the losing point. There are at most s possibilities for the
loser and for each one, it can lose at most a(n + 1) — 1 times. Thus there are at most
s X (a(n+1) — 1) pairs of strange points.

We can now bound the number of ways we can choose two points in S(A) and we
obtain:

wﬁsx (a(n+1) 1), (A6)
and rearranging:
s <2a(n+1). (AT)
We assume that the dataset D, 41 is exchangeable. Thus, using permutation matrices
IT that maps a j € {1,...,n+ 1} to n+ 1 (such that II; ,11 = 1), we prove that:

P(n + 1 € S(A)) = P(j € S(IIAIT)) = P(j € S(A)). (A8)
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Therefore, any point is equally likely to be strange. We have then:

- _E[S(A4)]]

P(n+1€S(A)) = %H Y P(j € S(4)) < 2a. (A9)
j=1

n+1 —

We can now reconnect with the definition of prediction intervals. Let us suppose that
Yni1 & G - Then, for at least (1 —a)(n + 1) values i in {1,...,n + 1}, we have:

Yoi1 > gi(Xni1) + REO97 x5 4(Xni1), (A10)

or
Yoi1 < G-i(Xng1) = ROO7 x 0 3(Xpi1). (A11)
Finally we can compute:

n+1

(I-a)(n+1) < Z 1 {Yn+1 ¢ 9-i(Xnt1) £ R%OOU X afi(XnJrl)}
i=1

n+1
_ Z 1{R{°%7 x5 _i(Xn11) < Vo1 — G-i(Xns1)|}
i=1
n+1 ~
-Y1 {RLooJ < Yor1 = 9-i(Xni)| }
2o o (Xns1)
n+1 ~ ~
= Z 1 { Yi —g-i(X0)| < Vi1 — 9—i(Xni1)| }
i=1 o-i(X; o-i(Xnt1)
n+1 n+1

= Z 1{Rin+1 < Rny1.:} = Z Apyri

i=1 i=1

where the last equality above is obtained with the identities 7_;(X;) = 0_(; 41)(X;)
and g_;(X;) = G—(i,n+1)(Xi). Therefore n +1 € S(A) and:

P (9(Xnt1) # Cia(Xni1)) SP(n+ 1€ S(A)) < 20. (A12)
O

Appendix B Proof of theorem 2

Proof. Assume the same hypothesis as in the previous theorem and we make use of
the same definitions and notations. We define the matrix R € M,,41(R) as:

Ry = {+00 i (B13)

Rij x 0_(; j)(Xny1) ifi# 7,
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We redefine the matrix A € M,,1({0,1}):

Ay = 1{min R, > Ry}, (B14)
J

where min I:Eij/ is the smallest residual for the point ¢ when leaving out any point

j/ € {1,...,n}. We start by bound the number of strange points, choose:

ix € arg min min Eij/. (B15)
ies(A) 4’

We can observe that for all strange point j € S(A), the matrix element A;_; is null.

Indeed this comes since by definition:

Vj e S(A), Rj;, > minﬁjj/ > min R, Iz (B16)
j/ j/ *

We can then easily bound the number of strange points using that i, € S(A):

n+1
n+1-]S(A) > Ai;>(1-a)(n+1), (B17)

and a rearrangement gives:
IS(A)] < a(n+1). (B18)
Using the exchangeability property in the same fashion as the preceding proof we have
that:
Pn+1eS(4) <a. (B19)

Let us suppose now that Y, 11 ¢ 6;;“"'”"““”. Then, for at least (1 — a)(n + 1)
values 7 in {1,...,n+ 1}, we have:

Yn+1 > _lrllaX /g\—i(Xn—&-l) + R%OOU X E_i(XnH), (BQO)
or,
Yn+1 < _7r{1in /g\fi(Xn+1) — RlLOOU X E,Z-(Xnﬂ). (B21)
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We denote Gmin(X;) := minj—; , g—;(X;) and similarly for gmax and ﬁi(XnH) =
RMOO7 x G _;(Xpy1). Finally we can compute:

n+1
(1 - a)(” + 1) S 1 {Yn+l ¢ |:§min(Xn+1) - Ri(Xn+1);§max<Xn+1) + Ri(XnJrl)] }

i=1
n+1

=30t min Vi =5 (X0)| 2 B0 6K}
1=1 T
n+1 ~

Yn —Y—j Xn ~ ~

= Z 1 { i min | +,1\ g j( +1)| X U_j(Xn+1> > RzLOOU X U—i(X7L+1)}
i=1 J=lon o j(Xnt1)
n+1 ~

. |Yn+1 —9—(n+1 j)(Xn+1)\ ~

= ]l{_mm — . X 0_ 1.4 (Xn+1)2

vt J=lm G (ni1.5)(Xnt1) (n+1,5)

|Y; - /g—(i,n+1) (Xz)l
0 (imt1)(Xi)

X 3—(1‘,n+1)(Xn+1)}

n+1
= Z 1 { min Ryi15 X 0—(n41,5)(Xnt1) > Ring1 X 0—(in41)(Xnt1)

—i..,
=1 7 "
n+1
= E 1 { in Rpy1; > Ri,nJrl}
- j=1,...,n
i=1
n+1

=Y Anjig
i=1

Therefore n + 1 € S(A) and we conclude as in the preceding theorem. O

Appendix C Additional numerical results

Predictive performance of the GPs as well as a description of the dataset used is
available in Table C1

C.1 MPG Dataset

The dataset on miles per gallon (Quinlan, 1993) is a regression database containing
398 entries. Its goal is to predict fuel consumption using 7 features, which include both
continuous and discrete attributes. After removing the undefined lines, the database
is reduced to a size of 392 entries. Each kernel employs 80% of the original dataset
for training and 20% for testing and computing various indices and intervals. For the
nugget-effect we take a standard deviation of 0.1.

The results are displayed in Table C3 and the correlation boxplots in Figure C1.
Across the three kernels, the GPs demonstrate strong performance in terms of Q2. In
this initial test, our J+GP method stands out by achieving the smallest average width
for a Matérn-5/2 kernel at two confidence levels (95% and 99%) with a S-power set
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Table C1 Summary of the performance metrics of the GP metamodels of additional

datasets.
Matérn MPG Wing-Weight Morokoff&Caflisch with o, = 107!
d 7 7 10
N 392 600 600
Y%train 80 75 5
Yotest 20 25 25
O 0.1 0.1 10~1
1/2 Q2 0.893 0.980 0.918
MSE 5.45 55.15 2.5 x 1073
3/2 Q2 0.892 0.984 0.93
MSE 5.49 43.33 2.11 x 103
5/2 Q° 0.890 0.984 0.932
MSE 5.58 41.69 2.06 x 103

Table C2 Threshold above which it is
established that the coverage rate is
achieved for different confidence levels.

Dataset 90% 95% 99%
MPG 0.880 0.937 0.983
Wing-Weight 0.882 0.938 0.985

to 1. Notably, the minmax method exhibits the highest correlation with the model
error when 8 = 1/2 for the 90% and 95% level confidence. It is worth mentioning the
remarkably low correlation observed in standard GP credibility intervals and classical
CP in this scenario.

C.2 Wing-weight function

The wing-weight function has been proposed in (Forrester et al., 2008). It is an analytic
function with input dimension 10 and scalar output that is used for UQ benchmarks.
If we denote X = (XM, ..., X(19)  the function is given by:

(1)10.758 ( §(2)10.0035 X® o (5)10.006
91X) =0036(X V)P r D00 () ()
100x(M \ ~"° 2
X(G) 0.04 X(S)X(Q) 0.49 X(I)X(IO)
x( ) cos(X @) ( ;A
The response variable Y is generated according to the following formula:
Yi = g(X;) + €, (C23)

where X; = (Xi(l), e ,Xi(lo)) for all ¢ has its domain in Table C4 and the ¢; are i.i.d.
samples from a normal distribution with zero mean and o2 = 25 as is done in (Acharki
et al., 2023). We build a sample of n = 600 observations. The GP is estimated using
a nugget effect with an observation noise variance set to 0.1.
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Table C3 MPG dataset. Empirical coverage rate, average width and Spearman correlation for
different predictive intervals (standard Bayesian credibility, cross-conformal and the proposed estimator)
for different Matérn kernels and for three confidence levels. In red and underlined: lowest widths and
highest Spearman correlations obtained under the soft-coverage condition described in Table 2.

B Coverage Average width Spearman corr.
Method Matérn 51 909 95% 99% | 90%  95%  99% | 90% 95% 99%
1/2 0.924 0.949 1.000|8.882 10.584 13.910| 0.076 0.074 0.079
GP credibility intervals /2 0.937 0.949 1.000 |8.654 10.312 13.552| 0.188 0.188 0.194
5/2 0.911 0.949 1.000|8.661 10.320 13.563| 0.211 0.207 0.211
1/2 0.911 0.949 1.000]|8.202 10.773 19.337 (-0.199 0.021 0.131
I+ 3/2 0.911 0.937 1.000|8.017 10.756 19.764 | 0.166 -0.026 0.309
5/2 0.911 0.949 1.000|8.081 10.777 19.716| 0.139 -0.193 0.130
1/2 0.949 0.975 1.000|9.280 11.842 20.386| 0.401 0.400 0.398
J-minmax 3/2 0.949 0.962 1.000|8.951 11.830 20.701| 0.384 0.383 0.380
5/2 0.949 0.962 1.000 | 8.986 11.765 20.577| 0.398 0.388 0.394

0.5]0.899 0.949 1.000|8.147 10.810 18.590 | 0.101 0.074 0.130
1/2 1 10.886 0.949 1.000|8.179 11.193 19.519| 0.081 0.061 0.075
1.5/0.886 0.949 1.000|8.242 11.092 20.564 | 0.077 0.083 0.053

0.5]0.911 0.937 1.000|7.946 10.801 19.019| 0.166 0.173 0.260
1 10.899 0.949 1.000|7.976 10.783 19.354| 0.196 0.239 0.229
1.5]0.899 0.949 1.000|8.113 10.594 19.771| 0.188 0.235 0.207

J+GP 3/2

0.5]0.911 0.949 1.000 |8.022 10.669 18.935| 0.220 0.082 0.330
5/2 1 10.911 0.949 1.000|8.041 10.546 19.030 | 0.216 0.202 0.262
1.5[0.899 0.949 1.000|8.071 10.541 19.239| 0.218 0.245 0.249

0.5]0.949 0.975 1.000|9.176 11.873 19.588| 0.364 0.334 0.270
1/2 1 10.962 0.962 1.000|9.221 12.337 20.596 | 0.296 0.244 0.187
1.5(0.962 0.962 1.000|9.275 12.138 21.703 | 0.241 0.192 0.156

0.5]0.949 0.962 1.000|8.957 11.833 19.889 | 0.404 0.398 0.345
3/2 1 10.949 0.962 1.000 |8.963 11.748 20.302| 0.374 0.369 0.297

J-minmax-GP 1.5]0.949 0.962 1.000|9.120 11.490 20.753| 0.350 0.337 0.276

0.5]0.949 0.962 1.000 |8.942 11.671 19.633| 0.399 0.402 0.375
5/2 1 10.949 0.962 1.000 |8.988 11.539 19.853 | 0.385 0.386 0.333
1.5[0.949 0.962 1.000|8.970 11.429 20.100| 0.376 0.358 0.311

In the results presented in Table C5 and Figure C2, it shows that the credibility
intervals of the GP are larger than those of the conformal methods hence giving an
empirical coverage higher than the desired one. For the 90% and 99% coverage, our
method J-minmax-GP has a lower prediction intervals width than the other methods.
Here the highest correlations are achieved for the J-minmax methods, however this
correlation is very low. One possible reason is that we have a function with a high
noise and that most of the errors of the model are purely aleatory.

C.3 Misspecified metamodel for Morokoff & Caflisch function

Here, we revisit the same analytical function as in Section 4.3, but instead of setting
an empirical nugget 0. = 10™* (equal to the actual noise of the function) we purposely
use o, = 10~ 1.
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Boxplots for MPG dataset with Matérn(v = 3/2), 8 = 0.5
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Fig. C1 Boxplots of the bootstrapped Spearman correlations obtained for the different methods
used to regress the MPG dataset.

Table C4 Domains of the input variables of the
wing-weight function.

Component Domain Component Domain
x@ [150, 200] X (©) [0.5,1]
xX®) [220, 300] X [0.08,0.18]
X3 [6,10] X(®) (2.5, 6]
x4 [-10,10] x) [1700, 2500]
x() [16,45] x(10) [0.025,0.08]

We can see by comparing tables C1 and 3 that the Q? and MSE of metamodels
with o, = 107! and 0. = 10~* respectively achieve almost the same performance;
however they do not have the same correlations between the errors and the width
of the prediction intervals. By comparing Table C6 and Figure C3 to Table 5 and
Figure 4, we see that the correlations are almost twice higher for the well-specified
model than for the misspecified one. It shows that looking at this correlation can be a
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Table C5 Wing-weight function with noise. Empirical coverage rate, average width and
Spearman correlation for different predictive intervals (standard Bayesian credibility,
cross-conformal and the proposed estimator) for different Matérn kernels and for three confidence
levels. In red and underlined: lowest widths and highest Spearman correlations obtained under
the soft-coverage condition described in Table C2.

i Coverage Average width Spearman corr.
Method Matérn 81 909 95% 99%| 90% 95% 99%| 90% 95% 99%
1/2 0.983 0.992 1.000|35.317 42.082 55.306|-0.007 -0.007 -0.007
GP credibility intervals  3/2 0.958 0.975 1.000(25.816 30.762 40.428|-0.051 -0.051 -0.051
5/2 0.933 0.975 1.000|24.202 28.838 37.900|-0.064 -0.064 -0.064
1/2 0.883 0.958 0.992|23.281 28.764 39.213|-0.117 0.035 0.074
J+ 3/2 0.883 0.942 0.983|21.070 24.792 32.899| 0.118 -0.143 0.093
5/2 0.867 0.958 0.983]20.500 24.706 32.205|-0.054 -0.095 0.012
1/2 0.917 0.967 0.992|25.336 30.983 41.291| 0.074 0.074 0.074
J-minmax 3/2 0.942 0.958 0.983|23.249 27.092 35.029| 0.018 0.018 0.018
5/2 0.917 0.958 0.983|22.479 26.761 34.029| 0.016 0.016 0.016
0.5]0.908 0.942 0.99223.487 28.151 39.879(-0.012 0.000 -0.025
1/2 1 10.892 0.942 0.992]23.449 27.560 40.092|-0.022 0.020 0.003
1.5/0.892 0.950 0.992(23.350 27.079 41.230(-0.014 -0.005 -0.005
0.5]0.875 0.942 0.983|20.375 24.500 34.076|-0.045 -0.051 -0.047
J+GP 3/2 1 10.867 0.942 0.992]20.051 24.850 35.298|-0.044 -0.055 -0.049
1.5/0.842 0.942 0.983]19.882 25.463 34.698|-0.045 -0.046 -0.051
0.5]0.875 0.942 0.983|20.399 24.188 33.088-0.076 -0.069 -0.060
5/2 1 10.875 0.933 0.983|20.141 24.173 32.515|-0.083 -0.076 -0.062
1.5/0.867 0.942 0.983]20.195 24.731 31.841|-0.071 -0.066 -0.060
0.5]0.933 0.967 0.99225.688 30.306 41.947| 0.058 0.055 0.051
1/2 1 10.933 0.958 0.99225.500 29.608 42.134| 0.052 0.047 0.042
1.5/0.933 0.950 0.992(25.449 29.113 43.360| 0.046 0.043 0.028
0.5]0.900 0.950 1.000(22.468 26.647 36.253| 0.000 0.006 0.001
J-minmax-GP 3/2 1 10.900 0.958 1.000{22.205 26.914 37.562|-0.007 -0.012 -0.022
1.5/0.900 0.950 1.000(21.969 27.658 36.865|-0.020 -0.021 -0.027
0.5]/0.900 0.958 1.000(22.418 26.007 35.155|-0.006 -0.009 -0.018
5/2 1 10.900 0.958 0.99222.154 26.101 34.387|-0.024 -0.029 -0.035
1.5/0.900 0.950 0.983(22.191 26.725 33.551|-0.035 -0.036 -0.040

good indicator. Moreover, we can check that the highest correlation is again achieved
with our proposed methodology (here J-minmax-GP).
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Boxplots for Wing-weight dataset with Matérm(v = 5/2), f =1
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Fig. C2 Boxplots of the bootstrapped Spearman correlations obtained for the different methods
used to regress the noisy Wing-weight function.
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Table C6 Morokoff & Caflisch function with o = 0.1. Empirical coverage rate, average
width and Spearman correlation for different predictive intervals (standard Bayesian
credibility, cross-conformal and the proposed estimator) for different Matérn kernels and for
three confidence levels. In red and underlined: lowest widths and highest Spearman
correlations obtained under the soft-coverage condition described in Table 2.

3 Coverage Average width Spearman corr.
Method Matérn B | 909 95% 99%| 90% 95% 99%| 90% 95% 99%
1/2 0.942 0.967 0.975|0.181 0.215 0.283| 0.122 0.122 0.122
GP credibility intervals  3/2 0.933 0.967 0.983(0.155 0.185 0.243| 0.115 0.115 0.115
5/2 0.917 0.967 0.983|0.151 0.181 0.237| 0.130 0.130 0.130
1/2 0.858 0.942 0.983|0.137 0.191 0.319| 0.036 0.129 -0.053
J+ 3/2 0.875 0.958 0.992|0.136 0.174 0.317(-0.024 -0.047 0.052
5/2 0.892 0.950 0.992|0.136 0.175 0.312(-0.042 -0.039 -0.052
1/2 0.900 0.958 0.983(0.151 0.203 0.333| 0.065 0.065 0.065
J-minmax 3/2 0.917 0.967 0.992|0.150 0.189 0.335| 0.136 0.136 0.136
5/2 0.933 0.975 0.992(0.151 0.191 0.329| 0.167 0.167 0.167
0.5]0.867 0.950 0.992]0.137 0.184 0.319| 0.126 0.159 0.151
1/2 1 |0.858 0.950 0.992|0.136 0.183 0.318| 0.123 0.136 0.139
1.5/0.858 0.942 0.992|0.136 0.181 0.308| 0.127 0.120 0.132
0.5]0.892 0.950 0.992]0.136 0.174 0.305| 0.112 0.084 0.135
J+GP 3/2 1 |0.892 0.950 0.983|0.135 0.171 0.288| 0.115 0.110 0.107
1.5/0.892 0.942 0.983]0.135 0.167 0.279| 0.114 0.117 0.113
0.5]0.892 0.950 0.983]0.135 0.173 0.296| 0.132 0.074 0.126
5/2 1 |0.892 0.950 0.983|0.134 0.167 0.280| 0.129 0.128 0.110
1.5/0.883 0.950 0.983|0.132 0.167 0.279| 0.130 0.125 0.125
0.5/0.908 0.958 0.992]0.151 0.197 0.333| 0.129 0.135 0.150
1/2 1 /0.892 0.958 0.992|0.150 0.196 0.333| 0.151 0.150 0.150
1.5[0.883 0.950 0.992|0.149 0.194 0.323| 0.147 0.152 0.152
0.5]0.925 0.967 0.992(0.152 0.190 0.321| 0.148 0.158 0.158
J-minmax-GP 3/2 1 /0.917 0.967 0.983|0.150 0.186 0.303| 0.156 0.165 0.150
1.5[0.917 0.967 0.983|0.150 0.182 0.294| 0.154 0.160 0.148
0.5/0.917 0.967 0.992|0.150 0.189 0.311| 0.171 0.176 0.172
5/2 1 /0.917 0.967 0.983|0.149 0.181 0.294| 0.174 0.172 0.162
1.5/0.917 0.975 0.983]0.148 0.182 0.293| 0.168 0.169 0.153
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Boxplots for Morokoff-Caflisch dataset with Matérn(v = 5/2), 5 = 0.5
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Fig. C3 Boxplots of the bootstrapped Spearman correlations obtained for the different methods
used to regress the noisy Morokoff & Caflisch function with a misspecified model.
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