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Abstract

Based on supermodularity ordering properties, we show that convex risk mea-
sures of credit losses are nondecreasing w.r.t. credit-credit and, in a wrong-way risk
setup, credit-market, covariances of elliptically distributed latent factors. These re-
sults support the use of such setups for computing credit provisions and economic
capital or for conducting stress test exercises and risk management analysis.

keywords. Supermodular function, convex risk measure, supermodular random vari-
ables, stop loss property, elliptical distribution, credit loss, economic capital, current
expected credit loss, CVA, CCP, CDO tranches.
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1 Introduction

Elliptical distributions are largely used in finance modelling, be it for credit latent vari-
ables or portfolio positions modelling (McNeil et al., 2015). They allow to generate, by
means of Monte-Carlo routines, a span of possible losses. Risk indicators can then be
formed so as to inform top management or supervisors about the monitoring of possible
future losses borne by a financial institution. In particular, regulatory bodies instruct
to rely on value-at-risk and expected shortfall measures, where the last type, which
falls under the remit of coherent risk measure1, is often preferred to quantiles usage.
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One example can be found in Bastide, Crépey, Drapeau, and Tadese (2023), where the
economic capital of a clearing member bank of a central counterparty (CCP) is based
on an expected shortfall risk measure of the bank loss over one year. Such measure of
loss depicts numerically a nondecreasing property w.r.t. credit-credit and credit-market
dependence parameters, capturing an increase in loss given default amounts as more
defaults materialize. Cousin and Laurent (2008) outlined the possible application of
supermodular order for comparing CDO tranche premiums w.r.t. a credit correlation
parameter of their default latent variables modelled as Brownian motions. Meyer and
Strulovici (2012) generalize the use of such notion, citing application to credit losses with
bounded support. The supermodular order property finds its root in Marshall and Olkin
(1979, Definition C.2, page 146) under the name of lattice-superadditive property. It has
attracted subsequent attention with the works of Müller (1997) and Bäuerle and Müller
(1998), applied to stop-loss ordering of aggregated losses. Bäuerle and Müller (2006)
emphasize the role of several stochastic orders in relation with convex risk measures.
In particular, multidimensional elliptically distributed random variables have the super-
modular order property w.r.t. their covariance matrix coefficients (Block and Sampson
(1988, Corollary 2.3) recalled in Section B). This result will play a key role in this paper.

In Bastide, Crépey, Drapeau, and Tadese (2023), the loss takes a more complex
form than what is usually found in the credit risk literature such as Cousin and Laurent
(2008). This is due to a loss allocation coefficient attributed by the CCP to the surviving
members. In this paper, we prove the nondecreasing property of convex risk measures
w.r.t. covariance coefficients of portfolio credit losses. Our main motivation is to provide
evidence of the soundness of the related approaches for computing credit provisions such
as current expected credit loss (CECL, akin to the CVA in the central clearing one-period
XVA setup of Bastide, Crépey, Drapeau, and Tadese (2023)), and economic capital
(EC). This is important in justifying model assumptions and design, part of the model
development cycle advocated by regulators and supervisors (European Central Bank,
2019). Table 1 details the two main targeted metrics in this work.

Name Expression Reference

current expected
credit loss (CECL)

E0

(
n∑

i=1

fi(X1, . . . , Xn)gi(Yi)

)
Definition 4.4

economic capital (EC) ES0α

(
n∑

i=1

fi(X1, . . . , Xn)gi(Yi)

)
Definitions 4.6

and C.2

Table 1: Metrics of interest (.0 relates to the survival probability measure of the refer-
ence bank).

The paper is organized as follows. Section 2 introduces the strategy of proof by
supermodularity arguments that will be used to establish our main result, Theorem
4.4 (leading to the CECL and EC monotonicity results of Propositions 4.5 and 4.6),
in an appropriate elliptical framework with wrong-way risk. Section 3 completes the
results from Cousin and Laurent (2008) regarding equity and senior CDO tranches.
The properties of Section 2 are used in Section 4 for implying the monotonicity of credit
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provisions and economic capital metrics w.r.t. covariance coefficients in elliptical models.
Section 5 concludes. Supermodular functions, elliptical distributions and risk measures
are reviewed in Sections A, B and C.

Hereafter we consider a non-atomic probability space (Ω,A,Q), with corresponding
expectation, variance and covariance operators denoted by E, Var and Cov. All the
considered random variables are real-valued and taken in a closed linear subspace and
sublattice X of L1 (Q) that includes the constants.

2 Supermodular Ordering Properties

2.1 Strategy of Proof

The following classical supermodularity results will be instrumental in establishing our
main result Theorem 4.4.

Müller (1997, Definition 2.6) A random vector X = (X1, . . . ,Xm) is said to be
smaller than the random vector Y = (Y1, . . . ,Ym) in the supermodular ordering,
written X ≤sm Y, if E

(
f(X)

)
≤ E

(
f(Y)

)
holds for all the supermodular functions2

f : Rm −→ R such that the expectations exist. □

Müller and Stoyan (2002, Definition 3.9.4, page 113) A random vectorX = (X1, . . . ,Xm)
is said to be smaller than the random vector Y = (Y1, . . . ,Ym) in the increasing su-
permodular ordering, written X ≤ism Y, if E

(
f(X)

)
≤ E

(
f(Y)

)
holds for all the

nondecreasing supermodular functions f : Rm −→ R such that the expectations exist. □

An equivalent characterization of supermodular vectors is given by
Müller and Stoyan (2002, Theorems 3.9.11 (i) and (ii), page 118) The following state-
ments are equivalent:

(i) X ≤sm Y,

(ii) X and Y have the same marginals and X ≤ism Y. □

Müller (1997, Theorems 3.2 (c)) If X, Y, Z are random vectors such that any random
vectors distributed as X and Y conditionally on Z = z, denoted by

[
X|Z = z

]
and

[
Y|Z = z

]
, verify

[
X|Z = z

]
≤sm

[
Y|Z = z

]
for all possible values of z, then

X ≤sm Y. □

Müller (1997, Definition 2.1) For X and Y in X, X precedes Y in stop-loss order,
written X ≤sl Y, if E(X −A)+ ≤ E(Y −A)+ holds for all real constants A ≥ 0. □

Equivalently, for the same random variables X and Y as in Müller (1997, Definition 2.1):

2see Appendix A.
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Bäuerle and Müller (1998, Theorem 2.2 b)) X ≤sl Y if and only if E
(
f(X )

)
≤ E

(
f(Y)

)
holds for all the nondecreasing convex functions f : R → R such that the expectations
exist (e.g. f = id). □

Müller (1997, Theorem 3.1) Let X = (X1, . . . ,Xm) and Y = (Y1, . . . ,Ym) be random
vectors with X ≤sm Y and let S =

∑m
i=1Xi, S

′ =
∑m

i=1 Yi. Then S ≤sl S
′. □

Lemma 2.1 If X ≤sm Y, then, for any nondecreasing supermodular function f : Rm →
R, f(X) ≤sl f(Y).

Proof. For any A ∈ R, the function φ : R → R+, x 7→ (x − A)+ is nondecreasing and
convex. By Müller and Stoyan (2002, Theorem 3.9.3 f), page 113), φ◦f is nondecreasing
supermodular. Hence E

(
(f(X) − A)+

)
≤ E

(
(f(Y) − A)+

)
, which yields the result by

Müller (1997, Definition 2.1). □

Bäuerle and Müller (2006, Theorem 4.4) Assuming ρ a risk measure as per Definition
C.1, then X ≤sl Y implies ρ (X ) ≤ ρ (Y). □

A succinct proof of this result can be found in Bäuerle and Müller (2006) prior to its
statement. We give a more detailed proof for completeness at the end of Section C. Note
that the original statement postulates, instead of the law-invariance property, that the
risk measure ρ has the Fatou property, that is, if X ,X1,X2, . . . are integrable random

variables with Xk
L1

−→ X , then ρ (X ) ≤ lim infk→∞ ρ (Xk). We recall from Kallenberg
(2021, page 832) that a closed linear subspace of a Banach space is a Banach space and
from Meyer-Nieberg (1991, Definition 1.2.1 i), page 12) that a sublattice of a lattice
with the same meet and join operations ∧ and ∨ is again a lattice. Therefore, if X is a
Banach lattice (i.e. an order lattice that is a complete normed vector space, e.g. Lp space
with p ≥ 1) and ρ : X → R is proper, monotonous and convex, then ρ is continuous
on the interior of its domain (Ruszczyński and Shapiro, 2006, Proposition 1), thus has
the Fatou property on the interior of its domain. Hence the Fatou property requirement
is automatically satisfied by ρ as long as it is defined on a Banach lattice. This is the
case for both expectation and expected shortfall defined on any sublattice and linear
subspace of L1.

In Section 4, we will consider financial credit losses over a period of time [0, T ] of the
form

∑n
i=1 fi(X1, . . . ,Xn)gi(Yi) for some given number n of credit obligors. The default

times τi of the credit obligors indexed by i ∈ 1 . . . n will be modelled by the latent variable
Xi breaching a certain threshold. gi(Yi) represents nonnegative losses given default of
obligor i. The functions fi are nonnegative nondecreasing w.r.t. each of their arguments
and have the supermodular property (when n > 1) and the functions gi are nonnega-
tive and nondecreasing. We will establish in Section 4 that (x1, . . . , xn, y1, . . . , yn) 7→∑n

i=1 fi(x1, . . . , cn)gi(yi) is a nondecreasing supermodular function on R2n. Hence, by
Lemma 2.1, if (X1, . . . ,Xn,Y1, . . . ,Yn) ≤sm (X ′

1, . . . ,X ′
n,Y ′

1, . . . ,Y ′
n), then

n∑
i=1

fi(X1, . . . ,Xn)gi(Yi) ≤sl

n∑
i=1

fi(X ′
1, . . . ,X ′

n)gi(Y ′
i). (1)
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Having assumed the probability space non-atomic3, Bäuerle and Müller
(2006, Theorem 4.4) allows concluding that ρ (

∑n
i=1 fi(X1, . . . ,Xn)gi(Yi)) ≤

ρ (
∑n

i=1 fi(X ′
1, . . . ,X ′

n)gi(Y ′
i)). This is the plan for proving our main result Theo-

rem 4.4.
The following two Lemmas 2.2 and 2.3 will be the building blocks for establishing

the above-needed supermodularity property.

Lemma 2.2 The supermodularity property is satisfied by any function Rn ∋
(x1, . . . , xn) 7→ h(x1, . . . , xn) ∈ R that can be written as h(x1, . . . , xn) =

∑n
i=1 hi(xi)

for some functions h1, . . . , hn of single arguments. In particular, for any constants
B1, . . . , Bn, the function (x1, . . . , xn) 7−→ −

∑n
i=1 1{xi≤Bi} is supermodular. This func-

tion is also nondecreasing w.r.t. each of its arguments xi.

Proof. By Yildiz (2010, Corollary 1), recalled in Section A, we can focus on increasing
differences. Let h(xi, xj |x−i,j) denote the function h applied to xi and xj but keeping
all other arguments x−i,j := (xk)k ̸=i,j fixed. Fixing δ, ε > 0, the difference h(xi + δ, xj +
ε|x−i,j)− h(xi, xj + ε|x−i,j)− h(xi + δ, xj |x−i,j) + h(xi, xj |x−i,j) = hi(xi + δ) + hj(xj +
ε) − hi(xi) − hj(xj + ε) − hi(xi + δ) − hj(xj) + hi(xi) + hj(yj) simplifies to 0, showing
the supermodularity of h. □

Lemma 2.3 If g : R → R and h : R → R are both nondecreasing, then (x, y) 7→ g(x)h(y)
is supermodular.

Proof. If x′ ≥ x and y′ ≥ y, then

g(x′)h(y′)− g(x′)h(y)− g(x)h(y′) + g(x)h(y)

= g(x′)
(
h(y′)− h(y)

)
− g(x)

(
h(y′)− h(y)

)
≥ g(x)

(
h(y′)− h(y)

)
− g(x)

(
h(y′)− h(y)

)
= 0.

(2)

Hence (x, y) 7→ g(x)h(y) has increasing differences w.r.t. any pair (x, y) ∈ R2, i.e. is
supermodular, by Yildiz (2010, Corollary 1). □

2.2 Elliptical Setup

We consider a one-period financial market model on (Ω,A), assumed arbitrage-free,
with related risk-neutral probability measure Q∗4. We index all the formerly introduced
notation by “. ∗ ” whenever applied in reference to Q = Q∗. We consider random vectors
X = (X0,X1, . . . ,Xm) and X′ = (X0,X ′

1, . . . ,X ′
m) following elliptical distributions (see

Section B) under Q∗ as per

X = µ+AZ and X′ = µ+A′Z, (3)

3see Bäuerle and Müller (2006, Example 3.1) for a counter-example to the monotonicity property for
probability space with atom(s).

4see for instance (Föllmer and Schied, 2016, Part I).
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for constant matrices A, A′ of full rank. Z = (Z0,Z1, . . . , Zm) follows, under Q∗, a
spherical distribution Sn(ψ) (see Section B), with characteristic generator ψ. As the
components 0 for both vectors X and X′ must the same, we also require the first row of
A and A′ to be the same. The rationale for keeping the same reference latent variable
X0 in X and X′ in (3) is that the point of view will be the one of a reference bank
indexed by 0 (cf. Lemma 2.4 and Proposition 2.5).
We denote by ΓX = AA⊤ and ΓX′ = A′(A′)⊤ the Q∗ covariance matrices of X and X′,
assumed to be positive semi-definite. We write Γij

X = Cov∗(Xi,Xj) for all i, j ∈ 0 ..m,
and likewise for ΓX′ .

Assumption 2.1 Γjj
X = Γjj

X′ and Γ0j
X = Γ0j

X′ , j ∈ 1 ..m, and Γij
X ≤ Γij

X′ , i ̸= j ∈ 1 ..m. □

In particular, X1:m ≤sm∗ X′
1:m, by Block and Sampson (1988, Corollary 2.3) recalled in

Section B.

Let µX1:m = (µX1 , . . . , µXm) and ΓX1:m =
(
Γij
X1:m

)
1≤i,j≤m

be the mean vector and

the covariance matrix of (X1, . . . ,Xm) under Q∗. We use similar notations regarding
(X ′

1, . . . ,X ′
m). Our next result, Lemma 2.4, makes use of the two following results. Let

USn−1 denote the uniform distribution on the unit sphere Sn−1 :=
{
s ∈ Rn : s⊤s = 1

}
in

Rn. A radial r.v. is a one-dimensional r.v. with values in [0,+∞).

McNeil et al. (2015, Theorem 6.21, page 197) Z has a spherical distribution in Rn if and
only if it has a stochastic representation

Z
d
= RS, (4)

where S ∼ USn−1 and R ≥ 0 is a radial r.v. independent of S. □

Fang et al. (1990, Theorem 2.18, page 45) Let Y
d
= µ+RAS ∼ En(µ,Σ, ψ) (see Section

B) with Σ = AA⊤ positive definite. Let

Y =

(
Y(1)

Y(2)

)
, µ =

(
µ(1)

µ(2)

)
, Σ =

(
Σ(1,1) Σ(1,2)

Σ(2,1) Σ(2,2)

)
, (5)

where Y(1) and µ(1) arem×1 vectors and Σ(1,1) is anm×m matrix, for some 0 < m < n.
Then (

Y(1)
∣∣∣Y(2) = y(2)

)
d
= µ

(1)

|Y(2)=y(2) +R|Y(2)=y(2)A
(1,1)

|Y(2)=y(2)S
(m)

∼ Em

(
µ
(1)

|Y(2)=y(2) ,Σ
(1,1)

|Y(2)=y(2) , ψ|Y(2)=y(2)

)
,

(6)

where
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µ
(1)

|Y(2)=y(2) = µ(1) +Σ(1,2)
(
Σ(2,2)

)−1 (
y(2) − µ(2)

)
,

Σ
(1,1)

|Y(2)=x(2) = Σ(1,1) − Σ(1,2)
(
Σ(2,2)

)−1
Σ(2,1) = A

(1,1)

|Y(2)=y(2)

(
A

(1,1)

|Y(2)=y(2)

)⊤
,

S(m) ∼ USm−1 ,

R|Y(2)=y(2)
d
=

((
R2 − q

(
y(2)

))1/2 ∣∣∣∣y(2) = y(2)

)
and R|Y(2)=y(2) is independent

of S(m),

q
(
y(2)

)
=
(
y(2) − µ(2)

)⊤ (
Σ(2,2)

)−1 (
y(2) − µ(2)

)
,

ψ|Y(2)=y(2) is of the form (53) for n = m, F given as the c.d.f. of R|Y(2)=y(2) and

S given as S(m). □

(7)

Lemma 2.4 Under the elliptical form (3) satisfying Assumption 2.1 for X and X′, we
have, under Q∗,

[X1, . . . ,Xm|X0] ∼ Em

(
µX1:m|X0

,ΓX1:m|X0
, ψ|X0

)
,

[X ′
1, . . . ,X ′

m|X0] ∼ Em

(
µX′

1:m|X0
,ΓX′

1:m|X0
, ψ′

|X0

)
,

(8)

with

ψ|X0
= ψ′

|X0
, µX1:m|X0

= µ′
X1:m|X0

(9)

and, for any i, j ∈ 1 ..m,

Γij
X1:m|X0

≤ Γij
X′

1:m|X0
. (10)

Proof. Applying (7) to Y(1) = X1:m and Y(2) = X0 yields (8) with

µX1:m|X0
= µX1:m +

1

Γ00
X

(
Γ01
X . . . ,Γ0m

X

)⊤
(X0 − µX0),

ΓX1:m|X0
= ΓX1:m − 1

Γ00
X

m∑
j=1

(
Γ0j
X

)2 (11)

and, using Assumption 2.1 and (11),

µX′
1:m|X0

= µX1:m +
1

Γ00
X

(
Γ01
X . . . ,Γ0m

X

)⊤
(X0 − µX0) = µX1:m|X0

ΓX′
1:m|X0

= ΓX′
1:m

− 1

Γ00
X

m∑
j=1

(
Γ0j
X

)2
≥ ΓX1:m|X0

.
(12)
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where ≥ is meant componentwise.

It remains to show that ψ|X0
= ψ′

|X0
. For all x0 ∈ R, by Fang et al. (1990, The-

orem 2.18, page 45), which includes (7), the radius R|X0=x0
of [X1, . . . ,Xm|X0 = x0]

is distributed like

(
R2 − 1

Γ00
X

(x0 − µX0)
2

)1/2

, where R := ∥Z∥, and so is the radius

R′
|X0=x0

of [X ′
1, . . . ,X ′

m|X0 = x0] (as both X and X′ are defined based on the spheri-

cally distributed vector Z). Thus R|X0

d
= R′

|X0
, with common c.d.f. denoted by FR|X0

.

The corresponding conditional characteristic generator common to [X1, . . . ,Xm|X0] and

[X ′
1, . . . ,X ′

m|X0] is given by ψ|X0
(x) =

∫ ∞

0
Ωm(xr2)FR|X0

(dr), where Ωm(u⊤u) is the

characteristic function of a r.v. ∼ USm−1 . □

Proposition 2.5 Under the assumptions of Lemma 2.4, we have:

[X1, . . . ,Xm|X0] ≤sm∗ [X ′
1, . . . ,X ′

m|X0]. (13)

Proof. By Lemma 2.4, conditionally on X0, X1:m and X′
1:m have the same elliptical

distribution under Q∗, except for their covariance matrix coefficients that verify (10).
Block and Sampson (1988, Corollary 2.3) recalled in Section B (here applied under Q∗)
then yields the result. □

2.3 Preserving Supermodularity and Stop-Loss Order Properties Un-
der a Measure Change

The metrics of interest in this work are considered from a reference market participant
viewpoint, namely a bank indexed by 0. In this context, it is sometimes useful to
introduce a measure Q0 defined in terms of a measurable function h of a latent variable
X0 of the default of the bank, such that

h(X0) = dQ0/dQ∗ ≥ 0 and E∗ [h(X0)] = 1. (14)

We index all the formerly introduced notation by “. 0 ” whenever applied in reference to
Q = Q0.

Example 2.2 In the setup of Bastide, Crépey, Drapeau, and Tadese (2023), financial
risk factors are specified under Q∗, but explicit XVA formulas arise in terms of the
related bank survival probability measure Q0.

Assumption 2.3 X = (X0,X1, . . . ,Xm) and X′ = (X0,X ′
1, . . . ,X ′

m), with components
in X∗ = L1(Q∗) (with the same X0 in X and X′), satisfy[

X1, . . . ,Xm

∣∣X0

]
≤sm∗

[
X ′
1, . . . ,X ′

m

∣∣X0

]
, (15)

i.e.

E∗ [f(X1, . . . ,Xm)
∣∣X0

]
≤ E∗ [f(X ′

1, . . . ,X ′
m)
∣∣X0

]
(16)

8



holds for any supermodular function f : Rm −→ R such that the conditional expectations
exist.

Lemma 2.6 If X and X′ satisfy Assumption 2.3, then (X1, . . . ,Xm) ≤sm0 (X ′
1, . . . ,X ′

m).

Proof. As h(X0) ≥ 0, for any supermodular function f on Rm such that both
E0 [f(X1, . . . ,Xm)] and E0 [f(X ′

1, . . . ,X ′
m)] exist, (14) and (16) yield

E0 [f(X1, . . . ,Xm)] = E∗ [h(X0)f(X1, . . . ,Xm)] = E∗ [h(X0)E∗ [f(X1, . . . ,Xm)
∣∣X0

]]
≤ E∗ [h(X0)E∗ [f(X ′

1, . . . ,X ′
m)
∣∣X0

]]
= E0

[
f(X ′

1, . . . ,X ′
m)
]
.

(17)

Hence (X1, . . . ,Xm) ≤sm0 (X ′
1, . . . ,X ′

m). □

In terms of applications, we start by precising the monotonicity result of Cousin
and Laurent (2008) for equity and senior CDO tranches default leg w.r.t. the credit
correlation. We then explore a more complex counterparty credit risk example pertaining
to the risk management of clearing activities.

3 Teaser: Credit Derivatives

We analyse the monotonicity of default leg and coupon leg of synthetic equity and senior
CDO tranches prices w.r.t. credit correlation. Such prices are obtained by taking the
expected value under the pricing measure Q∗ of the loss function underlying the CDO
tranche contract. The characteristics of the payoff are as follows. There are n obligors,
indexed by i. All underlying CDS are assumed to mature at some common time T .
For any obligor i, the default time is denoted by τi, the recovery rate is Ri ∈ [0, 1], the
underlying notional isNi ≥ 0 and the loss given default is Li = (1−Ri)Ni. The maximum
loss is Lmax =

∑n
i=1 Li. To simplify calculations, we assume that the payments due to

the obligors defaults are only made at maturity T and the discounting rates are set to
zero (nonzero discounting rates can be included as long as they are independent from
the credit risk factors).

Definition 3.1 The cumulative credit loss at time t ≤ T is

L(t) =

n∑
i=1

Li1{τi≤t}. (18)

The default leg of an equity tranche with maturity T and detachment point B ∈ (0, Lmax]
is

Deq(T ) = L(T )−
(
L(T )−B

)+
= min

(
L(t), B

)
. (19)

The default leg of a senior tranche with maturity T and attachment point A ∈ [0, Lmax)
is

Dsen(T ) =
(
L(T )−A

)+
. □ (20)
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Definition 3.2 The payment leg consists in payments, at K regular times tk (with
tK = T ), of a fixed spread s applied to the remaining tranche amount at risk. In the
case of the equity tranche, the payment leg writes

Peq(T ) = s
T

K

K∑
k=1

(
B − L(tk)

)+
. (21)

In the case of the senior tranche, it writes

Psen(T ) = s
T

K

K∑
k=1

(
Lmax −A−

(
L(tk)−A

)+)
= sT

(
Lmax −A

)
− s

T

K

K∑
k=1

(
L(tk)−A

)+
. □

(22)

Putting default and payment payoffs together, we obtain, for the equity tranche,

Deq(T )− Peq(T ) = L(T )−
(
L(T )−B

)+ − s
T

K

K∑
k=1

(
B − L(tk)

)+
, (23)

and, for the senior tranche,

Dsen(T )− Psen(T ) =(
L(T )−A

)+ − sT
(
Lmax +A

)
+ s

T

K

K∑
k=1

(
L(tk)−A

)+
.

(24)

Specifying Xi = F−1
i

(
1 − γi(τi)

)
, where Fi is the c.d.f. of Xi, γi the Q∗ c.d.f. of τi and

letting Bi(t) := F−1
i

(
1− γi(t)

)
, we have {τi ≤ t} = {Xi ≥ Bi(t)} and

L(t) =
n∑

i=1

Li1{Xi≥Bi(t)}. (25)

The following result precises the outlined application for comparing CDO tranche pre-
miums in Cousin and Laurent (2008) with heterogeneous obligors under our static setup.

Proposition 3.1 If (X1, . . . , Xn) ∼ En(µ,Γ, ψ) and (X ′
1, . . . , X

′
n) ∼ En(µ,Γ

′, ψ), with
Γ ≤ Γ′ elementwise except for equal diagonal entries, then

E∗

[(
n∑

i=1

Li1{Xi≥Bi(t)
} −A

)+]
≤ E∗

[(
n∑

i=1

Li1{X′
i≥Bi(t)

} −A

)+]
, A ∈ R. (26)

That is, the price of the default leg of a senior CDO tranche is nondecreasing w.r.t. ρcr;
we also get that the price of the default leg of an equity CDO tranche is nonincreasing
w.r.t. ρcr.
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Proof. For any t ∈ R+, the function

ft : Rn −→ R+

(x1, . . . , xn) 7−→
n∑

i=1

Li1{xi≥Bi(t)}
(27)

is nondecreasing w.r.t. each of its arguments and it is supermodular, by Lemma 2.2.
Hence, due to the nondecreasing and convexity properties of x 7→ (x − A)+, Müller
and Stoyan (2002, Theorem 3.9.3 f), page 113), recalled in Section A, implies that

(x1, . . . , xn) 7→
(
ft(x1, . . . , xn) − A

)+
is also nondecreasing supermodular. Moreover,

by Block and Sampson (1988, Corollary 2.3), recalled in Section B, (X1, . . . , Xn) ≤sm∗

(X ′
1, . . . , X

′
n). Applying Müller (1997, Definition 2.6) to (X1, . . . , Xn), (X

′
1, . . . , X

′
n) and

(x1, . . . , xn) 7→
(
ft(x1, . . . , xn)−A

)+
then yields the result for the senior tranche.

As E∗
[∑n

i=1 Li1{Xi≥Bi(t)
}]− E∗

[(∑n
i=1 Li1{Xi≥Bi(t)

} −B

)+
]
is the price of an eq-

uity tranche default leg, where the left expectation term does not depend on ρcr, the
result for the equity tranche follows. □

Corollary 3.2 Under the same assumptions as in Proposition 3.1, the price of the pay-
ment leg of the CDO equity (resp. senior) tranche is nondecreasing (resp. nonincreasing)
w.r.t. ρcr.

Proof. By call-put parity,

E∗

[(
B −

n∑
i=1

Li1{Xi≥Bi(t)
})+]

= E∗

[(
n∑

i=1

Li1{X′
i≥Bi(t)

} −B

)+]

−B + E∗

[
n∑

i=1

Li1{X′
i≥Bi(t)

}] (28)

so that, in view of (21)-(22), as a consequence of Proposition 3.1,

E∗

[(
B −

n∑
i=1

Li1{Xi≥Bi(t)
})+]

≤ E∗

[(
B −

n∑
i=1

Li1{X′
i≥Bi(t)

})+]
. □ (29)

Remark 3.3 For mezzanine tranches, such results do not hold. Indeed, the tranched
loss default leg payoff function

DMezz(T ) =
(
L(T )−A

)+ −
(
L(T )−B

)+
, (30)

where A,B ∈ (0, Lmax), is not a convex function of the cumulative loss nor is the payment
leg

PMezz(T ) = s
T

K

K∑
k=1

[
B −A−

((
L(tk)−A

)+ −
(
L(tk)−B

)+)]
= sT

(
B −A

)
− s

T

K

K∑
k=1

[(
L(tk)−A

)+ −
(
L(tk)−B

)+]
.

(31)
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Obligor id 1 2 3 4 5 6 7 8 9 10

Notional 100 105 110 115 120 100 105 110 115 120

RR (%) 30 31 32 33 34 35 36 37 38 39

λ(%) 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

Obligor id 21 222 23 24 25 26 27 28 29 30

Notional 100 105 110 115 120 100 105 110 115 120

RR (%) 39 40 30 31 32 33 34 35 36 37

λ(%) 12 12.5 13 13.5 14 14.5 15 15.5 16 16.5

Obligor id 11 12 13 14 15 16 17 18 19 20

Notional 100 105 110 115 120 100 105 110 115 120

RR (%) 40 30 31 32 33 34 35 36 37 38

λ() 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5

Table 2: CDO portfolios and obligors parameters.

3.1 Numerical Results

The results are illustrated in Figure 1 for the equity tranches, varying detachment point
from 5% to 95% with 5% steps, i.e. considering the tranches from [0, 5%] to [0, 95%].
Figure 2 illustrates the results for the senior tranches, varying attachment point from
5% to 95% with 5% steps, i.e. considering the tranches from [5%, 100%] to [95%, 100%].
The correlation ρcr is varied from 5% to 95% with 5% step for both tranche types. The
parameters of the underlying obligors and CDSs are detailed in Table 2, where values
have been assigned arbitrarily to ensure heterogeneity of the various obligors. The
CDO tranche spread has been set to 10% with a single coupon paid at a maturity of 5
years. The monotonicity patterns are observed for both tranches, with incremental prices
between two consecutive credit correlation steps being nonpositive for the CDO equity
tranche default leg prices and the CDO senior tranche payment leg prices. Incremental
prices between two consecutive credit correlation steps are nonnegative for both the
CDO equity tranche payment leg prices and the CDO senior tranche default leg prices.
These results are in line with Proposition 3.1 and Corollary 3.2. Also, incremental
prices between two attachment point steps are nonnegative for both the CDO equity
tranche default leg and payment leg prices, as expected from (29). The incremental
prices between two attachment point steps are nonpositive for the CDO senior tranche
default leg and payment leg prices, as expected from (26).

4 Main Results: Counterparty Credit Risk

We assume the setup of Sections 2.2 and 2.3 regarding X = (X0,X1, . . . ,Xm) =
(X0, X1, . . . , Xn, Y1, . . . , Yn) and X′ = (X0,X ′

1, . . . ,X ′
m) = (X0, X

′
1, . . . , X

′
n, Y

′
1 , . . . , Y

′
n)
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Figure 1: Default leg and Payment leg prices of CDO equity tranches w.r.t. latent
variable credit correlation ρcr and detachment point B.
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Figure 2: Default leg and Payment leg prices of CDO senior tranches w.r.t. latent
variable credit correlation ρcr and attachment point A. Note that the axes are different
from Figure 1, for a better readability.
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(for some n > 0). Let

L =
n∑

i=1

fi(X1, . . . , Xn)gi(Yi) ∈ X0 = L1(Q0), (32)

where Yi ∈ X∗ drives a loss that obligor i ∈ 1 .. n generates if it defaults, with default
of each credit name j ∈ 0 .. n (including the reference bank 0 as in Section 2.3) driven
by a latent variable Xj ∈ X∗. The fi : Rn −→ R+ are measurable supermodular (when
n > 1) functions nondecreasing w.r.t. each of their arguments, and the gi : R −→ R+ are
measurable nondecreasing functions. When fi(X1, . . . , Xn) = fi(Xi) as in Cousin and
Laurent (2008) or Meyer and Strulovici (2013), fi(Xi)gi(Yi) can represent the loss related
to a bilateral counterparty position, i.e. a portfolio position between the reference bank
0 and its client i. As detailed in Section 4.1, the more general case where fi(X1, . . . , Xn)
depends on several Xj encompasses the financial losses generated by clearing exposures
towards a central counterparty (CCP). This is due to the loss allocation coefficients
attributed to each surviving member (Bastide, Crépey, Drapeau, and Tadese, 2023).
It also covers the case of financial resolution funds (Single Resolution Board, 2021).
As outlined in Section 2.1, if we can establish that R2n ∋ (x1, . . . , xn, y1, . . . , yn) 7→∑n

i=1 fi(x1, . . . , xn)gi(yi) ∈ R+ is supermodular, then we can conclude that ρ (L) ≤
ρ (L′) holds for any risk measure ρ on X0, with L′ =

∑n
i=1 fi(X

′
1, . . . , X

′
n)gi(Y

′
i ) ∈ X0.

Remark 4.1 Wrong-way risk is the potential increase of the exposure a financial actor
w.r.t. certain counterparties when their probability of default increase. A risk model
should include a wrong-way risk feature in order to ensure conservative treatment. See
Gregory (2015, Section 8.6.5) for more detailed explanations and Brigo, Morini, and
Pallavicini (2013) for various examples of asset classes models incorporating the wrong-
way risk feature. Under the elliptical model (3) and the credit loss form (32), wrong-way
risk holds provided that an increase of the covariance between the default latent variable
Xi and the potential loss driver Yi leads to an increase of the loss amount gi(Yi). This
is the case when f and g are nondecreasing (as assumed) in each of their arguments.

Lemma 4.1 If fi : Rn → R is a supermodular function nondecreasing w.r.t. each of
its arguments and gi : R → R is a nondecreasing function, i ∈ 1 .. n, then R2n ∋
(x1, . . . , xn, y1, . . . , yn) 7→

∑n
i=1 f(x1, . . . , xn)gi(yi) ∈ R has increasing differences w.r.t.

any pair (xi, yj) ∈ R2, i, j ∈ 1 .. n.

Proof. Let fi(xj |x−j) denote the function fi applied to xj but keeping all other argu-
ments x−j := (xk)k ̸=j fixed. We look at the two cases where we consider either a pair

of argument (xi, yi) ∈ R2, i ∈ 1 .. n (i.e. the pair of arguments tested for the increasing
difference are part of the same term of the sum), or a pair (xi, yj) ∈ R2, i ̸= j ∈ 1 .. n,
and the corresponding increasing differences.
Case (xi, yi) ∈ R2, i ∈ 1 .. n: the function R2 ∋ (xi, yi) 7→ fi(xi|x−i)gi(yi), has the
increasing differences property by application of Lemma 2.3 with g(·) = fi(·|x−i) and
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h(·) = gi(·). The increasing difference writes

fi(x
′
i|x−i)gi(y

′
i) +

∑
k ̸=i

fk(x
′
i|x−i)gk(yk)− fi(x

′
i|x−i)gi(yi)−

∑
k ̸=i

fk(x
′
i|x−i)gk(yk)

− fi(xi|x−i)gi(y
′
i)−

∑
k ̸=i

fk(xi|x−i)gk(yk) + fi(xi|x−i)gi(yi) +
∑
k ̸=i

fk(xi|x−i)gk(yk)

= fi(x
′
i|x−i)gi(y

′
i)− fi(x

′
i|x−i)gi(yi)− fi(xi|x−i)gi(y

′
i) + fi(xi|x−i)gi(yi)︸ ︷︷ ︸

≥0 by Lemma 2.3

+
∑
k ̸=i

fk(x
′
i|x−i)gk(yk)−

∑
k ̸=i

fk(x
′
i|x−i)gk(yk)︸ ︷︷ ︸

=0

−
∑
k ̸=i

fk(xi|x−i)gk(yk) +
∑
k ̸=i

fk(xi|x−i)gk(yk)︸ ︷︷ ︸
=0

≥0,

hence (xi, yi) 7→
∑n

k=1 fk(xi|x−i)gk(yk) has the increasing differences property.

Case (xi, yj) ∈ R2, i ̸= j ∈ 1 .. n: we write the increasing difference∑
k ̸=j

fk(x
′
i|x−i)gk(yk) + fj(x

′
i|x−i)gj(y

′
j)−

∑
k ̸=j

fk(x
′
i|x−i)gk(yk)− fj(x

′
i|x−i)gj(yj)

−
∑
k ̸=j

fk(xi|x−i)gk(yk)− fj(xi|x−i)gj(y
′
j) +

∑
k ̸=j

fk(xi|x−i)gk(yk) + fj(xi|x−i)gj(yj)

=fj(x
′
i|x−i)gj(y

′
j)− fj(x

′
i|x−i)gj(yj)− fj(xi|x−i)gj(y

′
j) + fj(xi|x−i)gj(yj) ≥ 0,

by application of Lemma 2.3 with g(·) = fj(·|x−i) and h(·) = gj(·). □
Proposition 4.2 If fi : R → R is a nondecreasing function and gi : R → R is a nonde-

creasing function, i ∈ 1 .. n, then R2n ∋ (x1, . . . , xn, y1, . . . , yn)
λ7→
∑n

i=1 fi(xi)gi(yi) ∈ R
has increasing differences w.r.t. any pair (xi, yj) ∈ R2, i, j ∈ 1 .. n.

Proof. By Lemma 2.2, λ has increasing differences w.r.t. any pair (xi, xj) ∈ R2, i ̸= j ∈
1 .. n, as well as any pair (yi, yj) ∈ R2, i ̸= j. For i ∈ 1 .. n, (xi, yi) 7→ fi(xi)gi(yi), has the
increasing differences property by application of Lemma 2.3 with g(·) = fi(·) and h(·) =
gi(·). Hence, λ has the increasing differences property for any pair (xi, yi) ∈ R2. Finally,
for i ̸= j ∈ 1 .. n, (xi, yj) 7→ fi(xi)gi(yi) + fi(xj)gj(yj) has the increasing differences
property by Lemma 2.2 with hi(·) = fi(·)gi(yi) and hj(·) = fj(xj)gj(·). Hence, λ has
the increasing differences property for any pair (xi, yj) ∈ R2, i ̸= j ∈ 1 .. n. □

Proposition 4.3 Let fi : Rn → R be a nondecreasing supermodular function and gi :
R → R be a nondecreasing function, i ∈ 1 .. n. Then the function

R2n ∋ (x1, . . . , xn, y1, . . . , yn)
Λ7−→

n∑
i=1

fi(x1, . . . , xn)gi(yi) ∈ R (33)
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is supermodular.

Proof. By Lemma 2.2 with hi(·) = fi(x1, . . . , xn)gi(·), for any i ∈ 1 .. n, Λ has increasing
differences with respect to any pair (yk, yl), k, l ∈ 1 .. n. By assumption and closure by
addition of the increasing differences property, Λ has increasing differences with respect
to any pair (xk, xl), k, l ∈ 1 .. n. Finally, by Lemma 4.1, Λ has increasing differences
with respect to any pair (xk, yl), k, l ∈ 1 .. n. Hence, by Yildiz (2010, Corollary 1)5, Λ is
supermodular. □

Theorem 4.4 Assume L and L′ defined by (32) applied respectively to
(X1, . . . , Xn, Y1, . . . , Yn) and (X ′

1, . . . , X
′
n, Y

′
1 , . . . , Y

′
n) s.t. (X1, . . . , Xn, Y1, . . . , Yn) ≤sm0

(X ′
1, . . . , X

′
n, Y

′
1 , . . . , Y

′
n). Then, for any risk measure6 ρ on X0 ∋ L,L′, we have

ρ (L) ≤ ρ (L′). In particular, if X0 = L1(Q0) and that L and L′ are Q0 integrable, then
E0 [L] ≤ E0 [L′].

Proof. By Proposition 4.3, the function (x1, . . . , xn, y1, . . . , yn) 7→∑n
i=1 fi(x1, . . . , xn)gi(yi) is supermodular on R2n. The result ρ (L) ≤ ρ (L′) then

follows the way outlined in Section 2. □

Remark 4.2 By Lemma 2.6, the conclusion of Theorem 4.4 holds, in particular, for
X = (X0, X1, . . . , Xn, Y1, . . . , Yn) and X′ = (X0, X

′
1, . . . , X

′
n, Y

′
1 , . . . , Y

′
n) (see beginning

of Section 4) satisfying Assumption 2.3, e.g. (by Proposition 2.5) in the Q∗ elliptical
setup (3) under Assumption 2.1.

Remark 4.3 An analogous monotonicity result does not hold for ρ̌ = ρ (· − E(·)) (see
Definition C.1). For instance, if ρ = ESα, U1 is uniform on [0, 1] and U2 is uniform on
[1, θ] for some θ > 1, then U1 ≤ U2 a.s., ESα(U1) =

1+α
2 < ESα(U2) = 1 + (θ − 1)1+α

2 ,
but ESα(U1)− E(U1) =

α
2 > ESα(U2)− E(U2) = (θ − 1)α2 for 1 < θ < 2.

We now take in (14)

h(x0) =
1{x0<B0}

1− γ
, where γ = Q∗(X0 ≥ B0), (34)

so that Q0 is the survival measure of the reference bank associated with Q∗ (Albanese,
Crépey, Hoskinson, and Saadeddine, 2021, Section 3).

Definition 4.4 The current expected credit loss CECL of the reference bank 0 is
CECL = E0 [L].

Similarly, we define CECL′ = E0 [L′].

Remark 4.5 From a financial application point of view, the CECL that considers the
lifetime for all related asset is preferred to the IFRS9 expected credit loss (ECL) that
segments into stage 1 and stage 2. The CECL allows for a 1-year maturity assumption
instead of the full lifetime of the assets considered for the ECL7.

5see Section A.
6see Definition C.1.
7see IFRS (2022, Article 5.3.3) and European Systemic Risk Board (2019).
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Proposition 4.5 If L and L′ are defined by (32) for X and X′ satisfying Assumption
2.3, e.g. (by Proposition 2.5) in the elliptical setup (3) under Assumption 2.1, then
CECL ≤ CECL′ whenever L,L′ ∈ L1(Q0).

Proof. By definition of CECL and application of Theorem 4.4 and Remark 4.2 to
ρ = E0. □

Definition 4.6 The economic capital of the reference bank 0 is EC = ES0α
(
L
)
, with

ES0α as per Definition C.2 assumed under Q0 and L ≥ 0 given by (32).

Similarly, let EC′ = ES0α
(
L′).

Proposition 4.6 If L and L′ are defined by (32) for X and X′ satisfying Assumption
2.3, e.g. (by Proposition 2.5) in the elliptical setup (3) under Assumption 2.1, then
EC ≤ EC′ whenever L,L′ ∈ L1(Q0).

Proof. By definition of EC and application of Theorem 4.4 and Remark 4.3 to ρ =
ES0α. □

Remark 4.7 The Definition C.2 of ES0α ensures its domain is all L1(Q0), thus is in
particular proper. Acerbi and Tasche (2002, Proposition 3.1) outlines ES0α is subbaditive
and positively homogeneous (therefore convex) as well as monotonous (in our case where
we consider loss variables, for X ≤ 0 we have ρ(X ) ≤ 0 and using subadditivity we get
for X ≤ Y, ρ(X ) = ρ(X − Y + Y) ≤ ρ(X − Y) + ρ(Y) ≤ ρ(Y)). Hence it verifies
the assumptions of (Ruszczyński and Shapiro, 2006, Proposition 1). Therefore ES0α is
continuous on L1(Q0) and Bäuerle and Müller (2006, Theorem 4.4) applies to ρ = ES0α.

4.1 CCP Case Study

We denote Y = Xn+1:2n = (Y1, . . . , Yn) and Y′ = X′
n+1:2n = (Y ′

1 , . . . , Y
′
n). Given real

constants β1, . . . , βn ≥ 0, m1, . . . ,mn and B1, . . . , Bn, we consider the credit losses

L(X1:n,Y) =
n∑

i=1

1

1 +

n∑
j=1

βj1{Xj<Bj}

1{Xi≥Bi} ×
(
Yi −mi

)+
.

(35)

X0:n = (X0, X1, . . . , Xn) drives the default events, namely, {τi ≤ T} = {Xi ≥ Bi} mod-
els the default event of participant i ∈ 0 .. n, e.g. its liability return taken as the latent
factor breaching a certain threshold. Yi = nomiσiGi, with nomi ∈ R, σi > 0 and Gi

spherical (hence Var∗(Yi) = nom2
iσ

2
iVar∗(Gi)) represents the loss of the market partici-

pant 0 in case of the default of obligors indexed by i, collateralized by a corresponding

amount mi. The weights
(
1 +

∑n
j=1 βj1{Xj<Bj}

)−1
represent a stylised specification of

a default fund allocation in a central counterparty (CCP) setup, with then βj = DFj/DF
(see Section 4.2), or of a liability size allocation in a single resolution fund (SRF) setup.
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Lemma 4.7 For any i ∈ 1 .. n, the function Rn ∋ (x1, . . . , xn)
fi7−→ 1{xi≥Bi}

1+
∑n

j=1 βj1{xj<Bj}
∈

R+ is nondecreasing supermodular.

Proof. By Yildiz (2010, Corollary 1), it is sufficient to show that fi has increasing
differences. Let k, l ∈ 1, .., n.

Case k, l ̸= i: Let R2 ∋ (xk, xl)
g7−→ 1{xi≥Bi}

Λ+βk1{xk<Bk}+βl1{xl<Bl}
∈ R+, with Λ =∑

j ̸=k,l βj1{xj<Bj}. For x
′
k ≥ xk, x

′
l ≥ xl, we form the increasing difference

g(x′k, x
′
l)− g(x′k, xl)− g(xk, x

′
l) + g(xk, xl)

=
1{xi≥Bi}βl

(
1{xl<Bl} − 1{x′

l<Bl}
)

denom1
−
1{xi≥Bi}βl

(
1{xl<Bl} − 1{x′

l<Bl}
)

denom2
,

(36)

with denom1 =
(
Λ + βk1{x′

k<Bk} + βl1{x′
l<Bl}

)(
Λ + βk1{x′

k<Bk} + βl1{xl<Bl}
)

and

denom2 =
(
Λ+βk1{xk<Bk}+βl1{x′

l<Bl}
)(
Λ+βk1{xk<Bk}+βl1{xl<Bl}

)
. If xl ≤ x′l < Bl

or Bl ≤ xl ≤ x′l, then the increasing difference (36) is zero as the numerators of both
terms are zero. If xl < Bl ≤ x′l, then both numerators in (36) equal 1{xi≥Bi}βl. In this
case: (i) if xk ≤ x′k < Bk, then both denominators in (36) equal

(
Λ + βk

)(
Λ + βk + βl

)
and the increasing difference (36) is zero; (ii) if Bk ≤ xk ≤ x′k, then both denominators
in (36) equal Λ

(
Λ+ βl

)
and the increasing difference (36) is zero; If xk < Bk ≤ x′k, then

the increasing difference in (36) writes equivalently

Λβl
denom1denom2

(
denom2 − denom1

)
, (37)

with denom2 = (Λ + βk + βl)(Λ + βk) ≥ Λ(Λ + βl) = denom1 as βj ≥ 0 for all j ∈ 1..n.
Hence the increasing difference (36) is nonnegative.

Case k = i and l ̸= i: Let R2 ∋ (xi, xl)
g7−→ 1{xi≥Bi}

Λ+βi1{xi<Bi}+βl1{xl<Bl}
∈ R+, with Λ =∑

j ̸=i,l βj1{xj<Bj}. For x
′
i ≥ xi, x

′
l ≥ xl, we form the increasing difference

g(x′i, x
′
l)− g(x′i, xl)− g(xi, x

′
l) + g(xi, xl)

=
1{x′

i≥Bi}βl
(
1{xl<Bl} − 1{x′

l<Bl}
)

denom1
−
1{xi≥Bi}βl

(
1{xl<Bl} − 1{x′

l<Bl}
)

denom2
,

(38)

with denom1 =
(
Λ+βi1{x′

i<Bi}+βl1{x′
l<Bl}

)(
Λ+βi1{x′

i<Bi}+βl1{xl<Bl}
)
and denom2 =(

Λ+βi1{xi<Bi}+βl1{x′
l<Bl}

)(
Λ+βi1{xi<Bi}+βl1{xl<Bl}

)
. If xl ≤ x′l < Bl or Bl ≤ xl ≤

x′l, then the increasing difference (38) is zero as the numerators of both terms are zero.
If xl < Bl ≤ x′l, then the numerator of the first terms in (38) is 1{x′

i≥Bi} and 1{xi≥Bi} for
the second term. In this case: (i) if xi ≤ x′i < Bi, then both numerators in (38) are zero
and the increasing difference (38) is zero; (ii) if Bi ≤ xi ≤ x′i, then both numerators in
(38) are equal to 1{xi≥Bi}βl and both denominators are equal Λ

(
Λ+βl

)
so the increasing

difference (38) is zero; If xi < Bi ≤ x′i, then the second term in (38) is zero and the first
term is nonnegative. Hence the increasing difference (38) is nonnegative. □
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Proposition 4.8 The function

R2n ∋ (x1, . . . , xn, y1, . . . , yn)
f7−→

n∑
i=1

1

1 +
n∑

j=1

βj1{xj<Bj}

1{xi≥Bi} ×
(
yi −mi

)+ ∈ R+
(39)

is nondecreasing supermodular.

Proof. Let fi(x1, . . . , xn) =
1{xi≥Bi}

1+
∑n

j=1 βj1{xj<Bj}
and gi(yi) = (yi − mi)

+ in (33). By

Lemma 4.7, fi has increasing differences with respect to any pair (xk, xl) ∈ R2, k, l ∈
1 .. n for any i ∈ 1 .. n. Hence f verifies all assumptions of Proposition 4.3, thus it is
supermodular. □

Corollary 4.9 If L(X1:n,Y),L(X′
1:n,Y

′) ∈ L1(Q0), then,

E0 [L(X1:n,Y)] ≤ E0
[
L(X′

1:n,Y
′)
]
, (40)

i.e. CECL is nondecreasing w.r.t. Γij
X for each i, j ∈ 1 .. 2n.

Proof. By Proposition 2.5 and Lemma 2.6, (X1, · · · , Xn, Y1, . . . , Yn) ≤sm0

(X ′
1, · · · , X ′

n, Y
′
1 , . . . , Y

′
n). Applying Proposition 4.5 with f defined by (39), which is

supermodular thanks to Proposition 4.8, then yields the result. □

Similarly (with Proposition 4.6 instead of Proposition 4.5 in the above argument)

Corollary 4.10 If L(X1:n,Y),L(X′
1:n,Y

′) ∈ L1(Q0), then,

ES0α
(
L(X1:n,Y)

)
≤ ES0α

(
L(X′

1:n,Y
′)
)
, (41)

i.e. EC is nondecreasing w.r.t. Γij
X for each i, j ∈ 1 .. 2n. □

4.2 Numerical Setup

We consider a CCP service with 20 members, labeled by i ∈ 0..n = 19, trading for
cleared clients (i.e. without bilateral or centrally cleared proprietary trading). Each
member faces one client. The corresponding financial network is depicted in Figure 3.
All clients are assumed to be risk-free. For any member i, its posted initial margin (IM)
to the CCP is calculated based on the idea of a variation margin (VM) call not fulfilled
over a slippage time period ∆s at a confidence level α ∈ (1/2, 1). Such IM uses a VaR
metric under the member survival measure applied to the non-coverage of VM call on
the cleared portfolio. The latter follows a scaled Student t-distribution Sν with ν degrees
of freedom, with c.d.f. Sν , and where such scaling reflects both ∆s, the portfolio nominal
size, denoted nomi, and its standard deviation, denoted σi. Namely,

IMi = VaR∗(nomiσi
√
∆sSν

)
= |nomi|σi

√
∆sSν

−1(α). (42)
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Figure 3: Financial network composed of one CCP service, its 20 members (labeled by
B) and one cleared client per member

The default fund is calculated at the CCP level as

Cover2 = SLOIM(0) + SLOIM(1), (43)

for the two largest stressed losses over IM (SLOIMi) among members, identified with
subscripts (0) and (1). SLOIMi is calculated as the value-at-risk VaR∗′ at a confidence
level α′ > α of the loss over IM, i.e.

SLOIMi = VaR∗′(nomiσi
√
∆sSν − IMi

)
= |nomi|σi

√
∆s

(
Sν

−1(α′)− Sν
−1(α)

)
. (44)

The total amount (43) is then allocated between the clearing members to define their
(funded) default fund contributions as DFi = SLOIMi∑

j SLOIMj
× Cover2. Finally, the loss

function of the reference member 0 with default fund contribution DF0 is

L(X,Y) =
n∑

i=1

DF0

1 +
n∑

j=1

DFj1{Xj<Bj}

1{Xi≥Bi} ×
(
Yi − IMi −DFi

)+

=

n∑
i=1

1

1 +

n∑
j=1

DFj

DF0
1{Xj<Bj}

1{Xi≥Bi} ×
(
Yi − IMi −DFi

)+
.

(45)
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Let sgn(x) = 1 if x > 0, 0 if x = 0, −1 otherwise. An elliptical model is specified under
Q∗ as {

Yi = nomiσi
√
∆l

(√
ρmktE +

√
ρwwrWi +

√
1− ρmkt − ρwwrEi

)
Xi =

√
ρcrT + sgn(nomi)

√
ρwwrWi +

√
1− ρcr − ρwwrTi

(46)

for any i ∈ 0 .. n, where T , Ti, E , Ei and Wi are i.i.d. random variables following
centered Student t-distributions of degree 3. ∆l is the period accounting for the time
taken by the CCP to novate or liquidate its portfolios in case of defaults (practically,
∆l > ∆s by a few business days). T represents the final maturity of the clearing
members portfolios, assumed to be the same for all members. Bi = S−1

ν (1−DPi(T ))
where DPi(T ) is the default probability over the period [0, T ] defined from a constant
default intensity λi given for each member i in Table 3 (which can be obtained from their
1-year Q∗ default probability DPi(1Y ), inferred either from the agency ratings or the
CDS quotes when available, as λi = − ln (1−DPi(1Y )) so that DPi(T ) = 1 − e−λiT ).
The model is well defined if and only if 0 < ρwwr < min

(
1− ρcr, 1− ρmkt

)
. Also, note

that Cov∗(Xi, Yi) = nomiσi
√
∆l

√
ρwwrsgn(nomi)

√
ρwwr = |nomi|σi

√
∆lρ

wwr ≥ 0, hence
increasing ρwwr leads to an increase of Cov∗(Xi, Yi).

The participants and portfolios parameter inputs are detailed in Table 3, where cm is
the identifier of the clearing member, λ is the one year Q∗ default intensity of the member
expressed in basis points, size represents the overall portfolio size of the member detained
within the CCP, and vol is the annual volatility used for the portfolio variations. The
portfolios listed in Table 3 relate to the members towards the CCP (which are mirroring
the portfolios between the members and their clients). The sizes of the CCP portfolios
of members sum up to 0, in line with the CCP clearing condition (without proprietary
trades).

Remark 4.8 The random variables (46) follow Student t-distributions that are con-
tinuous. Therefore, 0 is the only possible atom of the nonnegative credit loss (45).
Hence, by Acerbi and Tasche (2002, Corollary 5.3), Definition C.2 is equivalent to
ESα(X ) = E (X|X ≥ VaRα(X )) (Acerbi and Tasche, 2002, Eqn. (3.7)) whenever
VaRα(X ) > 0, i.e. for α ∈

(
1
2 , 1
)
sufficiently close to 1 so that VaRα(X ) > 0. In

our numerical illustration with α = 99.75%, this is indeed the case.

4.3 Numerical Results

The parameters of the CECL and EC calculations are summarized in Table 4. The
confidence level at 97% for SLOIM in DF calibration allows for a ratio of default fund
over initial margin of about 10% in our calculations, a ratio (of this level or less) often
observed in practice. Note that the chosen period length of T = 5 years covers the bulk
(if not the final maturity) of most realistic CCP portfolios.

Figures 4, 5 and 6 show the results of CECL and EC calculated for the members
0, 5, and 10, each under their survival risk measure (i.e. letting them in turn play the
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cm 0 1 2 3 4 5 6 7 8 9

λ (bps) 50 60 70 80 90 200 190 180 170 160

size -242 184 139 105 -80 -61 -46 35 26 -20

vol (%) 20 21 22 23 24 25 26 27 28 29

cm 10 11 12 13 14 15 16 17 18 19

λ (bps) 150 140 130 120 110 100 90 80 70 60

size -15 -11 -9 -6 5 -4 -3 2 2 -1

vol (%) 30 31 32 33 34 35 36 37 38 39

Table 3: Member characteristics and CCP portfolio parameters, ordered by decreasing
member |size|.

One-period length T 5 years
Liquidation period at default ∆l 5 days
Portfolio variations correlation ρmkt 30%
Credit factors correlation ρcr 20%
Correlation between credit factors and portfolio variations ρwwr

i 20%
IM covering period (MPoR) ∆s 2 days
IM quantile level 95%
SLOIM calculation for DF Cover-2 VaR 97%
DF allocation rule based on IM
Quantile level used for clearing members EC calculation 99.75%
Number of Monte-Carlo simulation (for CECL and EC computations) 10M
Number of batches (for EC computations) 100

Table 4: CECL and EC calculation configuration

role of the reference bank indexed by 0 in previous sections). In each figure, the credit-
credit correlation ρcr and ρwwr is varied between 5% and 95%, using 5% step. The same
nondecreasing pattern is observed for all three members, with nonnegative incremental
CECL and EC between two consecutive credit-credit and credit-market correlation steps,
in line with Corollaries 4.9 and 4.10. The market-market correlation ρmkt has been kept
constant with value 4%. The results of the centered EC, i.e. EC − CECL, are also
provided for each of these 3 members in Figure 7. As CECL ≪ EC holds for all three
members, despite Remark 4.3, the monotonicity is also observed for this centered version
of EC.

Remark 4.9 In our example, Cov∗(Yi, Yj) = nominomjσiσj
ν

ν−2ρ
mkt. Hence, depending

on the sign of nominomj , increasing ρ
mkt either increases or decreases Cov∗(Yi, Yj). Thus,

we cannot hope to observe a monotonous behaviour of EC or CECL w.r.t. ρmkt.
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Figure 4: Member 0 CECL and EC w.r.t. credit factors correlation ρcr and credit and
portfolio variation factors correlation ρwwr.
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Figure 5: Member 5 CECL and EC w.r.t. credit factors correlation ρcr and credit and
portfolio variation factors correlation ρwwr.
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Figure 6: Member 10 CECL and EC w.r.t. credit factors correlation ρcr and credit and
portfolio variation factors correlation ρwwr.

5 Conclusion

The main mathematical results of the paper are summed up in Table 5. In a nutshell, if a
participant uses a convex risk measure to assess its credit risk depicted as an aggregation
of nonnegative losses driven by elliptically distributed factors, then the measure increases
with the covariance coefficients between these factors. These results and their numerical
illustrations support the use of such elliptical factor models for both risk management
and regulatory credit provision and capital requirement purposes.

A Supermodular Functions

Müller (1997, Definitions 2.4 and 2.6) A function f : Rn −→ R is said to be supermod-
ular if

f(x1, . . . , xi + ε, . . . , xj + δ, . . . , xn)− f(x1, . . . , xi + ε, . . . , xj , . . . , xn) ≥
f(x1, . . . , xi, . . . , xj + δ, . . . , xn)− f(x1, . . . , xi, . . . , xj , . . . , xn)

(47)

holds for all x ∈ Rn, ε, δ > 0 and 1 ≤ i < j ≤ n. □

Müller and Scarsini (2000, Theorem 2.2 (a)) For functions twice differentiable on Rd,
the supermodularity is equivalent to the nonnegativity of its second derivatives. □

More general definitions can be found in Meyer-Nieberg (1991) and Yildiz (2010).

8see Definition C.1.
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Figure 7: Members 0, 5 and 10 EC − CECL w.r.t. credit factors correlation ρcr and
credit and portfolio variation factors correlation ρwwr.
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Proposition 4.3 Let fi : Rn → R be nondecreasing supermodular functions, gi : R → R
be nonnegative nondecreasing functions, i ∈ 1 .. n. Then the function
(x1, . . . , xn, y1, . . . , yn) 7→

∑n
i=1 fi(x1, . . . , xn)gi(yi) is supermodular on

R2n.
Theorem 4.4 If (X1:n,Y)⊤ ≤sm0 (X′

1:n,Y
′)⊤ and ρ is a risk measure8 on X0, then

ρ (L) ≤ ρ (L′) holds for any L,L′ ∈ X0 of the form (32) applied to
(X1:n,Y)⊤ and (X′

1:n,Y
′)⊤.

Proposition 3.1
and Corollary
3.2

The price of the default leg of an equity (resp. senior) tranche is nonin-
creasing (resp. nondecreasing) w.r.t. the credit correlation ρcr. The price
of the payment leg of the CDO equity (resp. senior) tranche is nonin-
creasing (resp. nondecreasing) w.r.t. ρcr.

Proposition 4.5 Under Assumption 2.1 on (X0, X1, . . . , Xn, Y1, . . . , Yn) and
(X0, X

′
1, . . . , X

′
n, Y

′
1 , . . . , Y

′
n) in the roles of X and X′ there, CECL

is a nondecreasing function of the Q∗ covariance coefficients.
Proposition 4.6 Under Assumption 2.1 on (X0, X1, . . . , Xn, Y1, . . . , Yn) and

(X0, X
′
1, . . . , X

′
n, Y

′
1 , . . . , Y

′
n) in the roles of X and X′ there, EC is

a nondecreasing function of the Q∗ covariance coefficients.

Table 5: Main theoretical and applied results of the paper (with risk neutral measure
Q∗, reference participant labelled by 0, related survival measure Q0).

Meyer-Nieberg (1991, Section 1.1, page 1) A partially ordered set (S,≥) is said to be a
lattice if and only if any two elements x, y have a greatest common minorant, denoted
x ∧ y, and a least common majorant, denoted x ∨ y. □

Yildiz (2010, Definition 6, page 6) A function f : S −→ R is said to be supermodular
on a lattice (S,≥) if

f(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y) (48)

holds for all x, y ∈ S. □

For a family of lattices (S1,≤), . . . , (Sn,≤), let S = S1×· · ·×Sn be endowed with the
coordinate-wise order (x1, . . . , xn) ≤ (y1, . . . , yn) if and only if ∀i, xi ≤ yi. This order
makes S = S1×· · ·×Sn a lattice. For x ∈ S and any i and j, define x−(i,j) = (xk)k ̸=i,j .
For any function f : S −→ R, define f(·|x−(i,j)) : Si ×Sj −→ R as the restriction of f
to vectors with entries other than i and j fixed at x−(i,j) (Yildiz, 2010, Section 2.4).

Yildiz (2010, remark after Definition 7, page 7) A function f : S = S1×· · ·×Sn −→ R
is said to be pairwise supermodular if

f
(
(xi, xj) ∨ (x′i, x

′
j)|x−(i,j)

)
+ f

(
(xi, xj) ∧ (x′i, x

′
j)|x−(i,j)

)
≥ f

(
xi, xj |x−(i,j)

)
+ f

(
x′i, x

′
j |x−(i,j)

) (49)

holds for all x1, . . . , xn ∈ S1 × . . .Sn. □

Yildiz (2010, Definition 7) A function f : S = S1 × · · · × Sn −→ R is said to have
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increasing differences if[
xi ≥ xi′ , xj ≥ xj′

]
=⇒

f(xi′ , xj′ |x−(i,j))− f(xi′ , xj |x−(i,j)) ≥ f(xi, xj′ |x−(i,j))− f(xi, xj |x−(i,j))
(50)

holds for any x = (x1, . . . , xn), i, j, i
′, j′. □

If the partial order is a total order, increasing differences and supermodularity in the
sense of Definition A are equivalent. In particular:

Yildiz (2010, Corollary 1) For any f : Rn −→ R, the following are equivalent:

1. f is supermodular;

2. f has increasing differences;

3. f is pairwise supermodular. □

Müller and Stoyan (2002, Theorem 3.9.3 f), page 113) If f : Rn −→ R is nondecreasing
and supermodular and ϕ : R −→ R is nondecreasing and convex, then ϕ ◦ f : Rn −→ R
is nondecreasing supermodular. □

B Elliptical Distributions

McNeil et al. (2015, Definition 6.17, page 196) A random vector Z = (Z1, . . . ,Zn)
⊤ has

a spherical distribution in Rn if, for every orthogonal map A ∈ Rn×n (AA⊤ = A⊤A =
In),

AZ
d
= Z. □ (51)

McNeil et al. (2015, Theorem 6.18, page 196) The following are equivalent.

(1) Z is spherical in Rn.

(2) There exists a function ψ : R+ −→ C such that, for all u = (u1, . . . , un)
⊤ ∈ Rn,

the characteristic function of Z is

E
(
eiu

⊤Z
)
= ψ(u⊤u) = ψ(u21 + · · ·+ u2n). (52)

(3) For every u ∈ Rn, u⊤Z
d
= ||u||Z1. □

ψ is called the characteristic generator of Z and the notation Z ∼ Sn(ψ) is used (see
Fang, Kotz, and Ng (1990) and McNeil, Frey, and Embrechts (2015)). We denote
by Sn−1 :=

{
s ∈ Rn : s⊤s = 1

}
the unit sphere in Rn, and by USn−1 the uniform

distribution on Sn−1.
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Fang et al. (1990, Theorem 2.2, page 29) A function ψ is a generator of an n-dimensional
elliptical r.v. if and only if it can be written as

ψ(x) =

∫ ∞

0
Ωn(xr

2)F (dr), (53)

where F (.) is some c.d.f. over R+ and Ωn(u
⊤u) is the characteristic generator of a

random vector S ∼ USn−1 , namely (Steerneman and van Perlo-ten Kleij, 2005, Eqn. (2))

Ωn(u
⊤u) = E

(
eiu

⊤S
)
=

Γ(m/2)√
πΓ((m− 1)/2)

∫ 1

−1
eiu

⊤ut
(
1− t2

)(m−3)/2
dt , u ∈ Rn. □

(54)

McNeil et al. (2015, Definition 6.25, page 200) X = (X1, . . . ,Xn) is said to have an
elliptical distribution in Rn with parameters µ, Σ, ψ, where Σ is an n× n square semi-
positive definite matrix, if

E
(
eiu

⊤(X−µ)
)
= ψ

(
u⊤Σu

)
, u ∈ Rn. (55)

We then write X ∼ En(µ,Σ, ψ)
9. □

McNeil et al. (2015, Proposition 6.27, page 200) X ∼ En(µ,Σ, ψ) if and only if there
exist S, R and A satisfying

X
d
= µ+RAS,

where S ∼ USk−1 , R is a radial r.v. independent of S, and A in Rn×k satisfies AA⊤ =
Σ. □

Remark B.1 As outlined in McNeil, Frey, and Embrechts (2015, Eqn. (6.41), page
201)), for Σ positive definite,

X ∼ En(µ,Σ, ψ) ⇐⇒ Σ−1/2(X− µ) ∼ Sn(ψ). (56)

Following McNeil, Frey, and Embrechts (2015, Eqn. (6.42), page 201)), for an elliptical
variate X ∼ En(µ,Σ, ψ), if Σ has full rank n, then, by McNeil et al. (2015, Corollary
6.22, page 198) and (56),(√

(X− µ)⊤Σ−1(X− µ),
Σ−1/2(X− µ)√

(X− µ)⊤Σ−1(X− µ)

)
d
= (R,S). □ (57)

Block and Sampson (1988, Corollary 2.3) Let X ∼ En(µ,Σ, ψ) and h : Rn → R be a
supermodular, bounded and right-continuous function. Then E

(
h(X)

)
is nondecreasing

in the off-diagonal elements of Σ. □
The extension of Block and Sampson (1988, Corollary 2.3) to all supermodular functions
follows from Müller and Scarsini (2000, Theorem 3.3 and Theorem 3.4). Hence, if X,

9see Fang, Kotz, and Ng (1990) and McNeil, Frey, and Embrechts (2015).
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X′ verify Assumption 2.1 under some probability measure Q, then X ≤sm X′. As a
direct consequence outlined in Shaked and Shanthikumar (1997) after their Definition
2.1, “it follows that the family of multivariate normal distributions (more generally,
the family of elliptically contoured distributions) is increasing in the supermodular
stochastic order as the correlations increase.”

C Risk Measures

The following definition of a risk measure relaxes the definition of a convex risk mea-
sure in Shapiro (2013, Introduction (A3)) by not requiring the translation-equivariance
property.

Definition C.1 A risk measure is a function ρ : X → R satisfying, for X ,Y ∈ X:

a) properness: ρ (X ) > −∞ and dom ρ := {X ∈ X; ρ (X ) < +∞} ≠ ∅;

b) law-invariance: if X d
= Y then ρ (X ) = ρ (Y);

c) monotonicity: if X ≤ Y then ρ (X ) ≤ ρ (Y);

d) convexity: ρ (λX + (1− λ)Y) ≤ λρ (X ) + (1− λ)ρ (Y), λ ∈ (0, 1).

(−ρ(−·)) is named an acceptability functional10. We denote ρ̌ = ρ (· − E(·)). If ρ is
translation-equivariant i.e. ρ (X + c) = ρ (X ) + c, c ∈ R (see Pflug and Römisch (2007,
Definition 2.2 (i), page 29)), then ρ̌(−·) is known as a deviation risk functional11 and
ρ (−·) a risk capital functional12. □

Definition C.2 The expected shortfall (ES)13 at the confidence level (quantile) α ∈(
1
2 , 1
)

of a loss X ∈ X = L1(Q) is ESα(X ) = (1 − α)−1
(
E
(
X1{X≥VaRα(X )}

)
+

VaRα(X )
(
Q(X < VaRα(X ))− α

))
, with VaRα(X ) = inf

{
x ∈ R : Q(X ≤ x) > α

}
. □

ES is a standing example of a translation-equivariant risk measure.

We conclude this appendix by a detailed proof of Bäuerle and Müller (2006, Theorem
4.4) stated in Section 2.1. The proof relies on the definition of stochastic order:

Bäuerle and Müller (1998, Definition 2.1a)) For X and Y in X with respective c.d.f. FX
and FY , X precedes Y in stochastic order, written X ≤st Y, if FX (x) ≥ FY(x), x ∈ R. □

Proof of Bäuerle and Müller (2006, Theorem 4.4) (see Section 2.1). If
X ≤sl Y, then, by Müller and Stoyan (2002, Theorem 1.5.14, page 22), there exists a

10see Pflug and Römisch (2007, Definition 2.17, pages 35-36).
11see Pflug and Römisch (2007, Definition 2.21, page 37).
12see Pflug and Römisch (2007, Definition 2.25, pages 38-39).
13see Acerbi and Tasche (2002, Definition 2.6).
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r.v. Z ∈ X s.t. X ≤st Z ≤cx Y, where ≤cx is the convex order. By Müller and Stoyan
(2002, Theorem 1.2.4, page 3), there exist r.v. X ′ and Z ′ on a modified probability
space (Ω′,A′,Q′), with same respective laws as X and Z, such that X ′ ≤ Z ′ holds with
certainty i.e., ∀ω ∈ Ω′, X ′(ω) ≤ Z ′(ω) where ≤ is the partial order14 on Rm if X and Z
take value in Rm. The law-invariance and monotonicity of ρ yield

ρ (X ) = ρ
(
X ′) ≤ ρ

(
Z ′) = ρ (Z) . (58)

From Bäuerle and Müller (2006, Theorem 4.3), which requires the convexity and law-
invariance of ρ, we also have ρ (Z) ≤ ρ (Y), hence ρ (X ) ≤ ρ (Y). □
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