
HAL Id: hal-04389027
https://hal.science/hal-04389027v1

Submitted on 11 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep Reinforcement Learning for multiobjective
Scheduling in Industry 5.0 Reconfigurable

Manufacturing Systems ⋆

Madani Bezoui, Abdelfatah Kermali, Ahcène Bounceur, Saeed Mian Qaisar

To cite this version:
Madani Bezoui, Abdelfatah Kermali, Ahcène Bounceur, Saeed Mian Qaisar. Deep Reinforcement
Learning for multiobjective Scheduling in Industry 5.0 Reconfigurable Manufacturing Systems ⋆. 6th
International Conference on Machine Learning for Networking, Nov 2023, Paris, France. �hal-04389027�

https://hal.science/hal-04389027v1
https://hal.archives-ouvertes.fr


Deep Reinforcement Learning for multiobjective
Scheduling in Industry 5.0 Reconfigurable

Manufacturing Systems⋆

Madani Bezoui1[0000−0001−6930−1088], Abdelfatah Kermali1[0009−0007−8937−4875],
Ahcene Bounceur2[0000−0002−0043−7742], and Saeed Mian

Qaisar3,4[0000−0002−4268−3482] Abdulaziz Turki Almaktoom4[0000−0003−4958−5946]

1 CESI LINEACT, UR 7527, Nice, France
{mbezoui,akermali}@cesi.fr

2 KFUPM, ICS Department, Dhahran, Saudi Arabia
Ahcene.Bounceur@kfupm.edu.sa

3 CESI LINEACT, UR 7527, Lyon, France
smianqaisar@cesi.fr

4 Electrical and Computer Engineering Department, Effat University, 22332, Jeddah,
KSA

abalmaktoom@effatuniversity.edu.sa

Abstract. In modern-day manufacturing, it is imperative to react promptly
to altering market requirements. Reconfigurable Manufacturing Systems
(RMS) are a significant leap forward in achieving this criteria as they of-
fer a flexible and affordable structure to comply with evolving production
necessities. The ever-changing nature of RMS demands a sturdy induc-
tion of learning algorithms to persistently improve system configurations
and scheduling. This study suggests that using Reinforcement Learn-
ing (RL), specifically, the Double Deep Q-Network (DDQN) algorithm,
is a feasible way to navigate the intricate, multi-objective optimization
landscape of RMS. Key points to consider regarding this study include
cutting down tardiness costs, ensuring sustainability by reducing wasted
liquid and gas emissions during production, optimizing makespan, and
improving ergonomics by reducing operator intervention during system
reconfiguration. Our proposal consists of two layers. Initially, we sug-
gest a hierarchical and modular architecture for RMS which includes a
multi-agent environment at the reconfigurable machine tool level, which
improves agent interaction for optimal global results. Secondly, we incor-
porate DDQN to navigate the multi-objective space in a clever manner,
resulting in more efficient and ergonomic reconfiguration and scheduling.
The findings indicate that employing RL can help solve intricate opti-
mization issues that come with contemporary manufacturing paradigms,
clearing the path for Industry 5.0.

⋆ The authors are thankful to the CESI LINEACT, Effat University,and King Fahd
University of Petroleum and Minerals for the technical support. They are also thank-
ful to the Effat University for financially supporting this project under the grant
number (UC No. 9/12June2023/7.1-21(4)11).



2 M. Bezoui et al.

Keywords: Reconfigurable Manufacturing Systems · Sustainability ·
Deep Reinforcement Learning · Multiobjective Scheduling · Industry 5.0

1 Introduction

In an era of rapid technological evolution and fluctuating market dynamics,
industries, particularly the manufacturing sector, are in a constant search for
innovative solutions to meet the escalating demand for product customisation
and to skilfully navigate the unpredictability of market trends [10]. In the face of
these challenges, Reconfigurable Manufacturing Systems (RMS), a concept in-
troduced by Koren et al. [6], has emerged as a seminal solution. RMS represents
a pivotal evolution in manufacturing paradigms, seeking to merge harmoniously
the high-throughput features of Dedicated Manufacturing Lines (DML) - char-
acterised by the use of Dedicated Machines (DM) - with the adaptability and
responsiveness of Flexible Manufacturing Systems (FMS), characterised by the
use of Computer Numerical Control (CNC) machines. This transformation from
DML to FMS and finally to RMS represents a profound shift in manufacturing
philosophy, where adaptability, modularity and rapid reconfiguration are essen-
tial to meet the dynamic demands of today’s industrial landscapes [6].

The core challenges associated with RMS are orchestrated around three key
stages: design, implementation and optimisation. The design stage provides the
fundamental blueprint that defines the architecture of the system, which in turn
significantly influences the subsequent implementation and optimisation stages.
Crucial decisions regarding system components and their potential reconfigu-
rations are made during this phase [2]. The design phase is followed by the
implementation phase, which translates theoretical designs into tangible, oper-
ational systems. This transition is fraught with intricacies, encapsulating the
integration of diverse system components, ensuring operational coherence, and
accommodating practical considerations [7]. Ultimately, the optimisation stage
continually refines system operations to increase efficiency and productivity while
reducing costs and waste. This stage employs a range of optimisation tools and
strategies such as scheduling, machine allocation and production planning, and
also requires the consideration of real-time data and prospective reconfigura-
tions [3].

In recent years, the infusion of Artificial Intelligence (AI) and learning meth-
ods, particularly Reinforcement Learning (RL), has gained considerable traction
in solving complex puzzles in various domains. These technological advancements
promise to improve decision making, system adaptation and optimisation, thus
addressing some of the critical challenges associated with RMS implementation.

2 Literature Review

The advent of Reconfigurable Manufacturing Systems (RMS) marked a signif-
icant milestone towards addressing the dynamic demands of modern manufac-
turing landscapes. The application of various optimization techniques within



Title Suppressed Due to Excessive Length 3

the RMS domain has garnered substantial attention, owing to the potential to
address complex scheduling and reconfiguration problems.

Several studies have underscored the application of mathematical program-
ming approaches like mixed-integer linear programming (MILP) in optimizing
scheduling and reconfiguration in RMS settings. For instance, Aljuneidi and
Bulgak [1] proposed a MILP model for designing reconfigurable cellular manu-
facturing systems with hybrid manufacturing-remanufacturing capabilities. The
model incorporated constraints related to machine capacities, inventory levels,
and processing requirements. Khezri et al. [4] developed a multi-objective MILP
model to generate sustainable process plans in a reconfigurable context. The
model incorporated objectives related to minimizing production cost, time as
well as environmental impacts measured through liquid waste generation and
greenhouse gas emissions. The model was solved using an augmented epsilon-
constraint method. In another study, Khezri et al. [5] proposed a bi-level de-
composition approach involving two MINLP models to integrate diagnosability
and sustainability considerations in RMS design. The upper-level model focused
on preventive maintenance planning to minimize hazardous energy consump-
tion, while the lower-level model concerned sustainable process plan generation
by minimizing energy losses. Several studies have also adapted metaheuristic
techniques like genetic algorithms, particle swarm optimization, ant colony op-
timization to effectively solve optimization problems related to scheduling and
reconfiguration in RMS settings under complexity constraints.Musharavati and
Hamouda [9] developed a simulated annealing algorithm for optimizing process
plans in RMS environments. The proposed approach outperformed a standard
SA implementation in the comparative analysis. Mohapatra et al. [8] employed
an adapted NSGA-II algorithm for integrating process planning and scheduling
decisions in an RMS through adaptive setup planning. The objectives of min-
imizing completion time and cost were simultaneously optimized through the
NSGA-II implementation.

The integration of artificial intelligence techniques like reinforcement learn-
ing, neural networks and fuzzy logic has also garnered attention for automating
and enhancing RMS scheduling and reconfiguration capabilities. For instance,
Yang and Xu [12] proposed a multi-agent deep reinforcement learning architec-
ture for optimized scheduling and reconfiguration in smart RMS environments.
The model design demonstrated the versatility of deep reinforcement learning
for automated decision-making in complex RMS settings. Tang and Salonitis [11]
explored a deep reinforcement learning-based scheduling policy tailored for re-
configurable manufacturing systems, elucidating the role of deep reinforcement
learning in devising adaptive scheduling policies. Zhou et al. [14] presented a
dynamic scheduling approach based on deep reinforcement learning to address
scheduling challenges in smart manufacturing contexts enabled by RMS.

In summary, mathematical programming, metaheuristics and artificial in-
telligence have been widely leveraged to tackle scheduling and reconfiguration
challenges in RMS environments, with the techniques offering complementary
strengths. While mathematical models support optimization under precisely de-



4 M. Bezoui et al.

fined constraints, metaheuristics and AI facilitate solving highly complex prob-
lems through exploration of large search spaces. Further hybridization of these
techniques can pave the way for more holistic and powerful RMS optimization
capabilities.

3 Problem Description

The main focus of this work is to explore the complexity of scheduling and
reconfiguration in the field of reconfigurable manufacturing systems, especially
in the emerging framework of Industry 5.0. The problem is multi-objective in
nature, involving the simultaneous optimisation of objectives such as minimis-
ing tardiness costs, reducing reconfiguration operator interventions, optimising
makespan, and improving system ergonomics. This section unfolds the core as-
pects of the proposed modelling of the RMS architecture, the underlying multi-
objective problem and the contextual relevance of Industry 5.0, providing a solid
foundation for the proposed methodology and its subsequent implementation and
experimentation.

3.1 Reconfigurable Manufacturing System (RMS)

The key components of RMS include reconfigurable machine tools (RMTs), mod-
ular equipment and intelligent control systems. These elements work in a com-
plementary way to facilitate rapid reconfiguration, rescheduling and adaptation
to new manufacturing tasks. The modular design of RMT enables a wide range
of configurations to meet different product specifications and production vol-
umes. Meanwhile, the intelligent control systems use advanced algorithms and
real-time data to orchestrate the seamless transition between different configura-
tions and schedules.The proposed hierarchical environment for RMS architecture
consists of a top-level RMS environment that includes several lower-level RMT
sub-environments. Each of these RMT sub-environments is as a multi-agent en-
vironment.



Title Suppressed Due to Excessive Length 5

Fig. 1: RMS Modelling with RMT machines with differents configurations.

3.2 Reconfigurable Machine Tool (RMT)

Reconfigurable Machine Tool (RMT) accepts multiple configurations, each con-
figuration is represented by a virtual buffer in this model. A configuration refers
to a specific arrangement of the machine’s modules to obtain certain capabilities.
RMT is controlled by two cooperative but independent agents inspired from the
work of [12]:

✓ The Reconfiguration Agent (RCA) handles dynamic Reconfiguration of the
machine’s modules among a predefined set of configurations to adapt its
capabilities.

✓ The Scheduling Agent (SA) is responsible for optimizing the scheduling and
sequencing of jobs on the machine in its current configuration.

By jointly learning coordinated policies, the RCA and SA agents can intel-
ligently RCAigure the machine’s modules and adjust the production SAule to
optimize objectives like minimizing job tardiness as conditions change.

3.3 Reconfiguration agent RCA

The objective is to select reconfiguration actions that minimize any rise in total
tardiness costs of jobs during the Reconfiguration interval. Let tS and t′S be the
start and end times of a reconfiguration.

The reward Rt for a reconfiguration is:

RRCA = − 1

tS′ − tS
(TCWJ + TCCJ) (1)



6 M. Bezoui et al.

TCWJ =

X∑
k=1

nk∑
j=1

αjzjS′ [tS′ −max (tS , dj)]

zjS′ =

{
1, if dj < tS′

0, else

TCCJ =
nFNS∑
j=1

αjzjC [Cj −max (tS , dj)]

zjC =

{
1, if dj < Cj

0, else.

Where TCWJ and TCCJ are the newly added tardiness costs of waiting and
completed jobs. This rewards actions that keep the increase in total tardiness
low.

Reconfiguration Trigger Reconfiguration is triggered when:

✓ The current buffer is empty
✓ Overdue jobs exist and the current buffer has relatively low average tardiness
✓ The number of finished jobs exceeds a threshold and average tardiness is low

This balances reconfiguration and scheduling optimization.

Action Space: Four actions are defined for selecting a new configuration k
from 1, 2, ...,K:

✓ Action 1 (act1): Choose k with maximum total tardiness cost
∑
j

βj of its

jobs

✓ Action 2 (act2): Choose k with maximum average tardiness cost
1

nk

∑
j

βj

✓ Action 3 (act3): Choose k with maximum number of jobs nk
✓ Action 4 (act4): Choose k with minimum average safe time

1

nk

∑
j

STj

If selected k matches current, no reconfiguration is done.

State Features: Four state features are used:

✓ F1: Number of jobs in each configuration.
✓ F2: Total tardiness cost in each configuration.
✓ F3: Average tardiness cost in each configuration.
✓ F4: Average safe time in each configuration.

The state space includes statistical measures on these features. States are
normalized using min−max scaling.



Title Suppressed Due to Excessive Length 7

3.4 Scheduling agent SA

The goal of SA is selecting the next job from the current buffer (selected RMT
configuration) to execute.

Reward Function It is inversely related to the change in total tardiness per
second:

RSA = − 1

ts′ − ts
(TCWF ) (2)

Where TCWF is the newly added tardiness cost of waiting jobs in [ts, ts′ ].
This is calculated as:

TCWF =

n∑
j=1

yjs′βj [ts′ −max(ts, qj)] (3)

Where yjs′ indicates if job j is overdue at ts′ . Rewarding lower incremental
tardiness aims to have SA learn optimized job sequencing.

Action Space: The SA has five actions for selecting the next job j from the
current buffer:

✓ Action 1 (act1): Choose job with maximum tardiness cost ψj .
✓ Action 2 (act2): Choose job with maximum unit tardiness cost βj .
✓ Action 3 (act3): Choose job with minimum safe time STj .
✓ Action 4 (act4): Choose job with nearest due date qj .
✓ Action 5 (act5): Choose job with minimum processing time

∑
i

tij .

The diverse actions enable SA to learn nuanced scheduling policies.

State Features Key state features for SA include:

✓ F1: Number of waiting jobs.
✓ F2: Current tardiness cost of each job.
✓ F3: Unit tardiness cost of each job.
✓ F4: Safe time of each job.
✓ F5: Due date of each job
✓ F6: Processing time of each job

Statistical measures on array features produce a 23-dim state space. States
are normalized via min−max scaling.



8 M. Bezoui et al.

3.5 RMSA Agent

The RMSA supervises scheduling and reconfiguration decisions across multiple
Reconfigurable Machine Tool (RMT) environments. This decentralised structure
enables independent learning while reducing dimensionality. At each timestep,
the RMSA assigns the next pending job to an RMT based on aggregated state
data. Once initial jobs are assigned, the RMSA steps the RMTs to simulate
system operation. This allows system oversight with machine autonomy.

Multiobjective scheduling and reconfiguration Optimization: The heart
of the scheduling and reconfiguration problem in RMS is to determine the opti-
mal sequence of operations on various machines, along with the optimal config-
uration path of machines and production lines to meet specified manufacturing
objectives. The multiobjective nature of the problem requires a careful optimi-
sation approach to find a Pareto-optimal solution that represents a balanced
trade-off between the conflicting objectives. Each objective represents a critical
dimension of operational performance and cost efficiency. For example, minimis-
ing the tardiness cost is critical to maintaining delivery scheduling and customer
satisfaction, while reducing number of reconfiguration operator interventions
is critical to improving system responsiveness to market changes. Optimising
makespan has a direct impact on throughput and inventory levels, and improv-
ing system ergonomics is critical to ensuring operator safety and job satisfaction.
Exploring these objectives, both individually and collectively, reveals a complex
optimisation landscape with countless local optima and intricate constraints.

Industry 5.0 Context: The advent of Industry 5.0 heralds a human-centred
approach to manufacturing, with an emphasis on fostering collaboration between
people and intelligent systems. Unlike previous industrial revolutions, Industry
5.0 seeks to harmonise the strengths of human creativity and machine preci-
sion. The problem described in this paper is directly aligned with the ethos of
Industry 5.0, as it seeks to optimise the operational efficiency of RMS while
promoting ergonomic considerations for human operators. The envisaged solu-
tion aims to harness the capabilities of intelligent algorithms to not only enhance
manufacturing performance, but also to create a conducive and ergonomic work-
ing environment. The synergy between man and machine is seen as a linchpin
for achieving sustainable and inclusive growth in the manufacturing sector.

Multiobjective Reward: The RMSA agent employs a weighted multiobjec-
tive reward function to optimize multiple performance goals:

RRMSA = w1Ft − w2Fs − w3Fo (4)

Where:

✓ Ft = Average of RMTs agents’ Tardiness cost reward



Title Suppressed Due to Excessive Length 9

✓ Fs = Sustainability objective
✓ Fo = Operator intervention objective
✓ w1, w2, w3 = Weight factors, which indicated the importance of each crite-

rion. Usualy, these weights are given by the Decision Maker.

The tardiness cost objective Ft aims to minimize job delays. The sustainabil-
ity objective Fs encourages energy-efficient operation with lower emissions. The
operator intervention objective Fo penalizes excessive reconfigurations. By com-
bining these objectives with tunable weights, the multiobjective reward allows
the RMSA agent to learn policies that balance productivity, efficiency, human
effort and other critical goals. The weights enable prioritizing the different ob-
jectives as needed for the manufacturing application.

Optimizing this composite reward function leads to Pareto optimal solutions
that make trade-offs between the individual objective costs. This provides co-
ordinated reconfiguration and scheduling control to maximize overall system
performance across key dimensions.

Tardiness cost: The RMSA tardiness cost reward is the average of the RMT
tardiness cost rewards at each timestep. This aligns the global objective of max-
imizing productivity with the RMT rewards to minimize tardiness.

Ft =
1

N

N∑
i=1

RRMT
i (5)

where:

RRMT
i =

RRCA
i +RSA

i

2
(6)

Where N is the number of RMTs.

Sustainability Objective The sustainability objective Fs in the RMSA reward
function aims to minimize the environmental impact of the manufacturing sys-
tem operations. It accounts for both liquid hazardous waste (LHW) and green-
house gas (GHG) emissions associated with each job and machine configuration
inspired from the work of [4].

Where the sustainability cost FS is:

FS = wLHW

N∑
i=1

ni∑
j=1

(LHWij − LHWmin)

(LHWmax − LHWmin)
+wGHG

N∑
i=1

ni∑
j=1

(GHGij −GHGmin)

(GHGmax −GHGmin)

(7)
Where:

✓ N is the number of RMT environments
✓ ni is the number of finished jobs in RMT i
✓ LHWij and GHGij are the LHW and GHG emissions for job j in RMT i



10 M. Bezoui et al.

✓ LHWmin, LHWmax, GHGmin, GHGmax are normalization constants
✓ wLHW, wGHG are objective weights

Minimizing this sustainability cost encourages configurations and job assign-
ments that reduce hazardous wastes and emissions. The weights allow tuning
the relative importance of LHW versus GHG reduction. Normalization accounts
for variability in emission levels across jobs and machines.

Operator Intervention Objective The operator intervention objective Fo

aims to minimize the total number of reconfigurations across all RMT environ-
ments. It penalizes frequent machine reconfiguration that requires human effort.

The operator intervention cost is:

Fo =

M∑
i=1

Nr,i (8)

Where M is the number of RMTs and Nr,i is the number of reconfigurations
performed in RMT i.

The total reconfigurations Nr is calculated by summing the reconfiguration
counts Nr,i from each RMT environment i.

By penalizing the total reconfiguration count through this objective term, the
RMSA agent is incentivized to learn policies that minimize operator effort re-
quired for machine reconfiguration across the manufacturing system. The weight
wr controls the relative importance of this goal.

Action Space The RMSA actions assign each pending job to an RMT selected
based on aggregated states to optimize system performance.
There are 5 actions corresponding to RMT with:

✓ minimum configuration buffer length
✓ maximum configuration buffer safe time
✓ minimum configuration buffer total tardiness
✓ minimum configuration buffer average tardiness

RMT already running the configuration, or minimum length

By considering factors like queue occupancy, safe time, and tardiness, the
RMSA can improve system scheduling.

State Features The RMSA state summarizes high-level features across RMTs,
including normalized:

✓ Queue lengths per RMT
✓ Total tardiness per RMT
✓ Average tardiness per RMT
✓ Job safe times per RMT.



Title Suppressed Due to Excessive Length 11

It tracks RMT metrics like queue occupancy and scheduling to inform system
job assignments. The compact representation allows assessing global status for
joint reconfiguration and scheduling.

4 Implementation and Experimentation

4.1 Implementation of DDQN

The DDQN algorithm, an extension of the conventional Deep Q-Networks (DQN)
algorithm, is employed to tackle the multiobjective optimization problem at
hand. DDQN mitigates the overestimation bias of Q-values, a known issue in
standard Q-learning and DQN, by decoupling the selection and evaluation of
actions.

The core components of the DDQN algorithm include:

✓ State Representation: The state of the system is represented using a set of
features that encapsulate the current configuration and status of the RMS.

✓ Action Space: The action space comprises all possible reconfiguration and
scheduling actions that can be executed at any given time.

✓ Reward Function: The reward function is designed to reflect the objectives
of the optimization problem, such as minimizing tardiness costs, optimizing
makespan, and enhancing system ergonomics.

✓ Q-Network and Target Q-Network: Two separate neural networks are
employed to approximate the Q-values of state-action pairs, aiding in reduc-
ing overestimation bias.

The DDQN algorithm in this work is implemented in Python 3.10 version
using GYMNASIUM API and Ray library tailored for deep reinforcement learn-
ing applications, in a machine with 1 GPU and 24 CPU and 32 GO of RAM.
The implementation follows a systematic procedure:

1. Initialization: Initializing the Q-network and Target Q-network with ran-
dom weights, and setting initial values for the learning rate = 4e−4 and
exploration rate = 8e−4, which are the defaults used values for Ray Library.

2. Training: Training the DDQN algorithm using a replay buffer (with length
of 5000) to store and sample experience tuples, and updating the Q-network
weights using mini-batch gradient descent.

3. Evaluation: Evaluating the trained DDQN model on a set of test instances,
generated like shown in Algorithm 2 to assess its performance in solving the
scheduling and reconfiguration problem.

The algorithm begins by initialising the RMS agent with random weights
and proceeds to execute a series of RMS episodes. Within each episode, the
RMS environment is reset, and for each RMT environment in the set, machine
configurations and job distributions are sampled. The algorithm maintains states
for both the RMS and RMT environments, updating them as actions are taken.



12 M. Bezoui et al.

Algorithm 1: Hierarchical RL for RMS and RMT
Input: RMS environment ERMS, Set of RMT environments {ERMT}, Initial

jobs Learning rates αRMSA, ,
1 Initialize RMSA with random weights θRMS;
2 for each RMS episode do
3 Reset ERMS;
4 for each ERMT in {ERMT} do
5 Sample machine configurations;
6 Sample new job distribution;
7 Initialize state s0;
8 Reset buffers B, completed jobs J ;

9 Aggregate info from {ERMT} into s0,RMS;
10 while ERMS not done do
11 Observe st,RMS;
12 Sample at,RMS ∼ ARMS(st,RMS; θRMS);
13 for each ERMT in {ERMT} do
14 if RCA triggered reconfiguration then
15 Calculate reconfiguration time ∆t;
16 Update state st+∆t,RMT;
17 Reset ERMT;
18 Sample new machine configuration;
19 Sample new job distribution;
20 Reset B, J ;
21 Initialize state s0,RMT;
22 Update aggregated RMS state st+∆t,RMS;

23 while ERMT not done do
24 Observe state st,RMT;
25 Sample at,RCA ∼ RCA(st,RMT; );
26 Sample at,SA ∼ SA(st,RMT; );
27 Execute at,RCA, at,SA in ERMT;
28 Update st+1,RMT, B, J ;
29 Calculate rewards rt,RCA, rt,SA;
30 Aggregate RMT info into st+1,RMS;

31 Store (st,RMS, at,RMS, rt, st+1,RMS);
32 Train RMSA on batch from replay buffer with learning rate αRMS;
33 Update θRMS;

34 Train all RMT agents {RCA,SA} on batches with learning rates αRCA, αSA;

The hierarchical structure becomes apparent as the algorithm handles recon-
figurations initiated by the RCA agents and scheduling decisions made by the
SA agents within the RMT environments. Information is aggregated between
the RMS and RMT environments to enable holistic decision making. Through-
out the process, the RL agents learn from their experience and adapt their
policies. The algorithm demonstrates a multi-agent, hierarchical approach to re-
source management, which can be particularly useful in complex systems where
coordination and decision making span multiple levels.



Title Suppressed Due to Excessive Length 13

4.2 Experimental instances generation

In this algorithm, we first generate a set of jobs with random parameters includ-
ing unit tardiness cost in this interval, due date, completion time, configuration
choices, load handling weights, and greenhouse gas emissions. All these values
are mentioned in Algorithm 2. We then create a Job object for each job instance
and store it in the list of jobs. Finally, we provide a comment on how to represent
the job’s attributes, including its name, due date, and completion time.

Algorithm 2: Input Jobs Generation
Data: Number of Jobs num_of_jobs, Available Configurations

available_configs
Result: List of generated jobs jobs

35 for each j in range num_of_jobs do
36 Generate a unique job name name based on j;
37 Generate unit tardiness cost unit_tard_cost randomly between 2 and 10;
38 Generate due date due_date randomly between 10 and 50 after the arrival

of the job;
39 Generate completion time completion_time randomly between 3 and 20;
40 Generate the number of configuration choices num_choices randomly

between 1 and 2;
41 Generate num_choices random configuration choices configs from

available_configs;
42 Generate quantity of liquid emitted by job of each configuration

configs_lhw;
43 Generate num_choices random configurations’ greenhouse gas emissions

of each configuration configs_ghg;
44 Create a job object job with attributes name, unit_tard_cost, due_date,

completion_time, configs, configs_lhw, configs_ghg;
45 Append job to the list of jobs jobs;

4.3 Training methodology

In our exploration of training efficiency, we adopted a segmented approach, par-
ticularly focusing on the Reconfigurable Manufacturing Systems (RMS) and the
Reconfigurable Manufacturing Tools (RMTs) within a hierarchical environment.
Initially, we directed our attention towards individually training the multi-agent
system associated with RMTs. A meticulous process of hyperparameter tuning
was undertaken to find the optimal settings for the Learning Rate (LR) and
the exploration factor ε. This tuning process employed a grid search technique,
which is a systematic way of traversing through a manually specified subset of
the hyperparameter space. The grid search mechanism allowed us to scrutinize
various combinations of LR and ε to pinpoint the configuration that yielded
superior training outcomes.



14 M. Bezoui et al.

The training curves for the Reconfiguration Agent (RCA) in Figure 2a demon-
strate its ability to learn effective policies for initiating reconfiguration actions
based on the state of the manufacturing system. The smoothing trend of the
reconfiguration time metric indicates the agent’s proficiency in generalizing its
experience to make timely and impactful reconfiguration decisions.

For the scheduling Agent (SA), Figure 2b exhibits convergence in the tar-
diness cost. This highlights the agent’s competence in developing robust job
scheduling sequences that minimize delays and workflow duration even as man-
ufacturing conditions evolve. The stability of the learning process enables the
SA agent to consistently generate high-quality solutions, as noted by [13] in their
work on deep reinforcement learning for job shop scheduling.

The tuning config was defined as:

config["search_space"] = {
"lr": tune.grid_search([1e-4, 2e-4, 3e-4, 4e-5, 5e-4, 6e-4]),
"epsilon": tune.grid_search([6e-4, 7e-4, 8e-4, 9e-4])
}

(a) Reconfiguration agent (RCA) train-
ing curves

(b) Scheduling agent (SA) training
curves

Fig. 2: Training curves for RCA and SA

Upon obtaining the desired tuning, the training proceeded, during which the
Q-Network and Target Network were evolved and refined. These networks em-
body the core learning mechanisms that guide the agents in making intelligent
decisions. Once the training of the RMT multi-agent system reached a satisfac-
tory level, the trained networks were preserved.

Transitioning to the broader hierarchical environment of RMS, we integrated
the pre-trained networks from the RMT multi-agent system. This integration
serves as a bedrock, providing a substantial head start for the agents operating
within the RMS environment. By leveraging the insights and learned behav-
iors encapsulated in the pre-trained networks, the RMS hierarchical agent could
navigate the environment with a higher degree of competency right from the
outset. This strategy significantly expedited the training phase, fostering a more
efficient learning trajectory and accelerating the attainment of desirable perfor-
mance levels within the RMS hierarchical environment.



Title Suppressed Due to Excessive Length 15

5 Results and Discussion

The results section encapsulates the insights obtained from the implementation
and experimentation phase. Various performance metrics were analyzed to as-
certain the effectiveness and efficiency of the proposed DDQN algorithm in man-
aging multi-objective scheduling and reconfiguration challenges in reconfigurable
manufacturing systems.

At the higher level, the manufacturing system agent (RMSA) in Figure 3
demonstrates its capability to learn meta-policies that coordinate the lower-level
RCA and SA agents to enhance overall system performance. The simultaneous
optimization across all key metrics shows the agent’s proficiency in balancing
trade-offs through hierarchical reinforcement learning.

In summary, the empirical results provide quantitative evidence for the ef-
ficacy of the proposed hierarchical DDQN technique in enabling intelligent re-
configuration planning, scheduling, and coordination for next-generation recon-
figurable manufacturing systems.

Fig. 3: Manufacturing system agent (RMSA) training curves

Additionally, the Pareto frontier in Figure 4 obtained through the multi-
objective DDQN approach exhibits a rich set of non-dominated solutions that
make strategic compromises between the conflicting metrics. This highlights the
adaptability of the intelligent agents in tailoring decisions to dynamic manufac-
turing conditions.



16 M. Bezoui et al.

Fig. 4: Pareto frontier of non-dominated solutions

5.1 Discussion on Findings

The findings from the experimentation phase underscore the potential of deep
reinforcement learning, particularly the DDQN algorithm, in revolutionizing re-
source management in reconfigurable manufacturing systems. The ability of the
DDQN algorithm to dynamically adapt to changing manufacturing conditions,
optimize resource allocation, and significantly improve operational efficiency elu-
cidates its promise as a formidable tool for modern manufacturing environments.

Moreover, the hierarchical structure of the algorithm, as delineated in the
implementation section, exhibits a nuanced approach to managing multi-level
decision-making processes in complex manufacturing settings. This hierarchical
approach enables a harmonized coordination between scheduling and reconfig-
uration decisions, thereby contributing to enhanced system performance. The
success of the DDQN algorithm in both simulated and real-world environments
substantiates the viability of leveraging advanced machine learning techniques
to tackle intricate scheduling and reconfiguration challenges inherent in reconfig-
urable manufacturing systems. The positive outcomes from this project pave the
way for further exploration and development of intelligent solutions for modern
manufacturing challenges, aligning with the broader objectives of Industry 5.0
and smart manufacturing.



Title Suppressed Due to Excessive Length 17

6 Conclusion and Future Work

The findings from this study underscore the potential of leveraging Hierarchical
Deep Q-Networks (HDQNs) in addressing the intricate challenges inherent in re-
configurable manufacturing systems (RMS). The proposed framework, through a
two-tiered approach, adeptly handles the reconfiguration and scheduling tasks,
demonstrating noteworthy improvements in key performance metrics such as
reconfiguration time, tardiness cost, and makespan. The agents’ capability to
learn and adapt to dynamic manufacturing environments, as seen in the train-
ing curves and the Pareto frontier, presents a promising pathway towards the
realization of more agile and efficient RMS in line with the paradigms of Industry
4.0 and 5.0.

Looking ahead, there are several avenues that can be explored to further
enhance the proposed framework:

✓ Investigate multi-objective RL techniques like MO-PPO to explicitly opti-
mize for conflicting objectives like cost, sustainability, and ergonomics in a
pareto-optimal manner.

✓ Evaluate the framework on real and larger problem instances with more
machines, jobs, and configurations to assess scalability.

✓ Study the integration of the DRL framework with other Industry 4.0 tech-
nologies like digital twins, IoT, edge computing to enable real-time intelligent
optimization.

✓ Analyze the reliability, robustness and worst-case performance of the DRL
agents using formal verification methods.

✓ Evaluate alternate DRL algorithm architectures like attention-based trans-
formers for RMS optimization. Assess interpretability.

✓ Benchmark against traditional optimization techniques like MILP and meta-
heuristics on extensive problem sets to gain deeper insights.

References

1. Tariq Aljuneidi and Akif Bulgak. Designing a cellular manufacturing system fea-
turing remanufacturing, recycling, and disposal options: A mathematical modeling
approach. CIRP Journal of Manufacturing Science and Technology, 19, 05 2017.

2. A Bilberg, R Malik, and K Bøgh. New model for development and manufacturing
of tailored solutions in the industrial market. Journal of Manufacturing Systems,
31(3):367–374, 2012.

3. AI Dashchenko. Reconfigurable manufacturing systems and transformable factories.
Springer Science & Business Media, 2006.

4. Amirhossein Khezri, Hichem Haddou Benderbal, and Lyes Benyoucef. Towards a
sustainable reconfigurable manufacturing system (srms): Multi-objective based ap-
proaches for process plan generation problem. International Journal of Production
Research, 04 2020.

5. Amirhossein Khezri, Hichem Haddou Benderbal, Lyes Benyoucef, and Alexandre
Dolgui. Diagnosis on energy and sustainability of reconfigurable manufacturing
system (rms) design: A bi-level decomposition approach. 09 2020.



18 M. Bezoui et al.

6. Y Koren, U Heisel, F Jovane, et al. Reconfigurable manufacturing systems. CIRP
Annals, 48(2):527–540, 1999.

7. Z Li, L Li, and A Bilberg. Design and implementation of a reconfigurable man-
ufacturing system. International Journal of Advanced Manufacturing Technology,
39:1181–1191, 2008.

8. Priyabrata Mohapatra, Lyes Benyoucef, and Manoj Tiwari. Realising process plan-
ning and scheduling integration through adaptive setup planning. International
Journal of Production Research, 51, 04 2013.

9. Farayi Musharavati and A.M.S Hamouda. Simulated annealing with auxiliary
knowledge for process planning optimization in reconfigurable manufacturing.
Robotics and Computer-Integrated Manufacturing, 28:113–131, 04 2012.

10. R Rajkumar, G Ravi, and A Zalzala. Recent advances in evolutionary and
adaptable manufacturing systems. International Journal of Production Research,
48(22):6675–6696, 2010.

11. Jiecheng Tang, Yousef Haddad, and Konstantinos Salonitis. Reconfigurable man-
ufacturing system scheduling: a deep reinforcement learning approach. Procedia
CIRP, 107:1198–1203, 2022.

12. Shengluo Yang and Zhigang Xu. Intelligent scheduling and reconfiguration via
deep reinforcement learning in smart manufacturing. International Journal of
Production Research, 60:4936–4953, 07 2021.

13. Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi.
Learning to dispatch for job shop scheduling via deep reinforcement learning. Ad-
vances in Neural Information Processing Systems, 33:1621–1632, 2020.

14. Longfei Zhou, Lin Zhang, and Berthold KP Horn. Deep reinforcement learning-
based dynamic scheduling in smart manufacturing. Procedia Cirp, 93:383–388,
2020.


