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Abstract—Machine Learning (ML) workflows are increasingly
deployed on serverless computing platforms to benefit from their
elasticity and fine-grain pricing. Proper resource allocation is
crucial to achieve fast and cost-efficient execution of serverless
ML workflows (specially for hyperparameter tuning and model
training). Unfortunately, existing resource allocation methods are
static, treat functions equally, and rely on offline prediction,
which limit their efficiency. In this paper, we introduce CE-scaling
– a Cost-Efficient autoscaling framework for serverless ML work-
flows. During the hyperparameter tuning, CE-scaling partitions
resources across stages according to their exact usage to minimize
resource waste. Moreover, it incorporates an online prediction
method to dynamically adjust resources during model training.
We implement and evaluate CE-scaling on AWS Lambda using
various ML models. Evaluation results show that compared to
state-of-the-art static resource allocation methods, CE-scaling can
reduce the job completion time and the monetary cost by up to
63% and 41% for hyperparameter tuning, respectively; and by
up to 58% and 38% for model training.

Index Terms—serverless computing, distributed machine learn-
ing, resource provisioning

I. INTRODUCTION

The fine-grain pricing and easy management of serverless
computing (or Function-as-a-Service) promote it as a major
platform for building next-generation web services [1]. Server-
less computing is especially attractive for distributed Machine
Learning (ML) due to its high scalability [2]. According
to Gartner, 70% of Artificial Intelligence (AI) applications will
be built on containers and serverless computing by 2023 [3].

ML workflows comprise multiple phases, among which
hyperparameter tuning and model training are the two most
common yet critical ones. When deployed in serverless plat-
forms, the ML workflows are decoupled into a group of
functions that are performed on different datasets in parallel
[4]–[6], i.e., each function trains the model on its own data
partition, while periodically synchronizing the model with
other functions.

Proper resource allocation is crucial to satisfy Quality of
Service (QoS) objective (i.e., Job Completion Time – JCT) and
to meet budget constraints of serverless ML workflows. Ex-
isting resource allocation methods distribute resources evenly
across functions; or treat ML workflows like traditional data
analytic applications (e.g., MapReduce and linear algebra) that
implement static resource allocation methods [2], [7], [8].

Specifically, they employ offline prediction to select resource
allocations for each epoch in ML workflows before they actu-
ally start [5], [9]. Unfortunately, these methods are inefficient
and may fail in practice due to the following reasons:
– Assume that functions are homogeneous and distribute
resources evenly across them in hyperparameter tuning. In
order to find optimal hyperparameter configuration (e.g., learn-
ing rate and momentum), users implement hyperparameter
tuning [10], i.e., train the model with different hyperparameter
configurations in functions (trials) and stop functions with low
accuracy prior to their completion. However, existing meth-
ods treat functions equally and therefore distribute resources
evenly across them. This may lead to a dramatic waste of
resources on functions that are terminated early.
– Rely on offline prediction in model training. Unlike tradi-
tional analytic applications which exhibit predictable perfor-
mance, the training algorithm is stochastic, such as Stochastic
Gradient Descent (SGD) [11]. The number of epochs required
to converge to the target accuracy for model training is
uncertain. As a result, relying on offline prediction of JCT and
cost for training jobs may lead to inefficient resource allocation
(i.e., inaccurate number and memory size of functions).
– Overlook various external storage services. External storage
services (e.g., S3 [12], DynamoDB [13], and etc.) vary in
terms of prices and performance, and can significantly impact
the communication overhead of parameter synchronization.
Thus, attaching a proper external storage service is essential
to achieve good trade-off between JCT and cost of serverless
ML workflows. However, existing methods consider only one
type of external storage [4], [9], [14].

A large body of work has been dedicated to providing
efficient resource allocation for ML workflows in clouds [10],
[15]–[17] and serverless computing [4], [5], [9], [14]. How-
ever, they usually target coarse-grain resources allocation (i.e.,
virtual machines and containers) [10], [16], [17]. In addition,
they overlook the interplay between the number of functions,
memory sizes, and external storage services [4], [5], [9];
and implement offline predication and static allocations to
avoid high scheduling overhead [14]. Consequently, they still
result in resource waste and inefficient use of resources, and
cannot provide dynamic allocation at runtime. Given that
providing high resource efficiency is the main motivation
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Fig. 1: A typical serverless ML workflow in AWS Lambda

behind introducing serverless computing, the main technical
problem addressed by this work is how to provide a fine-
grain efficient resource partitioning and a dynamic and multi-
dimensional resource allocation for serverless ML workflows.
Contribution. We present CE-scaling – a Cost-Efficient au-
toscaling framework for serverless ML workflows. To address
the above problems, CE-scaling builds JCT and cost models
that characterize the interplay among multi-dimensional fac-
tors (i.e., number of functions, memory sizes, and external
storage services). CE-scaling implements resource partitioning
that optimally distributes resources across stages in hyper-
parameter tuning, thereby reducing the amount of resources
“wasted” by terminated trials. Specifically, given a QoS or a
budget constraint, the optimization of resource partitioning is
NP-hard. CE-scaling performs an iterative greedy algorithm to
solve the problem. Moreover, CE-scaling incorporates online
prediction to dynamically adapt resources for model training
at runtime. Finally, to quickly search the space of resource
allocations and reduce the time overhead, CE-scaling uses
Pareto boundary to prune out bad allocations.

We implement CE-scaling on Amazon Lambda and evaluate
it using various ML models. Compared to existing static re-
source allocation methods [4], [9], [14]; CE-scaling improves
the performance and reduces cost by up to 63% and 58% for
hyperparameter tuning respectively; and by up to 41% and
38% for model training.

In summary, we make the following contributions:
• We analyze the limitations of existing resource allocation

methods, and motivate the need for a dynamic resource
allocation along with an appropriate selection of external
storage service for serverless ML workflows.

• We propose a novel scheduling framework for efficient
resource allocation in hyperparameter tuning and model
training. Moreover, we optimize our framework to run
with low overhead.

• We implement CE-scaling on Amazon Lambda and eval-
uate its effectiveness in reducing JCT and the cost.

II. BACKGROUND AND MOTIVATION

A. Serverless ML Workflows
To reduce the complexity of deploying ML workflows and

ease the resource management in the cloud [5], implementing
ML workflows on serverless becomes increasingly compelling.
Fig. 1 shows the implementation of a ML workflow [14]
in a serverless platform (i.e., AWS Lambda [18]). In this
work, we only focus on the two iterative phases (i.e., model

0.463
0.469
0.395
0.505
0.463
0.495

0.690
0.651
0.685
0.649

0.750
0.725

Stage 1 Stage 4 Stage 5

T1
T2
T3
T4
T5
T6

…
…
…
…
…
…

T2
T4
T6
T7

…
…
…
…

T2
T6

…
…

Stage 2 Stage 3

0.465T32 …

… …16 trials 8 trials

…

Fig. 2: An example of an early-stopping hyperparameter tuning procedure
produced by SHA (with a reduction factor of 2). Each rectangle represents a
trial, and each trial represents a training job which includes multiple functions.

training and hyperparameter tuning). Data preprocessing and
data uploading from long-term storage are other research
topics for serverless ML workflows. The two topics have been
addressed in previous efforts [4], [7] and are complementary
to our work.
Model training. Training is an iterative process over multiple
epochs. In each epoch, according to the configuration file
uploaded by the user, multiple functions are created to act as
workers. The training datasets are initially stored in external
storage (e.g., Amazon S3). These functions compute gradients
based on input data, and then they update and synchronize
the global model via external storage. The training is stopped
when the loss reaches an objective value or when a given
number of epochs have been processed [5].
Hyperparameter tuning. The quality of a ML model depends
on the choice of its hyperparameters [15]. Accordingly, users
conduct hyperparameter tuning, i.e., partially train the model
with different hyperparameter configurations, and select the
one with the highest accuracy. Similar to many ML sys-
tems [10], [19], [20], we adopt Successive Halving (SHA)
technique to accelerate hyperparameter tuning. The training
job associated with one hyperparameter configuration is re-
ferred to as a trial. As shown in Fig. 2, the hyperparameter
tuning is executed in sequential stages, with multiple concur-
rent trials executing several epochs in each stage, followed
by synchronous evaluation and termination of the bottom-
performing trials. The number of stages, trials, and epochs
are predefined by users. Note that other methods for hyper-
parameter tuning (e.g., BOHB [20]) share the same idea of
repeatedly terminating poorly performing trials until the one
with the highest accuracy is found. Thus, our work can be
applied to them.

B. Cost of Serverless ML Workflows.
In general, the cost of serverless ML workflows includes

two parts [21]: (a) Cost of functions. Users are charged based
on the execution time and resource usage of all functions.
(b) Cost of external storage. Because functions are stateless,
they leverage external storage [22] to synchronize parameters.

TABLE I: Comparison of different external storage services

Elastic scaling Latency Pricing pattern Cost
S3 Auto High Data request $

DynamoDB Auto Medium Data request $$
Elasticache Manual Low Execution time $$$

VM-PS Manual Low Execution time $$$
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(b) Online prediction
Fig. 4: Comparison of online and offline prediction errors. The prediction error
here is the difference between the estimated total number of epochs required
to achieve the target accuracy and the actual number of epochs needed.

External storage services are classified into two categories:
stateless storage services (e.g., AWS S3 [12], ElastiCache [23],
and DynamoDB [13]) and user-defined storage (e.g., parameter
server built with virtual machines (VM-PS) [14]). As shown
in Table I, external storage services have different latency,
pricing pattern, and cost. The JCT and cost of serverless
ML workflows vary according to the allocated resources
(i.e., the number of functions and the resource provisioned
for functions) and the type of attached external storage that
facilitates the communication among functions.

C. Limitations of Existing Resource Allocation Methods

Proper resource allocation not only accelerates the execution
of ML workflows, but also saves money for users [5]. In this
part, we study prior resource allocation methods for serverless
ML workflows and discuss their limitations and deficiencies
due to employing static allocation, relying on offline predic-
tion, and overlooking the impact of storage services.

1) Resource partitioning in hyperparameter tuning.
Current static methods treat trials across stages equally, there-
fore, resources are evenly partitioned across trials of different
stages. Usually, the number of trials is reduced by a factor of
2 across stages [10] by terminating trials with low accuracy.
Thus more resources are allocated to early stages according to
the number of trials, but without taking into consideration that
half of them will be terminated prior to their completion. This
may result in resource waste and also impact the performance
of later stages. Fig. 3 shows an example of hyperparameter
tuning with 5 stages. For each trial, the resource allocations
of all stages under the static method are the same, which means
that the cost of each stage is proportional to the number of
executed trials. The first three stages account for 90% of the
overall cost, while the last stage accounts for only 3%.

As shown in Fig. 3, by reallocating resources from trials
in the early stages (10% of the resources in the first stage)
to trials in the later stages, JCT is reduced by 39%. The
reason is that there are fewer trials in the later stages, and

the resources of each trial in later stages are increased by
nearly 2× thus can run faster. We can also observe that when
reallocating resources from the early stages aggressively (30%
of the resources from the first stage), JCT is increased by 36%
compared to the static allocation method. This is due to the
sharp drop in the performance of the first stage caused by
resource competition. It is worth noting that increasing the
allocated resources to later stages is not always beneficial as
it may increase the communication overhead.
Finding 1: The majority of trials in early stages are terminated
earlier. In addition, the resource requirements of trials change
with stages. Hence, reallocating resources from early stages –
considering terminated trials – to later ones can improve the
performance and cost-efficiency of hyperparameter tuning.

2) Stochasticity in model training. Predicting the JCT and
cost of a training job is challenging because of the stochas-
ticity of training algorithm (e.g., SGD). Traditional resource
allocation strategies which rely on offline prediction may not
be efficient due to the inaccurate prediction. LambdaML [14]
proposes a sampling-based method [11] to estimate the number
of required epochs by pre-training the model on a small set
of training data. As shown in Fig. 4(a), this sampling-based
method has a high average prediction error of up to 40%.
Siren [9] proposes to use reinforcement learning to improve
the prediction. However, training this black-box model is
time-consuming. Moreover, when training job changes, the
prediction model needs to be retrained.

On the other hand, online prediction, i.e., fitting the conver-
gence curve by collecting real-time training data, has been
applied by many works [16], [17] to monitor the conver-
gence speed of ML workflows. Based on the fitted model
and the target accuracy, we can easily calculate the number
of remaining epochs to get the target accuracy at runtime.
Fig. 4(b) shows that the error of online prediction decreases
gradually as more state data is collected during the training
process, and the average error of the online prediction is about
5%. Hence, online prediction can help to better estimate and
allocate resources of model training.
Finding 2: Existing static resource allocation methods rely on
inaccurate offline predictions, which limits their efficiencies.
Online predictions are more accurate and therefore it is
worth investigating how to employ them for efficient resource
allocation in model training.

3) Heterogeneity of external storage services. The JCT
of serverless ML workflows is highly affected by the resource
allocation and also by the performance of external storage,
as all functions need to perform parameter synchronization at
the end of each epoch. As shown in Fig. 5, parameter syn-
chronization is the aggregation of the gradient data from each
function. Stateless external storage, such as S3, aggregates data
with the help of functions, while VM-based external storage
can directly aggregate data locally. VM-based synchronization
is more efficient but more expensive than S3.

When the resource allocation of a training job changes, the
synchronization pattern and requirements change. Thus, it is
important to re-evaluate external storage services when chang-
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ing the resource allocation and attach the most appropriate
one accordingly. Unfortunately, previous works overlooked the
heterogeneity of external storage services. For example, Siren
[9] and Cirrus [4] use S3 and VM-PS, respectively, by default.
Table II presents the JCT and cost when training Logistic
Regression and MobileNet under Cirrus with different resource
allocations and external storage services (Table I). We have the
following observations. First, under the same number of func-
tions, the JCT and cost of the training models vary according
to the used external storage service. Second, using the faster
but expensive external storage services (i.e., Elasticache, VM-
PS) does not necessarily result in best JCT nor lowest cost.
When the number of functions is small, DynamoDB is faster
and cheaper (when model size is less than 400KB) because
the communication requirement is low. But when the number
of functions increases, communication requirement increases.
VM-based and Elasticache are more efficient, because VM-
PS can significantly reduce the communication overhead and
Elasticache can efficiently handle concurrent requests.
Finding 3: External storage services can significantly impact
the achieved performance and cost for a given resource allo-
cation. Hence, we should co-jointly consider external storage
and other resources when optimizing the resource allocation.

III. CE-SCALING DESIGN

Given that existing resource allocation methods are ineffi-
cient when partitioning resources across stages in hyperpa-
rameter tuning and cannot accurately allocate resources in
model training, and motivated by the aforementioned findings,
we introduce CE-scaling. CE-scaling aims to reduce resource
waste by providing an optimal partitioning of resources across
stages. CE-scaling also provides an accurate estimation and
dynamic allocation of resources during model training, thereby
improving the performance and cost-efficiency of serverless

TABLE II: Comparison of existing external storage under Cirrus. We present
the JCTs and costs, normalized to the JCT and cost of S3. A cost larger than
1 means that S3 is cheaper, whereas a JCT larger than 1 means that S3 is
faster. N/A as the model size exceeds the limit of DynamoDB’s object size.

Resource Allocation Storage
Logistic Regression MobileNet

JCT Cost JCT Cost

10 functions/1769MB

S3 1 1 1 1
DynamoDB *0.83* *0.95* N/A N/A
Elasticache 0.97 1.73 0.97 0.82

VM-PS 0.98 1.42 *0.89* *0.77*

50 functions/1769MB

S3 1 1 1 1
DynamoDB 0.94 0.97 N/A N/A
Elasticache 0.86 0.83 *0.85* *0.74*

VM-PS *0.84* *0.78* 0.90 0.78
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Fig. 6: CE-scaling system architecture

ML workflows. To attain these goals, CE-scaling follows three
core design principles.
(1) Partitioning resources across stages in hyperparameter
should consider the exact usage of trials. The majority of
terminated trials happen in early stages. As these trials are
terminated earlier, they require less resources compared to
other trials across stages. Thus, focusing resources on later
stages could be more cost-efficient. CE-scaling leverages this
fact when partitioning resources across stages given QoS or
budget constraints. In particular, CE-scaling formulates the
optimization problem as a multiple-choices knapsack problem
[24] – which is known to be NP-hard – and performs iterative
greedy resource reallocation on the basis of static resource
allocation (treating trials equally) to find an optimal resource
partitioning.
(2) Adaptive resource allocation in model training combined
with online prediction. CE-scaling relies on online prediction
to provide an accurate estimation of resources in model
training. However, the accuracy (average error) changes as the
model training progresses. Accordingly, CE-scaling monitors
the changes of the online prediction and adaptively adjusts the
resources of model training at runtime. In addition, CE-scaling
introduces a delayed function restart to reduce the overhead
of resource adjustment.
(3) Low overhead.

There is a large search space of allocation plans, especially
when considering co-jointly traditional resource allocation
(i.e., number of functions and memory sizes) and external
storage services. The overhead of estimation and resource
scheduling can reach several minutes. This is unacceptable
compared to second-level latency of function startup, espe-
cially for model training where resources are adjusted at
runtime. CE-scaling focuses on a small subset of allocations
(i.e., Pareto boundary of cost-JCT space) to reduce scheduling
overhead.

A. System Architecture
As shown in Fig. 6, when users submit an ML model to the

Pareto profiler, CE-scaling first builds analytical models for
the cost and JCT of one epoch. Then, the Pareto profiler selects
a subset of Pareto-optimal allocations. For hyperparameter
tuning, Greedy heuristic planner outputs an optimal resource
partitioning plan based on the budget or QoS constraints before
hyperparameter tuning starts. For model training, adaptive
scheduler adjusts resources at runtime based on the latest
prediction result, and loss curve fitter tracks the status of model



TABLE III: Main notations

Notation Definition
D The size of dataset
M The size of model
n The number of provisioned functions
m The size of function memory allocated
s The type of external storage
θ The resource allocation of one epoch
a The resource allocation of stages in hyperparameter tuning
k, e The number of training iterations, epochs
ri The number of epochs per stage
qi The number of trials per stage
xi(θ) A binary variable which indicates whether stage i in

hyperparameter tuning is configured to θ
t′(θ) The execution time for one epoch configured to θ
c′(θ) The cost for one epoch configured to θ
P The allocations on the Pareto boundary
bs Available network bandwidth of the external storage
"s Latency of the external storage
pf The price of function
pivk The price of function invocation
ps The price of external storage
bc The constraint of budget
τ The constraint of QoS

training to fit the loss curve. Hereafter, we will describe in
detail the main components of CE-scaling.

B. Pareto Boundary-based Profiling Estimation

In this section, we first build analytical models for the
execution time and cost of one epoch in serverless ML
workflows. These models characterize the interplay among
multi-dimensional factors (i.e., number of functions, memory
sizes, external storage services). Second, we select a small
subset of allocations (Pareto boundary) from cost-JCT space.
Our analytical models are applied for both model training
and hyperparameter tuning. For clarity, important notations are
listed in Table-III.

1) Execution time of one epoch. We denote the resource
allocation of ith epoch as θi = (ni,mi, si). Let M denotes
the set of memory configurations, N denotes the concurrency
allowed, and S denotes the set of external storage services.
Then, we can define the set of available allocations as:

Θ = {(n,m, s) | n ∈ N ,m ∈ M, s ∈ S} (1)

First, each function loads a dataset from external stor-
age [4]. Then, each function calculates gradients based on
the dataset. Finally, functions synchronize parameters through
external storage. Communication of functions follows Bulk
Synchronous Parallel (BSP) protocol, i.e., every function syn-
chronizes parameters at each iteration, which has been widely
used in production [5]. The number of iterations is k = D

ni·bz ,
given a batch size bz . We denote the execution time of epoch i
as t′(θi), which consists of the time to load a dataset tl(θi), the
time of gradients calculation tg(θi), and the time of parameter
synchronization tp(θi), we have:

t′(θi) = tl(θi) + k · (tg(θi) + tp(θi)) (2)

=
D

ni ·BS3
+

D

ni
· k · u(mi) + k · tp(θi)

tp(θi) =

{
(3ni − 2)(Mbs + "s), for stateless storage
(2ni − 2)(Mbs + "s), for VM-PS (3)
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Fig. 7: A scatter plot of 50 allocations in the two-dimensional space of
execution time and cost of one epoch, where the red dashed line is the Pareto
boundary. These data are sampled from the ML model of logistic regression
over higgs dataset.

where u(mi) is the processing time of 1MB data given mi

resource allocation, and the training dataset D is evenly dis-
tributed among functions. The communication time varies with
the type of external storage. The difference in the constant, i.e.,
(3ni − 2) and (2ni − 2), is caused by the fact that stateless
storage does not have a computation capacity (Fig. 5). So
compared to VM-PS, stateless storage needs more time for
data transfers as a function should re-pull the whole local
model and then upload the aggregated model.

2) Monetary cost of one epoch. We denote the monetary
cost of serverless ML workflows as c′(θi), which consists of
two parts: cost of functions cf (θi) and cost of external storage
cs(θi). The cost of a function is the sum of invocation cost
and computation cost. Invocation cost is determined by the
number of invoked functions, and the computation cost of a
function is determined by the allocated memory and execution
time. Then we have:

c′(θi) = k · (cf (θi) + cs(θi)) (4)
= ni · pivk + k · (ni · t′(θi) · pf (mi) + cs(θi))

cs(θi) =

{
k · (10ni + 2) · ps, charges for request
(t′(θi)/60 + 1) · ps, charges for runtime (5)

where the cost of external storage cs(θi) varies with the type
of external storage. There are two classes of external storage,
characterized by the charging pattern: charging by requests
(e.g., S3) and charging by runtime (e.g., VM-PS).

3) Pareto boundary of cost-JCT space. The entire search
space of allocations is large. For example, we can allocate
1 to 10240 of MB memory to a function in AWS Lambda,
and the concurrency of functions can reach 3000 [25]. For
external storage, besides stateless storage services (e.g., S3,
DynamoDB, and Elasticache), there are hundreds of types of
EC2 that can be used to build VM-PS, varying in computing
power, memory, and network bandwidth. The large search
space makes it time-consuming to optimize resource allocation
for hyperparameter tuning and model training.

Accordingly, we use Pareto boundary to prune out bad
allocations so that we can focus on a small subset of alloca-
tions to avoid the overhead of searching the entire allocation
space. Fig. 7 shows a scatter plot of 50 allocations in the
two-dimensional space of cost and JCT. If θ1 and θ2 are two
allocations such that t′(θ1) < t′(θ2) and c′(θ1) < c′(θ2), θ2
is a bad allocation, and θ1 is better than θ2 in both execution
time and monetary cost. The red line in Fig. 7 shows the
Pareto boundary of such allocations for one epoch in the ML



workflows. We denote the Pareto subset of resource allocations
as P , which is applied in the allocation optimization for
hyperparameter tuning and model training. Note that pareto
varies with different models and datasets, and can be quickly
obtained – in few seconds – after users upload the model and
the dataset.

C. Smart Resource partitioning for Hyperparameter Tuning

We formulate the optimization problem of resource parti-
tioning in hyperparameter tuning, and design a greedy heuristic
planner to solve this problem. Given the number of stages d,
we denote a resource partitioning plan as a = (θ1, θ2, · · · , θd).
Let A denotes the set of all possible resource partitioning
plans. Furthermore, we use a binary variable xi(θ) to indicate
whether the ith stage is configured to θ:

xi(θ) =

{
0, ith stage is not configured to θ
1, ith stage is configured to θ

(6)

1) JCT minimization given a budget. Constrained by a
particular budget bc, we aim to minimize the JCT of hyperpa-
rameter tuning Th. We formulate as follows:

minTh =min
a∈A

∑d

i=1

∑

θ∈P

ri · t′(θ) · xi(θ) (7)

subject to:
∑d

i=1

∑

θ∈P

qi · ri · c′(θ) · xi(θ) ≤ bc , (8)

Th ≤ τ (9)

where ri represents the number of epochs in stage i, and qi
represents the number of trials in stage i. In this optimization
problem, the objective is to minimize the sum of the execution
times of each stage; and the cost is the sum of cost of all trials.
Constraint (8) and (9) regulate that JCT and cost should satisfy
the QoS constraint and the cost constraint.

This is a multiple-choices knapsack problem [24], a classic
optimization problem which is known to be NP-hard. To solve
this problem, we design a greedy heuristic planner through
the insight of Section (II-C1), i.e., based on static allocation
plan as, we reallocate some resources from the early stages to
the trials in later stages. We warm-start the planner with the
optimal static resource allocation. This plan is then improved
in an iterative greedy fashion by (1) generating a set of
new candidates from the current best partitioning plan, (2)
predicting their JCT and cost separately, (3) selecting the best
candidate, and (4) iterating until the best candidate partitioning
plan no longer improves cost or exceeds time-constraints. We
outline these steps in Algorithm 1 and elaborate them below.

Candidate generation. In each greedy step, the candidate
partitioning plans a1 · · · ad are generated from the current best
partitioning, a∗. Each candidate ai is equivalent to a∗ at every
index, except at i, where the partitioning is to select a lower-
cost partitioning or higher-cost partitioning.

Greedy selection. The planner selects the partitioning with
the largest predicted JCT-marginal benefit:

Algorithm 1 Greedy heuristic resource partitioning planner
Input: budget-constraint bc, warm-start static allocation plan as

Output: resource partitioning plan a∗

1: ae, al, a∗ ← as;
2: while true do
3: A1 ←generate candidates for recycling (a∗);
4: ae ← select best candidate(A1);
5: al ← ae;
6: while Ch(al) ≤ Ch(as) do
7: A2 ←generate candidates for reallocating(al);
8: al ← select best candidate(A2);
9: end while

10: if JCT reduction(al, a∗) < δ or violating t′ then
11: break;
12: end if
13: a∗ ← al;
14: end while
15: while true do
16: A2 ←generate candidates for reallocating(a∗);
17: al ← select best candidate(A2 −A′

2);
18: if JCT reduction(al, a∗) < δ or violating t then
19: break;
20: end if
21: if Ch(al) ≥ bc then
22: insert al to A′

2;
23: end if
24: a∗ ← al;
25: end while
26: return a∗;

Bt(ai) =
Th(a∗)− Th(ai)

Ch(ai)− Ch(a∗)
(10)

where ai is a candidate partitioning, Th and Ch are JCT and
cost of the hyperparameter tuning, respectively. We normalize
cost saving by the corresponding increase in JCT to ensure
a fair comparison between candidates. First, we reallocate
resources from early stages (Lines 3-4) to later stages (Lines
7-8). Then, we repeat the process above until the reduction
of JCT is negligible (Line 5). Last, we output the resource
partitioning plan until the remaining budget is used up (Lines
15-25).

Warm start. The planner must be warm started with an
optimal static allocation. Because the search space is reduced
to a single dimension, we can enumerate candidate static
allocations from P , predict their costs and JCTs, and return
the cost-optimal static allocation.

Remark. Although this algorithm does not guarantee finding
the optimal solution, it does guarantee that the found resource
partitioning plan is no worse than the static allocation, because
our solution is incrementally optimized based on the optimal
static resource allocation. Furthermore, excessive reallocation
of resources in early stages will lead to a sharp decline in the
benefits due to resource competition, as mentioned in Section
(II-C1). Therefore, the exploration of resource partitioning
plan will end quickly. As we show in Section (IV-G), the
overhead of resource partitioning planner is less than one
minute.



Algorithm 2 Adaptive resource scheduler
Input: The budget bc, target loss σ∗, current loss σ, current index

of epoch e′ , latest predicted result e, current allocation θ
Output: resource allocation for adjustment θ∗

1: e∗ ← 0, θ∗ ← θ;
2: if e = 0 then
3: b ← bc;
4: e∗ ← predict epoch offline(σ∗);
5: θ∗ ← select best allocation(b,P, e∗);
6: return θ∗;
7: end if
8: fit the loss curve with epoch predict(σ);
9: b ← b − cost for one epoch (θ);

10: e∗ ← predict epoch online(σ∗);
11: if (e∗ − e)/e > δ then
12: b1 ← b − cost for one epoch (θ);
13: θ∗ ← select best allocation(b1,P, e∗ − e′ − 1);
14: end if
15: return θ∗;

2) Cost minimization given a QoS constraint. Given a
constraint of QoS, we next consider the following cost mini-
mization problem:

minCh =min
a∈A

∑d

i=1

∑

θ∈P

qi · ri · c′(θ) · xi(θ) (11)

subject to: (9)(8)

where the total monetary cost is the sum of the costs of all
trials. The QoS constraint and cost constraint are represented
by constraints (8) and (9).

To find the resource partitioning plan with minimal cost, we
implement the same method as JCT minimization. Specifically,
we replace Ch(a) (Lines 6 and 21) of Algorithm 1 with Th(a).
Furthermore, we replace the JCT-marginal benefit with the
cost-marginal benefit Bc(ai) defined as follow.

Bc(ai) =
Ch(a∗)− Ch(ai)

Th(ai)− Th(a∗)
(12)

D. Adaptive Resource Allocation for Model Training
First, we model the cost and JCT of model training based on

section (III-B). Second, we design an adaptive resource sched-
uler, which adjusts resources based on the online prediction
and restarts new functions in parallel to hide the overhead of
resource adjustment.

The JCT and Cost of model training. We build an
analytical model for model training. The JCT of model training
Tm is equal to the sum of the execution times of each epoch.
The cost Cm is equal to the sum of the costs of each epoch.
We formulate the optimization problem as follows:

min Tm = min
θ∈P

e · t′(θ) (13)

subject to: Cm ≤ bc (14)
min Cm = min

θ∈P
e · c′(θ) (15)

subject to: Tm ≤ τ (16)
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Fig. 8: An example of the optimal launch time for new functions. SendG is
to upload gradient data, LoadM is to pull the latest model data.

where e is the number of epochs required to achieve the target
loss. As described in section (II-C2), predicting the number of
required epochs with offline methods shows a high error. We
will introduce how to allocate resources for model training
based on an online prediction.

Adaptive resource adjustment. As described in Algorithm
2, first, we begin with the resource allocation based on offline
prediction (Lines 3-6). Then, we collect training state data to
continuously fit the loss curve, and monitor the number of
epochs required to converge to the target loss σ∗ (Lines 8-
10). When the predicted epochs fluctuate beyond a threshold
δ, resource adjustment is automatically triggered (Lines 11-
13). Furthermore, for the problem of cost minimization and
JCT minimization, we implement a greedy local search, i.e.,
selecting the local optimal allocation that fits the constraint
of budget or QoS at each resource adjustment. Moreover, we
only search resource allocations in Pareto subset P to avoid
the overhead of searching the entire allocation space.

Delayed restart. Unlike the greedy heuristic planner of
hyperparameter tuning, which plans resource allocation offline
and pre-warms new functions before each stage starts, the re-
source scheduling for model training is performed at runtime.
We need to hide the overhead of resource adjustment. Thus,
we propose a method for fast resource adjustment, as shown
in Fig. 8. If the scheduler decides to adjust resources at the
end of epoch k − 1, we start new functions during epoch k.
Furthermore, we overlap the process of parameter synchro-
nization, i.e., old functions are terminated after uploading the
gradient data, and the new model parameters are pulled by the
new functions directly. Based on Section III-B, we can easily
calculate the optimal launch time for new function startup.

IV. EVALUATION

We evaluate CE-scaling with a variety of ML models, and
compare it to the latest allocation methods.

A. Experiment Setup
ML Models:– Logistic Regression (LR) is a linear model for
classification. The number of the model parameters is equal
to that of input features.
– SVM is a supervised learning model for classification anal-
ysis. The size of the model parameters is several KB.
– MobileNet (MN) is a popular lightweight NN model for
image classification. The size of model parameters is 12MB.
– ResNet50 (RN) is a neural network model for image classi-
fication. The size of model parameters is 89MB.
– BERT-base (Bert) is a transformer-based machine learning
technique for natural language processing (NLP), developed
by Google. The size of model parameters is 340MB.



JC
T
/s

0

50

100

LR-YFCC SVM-YFCC
0

40

80

LR-Higgs SVM-Higgs

Fixed
Siren
LambdaML
Elastic

0

5000

10000

15000

20000

Bert-IMDb RN-Cifar10

Fig. 9: Execution time of hyperparameter tuning given a budget. For hyper-
parameter tuning, JCT is the time from the start until the optimal trial is
found.

C
ost/$

0

2

4

6

8

LR-Higgs SVM-Higgs
0

10

20

LR-YFCC SVM-YFCC
0

500

Bert-IMDb RN-Cifar10

Fig. 10: Cost of hyperparameter tuning given a QoS constraint. Here we
count the cost of all trials (training jobs with different hyperparameter
configurations).

stage1
×16384

stage2
×8192

stage3
×4096

stage4
×2048

stage5
×1024

stage6
×512

stage7
×256

stage8
×128

stage9
×64

stage10
×32

stage11
×16

stage12
×8

stage13
×4

stage14
×2

Fixed LambdaML Siren CE-scaling
1000

100

10

1

0.1

Th
e 

no
rm

al
iz

ed
 a

ve
ra

ge
 

al
lo

ca
te

d 
bu

dg
et

Fig. 11: The normalized average allocated resource (budget) for each trial
in each stage for LR-Higgs. We mark the number of trials in each stage
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Datasets: – Higgs is a dataset for binary classification, pro-
duced using Monte Carlo simulations. Higgs contains 11
million instances, and each instance has 28 features.
– YFCC100 is a dataset from Yahoo [26] in which each data
point represents one image with several label tags and a feature
vector of 4096 dimensions.
– Cifar10 is an image dataset that consists of 60000 32×32
images categorized in 10 classes.
– IMDb is a standard text classification dataset that consists
of 25,000 sentences. The average length of sentences is 292.
Baselines: – LambdaML [14] is a state-of-the-art serverless
ML system implemented on AWS lambda.
– Cirrus [4] is a serverless ML workflow framework that aims
to support and simplify the end-to-end ML user workflow.
Cirrus uses EC2 VM as an external storage.
– Siren [9] is an asynchronous distributed ML framework
based on serverless computing. It determines the number and
memory size of functions through deep reinforcement learning.

Implementation. CE-scaling is implemented on top of
Lambda with almost 6000 LoC (mainly in python). It consists
of three modulers: Pareto profiler, Greedy heuristic planner,
and online scheduler. CE-scaling outputs a configuration file
in JSON, which is then used by Lambda to invoke functions
and select external storage services.

B. Performance of Hyperparameter Tuning

We compare CE-scaling against static and cluster-based
methods for hyperparameter tuning. Static methods include
LambdaML and Siren. They are implemented by removing
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CE-scaling’s Greedy heuristic scheduler (described in section
III-C). The cluster-based method (Fixed) divides resources
equally among stages and across trials in each stage. All exper-
iments are performed on SHA-generated specifications [10].
We select the optimal hyperparameter configuration among
16384 trials with a reduction factor of 2. There are 14 stages
in total, and 2 epochs are assigned in each stage.

As shown in Fig. 9 and 10, CE-scaling achieves lower JCT
and cost compared to static methods. For a given budget, CE-
sclaing reduces the JCT by up to 66%. For a given QoS
constraint, CE-scaling achieves up to 42% cost reduction.
The improvement in both JCT and cost is larger for large
models (e.g., BERT-base and ResNet50). This is because large
model jobs are more sensitive to resources, and unreasonable
resource partitioning can seriously affect the JCT and cost.
As expected, the fixed method has the worst JCT and cost,
because it leads to serious resource competition in early stages,
and the budget is wasted by the communication overhead in
later stages. Moreover, LambdaML performs better than Siren.
The reason is that Siren’s reinforcement learning model tends
to allocate more resources in the early stages, which leads to
more resources wasted on trials that will be terminated early.

Fig. 11 shows the average allocated resources for each trial
in each stage for LR-Higgs. Considering that early stages have
more terminated trials, CE-scaling allocates less resources to
early stages compared to static methods, and leaves more
resources to later stages. Static methods treat each stage fairly
and therefore give more resources to the trials in early stages,
resulting in more than 80% of the resources consumed in the
first two stages. Finally, for the fixed method, a large number
of trials share less than 10% of the budget in early stages,
resulting in serious resource competition.

TABLE IV: Experimental configurations of different models

Model Dataset Batch size Learning rate Target loss
LR/SVM Higgs 10k 0.01 0.66/0.48
LR/SVM YFCC 800 0.01 50

MobileNet Cifar10 128 0.01 0.2
ResNet50 Cifar10 32 0.01 0.4

BERT-base IMDb 32 0.00005 0.6
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C. Performance of Model Training
We compare CE-scaling against three baselines for model

training. Siren leverages reinforcement learning to provide
resource allocation plan. Furthermore, we modify Cirrus to
realize the same online prediction as CE-scaling. LambdaML
is not included, because the offline prediction always results
in violations in the constraints. We stop training when the
training loss reaches an objective value. These experiment
configurations are listed in Table IV. The experimental results
are the average values of ten runs.

CE-scaling provides more appropriate and efficient resource
allocation for model training jobs at runtime, thanks to online
prediction. It can also select proper external storage services
along with other resources. As shown in Fig. 12 and 13,
CE-scaling achieves shorter JCT and lower cost compared to
baselines. For a given budget, CE-scaling reduces JCT by up
to 56%. For a given QoS constraint, CE-scaling achieves up
to 35% cost reduction. We further break down the impact of
external storage. The bottom of each bar – with pattern – in-
dicates the communication overhead in Fig. 12 and represents
the storage cost in Fig. 13. Siren can meet the constraints, but
the external storage of Siren (S3) causes high synchronization
overhead and increases the cost of running functions, espe-
cially for BERT-base and ResNet50. Moreover, Siren adjusts
resources every epoch, which causes considerable overhead
as we discuss in section IV-G. Modified Cirrus can improve
synchronization time but at high monetary cost because of the
unreasonable external storage and function restart overhead.

D. CE-scaling under Various Constraints
We evaluate the performance of CE-scaling with different

QoS and cost constraints. We focus on the experiments of
hyperparameter tuning and model training of LR-YFCC. As
shown in Fig. 14 and 15, CE-scaling results in shorter JCT
and lower cost under different budget and QoS constraints
for both hyperparameter tuning and training. We observe that
under tight QoS and cost constraints, the performance gap
between CE-scaling and baseline methods is higher. When
the constraints are relaxed, the performance advantage of
CE-scaling becomes small, because baselines have sufficient
budget or QoS.
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E. The Effectiveness of CE-scaling Internals
1) CE-scaling and baselines under same external storage.

We evaluate CE-scaling and baselines under the same external
storage (i.e., S3 and VM-PS) with MobileNet on Cifar dataset.
As shown in Fig. 16, for hyperparameter tuning, CE-scaling
still outperforms Siren and Cirrus, in terms of JCT and cost,
even when they all use high-performance external storage (i.e.,
VM-PS). The reason is that CE-scaling allocates the “exact”
resources needed by functions in each stage. Fig. 17 shows the
JCT and cost for model training. CE-scaling obtains the lowest
JCT and cost under both storage services. This demonstrates
the effectiveness of CE-scaling in adaptively adjusting the
number of functions and memory sizes; and the efficiency of
the delayed restart in sustaining low overhead.

2) CE-scaling under different external storage. Fig. 18
shows the performance and cost of CE-scaling when restricting
CE-scaling to use only one type of external storage: Dy-
namoDB, S3, Elasticache, or VM-PS. We train two different
models: LR on Higgs dataset and MobileNet on Cifar10. We
have the following observations. First, JCT and the cost vary
across different external storage services. Second, as discussed
in Section II, Elasticache and VM-PS do not always lead
to best performance and lowest cost, and that the selection
of best external storage service strongly depends on the
ML models. DynamoDB achieves the best trade-off between
performance and cost for LR, while Elasticache obtains the
best performance with the lowest cost for MobileNet. Third,
the performance of the external storage services may impact
the computation time of the training. Fourth and importantly,
achieving lower computation time for the training model
by considering only the number functions and the size of
memory may not result in best overall JCT or cost. Hence,
this shows the importance of our work in jointly considering
the allocation of function, memory, and external storage to
navigate the cost-performance trade-off for different models.

F. Validation of the Analytical Models
To validate the correctness of our analytical models, we

compare the estimated JCT and cost when using our models
to the actual runtime and billing data observed by Amazon
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CloudWatch tool [27]. We train a LR model on Higgs dataset
while varying the number of functions and memory sizes, and
use S3 as the external storage. As shown in Fig. 19, when
fixing memory size to 1769 MB, our model can accurately
estimate training time with an error of 0.56-4.9 percent, and
estimate training cost with an error of 0.2-3.72 percent. The
largest error is observed when the number of functions is
set to 40. This is caused by the high overhead of parameter
synchronization due to network instability. When fixing the
number of functions to 10, as shown in Fig. 20, our model
can accurately estimate training time with an error of 2.1-4.3
percent, and estimate cost with an error of 1.5-7.6 percent.
This also implies that our model is sensitive to memory size.

G. Scheduling Overhead
For CE-scaling, the scheduling overhead is significantly

reduced to seconds by reducing search space and overlapping
the process of restarting functions. The scheduling overhead
of hyperparameter tuning comes from the allocation search in
the planning of resource partitioning. As shown in Fig. 20(a),
we compare original CE-scaling to CE-scaling without Pareto
optimization (WO-pa). By reducing search space with Pareto
boundary, scheduling overhead of hyperparameter tuning is
reduced by 69% on average. For model training, as the
scheduling overhead comes from resource adjustment and
allocation search, we compare the original CE-scaling with
CE-scaling without Pareto (WO-pa) and CE-scaling without
Pareto and delayed restart (WO-pa-dr). As shown in Fig.
20(b), with the delayed restart optimization, the scheduling
overhead is reduced by 55% compared to WO-pa-dr. With the
pareto optimization, the scheduling overhead is reduced by
64% compared to WO-pa. The average scheduling overhead
is only a few seconds per epoch, which is acceptable compared
to the second-level cold start overhead of functions. Note that
all experimental results in our previous sections include the
scheduling overhead.
The impact of δ. δ guides how to adaptively adjust resource
allocation based on the latest prediction results. Specifically, it
helps to avoid excessive switch in resource allocations (i.e., the
frequency of restarting functions) when the online prediction
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results change. Thus, we adjust resource allocation only if
the difference between latest and previous prediction is larger
than this threshold. We study its impact by varying δ from
0.01, 0.05, 0.1, 0.15, to 0.2. Note that a value higher than
0.2 will not respond to the latest prediction on time and lead
to early termination. As shown in Fig. 21(c), a higher value
leads to slow response to changes in predication results, thus
the number of function restarts is small. On the other hand, a
low value causes frequent restarting of functions, resulting in
serious scheduling overhead. By default, δ is set to 0.1.

V. RELATED WORKS

Serverless ML framework. Previous works propose frame-
works for orchestrating distributed ML workflows on server-
less platforms. Pyren [2] performs ML training jobs as MapRe-
duce tasks on serverless clouds. Developers have to refactor
their existing models with PyWren’s MapReduce-like APIs.
Cirrus [4] presents a prototype to execute machine learning
workflows with lambda functions and uses EC2 as intermedi-
ate data storage. LambdaML [14] comparatively analyzes the
difference between the deployment of machine learning jobs
on FaaS and IaaS. However, these systems do not consider the
cost and efficiency of deployment.

Cost/performance optimization for serverless applica-
tions. There have been several studies devoted to resource
provisioning for serverless applications. Astra [7] focuses on
MapReduce workflows and estimates resource allocation by
modeling the job completion time and monetary cost of the
jobs. Siren [9] targets ML workflows and tries to optimize the
deployment cost of serverless ML workflows using deep rein-
forcement learning. However, Siren focuses on asynchronous
training, and does not consider the impact of external storage.
λDNN [5] builds a lightweight analytical performance model
to allocate resources for DNN training. However, users need to
specify the number of epochs in advance for λDNN. Moreover,
all above solutions do not consider hyperparameter tuning.

Cost/performance optimization for ML workflows on
clouds. Recent efforts have studied how to efficiently allocate
resources on cloud for ML workflows. SLAQ [17] is a cluster
scheduler for ML training jobs that aims to maximizes overall



job quality. SLAQ maximizes system-wide quality improve-
ment across multiple jobs. Optimus [16] utilizes online pre-
diction to estimate the performance of training considering the
number of allocated containers. They schedule tasks to work-
ers to improve the performance and reduce the communication
cost. In contrast, CE-scaling focuses on the trade-off between
performance and cost when selecting the number of functions,
their memory sizes, and storage services. In addition, CE-
scaling realizes efficient resource allocation from a novel
serverless computing perspective by targeting low scheduling
and resource switching overheads. RubberBand [10] is the
first framework for elastic execution of hyperparameter tuning
in the cloud. RubberBand focuses on reducing the resource
competition by allocating more resources (in terms of number
of VMs) to the early stages as the degree of parallelism is
higher in early stages. In contrast, the resource partitioning in
CE-scaling goes one level deeper and allocates resources to
stages according to their exact usage.

VI. CONCLUSION

In this paper, we propose a dynamic resource allocation
framework for serverless ML workflows, named CE-scaling,
to reduce the cost for users and improve performance. First,
we implement an exact resource partitioning across stages
in hyperparameter tuning, and design a greedy heuristic al-
gorithm to find the optimal partitioning plan. Second, we
adaptively allocate resources in model training by utilizing
online prediction. Third, in order to reduce the overhead of
searching the whole allocation space, we use Pareto boundary
to prune out bad allocations. We implement CE-scaling in
AWS Lambda and compare it to the state-of-the-art methods.
CE-scaling improves the performance and saves cost by up to
63% and 41% for hyperparameter tuning, respectively; and by
up to 58% and 38% for model training.

ACKNOWLEDGMENT

This work was supported in part by the National Key
Research and Development Program of China under grant
2022YFB4500704 and in part by the National Science Foun-
dation of China under grants 62032008 and 62232011. Hao
Fan is the corresponding author.

REFERENCES

[1] E. Oakes, L. Yang, D. Zhou, and Houck, “SOCK: rapid task provisioning
with serverless-optimized containers,” in Proceedings of the USENIX
Annual Technical Conference, 2018, pp. 57–70.

[2] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy the
cloud: distributed computing for the 99%,” in Proceedings of the ACM
Symposium on Cloud Computing, 2017, pp. 445–451.

[3] Gartner, 2019. [Online]. Available: https://www.gartner.com/
smarterwithgartner/gartner-predicts-the-future-of-ai-technologies

[4] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. Katz, “Cirrus: a
serverless framework for end-to-end ML workflows,” in Proceedings of
the ACM Symposium on Cloud Computing, 2019, pp. 13–24.

[5] F. Xu, Y. Qin, L. Chen, Z. Zhou, and F. Liu, “λDNN: achieving
predictable distributed DNN training with serverless architectures,” IEEE
Transactions on Computers, vol. 71, no. 2, pp. 450–463, 2021.

[6] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, and M. Isard, “Tensorflow: a system for large-
scale machine learning,” in Proceedings of the USENIX Conference on
Operating Systems Design and Implementation, 2016, pp. 265–283.

[7] J. Jarachanthan, L. Chen, F. Xu, and B. Li, “Astra: autonomous serverless
analytics with cost-efficiency and QoS-awareness,” in Proceedings of
the IEEE International Parallel and Distributed Processing Symposium,
2021, pp. 756–765.

[8] V. Shankar, K. Krauth, K. Vodrahalli, Q. Pu, B. Recht, I. Stoica,
J. Ragan-Kelley, E. Jonas, and S. Venkataraman, “Serverless linear
algebra,” in Proceedings of the ACM Symposium on Cloud Computing,
2020, pp. 281–295.

[9] H. Wang, D. Niu, and B. Li, “Distributed machine learning with a
serverless architecture,” in Proceedings of the IEEE Conference on
Computer Communications, 2019, pp. 1288–1296.

[10] U. Misra, R. Liaw, L. Dunlap, R. Bhardwaj, K. Kandasamy, J. E.
Gonzalez, I. Stoica, and A. Tumanov, “Rubberband: cloud-based hy-
perparameter tuning,” in Proceedings of the European Conference on
Computer Systems, 2021, pp. 327–342.
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