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Abstract. Algebraic effects are a long-studied programming language
construct allowing the implementation of complex control flow in a struc-
tured way. With OCaml 5, such features are finally available in a main-
stream programming language, giving us a great opportunity to experi-
ment with varied concurrency constructs implemented as simple libraries.
In this article, we explore how to implement concurrency features such
as futures and active objects using algebraic effects, both in theory and
in practice. On the practical side, we present a library of active objects
implemented in OCaml, with futures, cooperative scheduling of active
objects, and thread-level parallelism. On the theoretical side, we for-
malise the compilation of a future calculus that models our library into
an effect calculus similar to the primitives available in OCaml; we then
prove the correctness of the compilation scheme.

1 Introduction

A future [1, 9] is a standard synchronisation artefact used in programming lan-
guages with concurrency. It provides a data-flow oriented synchronisation at a
higher level of abstraction than locks or monitors. A future is a promise of a
result from a spawned task: it is a cell, initially empty, and filled with a value
when the task finishes. Accessing this value synchronises the accessor with the
end of the task. Promises [17] is a notion similar to futures except that a promise
must be filled explicitly by the programmer. Promises are more flexible but also
more difficult to use because one could try to fill a promise several times and
this raises many issues.

Future pay a crucial role in the implementation of asynchronous computa-
tions, particularly in object-oriented languages. ABCL/f [23] proposed the first
occurrence of typed futures as a mean for asynchronous method invocation, where
a spawned task fills the future later. Then Creol [13] and ProActive [4] intro-
duced active objects [3]; which are both an object (in the sense of object oriented
programming) and an actor. As a consequence, an active object has its own log-
ical thread and communications between active objects is done by asynchronous
method invocations, using futures to represent the result of asynchronous calls.

Futures, promises, and concurrency primitives in general, have been imple-
mented using a wide variety of techniques, often via dedicated runtime support.
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Many concurrency primitives require suspending, manipulating and resuming
arbitrary computations. This need for non-local control flow appears as soon as
task scheduling is not trivial. It turns out that effect handlers [2] precisely en-
able users to define new control-flow operators. This was quickly identified as a
potential technique to implement concurrency primitives while developing Multi-
core OCaml. Multicore OCaml [21, 22] is an ensemble of new features, including
effect handlers, which enable parallel and concurrent programming in OCaml.
Crucially, since effects are user-defined , they allow implementing concurrency
operators such as futures as libraries. This remark is not a contribution of this
article, and seems to be well known folklore among algebraic effects practitioners.
It is also how eio [15], the new concurrency library for OCaml, is implemented.

This article expands beyond this folklore in two direction: First, we showcase
how to use effects to implement other concurrency primitives, active objects,
that were not previously explored. Second, we formalise the translation between
futures and algebraic effects, and prove it correct.

Contribution 1: An actor library based on algebraic effects On the practical side,
we present a new implementation of active objects based on algebraic effects. It
takes the form of an OCaml library that features all the characteristics of active
objects, adapted to the OCaml ecosystem. The implementation heavily relies on
effect handlers. The library is presented in Section 3.

Our implementation only requires effect handlers and objects. To our knowl-
edge and at the time of writing, both are only conjointly present in OCaml.
However, as effect handlers are gaining interest and are developed in different
contexts, we believe our methodology is applicable to develop active object li-
braries in any language that support both features.

Contribution 2: A formalised translation from actors into effect handlers and its
proof of correctness On the theoretical side, we present the formal arguments
showing that our implementation of active objects by effect handlers fully follows
the paradigms of active object languages, more precisely:

– In Section 4 we describe our calculi: first, an imperative λ-calculus similar
to what can be found in the literature; second, Fut, which expands this
λ-calculus with operations on futures: parallelism, tasks, futures, cooperative
scheduling inside a thread ; finally, Eff which expands the λ-calculus with
effects and effect handlers in a parallel setting.

– Section 5 defines a compilation scheme from Fut to Eff that expresses
the principles of the implementation of our active object library based on
effects. We formally prove the correctness of our translation and show that
the behaviours of the effect compilation of futures mimics exactly the future
semantics. Our main theorem states that the compiled program faithfully
behaves like the original one.

n
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2 Context and Positioning: Futures, Promises, Effects

We start by revisiting, in a streamlined fashion, the context of our works. We
first present the formal models that exist to define semantics of futures and
effects, explaining why we need a new semantics to formalise our work. Then we
present the programming patterns we rely on: an API for promises as it would
appear in OCaml, and how to implement such API using algebraic effects.

2.1 Formal Model for Futures and Effects

In order to formalise our translation, we need a calculus modeling the core of
active objects. Compared to existing active object languages, we base our work
on a simple λ-calculus enhanced with imperative operations and futures featuring
cooperative scheduling. This calculus does not reflect the object-oriented nature
of active object languages. Indeed, while the object layer provides an effective
programming abstraction and strong static guarantees, we are mostly interested
in operational aspects where objects play little role. Conversely, we consider that
cooperative scheduling is essential, as it precisely captures the dynamic behavior
we want to reproduce after translation to algebraic effects.

Among previously existing calculi, we position ourselves compared to the fol-
lowing ones. On one hand, several previous calculi [7, 6] rely on a pure λ-calculus,
lacking any imperative features. We consider modeling imperative code essential,
as it allows us to encode the stateful nature of active objects. In particular pure
calculi are not able to represent cycles of futures [10]. On the other hand, a con-
current λ-calculus with futures [18] and the DeF calculus [5] feature imperative
aspects but no cooperative scheduling, which is crucial to many active objects
languages. Additionally, DeF separates cleanly global state and local variables
and uses a notion of functions closer to object methods instead of λ-calculus. We
do not believe these features are needed in our context. Finally, some formali-
sation efforts such as ABS [14] cover much more ground, including a full-blown
object system and “concurrent object groups” to model the concurrent seman-
tics. We believe such semantics can also be modeled by simpler mechanisms,
such as threads and remote execution of pieces of code.

In the remaining of this work, we use a minimal λ-calculus that includes the
following features, that are, from our point of view, the core runtime character-
istics of actors and active object languages with futures:
– Impure λ-calculus with a store and memory locations,
– Cooperative scheduling among tasks on the same parallelisation entity.
– Request-reply interaction mechanism based on asynchronous calls targeting

a given thread, and replies by mean of futures. Without loss of generality,
asynchronous calls are simply performed by remote execution of a given
λ-calculus expression.
One crucial aspect of actors and active objects that we omit in this work is the

separation of the memory into separate entities manipulated by a single thread
(like e.g. ABS “concurrent object groups”). While this feature is crucial and allows
reasoning about the deterministic nature of some active object languages [11]
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we would not use it in our developments. We also believe this crucial separation
could be added by separating the memory in our configurations into a single
memory per thread, either syntactically or using some kind of separation logic.

On the algebraic effect side, we use an imperative λ-calculus with shallow
effect handlers, similar to Hillerström and Lindley [12]. This fits well with OCaml,
which supports both imperative and functional features. Note that both deep
and shallow handlers are available in OCaml.

2.2 Promises in OCaml

Promises are not a new addition to OCaml. Historically, the libraries Lwt [24] and
Async implemented monadic promise-based cooperative multitasking in OCaml.
Due to OCaml’s limitation at the time, neither library implemented parallelism.
Multicore OCaml introduced parallelism (with a new garbage collector and sup-
porting libraries for thread parallelism) [21] along with algebraic effects [22],
with the objective for users to implement their own concurrency primitives. In
recent time, several libraries implement their own flair of futures and promises,
this time using a direct-style instead of the previous monadic one. Most of them,
including the most developed library eio [15], and our own implementation, use
a core API summarised in Figure 1.

1 type 'a Promise.t
2 (** Promises containing values of type ['a] *)
3
4 val Promise.create : unit -> 'a Promise.t * ('a -> unit)
5 (** [Promise.create ()] creates a promise explicitly and

returns both the promise and the function to be called
for its resolution *)

6
7 val Promise.async : (unit -> 'a) -> 'a Promise.t
8 (** [Promise.async (fun () -> e)] executes [e] in a

promise *)
9

10 val Promise.get : 'a Promise.t -> 'a
11 (** [Promise.get p] makes a blocking read on promise [p]

*)
12
13 val Promise.await : 'a Promise.t -> 'a
14 (** [Promise.get p] makes a non -blocking read on promise [

p] *)

Fig. 1: A simple API for promises

The different elements of the API are commented in the figure. The type
Promise.t is parameterised by its content (denoted by the type variable 'a).
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There are two ways to create a promise: Promise.create creates a promise and
also returns the resolution function, while Promise.async associates a computa-
tion to the promise, actually creating a future. This library can be used in any
setting, we thus differentiate between non-blocking operations such as await,
which yield to another task, and blocking operations such as get, whose evalu-
ation is stuck and blocks the current logical thread. It is then up to the invoker
of this function and the scheduler to deal with this blocked state conveniently.

2.3 Promising Effects

Following [20], we now summarise a simplistic implementation of the get prim-
itive for promises or futures using effects, as a way to introduce effects in the
context of concurrency. As noted before, A promise, denoted here by the promise
type is an atomic mutable box containing a status. The status is either Resolved,
containing a value of type ’a, or Empty waiting for a value.

1 type 'a status = Resolved of 'a | Empty
2 type 'a promise = 'a status Atomic.t

Using effects, Figure 2 showcases the implementation of blocking reads (get
primitive) as explained below. On Line 1, we declare a new effect, called Get.
From the usage perspective, an effect is a parameterised operation whose seman-
tics is not specified, but whose typing is fixed: here, performing the Get effect
takes as parameter a promise and returns the content. The get function, on
Line 4, directly returns the value if the promise is fulfilled, or performs the Get
effect otherwise. We still need to define what performing Get actually does. This
is done via an effect handler, one Line 9. From the definition perspective, effects

1 effect Get : 'a promise -> 'a (** A new 'Get ' effect *)
2
3 (** User -level function for blocking reads on promises *)
4 let get (p : 'a promise) : 'a = match Atomic.get p with
5 | Resolved v -> v
6 | Empty -> perform (Get p)
7
8 (** Underlying implementation of Get *)
9 let exec task = handle task() with

10 ...
11 | Promise.Get p, (k : 'a continuation) ->
12 let rec poll () = match Atomise.get p with
13 | Empty -> Domain.cpu_relax (); poll ()
14 | Resolved v -> continue k v
15 in poll ()
16 ...

Fig. 2: Function Promise.get and its effect handler
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behave similarly to exceptions, except they allow resumption. The exec function
executes a task in the context of a handler. When an effect is performed, it
triggers the evaluation of the appropriate branch in the handler (here, Line 11)
and binds the value contained in the effect (here, variable p is the promise to
get). The handler also gives access to the continuation k at the point where the
effect was performed. To implement get, we repeatedly poll the content of the
promise until a value is obtained, and resume the continuation k with the value,
thus resuming the execution of the task.

The continuation k, which is applied directly here, is in fact a first class
value and can be passed around and stored. This allows implementing other
operations on promises and other concurrency primitives, by defining a scheduler
that manipulates continuations directly in user-land.

As indicated before, this implementation exactly mirrors (albeit with some
simplifications) the ones in the current OCaml ecosystem. We now move on to
a novel usage of algebraic effects by combining them with objects to implement
active objects in OCaml.

3 An OCaml library for Active Objects

Our first contribution is an OCaml library, actors-ocaml available at https:
//github.com/Marsupilami1/actors-ocaml, which implements promises and
active objects on top of OCaml’s new features: effect handlers, to handle con-
currency; and “domains”, threads accompanied by their memory-managed heap,
which acts as OCaml’s parallelism units. We start by a showing our overlay for
active objects before presenting its translation to effects.

3.1 Active objects

We showcase a first example of active object in OCaml in Figure 3. To create
a new active object, we introduce a new dedicated syntax3 object%actor4. It
functions similarly to an OCaml object, with private fields, introduced by val and
public methods. Here, we create an active object with one local field x initialised
to 0, and three methods to set the local field, get it, and multiply it by a
provided integer. Accessing private fields is transparent inside the active object,
as if it was a normal variable, but forbidden outside the active object. We will
see below that we use OCaml domains to implement such a local memory.

In OCaml, objects are typed structurally, with a type that reflects all their
methods. Our active objects follow a similar trend: the object type is delimited
by < ... > and contains a list of all methods. For instance, get : int (Line
3), indicates that the method get takes no argument and returns an integer.
3 In our implementation we choose to adopt the Actor terminology instead of active

objects because we believe actors are better known in the functional programming
community.

4 For this purpose, we use PPX, a specific hook that allow to extend OCaml with new
lightweight syntax extensions

https://github.com/Marsupilami1/actors-ocaml
https://github.com/Marsupilami1/actors-ocaml
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1 let a = object%actor
2 val mutable state = 0
3 method set n = state <- n
4 method get = state
5 method multiply n = state*n
6 end

(a) Object definition

1 val a : <
2 set : int -> unit;
3 get : int;
4 multiply : int -> int
5 > Actor.t

(b) Inferred type

1 a#.set 10;
2 let x : int Promise.t = a#!get in
3 let y : int Promise.t = a#! multiply (Promise.await x) in
4 let z : unit Promise.t = a#!set (Promise.await x) in
5 a#.get + Promise.get y

(c) Example of use

Fig. 3: A simple example using active object

set : int -> unit marks a method taking an integer and returning nothing.
Note that the field is not shown in the type, since it represents internal state.
This is crucial for active objects, as local fields are stored locally and shouldn’t
be accessed by other active objects. To distinguish active objects from normal
objects, the structural type that consists of the methods is wrapped, giving the
type < .. > Actor.t.

Actual usage of active objects is where we depart from traditional OCaml
objects. Indeed, active objects support two types of method calls: a#.get, in Line
1, is synchronous. Such calls are either blocking if made externally, similarly to
Promise.get, or direct if made internally by the actor itself. a#!get in Line 2 is
asynchronous, which wraps the result in a Promise. Promise.create is called to
create the promise and associates a dedicated resolver with the triggered call.
The promise is returned to the invoker that can then perform Promise.get and
Promise.await on it. The programmer cannot explicitly resolve the promise and
can only access its value: promises returned by active objects are in fact futures,
similarly to other active object languages.

3.2 Encapsulation and Data-race Freedom

Our library takes advantage of the OCaml type system to provide safe encap-
sulation of state and safe abstraction. Indeed, local variables, such as the state
field in Figure 3, are hidden. Access can thus only be made inside methods. This
ensures proper abstraction since only fields that are exposed through getters and
setters can be accessed. It also ensures the absence of data-races, since meth-
ods are not executed concurrently (unless programmer explicitly use lower-level
constructs, such as shared memory). Naturally, this is only true if two crucial
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properties are ensured: mutable access cannot be captured, and it is impossible
to return mutable values shared with the internal state.

Capture Methods calls in OCaml are currified by default. For instance a#!
multiply returns a closure of type int -> (int Promise.t) encapsulating mes-
sage sending to a and retrieval of a result from a. Furthermore, functions are first
class, and can be returned by methods. While this provides great integration into
the rest of the language, this means that we need to be particularly careful with
captures in methods. We illustrate this in Figure 4, with an incorrect implemen-
tation of the multiply method. Here, we return a closure capturing an access to
the internal field state. Such closure should never be executed in the context
of another active object. We detect such ill-conceived code and return the error
shown below, instructing the user to first access the state before capturing the
value.

In theory, this is a simple matter of name resolution. In practice, name res-
olution in OCaml is complex, and relies on typing information which can’t be
accessed by syntax extensions such as the one we develop. We implement a
conservative approximation.

1 let a = object%actor
2 val mutable state = 0
3 method multiply = let f n = state * n in f
4 end

(a) An incorrect implementation of multiply

1 Closures cannot capture internal mutable state , you may
want to use something like:

2 |
3 | let a = state in fun _ -> ... a ...
4 |
5 Instead of:
6 |
7 | fun _ -> ... state ...
8 |

(b) The error message for an illegal capture

Fig. 4: An example of illegal capture and its error message

Mutability and sharing Code that respects the criterion mentioned above can
still exhibit data-races, for instance by returning the content of a field which
manifest internal mutability, such as arrays. Preventing such mistakes is a bit
more delicate: with the strong abstraction of OCaml, the implementation of a
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data-structure can be completely hidden, and hence its potential mutability. A
static type analysis is therefore insufficient. A dynamic analysis of the value is
similarly insufficient (mutable and immutable records are represented similarly
in OCaml). The last common solution to this problem, to make a deep copy of
returned values, is costly both in terms of time and loss of sharing.

So far, we opted to only support immutable values in fields, and do not
provide any guarantees when mutable values are used. Thankfully, immutable
values are the default in OCaml and are largely promoted for most use-cases. In
the future, we plan to combine static and dynamic analysis to inform where to
insert deep copies.

3.3 Active Object Desugaring

We now have all the ingredients to explain how the OCaml code for the active
object is generated from the programmer’s input. An example of such translation
is given in Figure 5. The first important notion is to use memory local to the
domain to store the internal fields. Using domains, this is done via the DLS (for
Domain Local Storage, analogous to thread local storage), see for instance line 2

1 let a = object%actor
2 val mutable state = 0
3 method set n = state <- n
4 method get = state
5 end

⇓

1 let a = object (self)
2 val __state = DLS.new_key (fun _ -> 0)
3 method __meth_set n = DLS.set __state n
4 method set n =
5 let p, resolver = Promise.create () in
6 Actor.send self
7 (Scheduler.process resolver
8 (fun _ -> self#__meth_set n)) ;
9 p

10 method __meth_get = DLS.get __state
11 method get =
12 let p, resolver = Promise.create () in
13 Actor.send self
14 (Scheduler.process resolver
15 (fun _ -> self#__meth_get)) ;
16 p
17 end

Fig. 5: Simple active object code (top) and its translation (bottom)
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1 object%actor (self)
2 method syracuse n =
3 if n = 1 then 1
4 else
5 let next = if n mod 2 = 0 then n/2 else 3*n+1 in
6 self #!! syracuse next
7 end

Fig. 6: Simple use of delegation

of the translated code. All reads and writes are then replaced by DLS functions.
The second transformation aims to separate method calls (i.e., message sent),
and execution, and can be observed on line 3 and 4: Each method is split in two.
The first hidden method, shown on line 3, contains the computational content.
The second is the actual entry point: it proceeds by creating a promise; launch a
new task; and return the promise. The goal of the task is to queue a message in
the actor’s mailbox, via Actor.send, and then launch a process which eventually
resolves the promise; this is done by Scheduler.process.

3.4 Forward

While handling a method, one might want to delegate the computation to an-
other active object or method. With traditional asynchronous calls such as #!
or await, this would involve unwrapping and rewrapping the promises. Dealing
efficiently with delegation in asynchronous invocations is a well-studied prob-
lem [6, 7, 5]. In [6], one construct called forward was suggested for such dele-
gations; it was then shown that directly forwarding an asynchronous invocation
(return(async(e))) could be efficiently and safely implemented using promises.

We can easily adapt this approach to our actors. We also implement del-
egation calls by syntactically identifying such optimisable situation with the
primitive: actor#!!m. Figure 6 illustrates a simple program using such method
delegation; the statement self#!!syracuse next delegates the current invoca-
tion to another one. These calls act as return in many languages, and ignore
any computations that would come after in the method. From the functional
programming point of view, this is analogous to tail-calls. Tail-calls exploit syn-
chronous calls in return positions to eschew using additional stack space. Forward
statement exploits asynchronous calls in return position to eschew indirection of
promises.

In a more general case, we can simply forward5 a promise as the future
resolution of the current promise. A statement similar to the one of Encore,
Actors.forward p performs such a shortcut where p is a ’a Promise.t.

We implement the two forwarding constructs presented above as effects in the
library. Similarly to capturing issues highlighted in previous sections, delegation
5 In the future, we hope to turn asynchronous calls in a forward into delegation

automatically.
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calls should not be captured in a closure: indeed, it wouldn’t be clear which
indirection to avoid6. We forbid such situations (dynamically, via a runtime
test).

3.5 Runtime Support

From a parallelism point of view, we rely on domains, which are threads equipped
with a private heap and a garbage collector. There is also a global, shared heap.
In practice, we spawn a pool of domains at the start of the execution. This pool
of domains is fixed for the whole execution. Similarly to many other implemen-
tations, multiple actors may share a domain, and will use cooperative scheduling
together.

Cooperative scheduling is implemented using effects and continuations, sim-
ilarly to the one implemented in the introduction. To make this scheduler more
realistic and fair, we implement the following optimisations:
– Each domain contains a first round-robin scheduler in charge of scheduling

between active objects hosted on the same domain. Spawning of new actors
is implemented at this layer, enabling the choice of an arbitrary domain to
spawn it. Synchronous method calls in the same domain are transparently
turned into direct calls (instead of asynchronous calls followed by a synchro-
nisation when the domain is different).

– Each active object contains an OCaml object with the methods of the object,
as described above, and a second round-robin scheduler which schedules the
promises currently executed by this actor. Instead of a traditional mailbox
of messages, active objects contain a queue of thunks to be executed. In the
case of method calls, each thunk contains a call to the underlying OCaml
object as a closure. Forwards and delegation calls are implemented at this
second layer, which is aware of all the details pertaining to the actor.

– Unresolved promises contain a list of callbacks, i.e., other promises that are
currently waiting on it. This allows the implementation of passive waits for
unresolved promise reads.
Note that this implies we have two effects handlers, both providing slightly

differing implementation of the base effects related to promises (Async, Get,
Await). Indeed, promises can appear outside of actors, but should be handled
locally if they appear inside one.

4 Future and Effect λ-calculi

The rest of this article is dedicated to the formal description of the compilation
of Futures to Effects. For this purpose, we first introduce our protagonists: A
common imperative base (Section 4.1), the source future calculus (Section 4.2)
often characterised in green, and the target effect calculus (Section 4.3) often
characterised in blue. For all these calculi, we define small-step operational se-
mantics in the sequential and parallel cases.
6 Already in [6], the authors prevented forward from appearing inside a closure.
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4.1 A Functional-Imperative Base

We define a standard λ-calculus with imperative operations that will be the base
language for our other definitions and semantics. The syntax is given in Figure 7.
As meta-syntactic notations, we use overbar for lists (e a list of expressions) and
brackets for association maps (

[
ℓ 7→ e

]
). Dom(M) is the domain of M and ∅ is

the empty map. M [v 7→ v′] is a copy of M where v is associated to v′, M \ v is
a copy of M where v is not mapped to anything (v ̸∈ Dom(M \ v)).

Most expression and values are classical. The substitution of x by e′ in e is
denoted e [x← e′]. Stores are maps indexed by location references, denoted ℓ.
Id denotes unique identifiers that can be crafted during execution, which will
be useful in our two main calculi. Location references and identifiers should not
occur in the source programs and only appear during evaluation. We also define
evaluation contexts C that are expressions with a single hole □. Evaluation con-
texts are used in the semantics to specify the point of evaluation in every term,
ensuring a left-to-right call-by-value evaluation. We classically rely on evaluation
contexts, C[e] is the expression made of the context C where the hole is filled
with expression e. Figure 8 defines a semantics for this base calculus; it is similar
to what can be found in the literature. It expresses a reduction relation, denoted
−−→, of pairs store×expression.

Important note The rules of Figure 8 act on the syntax of imperative λ-calculus.
However, in the next section we will re-use −−→ on terms of bigger languages,
with the natural embedding that −−→ rules only are able to handle the λ-calculus

e ::= v (Values)
| x ∈ Var (Variables)
| () (Unit)
| λx.e | (e1 e2) (Functions)
| newref(e) | !x | x : = e (References)

v ::= ℓ ∈ Loc (References)
| λx.e (Functions)
| i ∈ Id (Identifiers)
| c ∈ Const (Constants)

σ ::=
[
ℓ 7→ v

]
(Store)

C ::= □ | (C e) | (v C) | newref(C) | C : = e | ℓ : =C (Eval. context)

Fig. 7: Syntax for the base impure λ-calculus

ℓ ̸∈ Dom(σ)

σ, newref(v)−−→σ [ℓ 7→ v] , ℓ

(ℓ 7→ v) ∈ σ

σ, !ℓ−−→σ, v σ, (ℓ : = v)−−→σ [ℓ 7→ v] , ()

σ, e−−→σ′, e′

σ,C[e]−−→σ′, C[e′] σ, (λx.e v)−−→σ, e [x← v]

Fig. 8: Semantics for the base impure λ-calculus
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primitives but will manipulate terms and reduction contexts of the other lan-
guages. The alternative would be to define from the beginning the syntax and
reduction contexts of our language as the largest syntax including all the three
considered languages (λ-calculus, Fut, and Eff). We chose here to adopt a more
progressive presentation despite the slight abuse of notation this involves on the
formal side.

In the rest of this article, we also assume additional constructs which can be
classically encoded in the impure λ-calculus:
– Let-declaration: let x = ... in ...
– Sequence: e; e’
– Mutually recursive declarations: let rec ... and ...
– Mutable maps indexed by values: empty map {}, reads M [e], writes M [e]←

e′, and deletions del M [e]
– Pattern matching on simple values: match ... with ...

4.2 Futures and Cooperative Scheduling

Our λ-calculus with futures shares some similarities with the concurrent λ-
calculus with futures [18], but without future handlers or explicit future name
creation and scoping, resulting in a simpler calculus. Our calculus can also be
compared to the one of Fernandez-Reyes et al. [6] but with cooperative schedul-
ing with multiple threads, and imperative aspects.

The λ-calculus of previous section is extended as shown in Figure 9. Four
new constructs are added to the syntax: spawn() spawns a new processing unit;
asyncAt(e, e′) starts a new task e in the processing unit e′ and creates a future
identifier f , when the task finishes, this resolves the future f ; get(e), provided
e is a future identifier, blocks the current processing unit until the future in e
is resolved; await(e) is similar but releases the current processing unit until the
future is resolved. Evaluation contexts are trivially extended.

As shown in Figure 9, we suppose that future identifiers have a specific shape
of the form fut = (tid, lf) where tid is a thread identifier and lf is a local future
identifier. Tasks map expressions to future identifiers, when the expression is
fully evaluated (to a value) the future is resolved.

The dynamic syntax is expressed in two additional layers: above the λ-
calculus layer of Figure 8, Figure 10 expresses the reduction relation in a given
processing unit, and Figure 11 extends this local semantics to a parallel seman-
tics with several processing units.

The local semantics in Figure 10 is based on configurations of the form σ, F, s
where σ is a shared mutable store, F is the map of futures, and s is a state. If the
expression in the current task is fully evaluated to a value, the task is finished,
the future is resolved and put back into the task list, the state of the processing
unit is Idle (rule return). Rule step performs a λ-calculus step (see Figure 8).
get(f) can only progress if the future f has been resolved, in which case the
value associated with the future is fetched (rule get). There are two rules for
await(f): if the future is resolved await(f) behaves like get(f); if it is not
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e ::= . . . (Base language)
| asyncAt(e, e) (Creation)
| get(e) (Blocking read)
| await(e) (Non-blocking read)
| spawn() (Spawn process)

C ::= · · · | asyncAt(C, e) | asyncAt(v, C)
| await(C) | get(C)

(Evaluation Contexts)

tid ∈ ThreadId ⊂ Id
lf ∈ LocalFutures ⊂ Id

f ::= (tid, lf) ∈ Id (Future Ids)

F ::=
[
f 7→ e

]
(Tasks)

s ::= Idle | (f 7→ e) (Exec. State)

P ::= ∥i∈I s
i (Parallel exec. state)

I ⊆ ThreadId

Fig. 9: Syntax for the Fut language

step
σ, e−−→σ′, e′

σ, F, (f 7→ e)−−→σ′, F, (f ′ 7→ e′)

get
(f ′ 7→ v) ∈ F

σ, F, (f 7→ C[get(f ′)])−−→
σ, F, (f 7→ C[v])

await-val
(f ′ 7→ v) ∈ F

σ, F, (f 7→ C[await(f ′)])−−→
σ, F, (f 7→ C[v])

await-yield
∄v. (f ′ 7→ v) ∈ F

σ, F, (f 7→ C[await(f ′)])−−→
σ, F

[
f 7→ C[await(f ′)]

]
, Idle

return

σ, F, (f 7→ v)−−→σ, F [f 7→ v] , Idle

async
f ′ = (tid, lf) f ′ ̸∈ Dom(F )

σ, F, (f 7→ C[asyncAt(e, tid)])−−→σ, F
[
f ′ 7→ e

]
, (f 7→ C[f ′])

Fig. 10: Semantics for Fut — σ, F, s−−→σ, F, s

resolved the task is interrupted (it returns to the task pool), the processing unit
becomes Idle. Finally, rule Async starts a new task: the effect of asyncAt(e, tid)
is first to forge a future identifier containing the thread identifier tid and another
identifier lf so that the pair (tid, lf) is fresh, a task is created, associating e to
the new future.

The management of processing units and thread identifiers is the purpose of
the parallel semantics in Figure 11. It expresses the evaluation of configurations
of the form σ, F, P where P is a parallel composition of processing units. P ∥ si is
used both to extract the execution state of thread i form the parallel composition
P and to add it back. Rule one-step simply triggers a rule of the local semantics
in Figure 11. Rule spawn spawns a new thread, creating a fresh thread identifier
that will be used in an AsyncAt statement to initiate work on this thread (the
new thread is initially Idle). Finally, if si is Idle, no task is currently running
and a new task can be started on the processing unit i by the rule schedule.
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one-step
σ, F, s−−→σ2, F2, s2

σ, F, P ∥ si−−→|| σ2, F2, P ∥ s2i

spawn
tid ̸∈ tids(P ) ∪ {i}

σ, F, P ∥(f 7→ C[spawn()])i−−→||

σ, F, P ∥(f 7→ C[tid])i ∥ Idletid

schedule
((i, lf) 7→ e) ∈ F e is not a value

σ, F, P ∥ Idlei−−→|| σ, F \ (i, lf), P ∥((i, lf) 7→ e)i

Fig. 11: Parallel semantics for Fut — σ, F, ∥i∈I s
i−−→|| σ, F, ∥i∈I s

i

An initial configuration for an Fut program ep consists of the program asso-
ciated with a fresh task identifier i and a fresh future identifier f , with an empty
store and future map: ∅, ∅, (f → ep)

i

4.3 Effects

We now extend the base calculus of Section 4.1 with effects. For the moment this
extension is independent of the previous one, they are used separately in this
article even though composing the two extensions would be perfectly possible.
Indeed, we transform programs with only futures into programs with only effects
but having a language with at the same time futures and effects would also make
sense.

Figure 12 shows the syntax of the parallel and imperative λ-calculus with
effects. Parallelism is obtained by the keyword spawn(e) that creates a new
thread in the same spirit as in the previous section. handle(e){h} runs the
expression e under the handler h, if an effect is thrown by throw(E(C)) inside
e, and if h can handle this effect, the handler is triggered. Rule handle-effect
in Figure 13 specifies the semantics of effect handling. Suppose an effect E is
thrown, the first encompassing handler that can handle this effect is triggered:
if a rule (E(x), k 7→ e) is in the handler, then the handler e is triggered with x
assigned to the effect value v and k assigned to the continuation of the expression
that triggered the effect. The interplay between evaluation contexts and the
captured_effects() function captures the closest matching effect. Rule handle-
step handles the case where the term e performs a reduction not related to effect
handling. If e finally returns a value, Finally, rule handle-return deals with
the case where the handled expression can be fully evaluated without throwing
an effect; it triggers the expression corresponding to the success case x 7→ e in
the handler definition. Note that we don’t reinstall the handler after triggering
the rule, corresponding to the shallow interpretation of effect handlers [12].

Figure 14 shows the parallel semantics of effects. The only specific rule is
spawn, which spawns a new thread with a fresh identifier. Note that in Eff, the
parameter of spawn is the expression to be evaluated in the new thread, with its
own thread identifier as argument.
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e ::= . . .
| handle(e){h} | throw(E(e))
| spawn(e)

C ::= · · · | handle(C){h} | throw(E(C))
| spawn(e) (Evaluation Contexts)

E ∈ Symbol
k ∈ Var

h ::=
[
E(x), k 7→ e; x 7→ e

]

Fig. 12: Eff Syntax

handle-step
σ, e−−→σ′, e′

σ, e−−→σ′, e′

handle-return
(x 7→ e) ∈ h

σ, handle(v){h}−−→σ, e [x← v]

handle-effect
(E(x), k 7→ e) ∈ h E /∈ captured_effects(C)

σ, handle(C[throw(E(v))]){h}−−→σ, e [x← v] [k ← λy.C[y]]

captured_effects(□) = ∅
captured_effects(handle(C){h}) = captured_effects(C) ∪ {E | (E(x), k 7→ e) ∈ h}

captured_effects(. . . ) = . . . (by immediate recursion otherwise)

Fig. 13: Semantics for Eff — σ, e−−→σ, e

seq
σ, e−−→σ′, e′

σ, P ∥ ei−−→|| σ
′, P ∥ e′i

spawn
tid ̸∈ tids(P ) ∪ {i}

σ, P ∥C[spawn(e)]i−−→|| σ, P ∥C[tid]i ∥(e tid)tid

Fig. 14: Parallel semantics for Eff — σ, ∥i∈I e
i−−→σ, ∥i∈I e

i

An initial configuration for an Eff program ep simply consists of the program
associated with a fresh task identifier i and with an empty store: ∅, eip.

5 Compilation of futures into effects

In this section we define a transformation from Fut to Eff that translates from
our concurrent λ-calculus with futures into the calculus with effect handlers. We
then prove its correctness.

5.1 Translating Fut into Eff

Figure 15 shows the translation JeKp that transforms a Fut program e into an
Eff program with the same semantics. The color highlighting in the definition
can be ignored at first. It will be used in the proof in the next section. JeKp is
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JeKp≜ let tasks = {} in
let rec poll(fut) = Poll in
let rec continue(fut, k, t)=Continue
and run(t) = Run in

continue(fresh(), λ(). JeKe , t0)

JasyncAt(e, t)Ke=throw(Async( λ(). JeKe , JtKe))

Jawait(e)Ke=throw(Await(JeKe))
Jget(e)Ke=throw(Get(JeKe))

Jspawn()Ke=throw(Spawn())
JxKe=x JvKe=v

JeKe= . . . (immediate recursion otherwise)

Where
Continue ≜
handle( k() ){
| x 7→

tasks[fut]← V(x);
run(t)

| Async(job, t′), k′ 7→
let fut′ = (t′, fresh()) in

tasks[fut′]← C(job);
continue(fut, λ().k′(fut′), t)

| Await(futa), k
′ 7→

match tasks[futa]{
| V(v) 7→ continue(fut, λ().k′(v))

| _ 7→ let k′′() = k′(throw(Await(futa))) in

tasks[fut]← C(k′′);

run(t)
};

| Spawn(), k′ 7→
let t′ = spawn(run) in

continue(fut, λ().k′(t′), t)

| Get(futg), k
′ 7→

let v = poll(futg) in

continue(fut, λ().k′(v), t)

}

Run ≜
let (fut, k) =
pop(tasks, t)

in

tasks[fut]← None;
continue(fut, k, t)

Poll ≜
match tasks[fut]{
| V(v) 7→ v

| _ 7→ poll(fut)
}

Pop
fut = (tid, lf) tasks[fut] = C(k)

pop(tasks, tid)−−→(fut, k)

Fig. 15: Translation from Fut to Eff
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the top level program transformation while JeKe is used to compile expression;
this transformation simply replaces Fut specific expressions into expressions
throwing an effect with adequate name and parameters. The handling of effects
is defined at the top level, i.e. when translating the source program.

JeKp creates a program that uses a pool of tasks called tasks and three func-
tions that manipulate it. tasks is implemented by a mutable map from future
identifiers to tasks, which can be of two kinds: continuations of the form C(k)
or values of the form V(v).

The main function is continue, it sets up a handler dealing with all the
effects of Fut. It first evaluates the thunk continuation parameter k. Then it
reacts to the different possible effects as follows. The first branch describes the
behavior when k() throws no effect and simply returns a value. In this case, the
task is saved as a value V(v) (the future is resolved). The Async effect adds a
new task to the task pool and continues the execution of the current task with
the continuation k′ and the newly created future fut′. The Await effects checks
whether the future futa in the task pool has been resolved or not; if it is resolved
the task continues with the future value, otherwise the task is put back in the
pool of tasks (keeping the Await effect at the head of the continuation). The
Get effect is similar to the resolved case of Await but does not allow the task
to be returned to the pool of tasks. Instead, if the future is not resolved the
thread actively polls the matching task until the future is finally resolved using
the auxiliary poll function. The Spawn effect case spawns a new thread that runs
the run function. In each case where the task does not continue, the body of the
function run is triggered.

The function run(t) uses the external function pop(tasks, t) to fetch a new
unresolved task that should run on thread t, the task is thus of the form C(k)
and the thread continues by evaluating the thunk continuation k.

5.2 Correctness of the Compilation of Actors into Effects

We define in this section a hiding semantics and will prove strong bisimula-
tion between the source program and the hiding semantics of the transformed
program.

5.2.1 Hiding Semantics In translation such as the one defined here, the
compiled program must often take several more “administrative” steps than the
source program. This makes proof by bisimulation more complex, and requires
using weak bisimulation that ignores some steps marked as internal.

In this article we take a stronger approach and prove strong bisimilarity on a
derived transition relation. The principle is that internal steps of the transformed
program are called silent, and they are by nature deterministic and terminating.
We can thus consider that we “normalise” the runtime configuration of the trans-
formed program by systematically applying as many internal steps as possible
until a stable state is reached. We discuss this idea further in Section 6.
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We first state that hidden(e) is true if the top level node in the syntax of
e is colored ; where colored means the term is surrounded by a colored box: e .
There should be no ambiguity on the node of the syntax that is colored (at least
in our translation).

Definition 1 (Hiding semantics). We define a hiding operation to hide parts
of the reduction. It works as follows. We can define a h-reduction −−→h that puts
a τ label on the transitions that target a node of the syntax that is hidden:

σ, e−−→|| σ
′, e′ hidden(e)

σ, e
τ−→h σ

′, e′
σ, e−−→|| σ

′, e′ ¬hidden(e)
σ, e−−→h σ

′, e′

We finally define the hiding semantics as one non-hidden step followed by
any number of hidden step, until no further hidden step can be performed7:

σ, e==⇒
||
σ, e ⇐⇒ σ, e−−→h

τ−→h
∗
σ′, e′ ̸τ−→h

Note that, considering the nodes colored in our translation, the transitions
marked as τ should only have a local and deterministic effect on the program
state. In practice there are some hidden statements that spawn a thread or
launches task for example, but they are immediately and deterministically pre-
ceded by a decision point that is visible, here the reaction to an effect. The
interleaving of the tau transition have no visible effect on the global state, only
the state along the visible transitions is important. This property will be made
explicit in our proof of correctness. As a consequence, because the hidden step
commutes with all the other steps, each execution of a Fut program compiled
into Eff can be seen as a succession of ==⇒

||
. Additionally, except when polling

futures the transitive closure of hidden steps terminate. We have the following
property, relating our middle-step and small-step semantics.

Theorem 1 (Middle-step semantics). Consider e1 = Jef Kp. Any Eff re-
duction of e1 can be seen as a hiding semantics reduction, modulo a few hidden
steps, and a few get operations on unresolved futures:

σ1, e1−−→||
∗ σ2, e2 =⇒ ∃σ3, e3, σ4, e4.

∧ σ1, e1 ==⇒
||
∗ σ3, e3

σ2, e2
τ−→h

∗
σ4, e4

σ3, e3
handle-get−−−−−−−→||

∗
σ4, e4

Where σ3, e3
handle-get−−−−−−−→||

∗
σ4, e4 is application (inside an appropriate context) of

a handle-effect rule with a Get effect on an unresolved future. in particular,
if all futures are resolved, σ3, e3 = σ4, e4.

This theorem is true because the hidden semantic steps commute, only a
special case is needed for handling the polling of unresolved futures.
7 −−→∗ denotes the reflexive transitive closure of the relation −−→.
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5.2.2 Bisimulation Definition To help with our bisimulation definition, we
now define a few execution contexts that appear commonly in the proof. Crec

is the context that corresponds to the recursive knot introduced by let rec.
Indeed, since let rec expresses recursion as an encoding into λ-calculus, the
encoding will appear again in each task and can be sugared/de-sugared at will.
In addition, Cc and Cr are the contexts in the translated program where continue
and run are respectively executed, parameterised by all their free variables. In
the following we thus start each task by Crec, Cc or Cr. More precisely:

Crec[ℓthreads] ≜


let rec poll(fut) = Poll in

let rec continue(fut, k, t)=Continue

and run(t) = Run in

□

 [tasks← ℓthreads]

Cc[ℓthreads, fut,K
′, t] ≜ Crec[ℓthreads][continue(fut, k, t) [k()← K ′]]

Cr[ℓthreads, t] ≜ Crec[ℓthreads][run(t)]

Definition 2 (Relation over configurations). Let R be a relation over pairs
of a Fut configuration CFut and a Eff configuration CEff. We also note R e a
relation over pairs of configuration states in Fut (i.e., (σ, ℓthreads)) and in Eff
(i.e., (σ, F )).

Figure 16 defines both relations. The purpose of the relation is to prove the
correctness of our compilation scheme. We will prove that R is a strong bisim-
ulation. R is indexed either by ∥ for parallel configurations, and by a given t to
reason about single-threaded configurations of thread t. For single-threaded con-
figurations, the computation can either be in the continue case, or the run case.
The most complex relation is on the environments, which details the content of
the ℓthreads values.

The translation JKe can straightforwardly be extended to contexts (where
J□Ke = □). Consequently, we have the following property:

Lemma 1 (Context compilation). JC[e]Ke ≡ JCKe [JeKe]

Proof. By case analysis on the translation rules (and on contexts). ⊓⊔

5.2.3 Correctness of the compilation scheme We now establish the cor-
rectness of our translation by proving that the relation we exhibited in the
previous section is a bisimulation.

Theorem 2 (Correctness of the compilation scheme). The relation R ∥
is a strong bisimulation where the transition on the Eff side is the hiding tran-
sition relation, and the transition on the Fut side is −−→||. Formally, for all
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env
Fe = Fe,1 ⊎ Fe,2

∀f ∈ Dom(Fv). Fv(f) is a value ∀f ∈ Dom(Fe). Fe(f) is not a value
Te,1 =

[
f ′ 7→ C(λ(). JeKe) | Fe,1(f

′) = e
]

Te,2 =
[
f ′ 7→ C (λ().((λx.C[x]) e)) |

q
Fe,2(f

′)
y
e
= C[e]

]
Tv =

[
f ′ 7→ V(JvKe) | Fv(f

′) = v
]

σbase ∪ {ℓthreads 7→ Te,1 ⊎ Te,2 ⊎ Tv}, ℓthreads R e σbase, Fe ⊎ Fv

continue
σ, ℓthreads R e σ′, F

σ,Cc[ℓthreads, f, JeKe , t] R t σ′, F, (f → e)

run
σ, ℓthreads R e σ′, F

σ,Cr[ℓthreads, t] R t σ′, F, Idle

par
∀t ∈ T. σ, et R t σ′, F, st

σ, ∥t∈T (et)
t R ∥ σ′, F, ∥t∈T (st)

t

Fig. 16: Relation between Fut terms and their compiled version

configurations the following holds:

σ1, P1 R ∥ σ′
1, F1, P

′
1 ∧ σ1, P1 ==⇒

||
σ2, P2

=⇒ ∃σ′
2, F2, P

′
2. σ′

1, F1, P
′
1−−→|| σ

′
2, F2, P

′
2 ∧ σ2, P2 R ∥ σ′

2, F2, P
′
2

and

σ1, P1 R ∥ σ′
1, F1, P

′
1 ∧ σ′

1, F1, P
′
1−−→|| σ

′
2, F2, P

′
2

=⇒ ∃σ2, P2. σ1, P1 ==⇒
||
σ2, P2 ∧ σ2, P2 R ∥ σ′

2, F2, P
′
2

so that for any Fut program p the initial configuration of the program and of its
effect translation are bisimilar (with t0 fresh, and f0 is the fresh future identifier
that has been chosen when triggering the first continue function.).

∅, (JepKp [fresh()← f0])
t0 R ∥ ∅, ∅, (f0 7→ ep)

t0

Proof (sketch). The proof of bisimulation follows a standard structure. For each
pair of related configurations we show that the possible reductions made by
one configuration can be simulated by the equivalent configuration (in the other
calculus). Then a case analysis is performed depending on the rule applied. The
set of rules is different between Fut and Eff calculi but on the Eff side, we
need to distinguish cases based on the name of the triggered effect, leading to
a proof structure similar to the different rules of Fut. Appendix A details the
proof that the compiled program simulates the original one. By case analysis on
the rule that makes the relation true and the involved reduction. This leads to
seven different main cases; we prove simulation in each case. ⊓⊔
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Finally, Theorems 1 and 2 allow us to conclude regarding the correctness of our
compilation scheme. Indeed, each execution of a compiled program is equivalent
to a middle-step reduction that itself simulates one of the possible executions of
our Fut program. Conversely, any execution of our Fut program corresponds
(modulo polling of unresolved futures) to a middle-step execution of its compi-
lation, which is in fact one of the Eff executions of the compiled program.

6 Conclusion and Discussion

We have presented an active object library based on effect handlers and proved
the correctness of its implementation principles. To prove this correctness, we
expressed the implementation as a translation from a future calculus to an effect
calculus and proved a bisimulation relation between the source and the trans-
formed program. This illustrates that effects are a very general and versatile con-
struct which can be leveraged to implement concurrency constructs as libraries,
including futures. We discuss below a few alternatives that we considered and,
more generally, extensions of this work we envision.

Deep and Shallow Handlers As highlighted at multiple points, we use shallow
effect handlers, both in our implementation and in our formal development.
Shallow effect handlers are not automatically reinstalled upon resuming a con-
tinuation, while deep handlers are automatically reinstalled.

In theory, Hillerström and Lindley [12] show that both deep and shallow han-
dlers are equivalent, and showcase code transformation from one to the other. In
addition, OCaml provides both versions. In practice, however, for the purpose
of implementing a scheduler, shallow handlers offer numerous advantages. First,
they make recursion in the continue function uniform over all tasks, be they con-
tinuations or new tasks. Furthermore, since they allow precise control over when
handlers are installed, we can ensure that we never install nested handlers. In
our implementation, this was essential to make continue and run tail-recursive.

Unfortunately, shallow handlers are a bit more delicate to implement for
language designers. Furthermore, deep handlers admit a more precise small-step
semantics [19]. It remains to be seen if the deep version of our scheduler can be
expressed as elegantly as the one showcased in our formalisation.

Relation to Existing Promise-as-effect Libraries To develop our active object
library, we made our own implementation of promises. This was convenient, as
full-control allowed us to tie both together, which was essential for implementing
forward, notably.

However, implementing an industrial-strength promise library with efficient
scheduling, parallelism, and system integration is a significant task. Making sev-
eral such libraries work together is delicate. In practice, eio [15] is trending
towards being the standard promise library in OCaml.

Now that we formalised our semantics independently, one of the next steps
is to adapt our developments to rely on an existing scheduling library. There are
two difficulties here:
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– Adapting to different underlying primitives (eio uses “suspend”, similar to
a form of yielding, and “fork” to create new promises).

– Finding a way to extend the scheduler implemented by an existing library,
accessing its internal state, without completely breaking its invariants, nor
breaking abstraction.

Optimisation on Forward As we mentioned in Section 3, forward is a construct
that allows efficient delegation of asynchronous method invocations by mak-
ing shortcuts when a future is resolved with another one [6]. For simplicity, we
decided not to specify forward in our formal development. Its specification and
proof is rather straightforward, by introducing an additional effect. In the future,
in addition to this formal aspect, we would like to experiment with introducing
delegated method calls automatically, following the analogy with tail-call opti-
misations.

Hiding Semantics and Middle-step Reductions Proof of correctness of transla-
tions between languages and calculi often reduce to simulation or bisimulation
proofs [6, 5, 16] between a source program and a transformed program. Often,
it is however necessary for the transformed program to do more steps than the
original one. These additional internal steps are necessary to maintain internal
information on the program state. Sometimes, even the source program must also
do some internal steps. The usual tool to prove the equivalence in this case is to
use a weak bisimulation that “ignores” some steps marked as internal. However,
weak bisimulations do not guarantee the preservation of all program properties,
in particular liveness properties [8]. In such situations, some previous work prove
branching bisimilarity which is stronger but not always sufficient.

In this article, we developed a new “hiding” semantics and a middle-step
reduction which executes one non-hidden step, followed by as many hidden steps
as possible. This allows us to decide exactly in the specification of the translation
which code is “administrative” and which code must really be synchronised.
Naturally, in our context, such code is deterministic.

While we developed this in an ad-hoc manner here, we believe this approach
can be adapted to many other program translations, simplifying simplifying the
proof of correctness for compilers, and program transformations in general.

References

1. Baker Jr., H.G., Hewitt, C.: The incremental garbage collection of processes.
In: Proc. Symp. on Artificial Intelligence and Programming Languages, pp.
55–59. New York, NY, USA (1977)

2. Bauer, A., Pretnar, M.: Programming with algebraic effects and handlers.
J. Log. Algebraic Methods Program. 84(1), 108–123 (2015), https://doi.
org/10.1016/j.jlamp.2014.02.001

3. de Boer, F., Din, C.C., Fernandez-Reyes, K., Hähnle, R., Henrio, L., Johnsen,
E.B., Khamespanah, E., Rochas, J., Serbanescu, V., Sirjani, M., Yang, A.M.:

https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1016/j.jlamp.2014.02.001


24 M. Andrieux, L. Henrio, G. Radanne

A survey of active object languages. ACM Computing Surveys 50(5), 76:1–
76:39 (Oct 2017), article 76

4. Caromel, D., Henrio, L., Serpette, B.: Asynchronous and deterministic ob-
jects. In: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pp. 123–134. ACM Press (2004)

5. Chappe, N., Henrio, L., Maillé, A., Moy, M., Renaud, H.: An optimised
flow for futures: From theory to practice. CoRR abs/2107.07298 (2021),
https://arxiv.org/abs/2107.07298

6. Fernandez-Reyes, K., Clarke, D., Castegren, E., Vo, H.P.: Forward to a
promising future. In: Di Marzo Serugendo, G., Loreti, M. (eds.) Coordina-
tion Models and Languages. pp. 162–180. Springer International Publishing,
Cham (2018)

7. Fernandez-Reyes, K., Clarke, D., Henrio, L., Johnsen, E.B., Wrigstad, T.:
Godot: All the Benefits of Implicit and Explicit Futures. In: Donald-
son, A.F. (ed.) 33rd European Conference on Object-Oriented Program-
ming (ECOOP 2019). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 134, pp. 2:1–2:28. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, Dagstuhl, Germany (2019), http://drops.dagstuhl.de/opus/
volltexte/2019/10794, distinguished artefact

8. Graf, S., Sifakis, J.: Readiness semantics for regular processes with silent
actions. In: Ottmann, T. (ed.) Automata, Languages and Programming.
pp. 115–125. Springer Berlin Heidelberg, Berlin, Heidelberg (1987)

9. Halstead, Jr., R.H.: Multilisp: A language for concurrent symbolic com-
putation. ACM Transactions on Programming Languages and Systems
(TOPLAS) 7(4), 501–538 (1985)

10. Henrio, L.: Data-flow Explicit Futures. Research report, I3S, Université Côte
d’Azur (Apr 2018), https://hal.archives-ouvertes.fr/hal-01758734

11. Henrio, L., Johnsen, E.B., Pun, V.K.I.: Active objects with deterministic
behaviour. In: Dongol, B., Troubitsyna, E. (eds.) Integrated Formal Methods
- 16th International Conference, IFM 2020, Lugano, Switzerland, November
16-20, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12546,
pp. 181–198. Springer (2020)

12. Hillerström, D., Lindley, S.: Shallow effect handlers. In: Ryu, S. (ed.)
Programming Languages and Systems - 16th Asian Symposium, APLAS
2018, Wellington, New Zealand, December 2-6, 2018, Proceedings. Lec-
ture Notes in Computer Science, vol. 11275, pp. 415–435. Springer (2018),
https://doi.org/10.1007/978-3-030-02768-1_22

13. Johnsen, E.B., Blanchette, J.C., Kyas, M., Owe, O.: Intra-object versus
inter-object: Concurrency and reasoning in Creol. In: Proc. 2nd Intl. Work-
shop on Harnessing Theories for Tool Support in Software (TTSS’08). Elec-
tronic Notes in Theoretical Computer Science, vol. 243, pp. 89–103. Elsevier
(Jul 2009)

14. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: A core
language for abstract behavioral specification. In: Aichernig, B.K., de Boer,
F., Bonsangue, M.M. (eds.) Proc. 9th International Symposium on Formal

https://arxiv.org/abs/2107.07298
http://drops.dagstuhl.de/opus/volltexte/2019/10794
http://drops.dagstuhl.de/opus/volltexte/2019/10794
https://hal.archives-ouvertes.fr/hal-01758734
https://doi.org/10.1007/978-3-030-02768-1_22


Active Objects based on Algebraic Effects 25

Methods for Components and Objects (FMCO 2010). LNCS, vol. 6957, pp.
142–164. Springer, Heidelberg (2011)

15. Leonard, T., Ferris, P., Haesbaert, C., Pluvinage, L., Karvonen, V., Pari-
mala, S., Sivaramakrishnan, K., Balat, V., Madhavapeddy, A.: Eio 1.0 –
effects-based io for ocaml 5. OCaml Workshop (2023)

16. Leroy, X.: Formal certification of a compiler back-end, or: programming
a compiler with a proof assistant. In: 33rd ACM symposium on Prin-
ciples of Programming Languages. pp. 42–54. ACM Press (2006), http:
//xavierleroy.org/publi/compiler-certif.pdf

17. Liskov, B., Shrira, L.: Promises: Linguistic support for efficient asynchronous
procedure calls in distributed systems. p. 260–267. PLDI ’88, Association
for Computing Machinery, New York, NY, USA (1988), https://doi.org/
10.1145/53990.54016

18. Niehren, J., Schwinghammer, J., Smolka, G.: A concurrent lambda calculus
with futures. Theoretical Computer Science 364(3), 338–356 (2006)

19. Sieczkowski, F., Pyzik, M., Biernacki, D.: A general fine-grained reduction
theory for effect handlers. Proc. ACM Program. Lang. 7(ICFP) (aug 2023),
https://doi.org/10.1145/3607848

20. Sivaramakrishnan, K.C.: https://github.com/kayceesrk/ocaml5-
tutorial (????), accessed: 2023-05-30

21. Sivaramakrishnan, K.C., Dolan, S., White, L., Jaffer, S., Kelly, T., Sahoo,
A., Parimala, S., Dhiman, A., Madhavapeddy, A.: Retrofitting parallelism
onto ocaml. Proc. ACM Program. Lang. 4(ICFP), 113:1–113:30 (2020),
https://doi.org/10.1145/3408995

22. Sivaramakrishnan, K.C., Dolan, S., White, L., Kelly, T., Jaffer, S., Mad-
havapeddy, A.: Retrofitting effect handlers onto ocaml. In: Freund, S.N.,
Yahav, E. (eds.) PLDI ’21: 42nd ACM SIGPLAN International Confer-
ence on Programming Language Design and Implementation, Virtual Event,
Canada, June 20-25, 2021. pp. 206–221. ACM (2021), https://doi.org/10.
1145/3453483.3454039

23. Taura, K., Matsuoka, S., Yonezawa, A.: Abcl/f: A future-based polymorphic
typed concurrent object-oriented language - its design and implementation.
In: Proceedings of the DIMACS workshop on Specification of Parallel Algo-
rithms. pp. 275–292. American Mathematical Society (1994)

24. Vouillon, J.: Lwt: a cooperative thread library. In: Sumii, E. (ed.) Proceed-
ings of the ACM Workshop on ML, 2008, Victoria, BC, Canada, Septem-
ber 21, 2008. pp. 3–12. ACM (2008), https://doi.org/10.1145/1411304.
1411307

A Proof of the bisimulation theorem (Theorem 2)

A proof of bisimulation involves two simulation proofs for the same relation. We
detail the proof for the first direction: the behaviour of the compiled program is
one of the behaviours of the original one. This direction is more complex because

http://xavierleroy.org/publi/compiler-certif.pdf
http://xavierleroy.org/publi/compiler-certif.pdf
https://doi.org/10.1145/53990.54016
https://doi.org/10.1145/53990.54016
https://doi.org/10.1145/3607848
https://github.com/kayceesrk/ocaml5-tutorial
https://github.com/kayceesrk/ocaml5-tutorial
https://doi.org/10.1145/3408995
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1145/3453483.3454039
https://doi.org/10.1145/1411304.1411307
https://doi.org/10.1145/1411304.1411307


26 M. Andrieux, L. Henrio, G. Radanne

of the middle-step semantics and is also more important as it states that the
behaviour of the compiled program is a valid one. The other direction is done
very similarly with the same arguments as the ones used in the first direction. It
however has a different structure as the SOS semantics provides more different
cases (but the proof below often needs to distinguish cases according to the
current state of the configuration, leading to a similar set of cases overall). We
omit the other direction.

Consider σ1, P1 R ∥ σ′
1, F1, P

′
1, and σ1, P1 ==⇒

||
σ2, P2. Let i be the thread

identifier of the thread involved in the reduction ==⇒
||

(in case of spawn i is the

thread that performs the spawn).
We have P1 = Q1 ∥ ei and P ′

1 = Q′
1 ∥ si for some Q1 and Q′

1. Additionally,
σ1, Q1 R ∥ σ′

1, F1, Q
′
1 and σ1, e R i σ′

1, F1, s.
We do a case analysis on the rule used to prove the R i relation; two cases

are possible:

Continue:
Continue

σ1, ℓthreads R e σ′
1, F1

σ1, Cc[ℓthreads, f, Je′Ke , i] R i σ′
1, F1, (f 7→ e′)

In this case, the top level of continue is a handle thanks to the context Cc.
σ1, P1 ==⇒

||
σ2, P2 can result from three possible rules (modulo a seq rule at

the configuration level and a λ-calculus context rule to reach the reducible
statement):
handle-return Je′Ke must be of the form v (and is inside a handle

because of Cc).
We have σ1, P1 ==⇒

||
σ2, P2. Its first visible reduction rule must be:

(x 7→ e2) ∈ h

σ1, handle(v){h}−−→σ1, e2 [x← v]
handle-return

σ1, Crec [handle(v){h}]−−→σ1, Crec [e2 [x← v]]
context

σ1, Q1 ∥ ei−−→|| σ1, Q1 ∥Crec [e3]
i

seq

Where:

Crec the “let ... rec” context

h the effect handlers defined in Continue

e = Cc[ℓthreads, f, Je′Ke , i]
= Crec[handle(v){h}]

e3 = ℓthreads[f ]← V(v);
run(i)



Active Objects based on Algebraic Effects 27

The hidden rules then update the appropriate task in the store and start
the run function. Overall, we obtain:

σ1, Q1 ∥Cc[ℓthreads, f, Je′Ke , i] ==⇒||
σ2, Q1 ∥Cr[ℓthreads, i]

i

Where

σ2 = σ1

[
ℓthreads 7→ σ1(ℓthreads)

[
f 7→ V(v)

)] ]
Since e = Crec[handle(v){h}], by case analysis on the compilation rules,
we must have the source expression e′ = v′ be a Fut value with v = Jv′Ke.
Then we have:

σ′
1, F1, (f 7→ v′)i−−→σ′

1, F1[f 7→ v′] , Idlei
return

σ′
1, F1, Q

′
1 ∥(f 7→ v′)i−−→|| σ

′
1, F1[f 7→ v′] , Q′

1 ∥ Idlei
one-step

We then need to establish that the new future map and stores are in
relation, i.e., σ2, ℓthreads R e σ

′
1, F1[f 7→ v′].

We recall the env rule below:
env

Fe = Fe,1 ⊎ Fe,2

∀f ∈ Dom(Fv). Fv(f) is a value
∀f ∈ Dom(Fe). Fe(f) is not a value

Te,1 = [f ′ 7→ C(λ(). JeKe) | Fe,1(f
′) = e]

Te,2 =
[
f ′ 7→ C (λ().((λx.C[x]) e)) | JFe,2(f

′)Ke = C[e]
]

Tv = [f ′ 7→ V(JvKe) | Fv(f
′) = v]

σbase ∪ {ℓthreads 7→ Te,1 ⊎ Te,2 ⊎ Tv}, ℓthreads R e σbase, Fe ⊎ Fv

By inversion on σ1, ℓthreads R e σ′
1, F1, we obtain three maps Te,1⊎Te,2⊎

Tv that ensure the relation. We extend Tv so that Tv[f ] 7→ V(v) to obtain
the relation.
Recall that v = Jv′Ke; this is sufficient to conclude that

σ2, Q1 ∥Cr[ℓthreads, i]
i R ∥ σ′

1, F1[f 7→ v′] , Q′
1 ∥ Idlei

handle-step Je′Ke must be of the form e1 where e1 can only be reduced
by a λ-calculus reduction.
We have σ1, P1 ==⇒

||
σ2, P2. Its first visible reduction rule must be:

σ1, e1−−→σ2, e2

σ1, e1−−→σ2, e2
handle-step

σ1, Crec [handle(e1){h}]−−→σ2, Crec [handle(e2){h}]
context

σ1, Q1 ∥ ei−−→|| σ2, Q1 ∥Crec [e3]
i

seq
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Where:

Crec the “let ... rec” context

h the effect handlers defined in Continue

e = Cc[ℓthreads, f, Je′Ke , i] = Crec[handle(e1){h}]
e3 = handle(e2){h}

The translation leave λ-calculus terms unchanged, without any hiding,
thus there are no follow up hidden rules.
Overall, we obtain:

σ1, Je′Ke−−→σ2, e2

σ1, Q1 ∥Cc[ℓthreads, f, Je′Ke , i] ==⇒||
σ2, Q1 ∥Cc[ℓthreads, f, e2, i]

We know that σ1, ℓthreads R e σ′
1, F1. By definition, this means that σ1 =

σ′
1 ∪ {ℓthreads 7→ T} for some map T . By definition of the translation,

ℓthreads is not accessible by user code, and thus left unchanged by the
reduction on Je′Ke. As such, we have:

σ2 = σ′
2 ∪ {ℓthreads 7→ T} σ′

1, Je
′Ke−−→σ′

2, e2

By case analysis on the translation and the λ-calculus reduction rules, e′
must be reduced by the same λ-calculus reduction rule than Je′Ke. Thus:

σ′
1, e

′−−→σ′
2, e

′
2

σ′
1, F1, (f 7→ e′)i−−→σ′

2, F1, (f 7→ e′2)
i

step

σ′
1, F1, Q

′
1 ∥(f 7→ e′)i−−→|| σ

′
2, F1, Q

′
1 ∥(f 7→ e′2)

i
one-step

This case analysis and by determinism of our λ-calculus, we have Je′2Ke =
e2. We also have σ2, ℓthreads R e σ

′
2, F1.

This is sufficient to conclude that

σ2, Q1 ∥Cc[ℓthreads, f, Je′Ke , i]
i R ∥ σ′

2, F1, Q
′
1 ∥Cc[ℓthreads, f, Je′2Ke , i]

handle-effect Je′Ke must be of the form C[throw(E(x)) (and is inside
a handle because of Cc). We distinguish by the effect captured:
Async(job, t′) We have σ1, P1 ==⇒

||
σ2, P2. Its first visible reduction rule

must be:

seq+handle-effect+context
(Async(job, t′), k′ 7→ e2) ∈ h Async /∈ captured_effects(C)

σ1, Crec

[
handle(C[throw(Async( λ(). e′′, t))]){h}

]
−−→σ1, Crec

[
e2 [t

′ ← t]
[
job← λ(). e′′

]
[k′ ← λy.C[y]]

]
σ1, Q1 ∥ ei−−→|| σ1, Q1 ∥Crec [e3]

i



Active Objects based on Algebraic Effects 29

Where:

Crec the “let ... rec” context

h the effect handlers defined in Continue

e = Cc[ℓthreads, f, Je′Ke , i]
= Crec[handle(C[throw(Async( λ(). e′′, t))]){h}]

e3 = let fut′ = (t, fresh()) in

ℓthreads[fut′]← C( λ(). e′′);

continue(f, λ().(λy.C[y])(fut′), i)

By definition of the translation, and because the reduction is possi-
ble, the arguments of the Async effect must be a thunk task, and its
second argument must be a thread identifier (it can be an expression
but this one is entirely evaluated before triggering the effect). This
as some consequences on the considered Fut configuration, e.g. e′ is
of the form AsyncAt(e0, t). Additionally, t is the same on both side
as thread identifiers are preserved by the translation (this can be
proven by case analysis on the definition of R i).
The hidden rules apply then update the suspended tasks in the store
and start the continue function. The last hidden reduction rule is the
beta-reduction that de-thunks the continuation λ().(λy.C[y])(fut′)
inside the handler of continue and puts fut′ back into the invocation
context.
Overall, we obtain:

σ1, Q1 ∥Cc[ℓthreads, f, Je′Ke , i] ==⇒||
σ2, Q1 ∥Cc[ℓthreads, f, C[fut′], i]i

Where

σ2 = σ1

[
ℓthreads 7→ σ1(ℓthreads)

[
fut′ 7→ C

(
λ(). e′′)

)] ]
Since e = Crec[handle(C[throw(Async( λ(). e′′, t))]){h}], by case
analysis on the compilation rules, we must have the source expres-
sion e′ = C1[asyncAt(e

′
1, t)] where C = JC1Ke and e′′ = Je′1Ke by

Lemma 1. Note also that the set of future identifiers are the same in
the Fut program and in its translation, and thus fut′ = (t, fresh())
is a fresh future in the Fut configuration. Then we have:

async+one-step
fut′ = (t, lf) fut′ ̸∈ Dom(F1)

σ′
1, F1, Q

′
1 ∥(f 7→ C1[asyncAt(e

′
1, t)])

i−−→||
σ′
1, F1

[
fut′ 7→ e′1

]
, Q′

1 ∥(f 7→ C1[fut′])i
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We then need to establish that the new future map and stores are in
relation, i.e., σ2, ℓthreads R e σ

′
1, F1

[
fut′ 7→ e′1

]
.

We recall the env rule below:
env

Fe = Fe,1 ⊎ Fe,2

∀f ∈ Dom(Fv). Fv(f) is a value
∀f ∈ Dom(Fe). Fe(f) is not a value

Te,1 = [f ′ 7→ C(λ(). JeKe) | Fe,1(f
′) = e]

Te,2 =
[
f ′ 7→ C (λ().((λx.C[x]) e)) | JFe,2(f

′)Ke = C[e]
]

Tv = [f ′ 7→ V(JvKe) | Fv(f
′) = v]

σbase ∪ {ℓthreads 7→ Te,1 ⊎ Te,2 ⊎ Tv}, ℓthreads R e σbase, Fe ⊎ Fv

By inversion on σ1, ℓthreads R e σ′
1, F1, we obtain tree maps Te,1 ⊎

Te,2 ⊎ Tv that ensure the relation. We then extend Te,1 so that
ℓthreads[fut′] 7→ C(λ(). Je′1Ke) to obtain the relation.
This is sufficient to conclude that

σ2, Q1 ∥Cc[ℓthreads, f, C[fut′], i]i R ∥

σ′
1, F1

[
fut′ 7→ e′1

]
, Q′

1 ∥(f 7→ C1[fut′])i

Get(f ′) We have σ1, P1 ==⇒
||
σ2, P2. Its first visible reduction rule must

be:
seq+handle-effect+context
(Get(futg), k

′ 7→ e2) ∈ h Get /∈ captured_effects(C)

σ1, Crec [handle(C[throw(Get(f ′))]){h}]
−−→σ1, Crec

[
e2

[
futg ← f ′] [k′ ← λy.C[y]]

]
σ1, Q1 ∥ ei−−→|| σ1, Q1 ∥Crec [e3]

i

Where8:

Crec the “let ... rec” context

h the effect handlers defined in Continue

e = Cc[ℓthreads, f, Je′Ke , i]
= Crec[handle(C[throw(Get(f ′))]){h}]

e3 = let v = poll(f ′) in

continue(f, λ().((λy.C[y]) v), i)

The argument of the Get effect must be a future reference that is
totally evaluated for the rule to succeed. If it is not a future the
evaluation of poll fails. If it is not fully evaluated, the reduction
should first occur inside the argument of the Get effect.

8 a few substitutions have occurred inside poll by definition of Cc. We omit them here
not to clutter the proof.
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Details on poll reductions At this point, we look at hidden reduc-
tions, which must start in the body of poll. If the future is unre-
solved, poll loops forever and the medium step reduction diverges.
This means either that the future never resolves, and this divergence
in Eff simulates a deadlock in Fut; or that we could make reduc-
tions in other threads to resolve the deadlock. In the second case,
the semantics for Eff would interleave loops in poll and reduction
in other threads. Such interleaving is equivalent to triggering the
Get event at the end, with a single loop in poll. The current theorem
only consider this last interleaving. Overall, if there is a medium step
reduction it means that the future is resolved.

In this case, the future has been resolved, and, by bisimilarity on the
stores (R e) we have F1(f

′) = v and σ1(ℓthreads)[f
′] = v for some v.

We obtain after a couple of steps of beta-reduction:

σ1, Q1 ∥Cc[ℓthreads, f, Je′Ke , i] ==⇒||
σ1, Q1 ∥Cc[ℓthreads, f, C[v], i]i

Since e = Crec[handle(C[throw(Get(f ′))]){h}], by case analysis on
the compilation rules, we have e′ = C1[get(f

′)] where C = JC1Ke by
Lemma 1. Then we have:

get+one-step
(f ′ 7→ v) ∈ F1

σ′
1, F1, Q

′
1 ∥(f 7→ C1[get(f

′)])i−−→|| σ
′
1, F1, Q

′
1 ∥(f 7→ C1[v])

i

This is sufficient to conclude that

σ1, Q1 ∥Cc[ℓthreads, f, C[v], i]i R ∥ σ′
1, F1, Q

′
1 ∥(f 7→ C1[v])

i

Await(f ′) The case when the awaited future is resolved is similar to the
case of the Get effect just above. We only detail the proof in case the
future is still unresolved.
We have σ1, P1 ==⇒

||
σ2, P2. Its first visible reduction rule must be:

seq+handle-effect+context
(Await(futa), k

′ 7→ e2) ∈ h Await /∈ captured_effects(C)

σ1, Crec [handle(C[throw(Await(f ′))]){h}]
−−→σ1, Crec [e2 [futa ← f ′] [k′ ← λy.C[y]]]

σ1, Q1 ∥ ei−−→|| σ1, Q1 ∥Crec [e3]
i
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Where:

Crec the “let ... rec” context

h the effect handlers defined in Continue

e = Cc[ℓthreads, f, Je′Ke , i]
= Crec[handle(C[throw(Await(f ′))]){h}]

e3 = match ℓthreads[f
′]{

| V(v) 7→ continue(f, λ().((λy.C[y]) v))

| _ 7→ let k′′() = (λy.C[y]) (throw(Await(f ′))) in

ℓthreads[f ]← C(k′′); run(i)

}

Like in the Get case, the argument of the Await effect must be a
future reference that is totally evaluated for the rule to succeed.
When the future is unresolved, ℓthreads[f ′] is not a value (it is not
mapped or mapped to a C). By definition of R e we necessarily have:
∄v. (f ′ 7→ v) ∈ F1. Then a few hidden beta reduction steps lead to
the following configuration:

σ1, Q1 ∥Cc[ℓthreads, f, Je′Ke , t] ==⇒||
σ2, Q1 ∥Cr[ℓthreads, i]

i

Where

σ2 = σ1

[
ℓthreads 7→ σ1(ℓthreads)[

f 7→ C
(
λ().((λy.C[y]) (throw(Await(f ′))))

)] ]
Since e = Crec[handle(C[throw(Await(f ′))]){h}], by case analysis
on the compilation rules, we have e′ = C1[await(f

′)] where C =
JC1Ke by Lemma 1. Thus on the Fut side, we have:

await-yield+one-step
∄v. (f ′ 7→ v) ∈ F1

σ′
1, F1, Q

′
1 ∥(f 7→ C1[await(f

′)])i

−−→|| σ
′
1, F1 [f 7→ C1[await(f

′)]] , Q′
1 ∥ Idlei

We easily obtain that σ2, ℓthreads R e σ′
1, F1 [f 7→ C1[await(f

′)]] by
expanding the environment Te,2 in the env rule.
With the arguments above and the case run of R ∥ we conclude:

σ2, Q1 ∥Cr[ℓthreads, i]
i R ∥ σ′

1, F1 [f 7→ C1[await(f
′)]] , Q′

1 ∥ Idlei
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Spawn() We have σ1, P1 ==⇒
||
σ2, P2. Its first visible reduction rule must

be:

seq+handle-effect+context
(Spawn(), k′ 7→ e2) ∈ h Spawn /∈ captured_effects(C)

σ1, Crec[handle(C[throw(Spawn())]){h}]−−→σ1, e2 [k
′ ← λy.C[y]]

σ1, Q1 ∥ ei−−→|| σ1, Q1 ∥ ei2

With: Crec the “let ... rec” context of the continue handler inside Cc,
h the effect handlers defined in Continue, additionally:

e = Crec[handle(C[throw(Spawn())]){h}]
= Cc[ℓthreads, f, Je′Ke , t]

e2 = let t′ = spawn(run) in continue(fut, λ().k′(t′), t)

The first hidden rule applied is

spawn (hidden)
tid ̸∈ tids(P ) ∪ {i}

σ1, Q1 ∥C2[spawn(run)]i−−→|| σ1, Q1 ∥C2[tid]i ∥Cc[(run tid)]tid

Where e2 = C2[spawn(run)]. This is followed by steps of beta reduc-
tion to reduce the let t′ = . . . construct, trigger continue, pass the
associated tid and de-thunk the λ().λy.C[y](tid) inside continue. We
obtain the following configuration

σ1, Q1 ∥Cc[ℓthreads, f, C[tid], t]i ∥Cc[(run tid)]tid

Finally, by a step of beta reduction in the thread tid we obtain the
right evaluation context Cr

σ1, Q1 ∥Cc[ℓthreads, f, C[tid], t]i ∥Cr[ℓthreads, tid]
tid

This configuration is not reducible by a hidden transition. Thus

σ1, Crec[handle(C[throw(Spawn())]){h}]
==⇒

||
σ1, Q1 ∥Cc[ℓthreads, f, C[tid], t]i ∥Cr[ℓthreads, tid]

tid

By case analysis on the terms involved in σ1, P1 R ∥ σ′
1, F1, P

′
1 we

have e′ = C1[spawn()] where C = JC1Ke by Lemma 1. We then have:

spawn
tid ̸∈ tids(Q′

1) ∪ {i}
σ′
1, F1, Q

′
1 ∥(f 7→ C1[spawn()])

i−−→||
σ′
1, F1, Q

′
1 ∥(f 7→ C1[tid])i ∥ Idletid
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Note that by definition of R ∥ the set of used thread identifiers is the
same in both configurations, wo we can take the same fresh tid. Note
also that the store and the future map are unchanged. Comparing
thread by thread, we can directly apply rule run and rule cont for
the two processes tid and i, which leads to the conclusion:

σ1, Q1 ∥Cc[ℓthreads, f, C[tid], t]i ∥Cr[ℓthreads, tid]
tid

R ∥ σ′
1, F1, Q

′
1 ∥(f 7→ C1[tid])i ∥ Idletid

Run:
run

σ1, ℓthreads R e σ′
1, F1

σ1, Cr[ℓthreads, i] R i σ′
1, F1, Idle

The only first applicable rule is the pop operation reduction that picks a
new available thread:

σ,Cr[ℓthreads, i]
pop−−→h Run [t← i]
τ−→h

∗
σ2, Cc[ℓthreads, f2, e2, i]

Note that pop ensures that f2 is of the form f2 = (i, lf). Using only re-
ductions in the thread i and such that: σ1(ℓthreads)[f2] = C(λ(). JF1(f2)Ke)

9

by definition of R i and e2 = JF1(f2)Ke
10 by definition of pop. Note that

the last step of reduction is inside continue and de-thunks the new task
((λ().e2())−−→ e2)11. We additionally have:

σ2 = σ1[ℓthreads 7→ σ1(ℓthreads) \ f2]

From the points above, we obtain (with f2 = (i, lf)):

schedule
(f2 7→ F1(f2)) ∈ F1 F1(f2) is not a value

σ′
1, F1, Q

′
1 ∥ Idlei−−→|| σ

′
1, F1 \ f2, Q′

1 ∥(f2 7→ F1(f2))
i

Note that F1(f2) is not a value by construction of the equivalence on stores
(Figure 16). Finally (the equivalence on the store can be trivially checked):

Continue
σ2, ℓthreads R e σ′

1, F1 \ f2
σ2, Cc[ℓthreads, f2, JF1(f2)Ke , i] R i σ′

2, F1 \ f2, (f2 7→ F1(f2))

This immediately concludes by adding the other threads (in Q1 and Q′
1) and

obtaining the R ∥ relation on the obtained configurations. ⊓⊔

9 resp. σ1(ℓthreads)[f2] = C (λ().((λx.C[x]) e))
10 resp. JF1(f2)Ke = C[e] and e2 = C (λ().((λx.C[x]) e))
11 resp. with two steps of beta-reductions
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