
HAL Id: hal-04388766
https://hal.science/hal-04388766

Preprint submitted on 11 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rebuilding Algebraic Data Types from Mangled
Memory Layouts

Gabriel Radanne, Thaïs Baudon, Laure Gonnord

To cite this version:
Gabriel Radanne, Thaïs Baudon, Laure Gonnord. Rebuilding Algebraic Data Types from Mangled
Memory Layouts. 2024. �hal-04388766�

https://hal.science/hal-04388766
https://hal.archives-ouvertes.fr

Rebuilding Algebraic Data Types from Mangled
Memory Layouts

Thaïs Baudon
Univ Lyon
Lyon, France

thais.baudon@ens-lyon.fr

Gabriel Radanne
Inria
France

gabriel.radanne@inria.fr

Laure Gonnord
UGA

Grenoble, France
laure.gonnord@grenoble-inp.fr

Abstract
Now integrated in mainstream languages, Algebraic Data
Types (ADTs) have established themselves as a nice way to
reason about data structures and their manipulations using
pattern-matching. However, their use in low-level program-
ming remains limited despite efforts, notably from the Rust
community. Recently, Baudon et al. [2023] propose to let
the programmer express the precise memory layout of a
given Algebraic Data Type, while still enjoying high-level
programming constructs. Their compilation procedure cov-
ers efficient pattern matching, but leaves out constructors
and struggles with arbitrarily mangled memory layouts.

So far, the literature on ADT compilation rarely mentions
constructors, which are indeed a non-issue on simple mem-
ory layouts. However, when data pieces are broken and scat-
tered in memory, this task becomes particularly challenging.
Even simple accessorsmight require constructing new values.
This is the case for many low-level representations such as
network packets, instruction sets, databases data-structures,
or aggressively packed representations.
In this article, we propose a unified compilation proce-

dure for ADTs constructors and destructors (i.e., pattern-
matching) in the context of arbitrarily mangled memory
layouts. We subsume existing compilation algorithms, and
extend them to emit CFG-style programs with explicit mem-
ory allocation and full support for recursive types.

Keywords: Algebraic Data Types, Pattern Matching, Compi-
lation, Data Layouts

1 Introduction
Algebraic Data Types have proven themselves to be an essen-
tial tool for high-level programming: they allow to concisely
model data thanks to sums, which indicate potential alter-
natives, and products, which group different pieces of data
together. Thanks to their declarative nature, they let pro-
grammers manipulate data not bothered by the nitty-gritty
details of its actual memory representation. That declarative

Conference’17, July 2017, Washington, DC, USA
2024. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was
published in Proceedings of ACM Conference (Conference’17), https://doi.org/
10.1145/nnnnnnn.nnnnnnn.

nature allows compilers to verify and optimise code manipu-
lating algebraic data, notably through pattern matching [Au-
gustsson 1985; Maranget 2008, 2007]. This versatility and
simplicity allowed them to gain popularity, from their origi-
nal grounds in functional programming languages [Burstall
et al. 1980] like OCaml and Haskell, to mainstream languages
such as Typescript, Python, and most recently Java.
Unfortunately, low-level programmers have so far not

reaped the benefits of Algebraic Data Types: they must often
fall back to manual handling of memory layout to implement
their data manipulation code, even in languages such as Rust
which offer both ADTs and low-level programming. One
main reason is that memory layouts for low-level data struc-
tures are indisputably weird: Red-Black Trees in the Linux
kernel leverage low bits in aligned pointers to store informa-
tion using the now classic bit-stealing technique [Torvalds
2023]; high-performance code regularly uses AoS (array of
structs), SoA or AoSoA representations to mangle data collec-
tions for better locality [AoS and SoA 2023]; binary represen-
tations of data such as instruction sets and network packets
regularly cut data into tiny pieces to minimise overall mem-
ory size. The general mold of Algebraic Data Types does not
provide enough control over memory layout to model such
mangled representations. As one might imagine, the code
required to manipulate such memory layouts is complex,
error prone, and hard to automatically verify and optimise.

Our goal is to provide high-level data-modelling constructs
via Algebraic Data Types, specify their precise memory lay-
out, and obtain low-level efficient code conforming to that
layout. Some works have attempted to bridge this gap. Dar-
gent [Chen et al. 2023] lets programmers give high-level
layout descriptions and generates certified C accessors and
constructors. It however doesn’t provide full language con-
structs like pattern matching. LoCal [Vollmer et al. 2019]
and Gibbon [Koparkar et al. 2021] provide efficient compila-
tion specialised for code operating on serialised and dense
data representations. More generally, many programming
languages such as Rust or Haskell provide both low-level
vector types and high-level Algebraic Data Types in separate
manners, forcing programmers to resort to low-level code
when they want to fine-tune their memory layout.

More recently, Ribbit [Baudon et al. 2023] proposes a dual-
view compilation approach: a high-level type is paired with
a low-level memory layout. A compilation algorithm then

https://orcid.org/0000-0002-9368-651X
https://orcid.org/0000-0002-2107-7678
https://orcid.org/0000-0002-8013-1611
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Thaïs Baudon, Gabriel Radanne, and Laure Gonnord

31 25 24 20 19 15 14 12 11 7 6 0
funct7 rs2 rs1 funct3 rd opcode R-type
imm[0:12] rs1 funct3 rd opcode I-type

imm[5:7] rs2 rs1 funct3 imm[0:5] opcode S-type
imm[20|1:10|11|12:7] rd opcode J-type

Figure 1. RISCV Core instruction format, excerpt.
“rs1,2” are source registers, “rd” a destination register. “imm[x:y]” means “y bits starting
from x in the binary representation of imm”. “imm[y |x]” means “bits y, then x of imm”.

Inst Name Type Opcode funct3 funct7 Description (in C)
add Add R 0x33 0 0 rd = rs1 + rs2
addi Add Immediate I 0x13 0 — rd = rs1 + imm
sw Store Word S 0x23 2 — *(rs1+imm) = rs2
jal Jump And Link J 0x6F — — rd = PC+4; PC += imm

Figure 2. Instruction semantics and encoding, excerpt.

1 enum Reg { X0, X1, X2, X3, X4, X5, X6, X7, ... } // cut

2 // represented as a C-like enum on 5 bits

3
4 enum Op {

5 Add(Reg, Reg, Reg), // add rd, rs1, rs2

6 Addi(Reg, Reg, i12), // addi rd, rs1, imm12

7 Jal(Reg, i20), // jal rd, imm20

8 Sw(Reg, Reg, i12), // sw rs1, rs2, imm12

9 }
10 represented as split .[0:7] {// discriminant in the 7 lowest bits

11 | 0x23 from Sw =>

12 w32 with .[0:7]:(= 0x23) // opcode

13 with .[7:5]:(_.Sw.2.[0:5] as w5) // 5 lowest bits from imm

14 with .[12:3]:(= 2) // funct3

15 with .[15:5]:(_.Sw.0 as Reg32) // rs1

16 with .[20:5]:(_.Sw.1 as Reg32) // rs2

17 with .[25:7]:(_.Sw.2.[5:7] as w7) // 7 highest bits from imm

18 | // other cases cut for readability

Figure 3. Ribbit modelling (source types and memory lay-
outs) for RISCV Instructions. iN (resp. wN) types are predefined as “int
(resp. words) on N bits”. Ranges are encoded from a left bound and a size.

takes high-level pattern matching to low-level code respect-
ing the layout. Their layout specification is expressive, allow-
ing to specify many of the examples we just highlighted and
scaling to fairly complex real-world examples. Their compi-
lation algorithm however suffers from one crucial drawback:
it can only deconstruct values. While innocuous at first, this
severely limits highly mangled layouts where data needs
to be deconstructed, reshaped, and rebuilt differently, as is
the case for aggressive struct packing, flattening or AoS/SoA
transformations. To better understand this limitation, let us
study a real world example of an ADT with a complex layout:
the RISC-V instruction set with its binary representation.

1.1 Real World ADTs: the RISC-V instruction set
To demonstrate the complexity of real-world memory lay-
outs for ADTs, we consider a restricted version of the 32-bit
RISC-V assembly language consisting of four instructions
(add, addi, sw, and jal). We will use Ribbit’s DSL to spec-
ify the layout as the encoding described in the instruction
set (ISA) documentation [Waterman et al. 2019]. A RISC-V
machine has 32 registers, x0 to x31 (encoded on 5 bits). As
depicted in Fig. 1, RISC-V 32-bit instructions have different
formats w.r.t. their addressing mode. Further characteristics
of our four instructions are depicted in Fig. 2.

Already, we see complications: in general, an instruction
information (type, instruction name, involved registers, . . .)
is split over opcode, funct3 and funct7, which are stored
non-consecutively. Moreover the latter two are sometimes
not present in the 32-bit instruction value. Immediates are
particularly mangled, and can not be readily extracted from
the binary representation. For our particular (simple) subset :
(i) the four instructions are distinguishable from their opcode
only, bits 0 to 7. (ii) the destination registers of add and addi
are at the same location, bits 7 to 11 (iii) the immediate value
(imm) for the sw instruction is on bit ranges 7-11 and 25-31.
(iv) the 20-bits immediate value for the jal instruction can
be recovered from bits 12 to 31 but we need to rebuild this
immediate from four ranges of bits.
We demonstrate the modelling of RISC-V registers and

instructions with ADTs in Fig. 3, using the Ribbit [Baudon
et al. 2023] syntax. In addition to ADTs, Ribbit lets us define
their memory layouts, which describe how concrete values
are encoded in memory. Registers are encoded on 5 bits, simi-
lar to a C enum (e.g., X2 is the 5-bit word for “2”). Instructions
(Op type) are encoded on 32 bits (w32). split, on Line 10, al-
low distinguishing the different cases using the 7 lowest bits
(opcode). We only showcase the Sw case of the split. Line 12
specifies that the opcode is 0x23 (see Fig. 2). The immediate
operand is split in two parts, which are encoded in bits 7 to
11 inclusive (Line 13) and 25 to 31 (Line 17) within the 32-bit
word representing the full instruction.

1.2 Compilation of Constructors and Destructors
Now that types and layouts have been defined, high-level
data manipulation constructs can be compiled to code which
directly manipulates memory. For instance, Fig. 4 corre-
sponds to Sw(X1, X2, imm). This is where we hit the previ-
ously mentioned limitation: since imm is stored non consecu-
tively , Baudon et al. [2023]’s algorithm is unable to identify
the high and low bits and can’t generate this code.
Similarly, Ribbit allow definitions of pattern-matching

functions, such that the one in Fig. 5 that determines whether
a given 32-bit RISC-V instruction can be compressed into
a 16-bit RISC-V instruction. However, again, we can not
immediately bind the imm representation while compiling
the pattern and need to first find all the right pieces and
combine them together. Baudon et al. [2023]’s algorithm is
thus not capable of compiling the is_compactable function.

In this article, we extend their algorithm, and Ribbit itself,
to handle such cases by conjointly compiling constructors and
destructors. Our new compilation algorithm, when applied to
the is_compactable function, generates code as a control
flow graph shown in Fig. 6. This generated code:
1. inspects the internal representation of an input Op value
to determine its head constructor (Add, Addi, Jal or Sw),
as well as the nested register constructor in Jal;

2. extracts from this representation all subterms that are
bound to variables in the matched pattern (e.g. parts of

Rebuilding Algebraic Data Types from Mangled Memory Layouts Conference’17, July 2017, Washington, DC, USA

1 o := alloc 32;

2 o.[12:3] := 2; o.[0:5] := 0x23; // funct3, opcode

3 o.[15:5] := 1; o.[20:5] := 2; // rs1 = X1, rs2 = X2

4 o.[25:7] := imm.[5:7]; o.[7:5] := imm.[0:5]; // imm

Figure 4. Writes operations for Sw(X1, X2, imm)
Code which builds the appropriate representation in the root mem-
ory location 𝑜 .

1 match_fn is_compactable : Op -> bool

2 Add(rd, rs1, rs2) => rd == rs1 && rs1 != X0 && rs2 != X0,

3 Addi(rd, rs, imm) => rd == rs && rs != X0 && imm[6:5] == 0,

4 Jal(X1, imm) => imm[12:7] == 0,

5 Sw(rs1, rs2, imm) => X7<rs1,rs2<X16 && imm[0:2] == imm[7:4] == 0,

6 _ => false

Figure 5. Function determining whether a given 32-bit in-
struction can be compressed into a 16-bit one, in simplified
Ribbit syntax. Conditions taken from [Waterman et al. 2019, chapter RISCV-C].

/* Allocate destination */
dest := alloc 1*/
/* Which opcode?*/
let i0 = i.[0:7]

switch i0

0x13 Ox6F 0x33 Ox23

/* Add Instruction */
/* Operand rs2 (Add.2) */
let rs2 = i.[20:5]
/* Operand rs1 (Add.1) */
let rs1 = i.[15:5]
/* Operand rd (Add.0) */
let rd = i.[7:5]
/* Compute result */
dest := rd == rs1 && rs1 && rs2
success

/* Sw Instruction */
/* Operand imm (Sw.2) */
let imm = alloc 12
/* Extract imm[5:7] */
let imm1 = imm.[5:7]
let v_imm1 = i.[25:7]
imm1 := v_imm1
/* Extract imm[0:5] */
let imm0 = imm.[0:5]
let v_imm0 = i.[7:5]
imm0 := v_imm0
/* Operand rs1 (Sw.0) */
let rs1 = alloc 5
let v_rs1 = i.[15:5]
rs1 := v_rs1
/* Compute result */
dest := 7<rs1 && rs1<16 && imm<32
success

/* Jal Instruction */
/* Operand rd (Jal.0) */
let rd = i.[7:5]

switch rd

0 1

/* Addi Instruction */
/* Operand rd (Addi.0) */
let rd = i.[7:5]
/* Operand rs (Addi.1) */
let rs = i.[15:5]
/* Operand imm (Addi.2) */
let imm = i.[20:5]
/* Extract imm[6:5] */
let imm6 = imm.[6:5]
/* Compute result */
dest := rd == rs && rs && !imm6
success

/* X1 Register */
/* Operand imm (Jal.1) */
/* Extract imm[12:7] */
imm12 := i.[12:7]
/* Compute result */
dest := !imm12
success

/* Other Register */
dest := 0
success

Figure 6. Generated code for is_compactable.
From the input i, it distinguish head constructors using the 7 lowest
bits, then extracts subterms such as destination and source registers
for Add, and the 12 bits imm for Sw (in bold). The result is in dest.

the immediate imm for Jal, the three registers operands
rd, rs1, rs2 for Add);

3. allocates and initialises memory to represent the value of
the expression on the right-hand side.
We contribute a general procedure which compiles (po-

tentially nested) constructor expressions, pattern matching,
and both together, without introducing superfluous work,
to a destination passing intermediary representation. This
procedure emits precise memory allocation code and handles
recursive types and recursive code emission.
Section 2 describes our input language based on types

and memory layouts from Baudon et al. [2023]. Section 3
presents our target intermediate representation, in Destina-
tion Passing Style [Shaikhha et al. 2017]. Our approach relies
on existing pattern matching compilation techniques, which
we detail in Section 4. Our main contribution, detailed in
Section 5, is a compilation algorithm for expressions con-
structing ADT values according to custom memory layouts.

2 Algebraic Data Types and Their Layouts
We now briefly formalise our input language. As in Section 1,
we uses a two-tiered view: algebraic data types used for pro-
gramming and memory layouts detailing how to represent
them in memory. We then present a core programming lan-
guage to manipulate such types. The bulk of the specification
extends Baudon et al. [2023], with most of the limitations
imposed on memory types lifted and a larger input language.

2.1 Algebraic Data Types
The grammar for Algebraic Data Types is presented in Fig. 7.
We denote types using 𝜏 and type variables with 𝑡 ∈ Vty. We
denote all tuples with angle brackets, for instance ⟨𝑖32, 𝑓 64⟩
for pairs of a 32-bit integers and a 64-bit float. Construc-
tors of sums are marked with a capital letter, for instance
Some(𝑡) + None is an option type. In examples, we use 𝐾 as
shortcut for 𝐾 (⟨⟩). We use Γ to denote type environments,
i.e., maps from type variables 𝑡 to types 𝜏 . We also define
two related constructs: provenances and paths. Provenances
give partial information on what a value looks like: a type, a
constructor, or anything (wildcard: _). Paths precisely indi-
cate the position of a subterm in a given type or provenance,
using accesses by tuple position .𝑖 or by constructor .𝐾 .

Example 2.1 (Source type). Our source type for RISC-V
32-bit instructions is a sum type with four constructors:
𝜏RISC-V = Add(𝜏reg, 𝜏reg, 𝜏reg)+Addi(𝜏reg, 𝜏reg, 𝑖12)+Jal(𝜏reg, 𝑖20)
+Sw(𝜏reg, 𝜏reg, 𝑖12). The path .Add.0 designates the first ar-
gument of an Add instruction, namely its destination regis-
ter. The provenance Sw(_, _, _) designates any value of type
𝜏RISC-V whose constructor is Sw.

2.2 Memory layouts
Each algebraic data type is associated with a memory layout,
whose grammar is given in Fig. 8, which specifies how its val-
ues should be represented in memory. As a general conven-
tion, memory elements are distinguished with a hat. Memory
layouts, denoted by 𝜏 (See Example 2.2) consist of concrete
memory structures (words, pointers and structs/blocks) as
well as constructs that refer back to the represented high
level type (fragments refer to subterms, while splits create
disjunctions between constructors). Fragments may refer to
arbitrarily nested subterms; so-called regular layouts only
contain fragments that refer to immediate subterms (i.e., the
contents of a constructor for sums or a field for products).
Memory paths, denoted 𝜋 , indicate positions in layouts.

Example 2.2 (Memory layout). The layout associated with
the Ribbit example of Figure 3 is:

𝜏RISC-V = Split (.[0 :7])


0x33 from Add ⇒ 𝜏Add
0x23 from Sw ⇒ 𝜏Sw
. . . from . . . ⇒ . . .


The split describes how to distinguish between constructors,
by inspecting the 7 lowest bits (0xXX are fixed constants).

Conference’17, July 2017, Washington, DC, USA Thaïs Baudon, Gabriel Radanne, and Laure Gonnord

𝜏 ∈ Types ::= 𝑡 ∈ Vty (type variable)
| 𝑖ℓ (primitive integer type)
| ⟨𝜏, . . . , 𝜏⟩ (tuple/product type)
| 𝐾 (𝜏) + . . . + 𝐾 (𝜏) (sum type)

Γ :Vty → Types (type environment)
𝑝 ∈ Provs ::= _ | ⟨𝑝, . . . , 𝑝⟩ | 𝐾 (𝑝)
𝜋 ∈ Paths ::= 𝜖 | 𝜋.𝑖 | 𝜋.𝐾

Figure 7. Algebraic Data Types

𝜏 ∈ �Types ::= 𝑡̂ ∈ V̂ty (variable)
| (𝜋 as 𝜏) (fragment)
| (= c) (fixed immediate)
|𝑊ℓ ⋉

1≤𝑖≤𝑛
[𝑜𝑖 : ℓ𝑖] : 𝜏𝑖 (word)

| &ℓ,𝑎 (𝜏) ⋉
1≤𝑖≤𝑛

[𝑜𝑖 : ℓ𝑖] : 𝜏𝑖 (pointer)

| {{𝜏1, . . . , 𝜏𝑛}} (struct)

| Split (𝜋)

c1 from 𝑃1 ⇒ 𝜏1

. . .

c𝑛 from 𝑃𝑛 ⇒ 𝜏𝑛

 (split)

Γ̂ : V̂ty → �Types (memory type environment)

𝜋 ∈ �Paths ::= 𝜖 (empty path)
| 𝜋.[𝑜 : ℓ] (bit range: ℓ bits from offset 𝑜)
| 𝜋.∗ (pointer dereferencing)
| 𝜋.𝑖 (struct field access)
Figure 8. Memory Layout

𝑒 ∈ Exprs ::= 𝜋 ∈ Paths (binding)
| 𝑧 ∈ Z | . . . (constant)
| ⟨𝑒, . . . , 𝑒⟩ (tuple)
| 𝐾 (𝑒) (constructor)

𝑚 ∈ Matches ::= {𝑝1 → 𝑒1; . . . ;𝑝𝑛 → 𝑒𝑛}
Figure 9. Program syntax

Layouts for individual instructions (e.g., Sw) are built from a
𝑊32 with additional constraints on subranges of bits:

𝜏Sw =𝑊32 ⋉ [0 :7] : (= 0x23) (opcode const)
⋉ [7 :5] : (.Sw.0 as 𝜏reg) (base register)
⋉ [12 :3] : (= 2) ⋉ . . . (func3 const, etc.)

The fragment construct (.Sw.0 as 𝜏reg) expresses that bits 7
to 12 inclusive contain the representation of the first argu-
ment of Sw (base register) according to the 𝜏reg layout.

K ::= fail | success (return statements)
| call 𝑓 (𝑖, 𝑜) ; K (function application)
| let in 𝑖 = 𝑖 .𝜋 ; K (input location binding)
| let out 𝑜 = 𝑜.𝜋 ; K (output location binding)
| 𝑜 := rhs ; K (write to output location)
| switch 𝑖

{
(c→ K)∗, (_→ K)?

}
(switch)

rhs ::= c (immediate value)
| 𝑖 (input location contents)
| alloc ℓ (pointer to ℓ newly allocated bits)

F ::= {𝑓 (𝑖, 𝑜) → K} (toplevel functions)

Figure 10. Target IR

2.3 Programs
We now define high-level programs that manipulate alge-
braic data types. Our general goal is to compile such pro-
grams to low-level programs that manipulate memory di-
rectly, with respect to the specified memory layout. For the
purpose of this presentation, we only consider program parts
which are directly related to algebraic data types: pattern
matching, which destructs values, and simplified expressions,
which construct values. Crucially, we consider both in con-
junction, as shown in Fig. 9, with the usage of matches. A
match𝑚 is composed of a list of cases; cases being themselves
composed of a provenance on the left-hand side, and an ex-
pression on the right-hand side. Expressions are composed
of tuples, constructors, and constants. Instead of variables,
expressions refer to positions in the input value via paths.

Example 2.3 (Destination register binding). The following
match extracts the destination register of a RISC-V instruc-
tion if it exists, and returns 𝑋0 otherwise:
get_dest =

{
Add(𝑟, _, _) → 𝑟 Addi(𝑟, _, _) → 𝑟

Jal(𝑟, _) → 𝑟 Sw(_, _, _) → 𝑋0

}
3 Target in Destination Passing Style
We now define our target intermediate representation in
Fig. 10. The goal of this program representation is to make
the following tasks explicit: switching on values, writing
results to their appropriate memory location, and, crucially,
allocating and initialising memory on the heap to properly
represent the output expression. we depart from [Baudon
et al. 2023] and define a new IR in Destination Passing
Style [Shaikhha et al. 2017] (See Example 3.1). Our IR ex-
presses traditional decision trees via a switch construct with
a default branchmarked by “_”, alongwith success and fail
return statements. For the remaining constructs, we will use
the notion of locations: these are unaligned pointers which
can be defined using memory paths and subpaths, and be
passed as arguments to functions. They will be filled with the
appropriate memory representation by the compiled code.

Rebuilding Algebraic Data Types from Mangled Memory Layouts Conference’17, July 2017, Washington, DC, USA

Input locations, (“𝑖”), denote read-only memory representa-
tions of input values (at toplevel) or sub-input values (during
computation). More precisely, root locations are provided
before-hand as arguments. Input sub-locations are obtained
by focusing an existing input location with a memory path,
using the instruction let in 𝑖′ = 𝑖 .𝜋 ; Output locations, (“𝑜”),
denote write-only memory locations that will be (eventually)
allocated and computed during the execution of the target.
These outputs (or sub-outputs obtained with let out . . . ;)
can be filled, using the write instruction, with several kinds
of values: constants denoted 𝑐 , the contents of an input loca-
tion, or the address of newly allocated memory of a given
size denoted alloc ℓ . Finally, our IR enables function calls
thanks to the instruction call 𝑓 (𝑖, 𝑜) ; . The list of functions
is defined toplevel by the F environment. These functions
will be denoted with a plain frame around them in the rest
of the paper. Note that return statements, namely success
and fail, do not return any value. A match will be compiled
to a set of functions taking input and output locations as
arguments, as shows Example 3.1. Let us finally point out
that sharing is not explicit in the IR, even though we use a
control-flow-graph style representation underneath.

Example 3.1 (target IR for our example). The program from
Example 2.3, taking an input 𝑖 of type 𝜏RISC-V and returning
an output 𝑜 of type 𝜏reg, will be compiled into:

fun aux(𝑖, 𝑜) → {
let in 𝑖′ = 𝑖 .[7 :5] ; 𝑜 := 𝑖′ ; success
}
fun get_dest(𝑖, 𝑜) → {
let in 𝑖0 = 𝑖 .[0 :7] ;

switch 𝑖0


0x33 → call aux(𝑖, 𝑜) ; success
0x13 → call aux(𝑖, 𝑜) ; success
0x6F → call aux(𝑖, 𝑜) ; success
0x23 → 𝑜 := 0 ; success


}

The compiled function get_dest considers its input 𝑖 as a
𝑊32 value, from which it extracts its 7 lowest bits into a new
variable 𝑖0. From 𝑖0’s value it either directly write 0 as the
result 𝑜 (it has recognised Sw), or call the auxiliary function
aux, which outputs to destination 𝑜 5 bits corresponding to
the destination register of instructions Add/Addi/Jal (Fig. 1,
rd is always located at the same place).

4 A Primer On Matching Compilation
Before presenting our full algorithm, we detail the required
tooling. We first briefly summarise an existing compilation
procedure for pattern matching, then define an operation to
semantically explore a type conjoined with its layout.

4.1 From Patterns to Switch Trees
General procedures for patternmatching compilation [Maranget
2008; Sestoft 1996] take as input a list of patterns – usually

with no variables nor right-hand-side expressions – and pro-
duce a nest of “switch” nodes, either following an automaton
or a DAG. In the context of customizable memory layouts
as the ones we consider, Baudon et al. [2023] provides a
layout-aware compilation procedure to decision DAGs.
Our goal is to extend such a compilation procedure to

properly handle binders and right-hand-side expressions. We
will thus extend a traditional pattern matching compilation
approach. Baudon et al. [2023] provides a CompileMatch
procedure which we will use as a black box in the rest of this
article, adapted to our formalism. CompileMatch takes as
arguments a pattern match without binders nor right-hand-
sides, i.e., a list of provenances, alongwith the type and layout
of the input data. It can readily handle nested provenances.
In the context of this article, we reuse this procedure to take
as input a list of provenances paired with their right-hand-
side target IR, and emit decision DAGs using the target IR
defined in Section 3. We illustrate on an example.

Example 4.1 (Matching Compilation). We consider the
“matching part” of the functions defined in Example 2.3:

CompileMatch(𝑖, 𝜏RISC-V, 𝜏RISC-V,
Jal(_, _) ⇒ K1
Sw(_, _, _) ⇒ K2
Addi(_, _, _) ⇒ K3
Add(_, _, _) ⇒ K4


)

=

let in 𝑖′ = 𝑖 .[0 :7] ;
switch 𝑖′ {
0x6F → K1
0x23 → K2
0x13 → K3
0x33 → K4
}

This switch is the toplevel node of the code in Fig. 6.

4.2 Exploring Layouts with Focus and Specialise
To compile high-level patterns and expressions in a way that
fits a given memory layout, we need a way to explore both
a type and its layout conjointly. Indeed, the full inner struc-
ture is only revealed when considering both the type, which
defines nested terms and subterms, and the layout, which de-
scribes the exact switches required to access those subterms,
represented as fragments. This exploration will be driven by
provenances since they form the common backbone of our
high-level language constructs, including expressions and
types, and already drive the existing CompileMatch proce-
dure. Our goal is thus to define a function Explore which
takes a provenance 𝑝 , a type 𝜏 and a layout 𝜏 , and returns the
list of all accessible sub-elements in 𝜏 represented as 𝜏 which
are “compatible” with 𝑝 . Semantically, a branch characterises
the values of type 𝜏 that match the provenance 𝑝 . A branch
is thus defined as quadruplet (𝑝𝑖 , 𝜏𝑖 , 𝜏𝑖 , 𝐹𝑖) consisting of the
provenance, type and layout refined for that specific branch,
and of a list of fragments contained therein.

Example 4.2. We can explore 𝜏RISC-V with the provenance
Sw(_): Explore(Sw(_), 𝜏RISC-V, 𝜏RISC-V) = {(Sw(_), 𝜏Sw, 𝜏Sw, 𝐹)}

Conference’17, July 2017, Washington, DC, USA Thaïs Baudon, Gabriel Radanne, and Laure Gonnord

where 𝜏Sw = Sw(𝜏reg, 𝜏reg, 𝑖12)

and 𝐹 =


(.[7 :5] ↦→ (.Sw.2.[0 :5] as𝑊5))
(.[15 :5] ↦→ (.Sw.0 as 𝜏reg))
(.[20 :5] ↦→ (.Sw.1 as 𝜏reg))
(.[25 :7] ↦→ (.Sw.2.[5 :7] as𝑊7))

.
Note that the type and layout of the (unique) branch F are

refined according to its provenance Sw(_): 𝜏Sw and 𝜏Sw only
capture values of the form Sw(_).

To precisely define Explore, we need two new operations
for refining types and layouts: focusing and specialisation.

Focusing in Types and Layouts. “Focusing” allows to
focus on a specific part of a type or layout, according to
a given path. Focus in the high-level language is denoted
focus(𝜋, 𝜃) where 𝜃 is a type, an expression, a provenance,
or another path, and returns an object of the same kind. It
simply follows the syntax to extract the subterm at position
𝜋 . For instance, we can consider “the part that is relevant to
.Sw.0” in the type 𝜏RISC-V:

focus(.Sw.0, 𝜏RISC-V) = focus
(
.Sw.0, Sw(𝜏reg, 𝜏reg, 𝑖12)

)
= 𝜏reg

Layout focusing, denoted �focus(𝜋, 𝜏), similarly extracts the
layout located at position 𝜋 within the parent layout 𝜏 . It
is undefined on splits. For instance, �focus(.[7 :5], 𝜏Sw) =

(.Sw.0 as 𝜏reg).

Layout and Type Specialisation. “Specialisation” filters
a type or a layout to exclude parts which are incompatible
with a given provenance. Type specialisation, denoted 𝜏/𝑝 , is
a simple syntactic filter that discards irrelevant constructors.
For instance, 𝜏RISC-V/Sw(_, _, _) = Sw(𝜏reg, 𝜏reg, 𝑖12). Layout
specialisation, denoted 𝜏/𝑝 , is more complex: it removes all
splits from 𝜏 (up to fragments) by filtering out branches
whose provenance set excludes 𝑝 . It returns a list of pairs of
the form (𝑝′ ↦→ 𝜏 ′), where 𝑝′ is a refined version of 𝑝 and 𝜏 ′
is the restriction of 𝜏 to values that match 𝑝′. For instance,
𝜏RISC-V/Sw(_, _, _) returns a single pair (Sw(_, _, _) ↦→ 𝜏Sw),
and specialisation according to the wildcard provenance lists
all possible refinement pairs of a layout:

𝜏RISC-V/_ =

{
(Sw(_, _, _) ↦→ 𝜏Sw) , (Add(_, _, _) ↦→ 𝜏Add) ,
(Addi(_, _, _) ↦→ 𝜏Addi) ,

(
Jal(_, _) ↦→ 𝜏Jal

) }
.

Explore. We are now ready to properly define Explore,
in Algorithm 1. Given an initial provenance 𝑝0, type 𝜏0 and
layout 𝜏0, it returns the list of all branches of 𝜏0 that represent
𝜏0 values matching 𝑝0. Explore, and many of the algorithms
described in this article, use python-style generators using
the “yield” keyword, and “for-each” style loops.

Using the specialisation 𝜏0/𝑝0, we get all refinements pairs
of 𝜏0 compatible with 𝑝0: each refinement pair is charac-
terised by a more precise provenance 𝑝 and a specialised
layout 𝜏 . We then derive all information relevant to this case
from 𝑝 and 𝜏 : the refined type 𝜏0/𝑝 , and a list of the form
(𝜋 ′ ↦→ (𝜋 ′ as 𝜏 ′)) containing every position 𝜋 ′ such that 𝜏

1 function Explore(𝑝0, 𝜏0, 𝜏0):
2 for (𝑝 ↦→ 𝜏) ∈ 𝜏0/𝑝0 do
3 𝜏 ← 𝜏0/𝑝
4 𝐹 ←

{
𝜋 ′ ↦→ 𝜏𝜋 ′

��� �focus(𝜋 ′, 𝜏) = (𝜋 ′ as 𝜏 ′) = 𝜏𝜋 ′}
5 yield (𝑝, 𝜏, 𝜏, 𝐹)

Algorithm 1: Explore
Data: ⟨𝑖, 𝜏𝑖 , 𝜏𝑖 , 𝑝𝑖⟩ the input description
Data: 𝑜 the output location
Data: 𝜋 the path in the input to the desired value
Result: Code binding 𝑜 to the memory value at

position 𝜋 in the input
1 function Extract(⟨𝑖, 𝜏𝑖 , 𝜏𝑖 , 𝑝𝑖⟩, 𝑜, 𝜋):
2 if 𝜋 = 𝜖 then
3 return 𝑜 := 𝑖 ; success

4 else
5 𝐵 ← for 𝑝𝑏, 𝜏𝑏, 𝜏𝑏, 𝐹𝑏 ∈ Explore(𝑝𝑖 , 𝜏𝑖 , 𝜏𝑖) do
6 if ∃(𝜋𝑓 ↦→ (𝜋𝑓 as 𝜏𝑓)) ∈ 𝐹𝑏, 𝜋𝑓 ⪯ 𝜋 then
7 𝑖′ ← fresh symbol
8 𝜋 ′, 𝜏 ′𝑖 , 𝑝

′
𝑖 ←

focus
(
𝜋𝑓 , 𝜋

)
, focus

(
𝜋𝑓 , 𝜏𝑏

)
, focus

(
𝜋𝑓 , 𝑝𝑏

)
9 K ← let in 𝑖′ = 𝑖 .𝜋𝑓 ;

Extract(⟨𝑖′, 𝜏 ′𝑖 , 𝜏𝑓 , 𝑝′𝑖 ⟩, 𝑜, 𝜋 ′)
10 else K ← fail

11 yield (𝑝𝑏,K)
12 return CompileMatch (𝑖, 𝜏𝑖 , 𝐵)

Algorithm 2: Naive compilation procedure

contains a fragment at 𝜋 ′. From these results, we construct
a branch.

4.3 A Naive Compilation Algorithm
Before diving into the full compilation algorithm, and as
a general warm-up to compilation of pattern matching to
our target IR, we showcase how to use Explore to easily
implement the cases handled in Baudon et al. [2023]. The
Extract procedure, defined in Algorithm 2, handles bound
variables that exactly correspond to a single fragment within
the memory layout, and therefore do not require converting
between different layouts. For instance, the destination regis-
ter at .Sw.0 in our running example directly corresponds to a
single fragment in the layout 𝜏RISC-V (at position .[0 :7]). This
algorithm does not cover cases which require rebuilding a
value from pieces, such as the offset at .Sw.2.

More precisely, Extract takes a description ⟨𝑖, 𝜏𝑖 , 𝜏𝑖 , 𝑝𝑖⟩
of the input value, an output location 𝑜 and a path 𝜋 . It emits
code to store in 𝑜 the representation of the subterm located
at 𝜋 within the input value. In Line 2-3, if 𝜋 is the empty path,
then the input and output values are exactly the same and we
simply copy the contents of 𝑖 to 𝑜 , then succeed. Otherwise,
the emitted code must handle every possible branch of 𝜏𝑖 : we
collect them in 𝐵 using Explore on Line 3. We will then emit

Rebuilding Algebraic Data Types from Mangled Memory Layouts Conference’17, July 2017, Washington, DC, USA

code that dynamically determines the appropriate branch
by inspecting the input value using the pattern matching
compilation algorithm CompileMatch on Line 12. For each
branch of the input layout, we search for a fragment covering
a prefix of 𝜋 : this fragment necessarily contains the data at
position 𝜋 . If found, we obtain, on Line 8, focused path, types,
and provenances for this fragment and bind its location 𝑖 .𝜏𝑓
on Line 9, and then recursively attempt to extract the desired
value on Line 10. If no such fragment exists, then the output
value is either not covered by this layout or broken into
multiple pieces in separate fragments, we thus fail. In both
cases, we emit a case for CompileMatch.

Example 4.3 (Extract – Algorithm 2). Let us consider
again the destination register of a Sw instruction at posi-
tion .Sw.0. Let 𝑜 a fresh output location and 𝑖 an input loca-
tion assumed to contain the representation of a Sw instruc-
tion. Extract (⟨𝑖, 𝜏RISC-V, 𝜏RISC-V, Sw(_)⟩, 𝑜, .Sw.0) starts by
exploring 𝜏RISC-V as in Example 4.2, keeping only branches
thatmatch Sw and yielding a single branch (Sw(_), 𝜏Sw, 𝜏Sw, 𝐹)
where 𝜏Sw = Sw(𝜏reg, 𝜏reg, 𝑖12)

and 𝐹 =


(.[7 :5] ↦→ (.Sw.2.[0 :5] as𝑊5))
(.[15 :5] ↦→ (.Sw.0 as 𝜏reg))
(.[20 :5] ↦→ (.Sw.1 as 𝜏reg))
(.[25 :7] ↦→ (.Sw.2.[5 :7] as𝑊7))

.
𝐹 contains the fragment (.[15 : 5] ↦→ (_.Sw.0 as 𝜏reg)),

which covers _.Sw.0. We can now focus on this fragment
and proceed with the recursive call. Let 𝑖′ a fresh symbol,
𝜏 ′ = focus(.Sw.0, 𝜏Sw) = 𝜏reg, 𝑝′ = focus(.Sw.0, Sw) =

_ and 𝜋 ′ = focus(.Sw.0, .Sw.0) = 𝜖 . We have the recur-
sive call Extract

(
⟨𝑖′, 𝜏 ′, 𝜏reg, 𝑝′⟩, 𝑜, 𝜋 ′

)
= 𝑜 := 𝑖′ ; success

thenK = let in 𝑖′ = 𝑖 .[15 :5] ; 𝑜 := 𝑖′ ; success . We yield
the case (Sw(_),K) and can finally compute the full code
with CompileMatch(𝑖, 𝜏RISC-V, 𝜏RISC-V, {(Sw,K)}) =

let in 𝑖0 = 𝑖 .[0 :7] ;

switch 𝑖0

0x23→
let in 𝑖′ = 𝑖 .[15 :5] ;
𝑜 := 𝑖′ ; success

_→ fail


Using all these tools, we were able to concisely express

a not-so-simple procedure which Explores each branch
of a layout, focuses on their constituents, then combines
their compiled versions using CompileMatch. Similarly to
Baudon et al. [2023]’s development, this procedure only han-
dles paths corresponding to a whole fragment. Consequently,
this procedure doesn’t need to allocate, and always termi-
nates. In the rest of this article, we will detail how to handle
the full range of patterns and expressions.

5 Compilation of Constructor Expressions
Our main contribution is a general procedure, implemented
into𝑅𝑖𝑏𝑏𝑖𝑡 , which can compile both patterns and expressions
in a unified manner for arbitrary layouts. This procedure

can thus compile a complete pattern matching branch with
arbitrary bindings, or a standalone constructor expression.

This section presents this procedure in several steps: first,
Section 5.1 presents a restricted version which handles read-
ing from input locations and writing to output locations but
leaves out memory allocation; then, Section 5.2 details how
to allocate memory precisely at the right time; finally, Sec-
tion 5.3 describes how to ensure termination of our algorithm
and emit recursive code when necessary and demonstrates
the procedure on such an example.

5.1 Seek And Rebuild
The Extract procedure presented in Section 4.3 handles sim-
ple cases where the wanted piece of data is a single fragment,
corresponding to so-called “regular” layouts from Baudon
et al. [2023]. In the general case, we want to rebuild arbitrary
expressions and recover data from arbitrarily nested and
scattered fragments, such as the immediate operand of the
Sw instruction of our running example.

Our compilation algorithm consists of two mutually recur-
sive procedures that emit code for a given pattern matching
branch. The first emits code which Rebuilds (Algorithm 4)
the necessary pieces to assemble a target expression 𝑒 . Ex-
pressions consist of fixed parts (constructors and constants)
and of variable parts from the input. We then need to emit
code to Seek (Algorithm 3) such variable parts within the in-
put identified by their position 𝜋 . (i.e., if such a piece is wholly
available, return it, otherwise, Rebuild it from smaller pieces,
etc.) The main ideas behind these algorithms are:
• Alternatively explore and rebuild input and output values,

using Seek (Algorithm 3) and Rebuild (Algorithm 4).
• For variables, which are identified by their position in the
input, Seek tries to find the corresponding piece directly
within the input value, similarly to Extract. Otherwise
we use Rebuild to break it into smaller pieces, until we
reach individual bits of numeric values, which are neces-
sarily somewhere in the input (assuming a correct layout).
• Rebuild uses fragments from the specified layout to guide
the search for smaller pieces, and fills the rest using con-
stants gathered from the output layout.
• This initial version doesn’t allocate anything. This will be

addressed in the next section.
Let us now look at these algorithms in more detail. For

each pattern matching branch (𝑝 → 𝑒) we aim to compile,
we refer to the left-hand-side as the input value, identified
by the tuple argsin = ⟨𝑖in, 𝜏in, 𝜏in, 𝑝in⟩ composed of its input
location, type, layout and provenance respectively. Initially,
𝑝in = 𝑝 . Similarly, we refer to the value computed by the
right-hand side expression as the output value and identify it
with the tuple argsout = ⟨𝑜out, 𝜏out, 𝜏out⟩ composed of its out-
put location, type and layout respectively. Our goal is to emit
code that writes to 𝑜out the representation of the target value
according to 𝜏out, and reads all data needed for doing so from
𝑖in, which contains the input value represented according to

Conference’17, July 2017, Washington, DC, USA Thaïs Baudon, Gabriel Radanne, and Laure Gonnord

Data: argsin = ⟨𝑖in, 𝜏in, 𝜏in, 𝑝in⟩ the input description
Data: argsout = ⟨𝑜out, 𝜏out, 𝜏out⟩ the output description
Data: 𝜋 the path in the input to the desired value
Result: Code binding the memory value at position

𝜋 in the input
1 function Seek(argsin, argsout, 𝜋):
2 if 𝜋 = 𝜖 ∧ 𝜏in = 𝜏out then

// Input and output representations are the same, we return.

3 return 𝑜out := 𝑖in ; success
4 else // Otherwise, Explore all cases.
5 𝐵 ← for 𝑝𝑏, 𝜏𝑏, 𝜏𝑏, 𝐹𝑏 ∈ Explore(𝑝in, 𝜏in, 𝜏in) do

// Seek a fragment containing the piece of data at 𝜋 .
6 if ∃(𝜋𝑓 ↦→ (𝜋𝑓 as 𝜏𝑓)) ∈ 𝐹𝑏 ∧ 𝜋𝑓 ⪯ 𝜋 then

// Found one. We focus on it and search inside.
7 𝜋 ′ ← focus

(
𝜋𝑓 , 𝜋

)
8 𝑖 ← fresh symbol
9 args′in ← ⟨𝑖, focus

(
𝜋𝑓 , 𝜏𝑏

)
, 𝜏𝑓 , focus

(
𝜋𝑓 , 𝑝𝑏

)
⟩

10 K ← let in 𝑖 = 𝑖in.𝜋𝑓 ;
Seek

(
args′in, argsout, 𝜋

′)
11 else // Otherwise, Rebuild from smaller pieces.
12 args′in ← ⟨𝑖, 𝜏𝑏, 𝜏𝑏, 𝑝𝑏⟩
13 K ← Rebuild(args′in, argsout, 𝜋)
14 yield (𝑝𝑏,K)

// Assemble the code of these branches via a decision tree.

15 return CompileMatch (𝑖in, 𝜏in, 𝐵)
Algorithm 3: Seek

𝜏in. Both algorithms follow the general shape demonstrated
by Section 4.3 with a base case (the empty path for Seek,
and constants for Rebuild) followed by a call to Explore
and to CompileMatch. Seek is mostly similar to Extract.
Crucially, it only examines the input value. Rebuild is more
complex, and aims to build two pieces of code:Kconsts which
populates 𝑜out with appropriate constants, notably coming
from constructors, andKfrags which fills it with pieces corre-
sponding to fragments of the output layout.

Both algorithms need to maintain a precise description of
the current case under scrutiny. Indeed, after a few recursive
calls, we might be exploring deep in the input and output
layouts. This description is represented by the provenances
𝑝in and 𝑝out. Naturally, both provenances share subparts,
namely the places corresponding to variables in 𝑒 . As we
explore the output in Rebuild, we need to share the refined
information between input and output provenances. This is
the role of Remap (Algorithm 5): given two provenances 𝑝𝑙
and 𝑝𝑟 and a map of shared positions between both sides, it
creates a new provenance which is at least as precise as 𝑝𝑙 ,
but contains shared information from 𝑝𝑟 . It is used in both
directions, first to create a more precise output provenance in
Line 7, then to refine the input provenance again in Line 13.
The initial output provenance is computed with the auxiliary

Data: argsin = ⟨𝑖in, 𝜏in, 𝜏in, 𝑝in⟩ the input description
Data: argsout = ⟨𝑜out, 𝜏out, 𝜏out⟩ the output description
Data: 𝑒 the desired constructor expression
Result: Code computed the memory value

corresponding to expression 𝑒
1 function Rebuild(argsin, argsout, 𝑒):
2 if 𝑒 = c ∧ 𝜏out =𝑊ℓ then

// Target value is a constant encoded in an immediate type.

3 return 𝑜out := c ; success

4 else // Otherwise, Explore all cases.
5 Pin→out ← {(𝜋, 𝜋 ′) | focus(𝜋 ′, 𝑒) = 𝜋}
6 𝑝𝑣 ← prov_of(𝜏out, 𝑒)
7 𝑝out ← Remap (𝑝in, 𝑝𝑣,Pin→out)
8 𝐵 ← for 𝑝𝑏, 𝜏𝑏, 𝜏𝑏, 𝐹𝑏 ∈ Explore(𝑝out, 𝜏out, 𝜏out) do

// Fill in constant parts of the target memory type.

9 consts𝑏 ←
{
(𝜋, c)

��� �focus(𝜋, 𝜏𝑏) = (= c)
}

10 Kconsts ← for (𝜋, c) ∈ consts𝑏 do
11 𝑜 ← fresh symbol
12 yield let out 𝑜 = 𝑜out.𝜋 ; 𝑜 := c ; success

// Rebuild target fragments from the input value, which we
specialize for the current branch.

13 𝑝in,𝑏 ← Remap(𝑝𝑏, 𝑝in, Inv(Pin→out))
14 args′in ← ⟨𝑠in, 𝜏in, 𝜏in, 𝑝in,𝑖⟩
15 Kfrags ← for (𝜋𝑓 ↦→ (𝜋𝑓 as 𝜏𝑓)) ∈ 𝐹𝑏 do
16 𝑜 ← fresh symbol
17 args′out ← ⟨𝑜, focus

(
𝜋𝑓 , 𝜏𝑏

)
, 𝜏𝑓 ⟩

18 if ∃(𝜋in, 𝜋out) ∈ Pin→out, ∃𝜋, 𝜋out .𝜋 = 𝜋𝑓 then
// If this fragment maps to a location within the input
value, use it as a piece of the output value.

19 𝜋 ′ ← 𝜋in.𝜋

20 yield let out 𝑜 = 𝑜out.𝜋𝑓 ;
Seek(args′in, args′out, 𝜋 ′)

21 else // Otherwise, break it down further.
22 𝑒′ ← focus

(
𝜋𝑓 , 𝑒

)
23 yield let out 𝑜 = 𝑜out.𝜋𝑓 ;

Rebuild(args′in, args′out, 𝑒′)

24 yield (𝑝in,𝑏, Kconsts;Kfrags)
// Assemble these branches into a decision tree.

25 return CompileMatch (𝑖in, 𝜏in, 𝐵)
Algorithm 4: Rebuild without allocations

1 function Remap(𝑝𝑙 , 𝑝𝑟 ,P):
2 𝑝 such that 𝑝 is more precise than 𝑝𝑙 and
3 ∀(𝜋𝑙 , 𝜋𝑟) ∈ P,∀𝜋 s.t. focus(𝜋𝑙 .𝜋, 𝑝𝑙) = _, then
4 focus(𝜋𝑙 .𝜋, 𝑝) = focus(𝜋𝑟 .𝜋, 𝑝𝑟).

Algorithm 5: Remap auxiliary operation

prov_of function, which is a simple syntactic translation
from expressions to provenances.

Rebuilding Algebraic Data Types from Mangled Memory Layouts Conference’17, July 2017, Washington, DC, USA

𝑝 ∈ �Shapes ::= ?ℓ |𝑊ℓ | &ℓ

(
𝑝
)
|
{{
𝑝1, . . . , 𝑝𝑛

}}
Figure 11.Memory shapes�shape_of{

𝑡̂ −→ �shape_of(Γ̂ (̂𝑡))
(𝜋 as 𝜏) −→ �shape_of(𝜏)
𝑊ℓ ⋉ . . . −→𝑊ℓ

&ℓ,𝑎 (𝜏) ⋉ . . . −→ &ℓ

(�shape_of(𝜏))
{{𝜏1, . . . , 𝜏𝑛}} −→

{{ �shape_of(𝜏1), . . . , �shape_of(𝜏𝑛)}}
𝜏 −→ ? |𝜏 |
} Figure 12. Translation from layouts to shapes

NewAllocs𝜋 {
?ℓ , ?ℓ | ?ℓ ,𝑊ℓ →∅
?ℓ ,&ℓ

(
𝑝
)

→
{
(𝜋,

��𝑝 ��)} ∪ NewAllocs𝜋.∗ (?|𝑝 |, 𝑝)
?ℓ ,

{{
𝑝1, . . . , 𝑝𝑛

}}
→

⋃
1≤𝑖≤𝑛

NewAllocs𝜋.𝑖
(
?|𝑝𝑖 |, 𝑝𝑖

)
𝑊ℓ ,𝑊ℓ →∅
&ℓ

(
𝑝
)
,&ℓ

(
𝑝′
)

→ NewAllocs𝜋.∗ (𝑝, 𝑝′){{
𝑝𝑖 . . .

}}
,
{{
𝑝′𝑖 . . .

}}
→

⋃
1≤𝑖≤𝑛

NewAllocs𝜋.𝑖 (𝑝𝑖 , 𝑝′𝑖)

} Figure 13. Difference between shapes

5.2 Memory Allocation
The algorithm presented so far emits a target program that
populates the provided output location to represent the de-
sired output value, even in the case of “split” information
(i.e. the access code in Figs. 4 and 6). However, we have not
yet defined which memory locations are suitable for storing
values of a given layout, and assumed that all memory path
operations (dereference, struct access. . .) are legal and de-
fined on all output locations. Naturally, this is not the case,
and we might need to allocate new locations as we build the
output value. This section focuses on the task of allocating
such suitable memory to receive output values.

Memory shapes. We formalise the notion of a “suitable”
memory location for a given layout with memory shapes,
denoted 𝑝 and defined in Fig. 11. A shape describes the con-
crete layout of some value in memory, which can be either a
fixed-size word, a fixed-size pointer to a known shape, or a
struct aggregating several shapes together. The opaque shape
?ℓ is used for memory locations that have a known, fixed
size, but whose precise shape is not known yet. We define
the shape of a memory layout 𝜏 as �shape_of(𝜏); we assert
that any valid memory layout 𝜏 has a known size (denoted
|𝜏 |) and use the largest branch size for split layouts, so that
the shape of any memory layout is always defined.
Allocation procedure. The intuition behind our alloca-

tion procedure is as follows: for both Seek and Rebuild, we

1 function GenAllocs(𝑜, 𝜏old, 𝜏new):
2 𝑝old ← �shape_of(𝜏old)
3 𝑝new ← �shape_of(𝜏new)
4 for (𝜋, ℓ) ∈ NewAllocs(𝑝old, 𝑝new) do
5 𝑜 ′ ← fresh symbol

6 yield
let dest 𝑜 ′ = 𝑜.𝜋 ;
𝑜 ′ := alloc ℓ ;
success

Algorithm 6: GenAllocs

know that the output location 𝑜out conforms with the shape�shape_of(𝜏out). This shape might be opaque, for instance if
𝜏out is a split. In Rebuild, we Explore the output type and
layout, yielding a more precise layout 𝜏𝑏 . This is precisely
the place where we might need to allocate: if we discover
that 𝜏𝑏 contains pointer to new structures, we should allocate
them for future use. This leads us to define our allocation
procedure GenAllocs (Algorithm 6) based on a notion of
difference of shapes computed by NewAllocs (Fig. 13).

NewAllocs takes two shapes, and collects pairs (𝜋, ℓ)
where the shape at position 𝜋 was previously unknown and
is now a pointer to a shape of size ℓ . GenAllocs takes an
output location 𝑜 , an imprecise layout 𝜏old and a more precise
layout 𝜏new, and emits a piece of codeKallocs which allocates
memory for each position reported by NewAllocs. Kallocs
is then inserted in the code returned by Rebuild, on Line 24.�shape_of, defined in Fig. 12, is a best-effort translation
from memory layouts to shapes. It must be conservative
(to ensure allocations do happen), but can be fairly impre-
cise when it comes to splits, as is the version we describe.
However, a more precise definition is also possible, and even
desirable. For instance, if all branches of a split are pointers
to same-sized structures, we can report a good shape immedi-
ately, leading to an earlier allocation and code deduplication.

5.3 Recursive Constructors
Although the algorithm presented in Section 5.1 is sufficient
to handle most situations, it does not necessarily terminates
in the presence of recursive types and layouts. Let us consider
it on an example.

Example 5.1 (Recursive rebuilding of linked lists). Consider
simply-linked lists of 32-bits integers 𝜏 = N + C(𝑖32, 𝜏) with
two possible layouts. 𝜏1 is a traditional “pointers and blocks”
layout with a pointer for each element. 𝜏2 is a packed lay-
out with up to two elements per level of indirection, with
three branches: empty or a singleton list – both immediately

Conference’17, July 2017, Washington, DC, USA Thaïs Baudon, Gabriel Radanne, and Laure Gonnord

encoded – or a pointer to a block of two integers:

𝜏2 = Split (.[0 :2]) {
2 from N ⇒ 𝑊64
1 from C(_,N) ⇒ 𝑊64 ⋉ [2 :32] : (.C.0 as𝑊32)
0 from C(_,C(_, _)) ⇒
&64,2 ({{(.C.0 as𝑊32), (.C.1.C.0 as𝑊32), (.C.1.C.1 as 𝜏2)}})
}

It turns out that we can already ask Rebuild to emit ap-
propriate conversion code: Rebuild(⟨𝑖, 𝜏, 𝜏1, _⟩, ⟨𝑜, 𝜏, 𝜏2⟩, 𝜖).
However, our current algorithm will not terminate, as we
try to Rebuild each block in the list.

To properly handle such cases, we must emit recursive
constructor code. Naturally, we could also refuse to emit
such code (in contexts when recursion is not acceptable).
In both cases, we need to detect recursion. We now sketch
the main idea; full details are available in supplementary
material. Intuitively, a call to Seek with arguments 𝑎𝑟𝑔𝑠in =

⟨𝑖in, 𝜏in, 𝜏in, 𝑝in⟩, 𝑎𝑟𝑔𝑠out = ⟨𝑜out, 𝜏out, 𝜏out⟩ and 𝜋 leads to infi-
nite recursion if it attempts to recursively rebuild an output
value with the same type, layout and relative position from
an input value with the same type, layout and provenance.
This indicates that the output value contains a subtermwhich
must be rebuilt in the exact same way: the only way to emit
correct code is to introduce an explicit recursive node and
emit recursive calls at this position. For this purpose, we
memoise Seek and Rebuild on 𝜏in, 𝜏in, 𝑝in, 𝜏out, 𝜏out and 𝜋 or
𝑒 . We record when we enter one of the algorithms, and gen-
erate a fresh function symbol 𝑓 . If we enter this function
again, we emit a call 𝑓 (𝑖, 𝑜). Afterwards, we can use simple
deforestation to get rid of extra functions. Note that, on top
of emitting recursive code, this also improves sharing.

Example 5.2 (Linked lists, cont’d). Using memoisation, the
Rebuild call from our previous example terminates and
emits recursive code. We explore 𝜏2 and get three branches
from its split. The first branch, corresponding to the prove-
nance N, is immediate (we only have to write the tag con-
stant). The second branch (C(_,N)) yields a layout with a
single fragment (.[2 :32] ↦→ (.C.0 as𝑊32)), which is immedi-
ately retrieved from the input. The third branch (C(_,C(_, _))),
on the other hand, requires rebuilding the fragment (. ∗ .2 ↦→
(.C.1.C.1 as 𝜏2)), which is more involved. Indeed, 𝜏1 repre-
sents the tail of a linked list with a pointer to the fragment
(.C.1 as 𝜏1). After two recursive Seek calls (we focus into
(.C.1 as 𝜏1) twice), we eventually attempt to Rebuild a piece
of type 𝜏 represented as 𝜏2 from the same piece represented
as 𝜏1, i.e., the same task as the initial Rebuild call. Thanks
to memoisation, this task is now associated with a function
symbol 𝑓 and we finally emit the target code in Fig. 14.

let in i_tag = i.[0:1]

Switch i_tag

0 1

let out o_tag = o.[0:2]
o_tag := 2

success

let in i_tag' = i.*.1.[0:1]

Switch i_tag'

0 1

o := alloc {64, 64, 64}
let out o_tag = o.[0:2]
o_tag := 0
let in i_elt0 = i.*.0
let out o_elt0 = o.*.0
o_elt0 := i_elt0
let in i_elt1 = i.*.1.*.0
let out o_elt1 = o.*.1
o_elt1 := i_elt1
let in i_rest = i.*.1.*.1
let out o_rest = o.*.2

call f(i_rest, o_rest)

success

f(i,o)

let out o_tag = o.[0:2]
o_tag := 1
let in i_elt = i.*.0
let out o_elt = o.[2:32]
o_elt := i_elt

success

Figure 14. Generated code for rebuilding linked lists

6 Related Work
Algebraic Data Types and low-level programming.

ADTs, pattern matching compilation and compact memory
representations all have long histories. We summarise the
work directly related to low-level programming.

Our approach directly extends (and subsumes) [Baudon
et al. 2023]. In particular, their “regular” case is covered by
our initial naive algorithm in Section 4.3. Our full procedure
covers all possible cases, including the so-called “irregular”
ones which they only sketch.

Many of the links between ADTs and low-level program-
mingwere initiallymade for verification. Notably, Dargent [Chen
et al. 2023] allows to specify memory representations in an
external DSL which outputs C code for accessors, and Is-
abelle/HOL theorems; with the aim of formally verifying
embedded systems. Swamy et al. [2022] propose a similar ap-
proach to formally verify binary format parsers in 𝐹 ∗. These
approaches are precise, leveraging their host proof assistant,
but do not provide language-integrated constructs such as
pattern matching. They also provide far less optimisations
than what we propose.
LoCal [Vollmer et al. 2019] and Gibbon [Koparkar et al.

2021], on the other hand, provide DSLs tailored to describe
andmanipulate low-level and serialised representations. Their
memory layouts are less flexible than what we presented,
making it impossible to provide truly customised representa-
tions, but allowing them numerous powerful optimisations
we do not provide, such as leveraging parallelism. We hope
to combine our approaches in the future.

Finally, some general-purpose languages provide ways to
improve data layout. Rust’s niches [RFC: Alignment niches for

Rebuilding Algebraic Data Types from Mangled Memory Layouts Conference’17, July 2017, Washington, DC, USA

references types 2021] provide semi-automatic layout optimi-
sations, but are quite limited. Unboxed constructors [Colin
et al. 2018; Keller et al. 2010] allow for manual optimisations,
but prevent the use of nice high-level constructs, falling back
to a C-like programming style. By contrast, our approach
allows using only a high-level view, while giving full control
over memory layout.
Intermediate Representation. We use a Destination--

Passing Style [Shaikhha et al. 2017] representation in A-
normal form [2023]. This provides us precise control over
memorymanagement and input/output arguments, and could
enable further memory improvements, such as using stack
allocation when appropriate and applying tail-call modulo
cons [Bour et al. 2021]. Another avenue would naturally be
to use Continuation-Passing Style [Appel 1992], notably to
simplify handling of recursive calls in Section 5.3. This is in
line with numerous compilers for functional languages [Hall
et al. 1992; Vincent Laviron 2023] and easily allows moving
to SSA representations such as Rust’s MIR and LLVM.

Conclusion
We presented a unified compilation procedure for construc-
tors and destructors of Algebraic Data Types using aDestination-
Passing Style intermediate representation. Our work allows
providing arbitrary memory layouts for ADTs and compiles
high-level code to low-level programs accordingly. In the fu-
ture, we hope to investigate memory management strategies,
for instance following Lorenzen et al. [2023].

Conference’17, July 2017, Washington, DC, USA Thaïs Baudon, Gabriel Radanne, and Laure Gonnord

References
A-normal form. https://en.wikipedia.org/w/index.php?title=A-normal_form

&oldid=1121147927. [Online; accessed 19-February-2023]. (2023).
AoS and SoA. https://en.wikipedia.org/w/index.php?title=AoS_and_SoA&ol

did=1068565041. [Online; accessed 22-February-2023]. (2023).
Andrew W. Appel. 1992. Compiling with Continuations. Cambridge Univer-

sity Press. isbn: 0-521-41695-7.
Lennart Augustsson. 1985. “Compiling pattern matching”. In: Functional

Programming Languages and Computer Architecture. Ed. by Jean-Pierre
Jouannaud. Springer Berlin Heidelberg, Berlin, Heidelberg, 368–381. isbn:
978-3-540-39677-2.

Thaïs Baudon, Gabriel Radanne, and Laure Gonnord. Aug. 2023. “Bit-Stealing
Made Legal: Compilation for Custom Memory Representations of Alge-
braic Data Types”. Proc. ACM Program. Lang., 7, ICFP, (Aug. 2023). doi:
10.1145/3607858.

Frédéric Bour, Basile Clément, and Gabriel Scherer. 2021. “Tail Modulo
Cons”. CoRR, abs/2102.09823. https://arxiv.org/abs/2102.09823 arXiv:
2102.09823.

Rod M. Burstall, David B. MacQueen, and Donald Sannella. 1980. “HOPE:
An Experimental Applicative Language”. In: Proceedings of the 1980 LISP
Conference, Stanford, California, USA, August 25-27, 1980. ACM, 136–143.
doi: 10.1145/800087.802799.

Zilin Chen, Ambroise Lafont, LiamO’Connor, Gabriele Keller, CraigMcLaugh-
lin, Vincent Jackson, and Christine Rizkallah. Jan. 2023. “Dargent: A Silver
Bullet for Verified Data Layout Refinement”. Proc. ACM Program. Lang.,
7, POPL, (Jan. 2023). doi: 10.1145/3571240.

Simon Colin, Rodolphe Lepigre, and Gabriel Scherer. 2018. “Unboxing Mutu-
ally Recursive TypeDefinitions inOCaml”. arXiv preprint arXiv:1811.02300.

Cordelia V. Hall, Kevin Hammond, Will Partain, Simon L. Peyton Jones, and
Philip Wadler. 1992. “The Glasgow Haskell Compiler: A Retrospective”.
In: Functional Programming, Glasgow 1992, Proceedings of the 1992 Glas-
gow Workshop on Functional Programming, Ayr, Scotland, UK, 6-8 July
1992 (Workshops in Computing). Ed. by John Launchbury and Patrick M.
Sansom. Springer, 62–71. doi: 10.1007/978-1-4471-3215-8_6.

Gabriele Keller, Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon
L. Peyton Jones, and Ben Lippmeier. 2010. “Regular, shape-polymorphic,
parallel arrays in Haskell”. In: Proceeding of the 15th ACM SIGPLAN
international conference on Functional programming, ICFP 2010, Baltimore,
Maryland, USA, September 27-29, 2010. Ed. by Paul Hudak and Stephanie
Weirich. ACM, 261–272. doi: 10.1145/1863543.1863582.

Chaitanya Koparkar, Mike Rainey, Michael Vollmer, Milind Kulkarni, and
Ryan R. Newton. 2021. “Efficient Tree-Traversals: Reconciling Parallelism
and Dense Data Representations”. Proc. ACM Program. Lang., 5, ICFP.
doi: 10.1145/3473596.

Anton Lorenzen, Daan Leijen, and Wouter Swierstra. Aug. 2023. “FP2: Fully
in-Place Functional Programming”. Proc. ACM Program. Lang., 7, ICFP,
(Aug. 2023). doi: 10.1145/3607840.

Luc Maranget. 2008. “Compiling pattern matching to good decision trees”.
In: Proceedings of the ACM Workshop on ML, 2008, Victoria, BC, Canada,
September 21, 2008. Ed. by Eijiro Sumii. ACM, 35–46. doi: 10.1145/14113
04.1411311.

Luc Maranget. 2007. “Warnings for pattern matching”. J. Funct. Program.,
17, 3, 387–421. doi: 10.1017/S0956796807006223.

RFC: Alignment niches for references types. https://github.com/rust-lang/rfc
s/pull/3204. (2021).

Peter Sestoft. 1996. “ML pattern match compilation and partial evaluation”.
In: Partial Evaluation. Springer, 446–464.

Amir Shaikhha, Andrew Fitzgibbon, Simon Peyton Jones, and Dimitrios Vy-
tiniotis. 2017. “Destination-Passing Style for Efficient Memory Manage-
ment”. In: Proceedings of the 6th ACM SIGPLAN International Workshop
on Functional High-Performance Computing (FHPC 2017). Association
for Computing Machinery, Oxford, UK, 12–23. isbn: 9781450351812. doi:
10.1145/3122948.3122949.

Nikhil Swamy et al.. 2022. “Hardening attack surfaces with formally proven
binary format parsers”. In: PLDI ’22: 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, San
Diego, CA, USA, June 13 - 17, 2022. Ed. by Ranjit Jhala and Isil Dillig.
ACM, 31–45. doi: 10.1145/3519939.3523708.

[SW exc.] Linus Torvalds, “Red-Black Trees in Linux”, from The Linux
Kernel version 6.2, 2023. lic: GPL-2.0 WITH Linux-syscall-note. url:
https://github.com/torvalds/linux, swhid: ⟨swh:1:cnt:45b6ecde3665aa74
4f790cd915445fe07595181c;origin=https://github.com/torvalds/linux;vi
sit=swh:1:snp:de81d8ff32247a7edaa935cf0468bf16237d25c5;anchor=s
wh:1:rel:32758e7a720e4752a824c6062e75f107314e5598;path=/include/li
nux/rbtree_types.h⟩.

Mark Shinwell Vincent Laviron Pierre Chambart. 2023. “Efficient OCaml
Compilation with Flambda 2”. OCaml. https://icfp23.sigplan.org/details
/ocaml-2023-papers/8/Efficient-OCaml-compilation-with-Flambda-2.

Michael Vollmer, Chaitanya Koparkar, Mike Rainey, Laith Sakka, Milind
Kulkarni, and Ryan R. Newton. 2019. “LoCal: a language for programs
operating on serialized data”. In: Proceedings of the 40th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI
2019, Phoenix, AZ, USA, June 22-26, 2019. Ed. by Kathryn S. McKinley
and Kathleen Fisher. ACM, 48–62. doi: 10.1145/3314221.3314631.

Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste Asanović.
Dec. 2019. The RISC-V Instruction Set Manual, Volume I: User-Level ISA,
Version 20191213. Tech. rep. RISCV fundation, (Dec. 2019).

https://en.wikipedia.org/w/index.php?title=A-normal_form&oldid=1121147927
https://en.wikipedia.org/w/index.php?title=A-normal_form&oldid=1121147927
https://en.wikipedia.org/w/index.php?title=AoS_and_SoA&oldid=1068565041
https://en.wikipedia.org/w/index.php?title=AoS_and_SoA&oldid=1068565041
https://doi.org/10.1145/3607858
https://arxiv.org/abs/2102.09823
https://arxiv.org/abs/2102.09823
https://doi.org/10.1145/800087.802799
https://doi.org/10.1145/3571240
https://doi.org/10.1007/978-1-4471-3215-8_6
https://doi.org/10.1145/1863543.1863582
https://doi.org/10.1145/3473596
https://doi.org/10.1145/3607840
https://doi.org/10.1145/1411304.1411311
https://doi.org/10.1145/1411304.1411311
https://doi.org/10.1017/S0956796807006223
https://github.com/rust-lang/rfcs/pull/3204
https://github.com/rust-lang/rfcs/pull/3204
https://doi.org/10.1145/3122948.3122949
https://doi.org/10.1145/3519939.3523708
https://github.com/torvalds/linux
http://archive.softwareheritage.org/swh:1:cnt:45b6ecde3665aa744f790cd915445fe07595181c;origin=https://github.com/torvalds/linux;visit=swh:1:snp:de81d8ff32247a7edaa935cf0468bf16237d25c5;anchor=swh:1:rel:32758e7a720e4752a824c6062e75f107314e5598;path=/include/linux/rbtree_types.h
http://archive.softwareheritage.org/swh:1:cnt:45b6ecde3665aa744f790cd915445fe07595181c;origin=https://github.com/torvalds/linux;visit=swh:1:snp:de81d8ff32247a7edaa935cf0468bf16237d25c5;anchor=swh:1:rel:32758e7a720e4752a824c6062e75f107314e5598;path=/include/linux/rbtree_types.h
http://archive.softwareheritage.org/swh:1:cnt:45b6ecde3665aa744f790cd915445fe07595181c;origin=https://github.com/torvalds/linux;visit=swh:1:snp:de81d8ff32247a7edaa935cf0468bf16237d25c5;anchor=swh:1:rel:32758e7a720e4752a824c6062e75f107314e5598;path=/include/linux/rbtree_types.h
http://archive.softwareheritage.org/swh:1:cnt:45b6ecde3665aa744f790cd915445fe07595181c;origin=https://github.com/torvalds/linux;visit=swh:1:snp:de81d8ff32247a7edaa935cf0468bf16237d25c5;anchor=swh:1:rel:32758e7a720e4752a824c6062e75f107314e5598;path=/include/linux/rbtree_types.h
http://archive.softwareheritage.org/swh:1:cnt:45b6ecde3665aa744f790cd915445fe07595181c;origin=https://github.com/torvalds/linux;visit=swh:1:snp:de81d8ff32247a7edaa935cf0468bf16237d25c5;anchor=swh:1:rel:32758e7a720e4752a824c6062e75f107314e5598;path=/include/linux/rbtree_types.h
https://icfp23.sigplan.org/details/ocaml-2023-papers/8/Efficient-OCaml-compilation-with-Flambda-2
https://icfp23.sigplan.org/details/ocaml-2023-papers/8/Efficient-OCaml-compilation-with-Flambda-2
https://doi.org/10.1145/3314221.3314631

Rebuilding Algebraic Data Types from Mangled Memory Layouts Conference’17, July 2017, Washington, DC, USA

Supplementary material for the CC’24 submission:
Rebuilding Algebraic Data Types fromMangledMemory
Layouts

A Focusing and Specialisation
We now give full details of the definition of focusing and
specialisation.

Focusing in Types and Layouts. “Focusing” allows to
focus on a specific part of a type or layout, according to
a given path. Focus in the high-level language is denoted
focus(𝜋, 𝜃) where 𝜃 is a type, an expression, a provenance,
or another path, and returns an object of the same kind. It
simply follows the syntax to extract the subterm at position
𝜋 . For instance, we can consider “the part that is relevant to
.Sw.0” in the type 𝜏RISC-V:

focus(.Sw.0, 𝜏RISC-V) = focus
(
.Sw.0, Sw(𝜏reg, 𝜏reg, 𝑖12)

)
= 𝜏reg

Layout focusing, denoted �focus(𝜋, 𝜏), similarly extracts the
layout located at position 𝜋 within the parent layout 𝜏 . It
is undefined on splits. For instance, �focus(.[7 :5], 𝜏Sw) =

(.Sw.0 as 𝜏reg).

Layout and Type Specialisation. “Specialisation” filters
a type or a layout to exclude parts which are incompatible
with a given provenance. Type specialisation, denoted 𝜏/𝑝 , is
a simple syntactic filter that discards irrelevant constructors.
For instance, 𝜏RISC-V/Sw(_, _, _) = Sw(𝜏reg, 𝜏reg, 𝑖12). Layout
specialisation, denoted 𝜏/𝑝 , is more complex: it removes all
splits from 𝜏 (up to fragments) by filtering out branches
whose provenance set excludes 𝑝 . It returns a list of pairs of
the form (𝑝′ ↦→ 𝜏 ′), where 𝑝′ is a refined version of 𝑝 and 𝜏 ′
is the restriction of 𝜏 to values that match 𝑝′. For instance,
𝜏RISC-V/Sw(_, _, _) returns a single pair (Sw(_, _, _) ↦→ 𝜏Sw),
and specialisation according to the wildcard provenance lists
all possible refinement pairs of a layout:

𝜏RISC-V/_ =

{
(Sw(_, _, _) ↦→ 𝜏Sw) , (Add(_, _, _) ↦→ 𝜏Add) ,
(Addi(_, _, _) ↦→ 𝜏Addi) ,

(
Jal(_, _) ↦→ 𝜏Jal

) }
.

focus(𝜖, 𝑥) = 𝑥 focus(.𝑖, ⟨𝑥1, . . . , 𝑥𝑛⟩) = 𝑥𝑖
focus(𝜋, _) = _ focus(.𝐾𝑖 , 𝐾1 (𝑥1) + . . . + 𝐾𝑛 (𝑥𝑛)) = 𝑥𝑖

Figure 15. Type Focusing

�focus(𝜖, 𝜏) = 𝜏 �focus(.𝑖, {{𝜏1, . . . , 𝜏𝑛}}) = 𝜏𝑖�focus(.[𝑜𝑘 : ℓ𝑘],𝑊ℓ ⋉1≤𝑖≤𝑛 [𝑜𝑖 : ℓ𝑖] : 𝜏𝑖) = 𝜏𝑘�focus(.[𝑜𝑘 : ℓ𝑘],&ℓ (𝜏) ⋉1≤𝑖≤𝑛 [𝑜𝑖 : ℓ𝑖] : 𝜏𝑖) = 𝜏𝑘�focus(.∗,&ℓ (𝜏) ⋉1≤𝑖≤𝑛 [𝑜𝑖 : ℓ𝑖] : 𝜏𝑖) = 𝜏

Figure 16. Layout Focusing

𝜏/_ = 𝜏 ⟨𝜏1, . . . , 𝜏𝑛⟩/⟨𝑝1, . . . , 𝑝𝑛⟩ = ⟨𝜏1/𝑝1, . . . , 𝜏𝑛/𝑝𝑛⟩

𝐾1 (𝜏1) + . . . + 𝐾𝑛 (𝜏𝑛)/𝐾 (𝑝) = 𝐾𝑖 (𝜏𝑖/𝑝)

Figure 17. Type Specialisation

𝜏/_ = {_ ↦→ 𝜏} (𝜋 as 𝜏)/𝑝 = {𝑝 ↦→ (𝜋 as 𝜏)}

{{𝜏1, . . . , 𝜏𝑛}} /𝑝 =

𝑝′ ↦→
{{
𝜏 ′1, . . . , 𝜏

′
𝑛

}} ������
(𝑝𝑖 ↦→ 𝜏 ′𝑖) ∈ 𝜏𝑖/𝑝

𝑝1 ∩ . . . ∩ 𝑝𝑛 = 𝑝′


Split (𝜋)


c1 from 𝑃1 ⇒ 𝜏1
...

...
...

c𝑛 from 𝑃𝑛 ⇒ 𝜏𝑛

 /𝑝 =

𝜏𝑖/𝑝
������
𝑝′ ∈ 𝑃𝑖

𝑝 ⊂ 𝑝′


Figure 18. Layout Specialisation

B Recursive constructors
We now detail the extension of our algorithm to handle
such cases by emitting recursive constructor code. The idea
is to replace Rebuild and Seek with Wrap(Rebuild) and
Wrap(Seek) respectively. The Wrap function, defined in
Algorithm 7, hashes arguments to keep track of which calls
have already been performed. Each argument hash is associ-
ated with a function symbol, and any subsequent call on the
same arguments returns a call to this function.

1 functionWrap(Rebuild):
2 𝐻 := empty
3 return 𝜆 (⟨𝑠in, 𝜏in, 𝜏in, 𝑝in⟩, ⟨𝑑out, 𝜏out, 𝜏out⟩, 𝜋) . {
4 ℎ ← (𝜏in, 𝜏in, 𝑝in, 𝜏out, 𝜏out, 𝜋)
5 if ℎ ∈ dom (𝐻) then
6 𝑓 ← 𝐻 (ℎ)
7 return call 𝑓 (𝑠in, 𝑑out) ; success

8 else
9 𝑓 , 𝑠, 𝑑 ← fresh symbols

10 𝐻 (ℎ) := Declared(𝑓)
11 args′in ← ⟨𝑠, 𝜏in, 𝜏in, 𝑝in⟩
12 args′out ← ⟨𝑑, 𝜏out, 𝜏out⟩
13 Kbody ← Rebuild(args′in, args′out, 𝜋)
14 𝐻 (ℎ) := Defined

(
𝑓 , 𝜆(𝑠, 𝑑).Kbody

)
15 return call 𝑓 (𝑠in, 𝑑out) ; success

16 end
17 }
Algorithm 7:Wrapper for emitting recursive code

C Supplementary Examples
ExampleC.1. Wemodel simple arithmetic expressionswith
the type 𝜏op = Plus+Minus+Times for operators and 𝜏arith =

Conference’17, July 2017, Washington, DC, USA Thaïs Baudon, Gabriel Radanne, and Laure Gonnord

let in i1 = i0.[0:2]

Switch i1

0 1 2

// Input provenance V
let out o7 = alloc 512
o0 := &o7
let out o8 = o0.[0:2]
o8 := 2
// Fragment _.V
let in i5 = i0.*
o7 := i5

// Input provenance I
let out o8 = o0.[0:2]
o8 := 1
// Fragment _.I
let out o9 = o0.[32:32]
let in i6 = i0.[32:32]
o9 := i6

// Input provenance E
let out o1 = alloc {8, {24,32,64,64}}
o0 := &o1
let out o2 = o0.*.1.0
o2 := 2
let out o3 = o0.[0:2]
o3 := 0
// Fragment _.E.2
let out o4 = o1.1.3
let in i2 = i0.*.3
call f i2 o4
// Fragment _.E.1
let out o5 = o1.1.2
let in i3 = i0.*.2
call f i3 o5
// Fragment _.E.0
let out o6 = o1.0
let in i4 = i0.*.1
o6 := i4

success

Let rec f = λ i0 o0

Figure 19. Generated code for converting arithmetic expres-
sions from 𝜏naive to 𝜏optim

𝑉 (str) + 𝐼 (𝑖32) + 𝐸 (𝜏op, 𝜏arith, 𝜏arith) for expressions. 𝜏op is the
immediate C-style enum representation on 4 bits.
We give two layouts for arithmetic expressions. First, a

naive layout with pointers and blocks:

𝜏naive = Split (.[0 :2]) {

0 from 𝐸 ⇒ &64,2
©­­«


𝑊56; (.𝐸.0 as 𝜏op)
(.𝐸.1 as 𝜏naive)
(.𝐸.2 as 𝜏naive)



ª®®¬ ⋉ [0 :2] : (= 0)

1 from 𝐼 ⇒ 𝑊64 ⋉ [0 :2] : (= 1) ⋉ [32 :32] : (.𝐼 as𝑊32)
2 from 𝑉 ⇒ &64,2 ((.𝑉 as str)) ⋉ [0 :2] : (= 2)
}
and a somewhat optimised layout, which packs expressions
with at least one integer operand into a smaller struct:
𝜏optim = Split (.[0 :2]) {
0 from 𝐸 ⇒ &64,2

({{
(_.𝐸.0 as 𝜏op), 𝜏𝐸op

}})
⋉ [0 :2] : (= 0)

1 from 𝐼 ⇒ 𝑊64 ⋉ [0 :2] : (= 1) ⋉ [32 :32] : (_.𝐼 as𝑊32)
2 from 𝑉 ⇒ &64,2 ((_.𝑉 as str)) ⋉ [0 :2] : (= 2)
}
where
𝜏𝐸op = Split (.0) {

0 from 𝐸 (_, 𝐼 , _) ⇒


𝑊24 ⋉ . : (= 0)
(_.𝐸.1.𝐼 as𝑊32)
(_.𝐸.2 as 𝜏optim)




1 from 𝐸 (_, _, 𝐼) ⇒


𝑊24 ⋉ . : (= 1)
(_.𝐸.2.𝐼 as𝑊32)
(_.𝐸.1 as 𝜏optim)




2 from 𝐸 (_, _, _) ⇒


𝑊24 ⋉ . : (= 2)
(_.𝐸.1 as 𝜏optim)
(_.𝐸.2 as 𝜏optim)




}

	Abstract
	1 Introduction
	1.1 Real World ADTs: the RISC-V instruction set
	1.2 Compilation of Constructors and Destructors

	2 Algebraic Data Types and Their Layouts
	2.1 Algebraic Data Types
	2.2 Memory layouts
	2.3 Programs

	3 Target in Destination Passing Style
	4 A Primer On Matching Compilation
	4.1 From Patterns to Switch Trees
	4.2 Exploring Layouts with Focus and Specialise
	4.3 A Naive Compilation Algorithm

	5 Compilation of Constructor Expressions
	5.1 Seek And Rebuild
	5.2 Memory Allocation
	5.3 Recursive Constructors

	6 Related Work
	A Focusing and Specialisation
	B Recursive constructors
	C Supplementary Examples

