Thaïs Baudon
email: thais.baudon@ens-lyon.fr

Gabriel Radanne
email: gabriel.radanne@inria.fr

Laure Gonnord
email: laure.gonnord@grenoble-inp.fr

Rebuilding Algebraic Data Types from Mangled Memory Layouts

Keywords: Algebraic Data Types, Pattern Matching, Compilation, Data Layouts

Now integrated in mainstream languages, Algebraic Data Types (ADTs) have established themselves as a nice way to reason about data structures and their manipulations using pattern-matching. However, their use in low-level programming remains limited despite efforts, notably from the Rust community. Recently, Baudon et al. [2023] propose to let the programmer express the precise memory layout of a given Algebraic Data Type, while still enjoying high-level programming constructs. Their compilation procedure covers efficient pattern matching, but leaves out constructors and struggles with arbitrarily mangled memory layouts.

So far, the literature on ADT compilation rarely mentions constructors, which are indeed a non-issue on simple memory layouts. However, when data pieces are broken and scattered in memory, this task becomes particularly challenging. Even simple accessors might require constructing new values. This is the case for many low-level representations such as network packets, instruction sets, databases data-structures, or aggressively packed representations.

In this article, we propose a unified compilation procedure for ADTs constructors and destructors (i.e., patternmatching) in the context of arbitrarily mangled memory layouts. We subsume existing compilation algorithms, and extend them to emit CFG-style programs with explicit memory allocation and full support for recursive types.

Introduction

Algebraic Data Types have proven themselves to be an essential tool for high-level programming: they allow to concisely model data thanks to sums, which indicate potential alternatives, and products, which group different pieces of data together. Thanks to their declarative nature, they let programmers manipulate data not bothered by the nitty-gritty details of its actual memory representation. That declarative nature allows compilers to verify and optimise code manipulating algebraic data, notably through pattern matching [START_REF] Augustsson | Compiling pattern matching[END_REF][START_REF] Maranget | Compiling pattern matching to good decision trees[END_REF][START_REF] Maranget | Warnings for pattern matching[END_REF]. This versatility and simplicity allowed them to gain popularity, from their original grounds in functional programming languages [START_REF] Burstall | HOPE: An Experimental Applicative Language[END_REF]] like OCaml and Haskell, to mainstream languages such as Typescript, Python, and most recently Java.

Unfortunately, low-level programmers have so far not reaped the benefits of Algebraic Data Types: they must often fall back to manual handling of memory layout to implement their data manipulation code, even in languages such as Rust which offer both ADTs and low-level programming. One main reason is that memory layouts for low-level data structures are indisputably weird: Red-Black Trees in the Linux kernel leverage low bits in aligned pointers to store information using the now classic bit-stealing technique [Torvalds 2023]; high-performance code regularly uses AoS (array of structs), SoA or AoSoA representations to mangle data collections for better locality [AoS and SoA 2023]; binary representations of data such as instruction sets and network packets regularly cut data into tiny pieces to minimise overall memory size. The general mold of Algebraic Data Types does not provide enough control over memory layout to model such mangled representations. As one might imagine, the code required to manipulate such memory layouts is complex, error prone, and hard to automatically verify and optimise.

Our goal is to provide high-level data-modelling constructs via Algebraic Data Types, specify their precise memory layout, and obtain low-level efficient code conforming to that layout. Some works have attempted to bridge this gap. Dargent [START_REF] Chen | Dargent: A Silver Bullet for Verified Data Layout Refinement[END_REF]] lets programmers give high-level layout descriptions and generates certified C accessors and constructors. It however doesn't provide full language constructs like pattern matching. LoCal [START_REF] Vollmer | LoCal: a language for programs operating on serialized data[END_REF] and Gibbon [START_REF] Koparkar | Efficient Tree-Traversals: Reconciling Parallelism and Dense Data Representations[END_REF]] provide efficient compilation specialised for code operating on serialised and dense data representations. More generally, many programming languages such as Rust or Haskell provide both low-level vector types and high-level Algebraic Data Types in separate manners, forcing programmers to resort to low-level code when they want to fine-tune their memory layout.

More recently, Ribbit [START_REF] Baudon | Bit-Stealing Made Legal: Compilation for Custom Memory Representations of Algebraic Data Types[END_REF] proposes a dualview compilation approach: a high-level type is paired with a low-level memory layout. A compilation algorithm then takes high-level pattern matching to low-level code respecting the layout. Their layout specification is expressive, allowing to specify many of the examples we just highlighted and scaling to fairly complex real-world examples. Their compilation algorithm however suffers from one crucial drawback: it can only deconstruct values. While innocuous at first, this severely limits highly mangled layouts where data needs to be deconstructed, reshaped, and rebuilt differently, as is the case for aggressive struct packing, flattening or AoS/SoA transformations. To better understand this limitation, let us study a real world example of an ADT with a complex layout: the RISC-V instruction set with its binary representation.

Real World ADTs: the RISC-V instruction set

To demonstrate the complexity of real-world memory layouts for ADTs, we consider a restricted version of the 32-bit RISC-V assembly language consisting of four instructions (add, addi, sw, and jal). We will use Ribbit's DSL to specify the layout as the encoding described in the instruction set (ISA) documentation [START_REF] Waterman | The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Version 20191213[END_REF]. A RISC-V machine has 32 registers, x0 to x31 (encoded on 5 bits). As depicted in Fig. 1, RISC-V 32-bit instructions have different formats w.r.t. their addressing mode. Further characteristics of our four instructions are depicted in Fig. 2.

Already, we see complications: in general, an instruction information (type, instruction name, involved registers, . . .) is split over opcode, funct3 and funct7, which are stored non-consecutively. Moreover the latter two are sometimes not present in the 32-bit instruction value. Immediates are particularly mangled, and can not be readily extracted from the binary representation. For our particular (simple) subset : (i) the four instructions are distinguishable from their opcode only, bits 0 to 7. (ii) the destination registers of add and addi are at the same location, bits 7 to 11 (iii) the immediate value (imm) for the sw instruction is on bit ranges 7-11 and 25-31. (iv) the 20-bits immediate value for the jal instruction can be recovered from bits 12 to 31 but we need to rebuild this immediate from four ranges of bits.

We demonstrate the modelling of RISC-V registers and instructions with ADTs in Fig. 3, using the Ribbit [START_REF] Baudon | Bit-Stealing Made Legal: Compilation for Custom Memory Representations of Algebraic Data Types[END_REF] syntax. In addition to ADTs, Ribbit lets us define their memory layouts, which describe how concrete values are encoded in memory. Registers are encoded on 5 bits, similar to a C enum (e.g., X2 is the 5-bit word for "2"). Instructions (Op type) are encoded on 32 bits (w32). split, on Line 10, allow distinguishing the different cases using the 7 lowest bits (opcode). We only showcase the Sw case of the split. Line 12 specifies that the opcode is 0x23 (see Fig. 2). The immediate operand is split in two parts, which are encoded in bits 7 to 11 inclusive (Line 13) and 25 to 31 (Line 17) within the 32-bit word representing the full instruction.

Compilation of Constructors and Destructors

Now that types and layouts have been defined, high-level data manipulation constructs can be compiled to code which directly manipulates memory. For instance, Fig. 4 corresponds to Sw(X1, X2, imm). This is where we hit the previously mentioned limitation: since imm is stored non consecutively , [START_REF] Baudon | Bit-Stealing Made Legal: Compilation for Custom Memory Representations of Algebraic Data Types[END_REF]'s algorithm is unable to identify the high and low bits and can't generate this code.

Similarly, Ribbit allow definitions of pattern-matching functions, such that the one in Fig. 5 that determines whether a given 32-bit RISC-V instruction can be compressed into a 16-bit RISC-V instruction. However, again, we can not immediately bind the imm representation while compiling the pattern and need to first find all the right pieces and combine them together. [START_REF] Baudon | Bit-Stealing Made Legal: Compilation for Custom Memory Representations of Algebraic Data Types[END_REF]'s algorithm is thus not capable of compiling the is_compactable function.

In this article, we extend their algorithm, and Ribbit itself, to handle such cases by conjointly compiling constructors and destructors. Our new compilation algorithm, when applied to the is_compactable function, generates code as a control flow graph shown in Fig. 6. This generated code: 1. inspects the internal representation of an input Op value to determine its head constructor (Add, Addi, Jal or Sw), as well as the nested register constructor in Jal; 2. extracts from this representation all subterms that are bound to variables in the matched pattern (e.g. parts of From the input i, it distinguish head constructors using the 7 lowest bits, then extracts subterms such as destination and source registers for Add, and the 12 bits imm for Sw (in bold). The result is in dest.

the immediate imm for Jal, the three registers operands rd, rs1, rs2 for Add); 3. allocates and initialises memory to represent the value of the expression on the right-hand side. We contribute a general procedure which compiles (potentially nested) constructor expressions, pattern matching, and both together, without introducing superfluous work, to a destination passing intermediary representation. This procedure emits precise memory allocation code and handles recursive types and recursive code emission.

Section 2 describes our input language based on types and memory layouts from [START_REF] Baudon | Bit-Stealing Made Legal: Compilation for Custom Memory Representations of Algebraic Data Types[END_REF]. Section 3 presents our target intermediate representation, in Destination Passing Style [START_REF] Shaikhha | Destination-Passing Style for Efficient Memory Management[END_REF]]. Our approach relies on existing pattern matching compilation techniques, which we detail in Section 4. Our main contribution, detailed in Section 5, is a compilation algorithm for expressions constructing ADT values according to custom memory layouts.

Algebraic Data Types and Their Layouts

We now briefly formalise our input language. As in Section 1, we uses a two-tiered view: algebraic data types used for programming and memory layouts detailing how to represent them in memory. We then present a core programming language to manipulate such types. The bulk of the specification extends [START_REF] Baudon | Bit-Stealing Made Legal: Compilation for Custom Memory Representations of Algebraic Data Types[END_REF], with most of the limitations imposed on memory types lifted and a larger input language.

Algebraic Data Types

The grammar for Algebraic Data Types is presented in Fig. 7. We denote types using 𝜏 and type variables with 𝑡 ∈ V ty . We denote all tuples with angle brackets, for instance ⟨𝑖32, 𝑓 64⟩ for pairs of a 32-bit integers and a 64-bit float. Constructors of sums are marked with a capital letter, for instance Some(𝑡) + None is an option type. In examples, we use 𝐾 as shortcut for 𝐾 (⟨⟩). We use Γ to denote type environments, i.e., maps from type variables 𝑡 to types 𝜏. We also define two related constructs: provenances and paths. Provenances give partial information on what a value looks like: a type, a constructor, or anything (wildcard: _). Paths precisely indicate the position of a subterm in a given type or provenance, using accesses by tuple position .𝑖 or by constructor .𝐾.

Example 2.1 (Source type). Our source type for RISC-V 32-bit instructions is a sum type with four constructors:

𝜏 RISC-V = Add(𝜏 reg , 𝜏 reg , 𝜏 reg)+Addi(𝜏 reg , 𝜏 reg , 𝑖12)+Jal(𝜏 reg , 𝑖20) +Sw(𝜏 reg , 𝜏 reg , 𝑖12
). The path .Add.0 designates the first argument of an Add instruction, namely its destination register. The provenance Sw(_, _, _) designates any value of type 𝜏 RISC-V whose constructor is Sw.

Memory layouts

Each algebraic data type is associated with a memory layout, whose grammar is given in Fig. 8, which specifies how its values should be represented in memory. As a general convention, memory elements are distinguished with a hat. Memory layouts, denoted by 𝜏 (See Example 2.2) consist of concrete memory structures (words, pointers and structs/blocks) as well as constructs that refer back to the represented high level type (fragments refer to subterms, while splits create disjunctions between constructors). Fragments may refer to arbitrarily nested subterms; so-called regular layouts only contain fragments that refer to immediate subterms (i.e., the contents of a constructor for sums or a field for products). Memory paths, denoted 𝜋, indicate positions in layouts.

Example 2.2 (Memory layout). The layout associated with the Ribbit example of Figure 3 is:

𝜏 RISC-V = Split (.[0 : 7])        0x33 from Add ⇒ 𝜏 Add 0x23 from Sw ⇒ 𝜏 Sw . . . from . . . ⇒ . . .       
The split describes how to distinguish between constructors, by inspecting the 7 lowest bits (0xXX are fixed constants).

| (𝜋 as 𝜏) (fragment) | (= c) (fixed immediate) | 𝑊 ℓ ⋉ 1≤𝑖 ≤𝑛 [𝑜 𝑖 : ℓ 𝑖] : 𝜏 𝑖 (word) | & ℓ,𝑎 (𝜏) ⋉ 1≤𝑖 ≤𝑛 [𝑜 𝑖 : ℓ 𝑖] : 𝜏 𝑖 (pointer) | {{ 𝜏 1 , . . . , 𝜏 𝑛 }} (struct) | Split (𝜋)        c 1 from 𝑃 1 ⇒ 𝜏 1 . . . c 𝑛 from 𝑃 𝑛 ⇒ 𝜏 𝑛        (split) Γ : V ty →
| 𝑧 ∈ Z | . . . (constant) | ⟨𝑒, . . . , 𝑒⟩ (tuple)
| 𝐾 (𝑒) (constructor)

𝑚 ∈ Matches ::= {𝑝 1 → 𝑒 1 ; . . . ; 𝑝 𝑛 → 𝑒 𝑛 } Figure 9. Program syntax
Layouts for individual instructions (e.g., Sw) are built from a 𝑊 32 with additional constraints on subranges of bits:

𝜏 Sw = 𝑊 32 ⋉ [0 : 7] : (= 0x23) (opcode const) ⋉ [7 : 5] : (.Sw.0 as 𝜏 reg) (base register) ⋉ [12 : 3] : (= 2) ⋉ . . . (func3 const, etc.)
The fragment construct (.Sw.0 as 𝜏 reg) expresses that bits 7 to 12 inclusive contain the representation of the first argument of Sw (base register) according to the 𝜏 reg layout.

Programs

We now define high-level programs that manipulate algebraic data types. Our general goal is to compile such programs to low-level programs that manipulate memory directly, with respect to the specified memory layout. For the purpose of this presentation, we only consider program parts which are directly related to algebraic data types: pattern matching, which destructs values, and simplified expressions, which construct values. Crucially, we consider both in conjunction, as shown in Fig. 9, with the usage of matches. A match 𝑚 is composed of a list of cases; cases being themselves composed of a provenance on the left-hand side, and an expression on the right-hand side. Expressions are composed of tuples, constructors, and constants. Instead of variables, expressions refer to positions in the input value via paths.

Example 2.3 (Destination register binding). The following match extracts the destination register of a RISC-V instruction if it exists, and returns 𝑋 0 otherwise:

get_dest = Add(𝑟, _, _) → 𝑟 Addi(𝑟, _, _) → 𝑟 Jal(𝑟, _) → 𝑟 Sw(_, _, _) → 𝑋 0 3 Target in Destination Passing Style
We now define our target intermediate representation in Fig. 10. The goal of this program representation is to make the following tasks explicit: switching on values, writing results to their appropriate memory location, and, crucially, allocating and initialising memory on the heap to properly represent the output expression. we depart from [START_REF] Baudon | Bit-Stealing Made Legal: Compilation for Custom Memory Representations of Algebraic Data Types[END_REF]] and define a new IR in Destination Passing Style [START_REF] Shaikhha | Destination-Passing Style for Efficient Memory Management[END_REF]] (See Example 3.1). Our IR expresses traditional decision trees via a switch construct with a default branch marked by "_", along with success and fail return statements. For the remaining constructs, we will use the notion of locations: these are unaligned pointers which can be defined using memory paths and subpaths, and be passed as arguments to functions. They will be filled with the appropriate memory representation by the compiled code.

Input locations, ("𝑖"), denote read-only memory representations of input values (at toplevel) or sub-input values (during computation). More precisely, root locations are provided before-hand as arguments. Input sub-locations are obtained by focusing an existing input location with a memory path, using the instruction let in 𝑖 ′ = 𝑖. 𝜋 ; Output locations, ("𝑜"), denote write-only memory locations that will be (eventually) allocated and computed during the execution of the target. These outputs (or sub-outputs obtained with let out . . . ;) can be filled, using the write instruction, with several kinds of values: constants denoted 𝑐, the contents of an input location, or the address of newly allocated memory of a given size denoted alloc ℓ. Finally, our IR enables function calls thanks to the instruction call 𝑓 (𝑖, 𝑜) ; . The list of functions is defined toplevel by the F environment. These functions will be denoted with a plain frame around them in the rest of the paper. Note that return statements, namely success and fail, do not return any value. A match will be compiled to a set of functions taking input and output locations as arguments, as shows Example 3.1. Let us finally point out that sharing is not explicit in the IR, even though we use a control-flow-graph style representation underneath.

Example 3.1 (target IR for our example). The program from Example 2.3, taking an input 𝑖 of type 𝜏 RISC-V and returning an output 𝑜 of type 𝜏 reg , will be compiled into:

fun aux(𝑖, 𝑜) → { let in 𝑖 ′ = 𝑖.[7 : 5] ; 𝑜 := 𝑖 ′ ; success } fun get_dest(𝑖, 𝑜) → { let in 𝑖 0 = 𝑖.[0 : 7] ; switch 𝑖 0            0x33 → call aux(𝑖, 𝑜) ; success 0x13 → call aux(𝑖, 𝑜) ; success 0x6F → call aux(𝑖, 𝑜) ; success 0x23 → 𝑜 := 0 ; success            }
The compiled function get_dest considers its input 𝑖 as a 𝑊 32 value, from which it extracts its 7 lowest bits into a new variable 𝑖 0 . From 𝑖 0 's value it either directly write 0 as the result 𝑜 (it has recognised Sw), or call the auxiliary function aux, which outputs to destination 𝑜 5 bits corresponding to the destination register of instructions Add/Addi/Jal (Fig. 1, rd is always located at the same place).

A Primer On Matching Compilation

Before presenting our full algorithm, we detail the required tooling. We first briefly summarise an existing compilation procedure for pattern matching, then define an operation to semantically explore a type conjoined with its layout.

From Patterns to Switch Trees

General procedures for pattern matching compilation [START_REF] Maranget | Compiling pattern matching to good decision trees[END_REF][START_REF] Sestoft | ML pattern match compilation and partial evaluation[END_REF]] take as input a list of patterns -usually with no variables nor right-hand-side expressions -and produce a nest of "switch" nodes, either following an automaton or a DAG. In the context of customizable memory layouts as the ones we consider, [START_REF] Baudon | Bit-Stealing Made Legal: Compilation for Custom Memory Representations of Algebraic Data Types[END_REF] provides a layout-aware compilation procedure to decision DAGs.

Our goal is to extend such a compilation procedure to properly handle binders and right-hand-side expressions. We will thus extend a traditional pattern matching compilation approach. [START_REF] Baudon | Bit-Stealing Made Legal: Compilation for Custom Memory Representations of Algebraic Data Types[END_REF] provides a CompileMatch procedure which we will use as a black box in the rest of this article, adapted to our formalism. CompileMatch takes as arguments a pattern match without binders nor right-handsides, i.e., a list of provenances, along with the type and layout of the input data. It can readily handle nested provenances. In the context of this article, we reuse this procedure to take as input a list of provenances paired with their right-handside target IR, and emit decision DAGs using the target IR defined in Section 3. We illustrate on an example.

Example 4.1 (Matching Compilation). We consider the "matching part" of the functions defined in Example 2.3:

CompileMatch(𝑖, 𝜏 RISC-V , 𝜏 RISC-V ,            Jal(_, _) ⇒ K 1 Sw(_, _, _) ⇒ K 2 Addi(_, _, _) ⇒ K 3 Add(_, _, _) ⇒ K 4           ) = let in 𝑖 ′ = 𝑖.[0 : 7] ; switch 𝑖 ′ { 0x6F → K 1 0x23 → K 2 0x13 → K 3 0x33 → K 4 }
This switch is the toplevel node of the code in Fig. 6.

Exploring Layouts with Focus and Specialise

To compile high-level patterns and expressions in a way that fits a given memory layout, we need a way to explore both a type and its layout conjointly. Indeed, the full inner structure is only revealed when considering both the type, which defines nested terms and subterms, and the layout, which describes the exact switches required to access those subterms, represented as fragments. This exploration will be driven by provenances since they form the common backbone of our high-level language constructs, including expressions and types, and already drive the existing CompileMatch procedure. Our goal is thus to define a function Explore which takes a provenance 𝑝, a type 𝜏 and a layout 𝜏, and returns the list of all accessible sub-elements in 𝜏 represented as 𝜏 which are "compatible" with 𝑝. Semantically, a branch characterises the values of type 𝜏 that match the provenance 𝑝. A branch is thus defined as quadruplet (𝑝 𝑖 , 𝜏 𝑖 , 𝜏 𝑖 , 𝐹 𝑖) consisting of the provenance, type and layout refined for that specific branch, and of a list of fragments contained therein.

Example 4.2. We can explore 𝜏 RISC-V with the provenance Sw(_): Explore(Sw(_), 𝜏 RISC-V , 𝜏 RISC-V) = {(Sw(_), 𝜏 Sw , 𝜏 Sw , 𝐹)} where 𝜏 Sw = Sw(𝜏 reg , 𝜏 reg , 𝑖12)

and 𝐹 =            (.[7 : 5] ↦ → (.Sw.2.[0 : 5] as 𝑊 5)) (.[15 : 5] ↦ → (.Sw.0 as 𝜏 reg)) (.[20 : 5] ↦ → (.Sw.1 as 𝜏 reg)) (.[25 : 7] ↦ → (.Sw.2.[5 : 7] as 𝑊 7))            .
Note that the type and layout of the (unique) branch F are refined according to its provenance Sw(_): 𝜏 Sw and 𝜏 Sw only capture values of the form Sw(_).

To precisely define Explore, we need two new operations for refining types and layouts: focusing and specialisation.

Focusing in Types and Layouts. "Focusing" allows to focus on a specific part of a type or layout, according to a given path. Focus in the high-level language is denoted focus(𝜋, 𝜃) where 𝜃 is a type, an expression, a provenance, or another path, and returns an object of the same kind. It simply follows the syntax to extract the subterm at position 𝜋. For instance, we can consider "the part that is relevant to .Sw.0" in the type 𝜏 RISC-V : focus(.Sw.0, 𝜏 RISC-V) = focus .Sw.0, Sw(𝜏 reg , 𝜏 reg , 𝑖12) = 𝜏 reg Layout focusing, denoted focus(𝜋, 𝜏), similarly extracts the layout located at position 𝜋 within the parent layout 𝜏. It is undefined on splits. For instance, focus(.[7 : 5], 𝜏 Sw) = (.Sw.0 as 𝜏 reg).

Layout and Type Specialisation. "Specialisation" filters a type or a layout to exclude parts which are incompatible with a given provenance. Type specialisation, denoted 𝜏/𝑝, is a simple syntactic filter that discards irrelevant constructors. For instance, 𝜏 RISC-V /Sw(_, _, _) = Sw(𝜏 reg , 𝜏 reg , 𝑖12). Layout specialisation, denoted 𝜏/𝑝, is more complex: it removes all splits from 𝜏 (up to fragments) by filtering out branches whose provenance set excludes 𝑝. It returns a list of pairs of the form (𝑝 ′ ↦ → 𝜏 ′), where 𝑝 ′ is a refined version of 𝑝 and 𝜏 ′ is the restriction of 𝜏 to values that match 𝑝 ′ . For instance, 𝜏 RISC-V /Sw(_, _, _) returns a single pair (Sw(_, _, _) ↦ → 𝜏 Sw), and specialisation according to the wildcard provenance lists all possible refinement pairs of a layout:

𝜏 RISC-V /_ = (Sw(_, _, _) ↦ → 𝜏 Sw) , (Add(_, _, _) ↦ → 𝜏 Add) , (Addi(_, _, _) ↦ → 𝜏 Addi) , Jal(_, _) ↦ → 𝜏 Jal .
Explore. We are now ready to properly define Explore, in Algorithm 1. Given an initial provenance 𝑝 0 , type 𝜏 0 and layout 𝜏 0 , it returns the list of all branches of 𝜏 0 that represent 𝜏 0 values matching 𝑝 0 . Explore, and many of the algorithms described in this article, use python-style generators using the "yield" keyword, and "for-each" style loops.

Using the specialisation 𝜏 0 /𝑝 0 , we get all refinements pairs of 𝜏 0 compatible with 𝑝 0 : each refinement pair is characterised by a more precise provenance 𝑝 and a specialised layout 𝜏. We then derive all information relevant to this case from 𝑝 and 𝜏: the refined type 𝜏 0 /𝑝, and a list of the form (𝜋 ′ ↦ → (𝜋 ′ as 𝜏 ′)) containing every position 𝜋 ′ such that 𝜏 1 function Explore(𝑝 0 , 𝜏 0 , 𝜏 0): Algorithm 2: Naive compilation procedure contains a fragment at 𝜋 ′ . From these results, we construct a branch.

2 for (𝑝 ↦ → 𝜏) ∈ 𝜏 0 /𝑝 0 do 3 𝜏 ← 𝜏 0 /𝑝 4 𝐹 ← 𝜋 ′ ↦ → 𝜏 𝜋 ′ focus(𝜋 ′ , 𝜏) = (𝜋 ′ as 𝜏 ′) = 𝜏 𝜋 ′ 5 yield (𝑝,

A Naive Compilation Algorithm

Before diving into the full compilation algorithm, and as a general warm-up to compilation of pattern matching to our target IR, we showcase how to use Explore to easily implement the cases handled in [START_REF] Baudon | Bit-Stealing Made Legal: Compilation for Custom Memory Representations of Algebraic Data Types[END_REF]. The Extract procedure, defined in Algorithm 2, handles bound variables that exactly correspond to a single fragment within the memory layout, and therefore do not require converting between different layouts. For instance, the destination register at .Sw.0 in our running example directly corresponds to a single fragment in the layout 𝜏 RISC-V (at position .[0 : 7]). This algorithm does not cover cases which require rebuilding a value from pieces, such as the offset at .Sw.2. More precisely, Extract takes a description ⟨𝑖, 𝜏 𝑖 , 𝜏 𝑖 , 𝑝 𝑖 ⟩ of the input value, an output location 𝑜 and a path 𝜋. It emits code to store in 𝑜 the representation of the subterm located at 𝜋 within the input value. In Line 2-3, if 𝜋 is the empty path, then the input and output values are exactly the same and we simply copy the contents of 𝑖 to 𝑜, then succeed. Otherwise, the emitted code must handle every possible branch of 𝜏 𝑖 : we collect them in 𝐵 using Explore on Line 3. We will then emit code that dynamically determines the appropriate branch by inspecting the input value using the pattern matching compilation algorithm CompileMatch on Line 12. For each branch of the input layout, we search for a fragment covering a prefix of 𝜋: this fragment necessarily contains the data at position 𝜋. If found, we obtain, on Line 8, focused path, types, and provenances for this fragment and bind its location 𝑖. 𝜏 𝑓 on Line 9, and then recursively attempt to extract the desired value on Line 10. If no such fragment exists, then the output value is either not covered by this layout or broken into multiple pieces in separate fragments, we thus fail. In both cases, we emit a case for CompileMatch.

Example 4.3 (Extract -Algorithm 2). Let us consider again the destination register of a Sw instruction at position .Sw.0. Let 𝑜 a fresh output location and 𝑖 an input location assumed to contain the representation of a Sw instruction. Extract (⟨𝑖, 𝜏 RISC-V , 𝜏 RISC-V , Sw(_)⟩, 𝑜, .Sw.0) starts by exploring 𝜏 RISC-V as in Example 4.2, keeping only branches that match Sw and yielding a single branch (Sw(_), 𝜏 Sw , 𝜏 Sw , 𝐹) where 𝜏 Sw = Sw(𝜏 reg , 𝜏 reg , 𝑖12)

and 𝐹 =            (.[7 : 5] ↦ → (.Sw.2.[0 : 5] as 𝑊 5)) (.[15 : 5] ↦ → (.Sw.0 as 𝜏 reg)) (.[20 : 5] ↦ → (.Sw.1 as 𝜏 reg)) (.[25 : 7] ↦ → (.Sw.2.[5 : 7] as 𝑊 7))            .
𝐹 contains the fragment (.[15 : 5] ↦ → (_.Sw.0 as 𝜏 reg)), which covers _.Sw.0. We can now focus on this fragment and proceed with the recursive call. Let 𝑖 ′ a fresh symbol, 𝜏 ′ = focus(.Sw.0, 𝜏 Sw) = 𝜏 reg , 𝑝 ′ = focus(.Sw.0, Sw) = _ and 𝜋 ′ = focus(.Sw.0, .Sw.0) = 𝜖. We have the recursive call Extract ⟨𝑖 ′ , 𝜏 ′ , 𝜏 reg , 𝑝 ′ ⟩, 𝑜, 𝜋 ′ = 𝑜 := 𝑖 ′ ; success then K = let in 𝑖 ′ = 𝑖.[15 : 5] ; 𝑜 := 𝑖 ′ ; success . We yield the case (Sw(_), K) and can finally compute the full code with CompileMatch(𝑖,

𝜏 RISC-V , 𝜏 RISC-V , {(Sw, K)}) = let in 𝑖 0 = 𝑖.[0 : 7] ; switch 𝑖 0        0x23 → let in 𝑖 ′ = 𝑖.[15 : 5] ; 𝑜 := 𝑖 ′ ; success _ → fail       
Using all these tools, we were able to concisely express a not-so-simple procedure which Explores each branch of a layout, focuses on their constituents, then combines their compiled versions using CompileMatch. Similarly to [START_REF] Baudon | Bit-Stealing Made Legal: Compilation for Custom Memory Representations of Algebraic Data Types[END_REF]'s development, this procedure only handles paths corresponding to a whole fragment. Consequently, this procedure doesn't need to allocate, and always terminates. In the rest of this article, we will detail how to handle the full range of patterns and expressions.

Compilation of Constructor Expressions

Our main contribution is a general procedure, implemented into 𝑅𝑖𝑏𝑏𝑖𝑡, which can compile both patterns and expressions in a unified manner for arbitrary layouts. This procedure can thus compile a complete pattern matching branch with arbitrary bindings, or a standalone constructor expression.

This section presents this procedure in several steps: first, Section 5.1 presents a restricted version which handles reading from input locations and writing to output locations but leaves out memory allocation; then, Section 5.2 details how to allocate memory precisely at the right time; finally, Section 5.3 describes how to ensure termination of our algorithm and emit recursive code when necessary and demonstrates the procedure on such an example.

Seek And Rebuild

The Extract procedure presented in Section 4.3 handles simple cases where the wanted piece of data is a single fragment, corresponding to so-called "regular" layouts from [START_REF] Baudon | Bit-Stealing Made Legal: Compilation for Custom Memory Representations of Algebraic Data Types[END_REF]. In the general case, we want to rebuild arbitrary expressions and recover data from arbitrarily nested and scattered fragments, such as the immediate operand of the Sw instruction of our running example.

Our compilation algorithm consists of two mutually recursive procedures that emit code for a given pattern matching branch. The first emits code which Rebuilds (Algorithm 4) the necessary pieces to assemble a target expression 𝑒. Expressions consist of fixed parts (constructors and constants) and of variable parts from the input. We then need to emit code to Seek (Algorithm 3) such variable parts within the input identified by their position 𝜋. (i.e., if such a piece is wholly available, return it, otherwise, Rebuild it from smaller pieces, etc.) The main ideas behind these algorithms are:

• Alternatively explore and rebuild input and output values, using Seek (Algorithm 3) and Rebuild (Algorithm 4). • For variables, which are identified by their position in the input, Seek tries to find the corresponding piece directly within the input value, similarly to Extract. Otherwise we use Rebuild to break it into smaller pieces, until we reach individual bits of numeric values, which are necessarily somewhere in the input (assuming a correct layout). • Rebuild uses fragments from the specified layout to guide the search for smaller pieces, and fills the rest using constants gathered from the output layout. • This initial version doesn't allocate anything. This will be addressed in the next section.

Let us now look at these algorithms in more detail. For each pattern matching branch (𝑝 → 𝑒) we aim to compile, we refer to the left-hand-side as the input value, identified by the tuple args in = ⟨𝑖 in , 𝜏 in , 𝜏 in , 𝑝 in ⟩ composed of its input location, type, layout and provenance respectively. Initially, 𝑝 in = 𝑝. Similarly, we refer to the value computed by the right-hand side expression as the output value and identify it with the tuple args out = ⟨𝑜 out , 𝜏 out , 𝜏 out ⟩ composed of its output location, type and layout respectively. Our goal is to emit code that writes to 𝑜 out the representation of the target value according to 𝜏 out , and reads all data needed for doing so from 𝑖 in , which contains the input value represented according to Data: args in = ⟨𝑖 in , 𝜏 in , 𝜏 in , 𝑝 in ⟩ the input description Data: args out = ⟨𝑜 out , 𝜏 out , 𝜏 out ⟩ the output description Data: 𝜋 the path in the input to the desired value Result: Code binding the memory value at position 𝜋 in the input 1 function Seek(args in , args out , 𝜋): // Assemble the code of these branches via a decision tree.

2 if 𝜋 = 𝜖 ∧ 𝜏 in = 𝜏 out then // Input
15 return CompileMatch (𝑖 in , 𝜏 in , 𝐵)

Algorithm 3: Seek 𝜏 in . Both algorithms follow the general shape demonstrated by Section 4.3 with a base case (the empty path for Seek, and constants for Rebuild) followed by a call to Explore and to CompileMatch. Seek is mostly similar to Extract. Crucially, it only examines the input value. Rebuild is more complex, and aims to build two pieces of code: K consts which populates 𝑜 out with appropriate constants, notably coming from constructors, and K frags which fills it with pieces corresponding to fragments of the output layout. Both algorithms need to maintain a precise description of the current case under scrutiny. Indeed, after a few recursive calls, we might be exploring deep in the input and output layouts. This description is represented by the provenances 𝑝 in and 𝑝 out . Naturally, both provenances share subparts, namely the places corresponding to variables in 𝑒. As we explore the output in Rebuild, we need to share the refined information between input and output provenances. This is the role of Remap (Algorithm 5): given two provenances 𝑝 𝑙 and 𝑝 𝑟 and a map of shared positions between both sides, it creates a new provenance which is at least as precise as 𝑝 𝑙 , but contains shared information from 𝑝 𝑟 . It is used in both directions, first to create a more precise output provenance in Line 7, then to refine the input provenance again in Line 13. The initial output provenance is computed with the auxiliary Data: args in = ⟨𝑖 in , 𝜏 in , 𝜏 in , 𝑝 in ⟩ the input description Data: args out = ⟨𝑜 out , 𝜏 out , 𝜏 out ⟩ the output description Data: 𝑒 the desired constructor expression Result: Code computed the memory value corresponding to expression 𝑒 1 function Rebuild(args in , args out , 𝑒):

2 if 𝑒 = c ∧ 𝜏 out = 𝑊 ℓ then //

Memory Allocation

The algorithm presented so far emits a target program that populates the provided output location to represent the desired output value, even in the case of "split" information (i.e. the access code in Figs. 4 and6). However, we have not yet defined which memory locations are suitable for storing values of a given layout, and assumed that all memory path operations (dereference, struct access. . .) are legal and defined on all output locations. Naturally, this is not the case, and we might need to allocate new locations as we build the output value. This section focuses on the task of allocating such suitable memory to receive output values.

Memory shapes. We formalise the notion of a "suitable" memory location for a given layout with memory shapes, denoted 𝑝 and defined in Fig. 11. A shape describes the concrete layout of some value in memory, which can be either a fixed-size word, a fixed-size pointer to a known shape, or a struct aggregating several shapes together. The opaque shape ? ℓ is used for memory locations that have a known, fixed size, but whose precise shape is not known yet. We define the shape of a memory layout 𝜏 as shape_of(𝜏); we assert that any valid memory layout 𝜏 has a known size (denoted | 𝜏 |) and use the largest branch size for split layouts, so that the shape of any memory layout is always defined.

Allocation procedure. The intuition behind our allocation procedure is as follows: for both Seek and Rebuild, we 1 function GenAllocs(𝑜, 𝜏 old , 𝜏 new): 2 𝑝 old ← shape_of(𝜏 old) 3 𝑝 new ← shape_of(𝜏 new) 4 for (𝜋, ℓ) ∈ NewAllocs(𝑝 old , 𝑝 new) do 5 𝑜 ′ ← fresh symbol 6 yield let dest 𝑜 ′ = 𝑜. 𝜋 ; 𝑜 ′ := alloc ℓ ; success Algorithm 6: GenAllocs know that the output location 𝑜 out conforms with the shape shape_of(𝜏 out). This shape might be opaque, for instance if 𝜏 out is a split. In Rebuild, we Explore the output type and layout, yielding a more precise layout 𝜏 𝑏 . This is precisely the place where we might need to allocate: if we discover that 𝜏 𝑏 contains pointer to new structures, we should allocate them for future use. This leads us to define our allocation procedure GenAllocs (Algorithm 6) based on a notion of difference of shapes computed by NewAllocs (Fig. 13).

NewAllocs takes two shapes, and collects pairs (𝜋, ℓ) where the shape at position 𝜋 was previously unknown and is now a pointer to a shape of size ℓ. GenAllocs takes an output location 𝑜, an imprecise layout 𝜏 old and a more precise layout 𝜏 new , and emits a piece of code K allocs which allocates memory for each position reported by NewAllocs. K allocs is then inserted in the code returned by Rebuild, on Line 24.

shape_of, defined in Fig. 12, is a best-effort translation from memory layouts to shapes. It must be conservative (to ensure allocations do happen), but can be fairly imprecise when it comes to splits, as is the version we describe. However, a more precise definition is also possible, and even desirable. For instance, if all branches of a split are pointers to same-sized structures, we can report a good shape immediately, leading to an earlier allocation and code deduplication.

Recursive Constructors

Although the algorithm presented in Section 5.1 is sufficient to handle most situations, it does not necessarily terminates in the presence of recursive types and layouts. Let us consider it on an example.

Example 5.1 (Recursive rebuilding of linked lists). Consider simply-linked lists of 32-bits integers 𝜏 = N + C(𝑖32, 𝜏) with two possible layouts. 𝜏 1 is a traditional "pointers and blocks" layout with a pointer for each element. 𝜏 2 is a packed layout with up to two elements per level of indirection, with three branches: empty or a singleton list -both immediately encoded -or a pointer to a block of two integers: It turns out that we can already ask Rebuild to emit appropriate conversion code: Rebuild(⟨𝑖, 𝜏, 𝜏 1 , _⟩, ⟨𝑜, 𝜏, 𝜏 2 ⟩, 𝜖). However, our current algorithm will not terminate, as we try to Rebuild each block in the list.

𝜏 2 = Split (.[0 : 2]) { 2 from N ⇒ 𝑊 64 1 from C(_, N) ⇒ 𝑊
To properly handle such cases, we must emit recursive constructor code. Naturally, we could also refuse to emit such code (in contexts when recursion is not acceptable). In both cases, we need to detect recursion. We now sketch the main idea; full details are available in supplementary material. Intuitively, a call to Seek with arguments 𝑎𝑟𝑔𝑠 in = ⟨𝑖 in , 𝜏 in , 𝜏 in , 𝑝 in ⟩, 𝑎𝑟𝑔𝑠 out = ⟨𝑜 out , 𝜏 out , 𝜏 out ⟩ and 𝜋 leads to infinite recursion if it attempts to recursively rebuild an output value with the same type, layout and relative position from an input value with the same type, layout and provenance. This indicates that the output value contains a subterm which must be rebuilt in the exact same way: the only way to emit correct code is to introduce an explicit recursive node and emit recursive calls at this position. For this purpose, we memoise Seek and Rebuild on 𝜏 in , 𝜏 in , 𝑝 in , 𝜏 out , 𝜏 out and 𝜋 or 𝑒. We record when we enter one of the algorithms, and generate a fresh function symbol 𝑓 . If we enter this function again, we emit a call 𝑓 (𝑖, 𝑜). Afterwards, we can use simple deforestation to get rid of extra functions. Note that, on top of emitting recursive code, this also improves sharing.

Example 5.2 (Linked lists, cont'd). Using memoisation, the Rebuild call from our previous example terminates and emits recursive code. We explore 𝜏 2 and get three branches from its split. The first branch, corresponding to the provenance N, is immediate (we only have to write the tag constant). The second branch (C(_, N)) yields a layout with a single fragment (.[2 : 32] ↦ → (.C.0 as 𝑊 32)), which is immediately retrieved from the input. The third branch (C(_, C(_, _))), on the other hand, requires rebuilding the fragment (. * .2 ↦ → (.C.1.C.1 as 𝜏 2)), which is more involved. Indeed, 𝜏 1 represents the tail of a linked list with a pointer to the fragment (.C.1 as 𝜏 1). After two recursive Seek calls (we focus into (.C.1 as 𝜏 1) twice), we eventually attempt to Rebuild a piece of type 𝜏 represented as 𝜏 2 from the same piece represented as 𝜏 1 , i.e., the same task as the initial Rebuild call. Thanks to memoisation, this task is now associated with a function symbol 𝑓 and we finally emit the target code in Fig. 14. Algebraic Data Types and low-level programming. ADTs, pattern matching compilation and compact memory representations all have long histories. We summarise the work directly related to low-level programming.

Our approach directly extends (and subsumes) [START_REF] Baudon | Bit-Stealing Made Legal: Compilation for Custom Memory Representations of Algebraic Data Types[END_REF]]. In particular, their "regular" case is covered by our initial naive algorithm in Section 4.3. Our full procedure covers all possible cases, including the so-called "irregular" ones which they only sketch.

Many of the links between ADTs and low-level programming were initially made for verification. Notably, Dargent [START_REF] Chen | Dargent: A Silver Bullet for Verified Data Layout Refinement[END_REF] allows to specify memory representations in an external DSL which outputs C code for accessors, and Isabelle/HOL theorems; with the aim of formally verifying embedded systems. [START_REF] Swamy | Hardening attack surfaces with formally proven binary format parsers[END_REF] propose a similar approach to formally verify binary format parsers in 𝐹 * . These approaches are precise, leveraging their host proof assistant, but do not provide language-integrated constructs such as pattern matching. They also provide far less optimisations than what we propose.

LoCal [START_REF] Vollmer | LoCal: a language for programs operating on serialized data[END_REF] and Gibbon [START_REF] Koparkar | Efficient Tree-Traversals: Reconciling Parallelism and Dense Data Representations[END_REF], on the other hand, provide DSLs tailored to describe and manipulate low-level and serialised representations. Their memory layouts are less flexible than what we presented, making it impossible to provide truly customised representations, but allowing them numerous powerful optimisations we do not provide, such as leveraging parallelism. We hope to combine our approaches in the future.

Finally, some general-purpose languages provide ways to improve data layout. Rust's niches [RFC: Alignment niches for references types 2021] provide semi-automatic layout optimisations, but are quite limited. Unboxed constructors [START_REF] Colin | Unboxing Mutually Recursive Type Definitions in OCaml[END_REF][START_REF] Keller | Regular, shape-polymorphic, parallel arrays in Haskell[END_REF]] allow for manual optimisations, but prevent the use of nice high-level constructs, falling back to a C-like programming style. By contrast, our approach allows using only a high-level view, while giving full control over memory layout.

Intermediate Representation. We use a Destination--Passing Style [START_REF] Shaikhha | Destination-Passing Style for Efficient Memory Management[END_REF] representation in Anormal form [2023]. This provides us precise control over memory management and input/output arguments, and could enable further memory improvements, such as using stack allocation when appropriate and applying tail-call modulo cons [START_REF] Bour | Tail Modulo Cons[END_REF]. Another avenue would naturally be to use Continuation-Passing Style [START_REF] Appel | Compiling with Continuations[END_REF]], notably to simplify handling of recursive calls in Section 5.3. This is in line with numerous compilers for functional languages [START_REF] Hall | The Glasgow Haskell Compiler: A Retrospective[END_REF][START_REF] Shinwell | Efficient OCaml Compilation with Flambda 2[END_REF] and easily allows moving to SSA representations such as Rust's MIR and LLVM.

Conclusion

We presented a unified compilation procedure for constructors and destructors of Algebraic Data Types using a Destination-Passing Style intermediate representation. Our work allows providing arbitrary memory layouts for ADTs and compiles high-level code to low-level programs accordingly. In the future, we hope to investigate memory management strategies, for instance following [START_REF] Lorenzen | FP2: Fully in-Place Functional Programming[END_REF].

Figure 6 .

 6 Figure 6. Generated code for is_compactable.

 𝜏 ∈ Types ::= 𝑡 ∈ V ty (type variable) | 𝑖ℓ (primitive integer type) | ⟨𝜏, . . . , 𝜏⟩ (tuple/product type) | 𝐾 (𝜏) + . . . + 𝐾 (𝜏) (sum type) Γ : V ty → Types (type environment) 𝑝 ∈ Provs ::= _ | ⟨𝑝, . . . , 𝑝⟩ | 𝐾 (𝑝) 𝜋 ∈ Paths ::= 𝜖 | 𝜋 .𝑖 | 𝜋 .𝐾 Figure 7. Algebraic Data Types 𝜏 ∈ Types ::= 𝑡 ∈ V ty (variable)

 Types (memory type environment) 𝜋 ∈ Paths ::= 𝜖 (empty path) | 𝜋 .[𝑜 : ℓ] (bit range: ℓ bits from offset 𝑜) | 𝜋 . * (pointer dereferencing) | 𝜋 .𝑖 (struct field access) Figure 8. Memory Layout 𝑒 ∈ Exprs ::= 𝜋 ∈ Paths (binding)

K

 Figure 10. Target IR

 64 ⋉ [2 : 32] : (.C.0 as 𝑊 32) 0 from C(_, C(_, _)) ⇒ & 64,2 ({{(.C.0 as 𝑊 32), (.C.1.C.0 as 𝑊 32), (.C.1.C.1 as 𝜏 2)}}) }

Figure 14 .

 14 Figure 14. Generated code for rebuilding linked lists 6 Related Work

 𝜏, 𝜏, 𝐹) 𝜏 𝑖 , 𝜏 𝑖 , 𝑝 𝑖 ⟩ the input description Data: 𝑜 the output location Data: 𝜋 the path in the input to the desired value Result: Code binding 𝑜 to the memory value at position 𝜋 in the input 1 function Extract(⟨𝑖, 𝜏 𝑖 , 𝜏 𝑖 , 𝑝 𝑖 ⟩, 𝑜, 𝜋): 𝑖 ← focus 𝜋 𝑓 , 𝜋 , focus 𝜋 𝑓 , 𝜏 𝑏 , focus 𝜋 𝑓 , 𝑝 𝑏

		Algorithm 1: Explore
	Data: ⟨𝑖, 2 if 𝜋 = 𝜖 then
	3	return 𝑜 := 𝑖 ; success
	4 else

5

𝐵 ← for 𝑝 𝑏 , 𝜏 𝑏 , 𝜏 𝑏 , 𝐹 𝑏 ∈ Explore(𝑝 𝑖 , 𝜏 𝑖 , 𝜏 𝑖) do

6 if ∃(𝜋 𝑓 ↦ → (𝜋 𝑓 as 𝜏 𝑓)) ∈ 𝐹 𝑏 , 𝜋 𝑓 ⪯ 𝜋 then 7 𝑖 ′ ← fresh symbol 8 𝜋 ′ , 𝜏 ′ 𝑖 , 𝑝 ′ 9 K ← let in 𝑖 ′ = 𝑖. 𝜋 𝑓 ; Extract(⟨𝑖 ′ , 𝜏 ′ 𝑖 , 𝜏 𝑓 , 𝑝 ′ 𝑖 ⟩, 𝑜, 𝜋 ′) 10 else K ← fail 11 yield (𝑝 𝑏 , K) 12

return CompileMatch (𝑖, 𝜏 𝑖 , 𝐵)

 and output representations are the same, we return. 𝐵 ← for 𝑝 𝑏 , 𝜏 𝑏 , 𝜏 𝑏 , 𝐹 𝑏 ∈ Explore(𝑝 in , 𝜏 in , 𝜏 in) do // Seek a fragment containing the piece of data at 𝜋 . 𝜋 𝑓 ↦ → (𝜋 𝑓 as 𝜏 𝑓)) ∈ 𝐹 𝑏 ∧ 𝜋 𝑓 ⪯ 𝜋 then // Found one. We focus on it and search inside. focus 𝜋 𝑓 , 𝜏 𝑏 , 𝜏 𝑓 , focus 𝜋 𝑓 , 𝑝 𝑏 ⟩ 𝑖 in . 𝜋 𝑓 ; Seek args ′ in , args out , 𝜋 ′

	3	return 𝑜 out := 𝑖 in ; success
	4 else // Otherwise, Explore all cases.
	7	𝜋 ′ ← focus 𝜋 𝑓 , 𝜋
	8	𝑖 ← fresh symbol
	9 in ← ⟨𝑖, 10 args ′ K ← let in 𝑖 =

5 6 if ∃(11 else // Otherwise, Rebuild from smaller pieces. 12 args ′ in ← ⟨𝑖, 𝜏 𝑏 , 𝜏 𝑏 , 𝑝 𝑏 ⟩ 13 K ← Rebuild(args ′ in , args out , 𝜋) 14 yield (𝑝 𝑏 , K)

 Target value is a constant encoded in an immediate type. 𝑝 out ← Remap (𝑝 in , 𝑝 𝑣 , P in→out) 8 𝐵 ← for 𝑝 𝑏 , 𝜏 𝑏 , 𝜏 𝑏 , 𝐹 𝑏 ∈ Explore(𝑝 out , 𝜏 out , 𝜏 out) do // Fill in constant parts of the target memory type. Remap(𝑝 𝑏 , 𝑝 in , Inv(P in→out)) ⟨𝑠 in , 𝜏 in , 𝜏 in , 𝑝 in,𝑖 ⟩ 15 K frags ← for (𝜋 𝑓 ↦ → (𝜋 𝑓 as 𝜏 𝑓)) ∈ 𝐹 𝑏 do focus 𝜋 𝑓 , 𝜏 𝑏 , 𝜏 𝑓 ⟩ 18 if ∃(𝜋 in , 𝜋 out) ∈ P in→out , ∃𝜋, 𝜋 out .𝜋 = 𝜋 𝑓 then // If this fragment maps to a location within the input value, use it as a piece of the output value. Rebuild without allocations 1 function Remap(𝑝 𝑙 , 𝑝 𝑟 , P): 2 𝑝 such that 𝑝 is more precise than 𝑝 𝑙 and 3 ∀(𝜋 𝑙 , 𝜋 𝑟) ∈ P, ∀𝜋 s.t. focus(𝜋 𝑙 .𝜋, 𝑝 𝑙) = _, then 4 focus(𝜋 𝑙 .𝜋, 𝑝) = focus(𝜋 𝑟 .𝜋, 𝑝 𝑟). 𝑝 ∈ Shapes ::= ? ℓ | 𝑊 ℓ | & ℓ 𝑝 | 𝑝 1 , . . . , 𝑝 𝑛 & ℓ,𝑎 (𝜏) ⋉ . . . -→ & ℓ shape_of(𝜏) {{ 𝜏 1 , . . . , 𝜏 𝑛 }} -→ shape_of(𝜏 1), . . . , shape_of(𝜏 𝑛) , ? ℓ | ? ℓ ,𝑊 ℓ → ∅ ? ℓ , & ℓ 𝑝 → (𝜋, 𝑝) ∪ NewAllocs 𝜋 . * (? | 𝑝 | , 𝑝) ? ℓ , 𝑝 1 , . . . , 𝑝 𝑛 → 1≤𝑖 ≤𝑛 NewAllocs 𝜋 .𝑖 ? | 𝑝 𝑖 | , 𝑝 𝑖 𝑊 ℓ ,𝑊 ℓ → ∅ & ℓ 𝑝 , & ℓ 𝑝 ′ → NewAllocs 𝜋 . * (𝑝, 𝑝 ′) 𝑝 𝑖 . . . , 𝑝 ′ 𝑖 . . . →

			Figure 11. Memory shapes	
	shape_of{		
	𝑡		-→ shape_of(Γ(𝑡))	
	(𝜋 as 𝜏)	-→ shape_of(𝜏)	
	𝑊 ℓ ⋉ . . .	-→ 𝑊 ℓ	
				3	return 𝑜 out := c ; success
				4 else // Otherwise, Explore all cases.
				5	P in→out ← {(𝜋, 𝜋 ′) | focus(𝜋 ′ , 𝑒) = 𝜋 }
	𝜏		-→ ? | 𝜏 |	6	𝑝 𝑣 ← prov_of(𝜏 out , 𝑒)
	}	Figure 12. Translation from layouts to shapes	
	NewAllocs 𝜋 { ? 1≤𝑖 ≤𝑛 } Figure 13. Difference between shapes NewAllocs 𝜋 .𝑖 (𝑝 𝑖 , 𝑝 ′ 𝑖)	9 10 11 12 14 in ← 16 consts 𝑏 ← (𝜋, c) focus(𝜋, 𝜏 𝑏) = (= c) K consts ← for (𝜋, c) ∈ consts 𝑏 do 𝑜 ← fresh symbol yield let out 𝑜 = 𝑜 out . 𝜋 ; 𝑜 := c ; success // Rebuild target fragments from the input value, which we specialize for the current branch. args ′ 𝑜 ← fresh symbol
				17 out ← ⟨𝑜, 19 args ′ 𝜋 ′ ← 𝜋 in .𝜋
				20	yield	let out 𝑜 = 𝑜 out . 𝜋 𝑓 ; Seek(args ′ in , args ′ out , 𝜋 ′)
				21	else // Otherwise, break it down further.
				22	𝑒 ′ ← focus 𝜋 𝑓 , 𝑒
				23	yield	let out 𝑜 = 𝑜 out . 𝜋 𝑓 ; Rebuild(args ′ in , args ′ out , 𝑒 ′)
				24	yield (𝑝 in,𝑏 , K consts ; K frags)
					// Assemble these branches into a decision tree.
				25	return CompileMatch (𝑖 in , 𝜏 in , 𝐵)
					Algorithm 4: Algorithm 5: Remap auxiliary operation
				prov_of function, which is a simple syntactic translation
				from expressions to provenances.

7 13 𝑝 in,𝑏 ← ℓ

Supplementary material for the CC'24 submission: Rebuilding Algebraic Data Types from Mangled Memory Layouts

A Focusing and Specialisation

We now give full details of the definition of focusing and specialisation.

Focusing in Types and Layouts. "Focusing" allows to focus on a specific part of a type or layout, according to a given path. Focus in the high-level language is denoted focus(𝜋, 𝜃) where 𝜃 is a type, an expression, a provenance, or another path, and returns an object of the same kind. It simply follows the syntax to extract the subterm at position 𝜋. For instance, we can consider "the part that is relevant to .Sw.0" in the type 𝜏 RISC-V : focus(.Sw.0, 𝜏 RISC-V) = focus .Sw.0, Sw(𝜏 reg , 𝜏 reg , 𝑖12) = 𝜏 reg Layout focusing, denoted focus(𝜋, 𝜏), similarly extracts the layout located at position 𝜋 within the parent layout 𝜏. It is undefined on splits. For instance, focus(.[7 : 5], 𝜏 Sw) = (.Sw.0 as 𝜏 reg).

Layout and Type Specialisation. "Specialisation" filters a type or a layout to exclude parts which are incompatible with a given provenance. Type specialisation, denoted 𝜏/𝑝, is a simple syntactic filter that discards irrelevant constructors. For instance, 𝜏 RISC-V /Sw(_, _, _) = Sw(𝜏 reg , 𝜏 reg , 𝑖12). Layout specialisation, denoted 𝜏/𝑝, is more complex: it removes all splits from 𝜏 (up to fragments) by filtering out branches whose provenance set excludes 𝑝. It returns a list of pairs of the form (𝑝 ′ ↦ → 𝜏 ′), where 𝑝 ′ is a refined version of 𝑝 and 𝜏 ′ is the restriction of 𝜏 to values that match 𝑝 ′ . For instance, 𝜏 RISC-V /Sw(_, _, _) returns a single pair (Sw(_, _, _) ↦ → 𝜏 Sw), and specialisation according to the wildcard provenance lists all possible refinement pairs of a layout:

B Recursive constructors

We now detail the extension of our algorithm to handle such cases by emitting recursive constructor code. The idea is to replace Rebuild and Seek with Wrap(Rebuild) and Wrap(Seek) respectively. The Wrap function, defined in Algorithm 7, hashes arguments to keep track of which calls have already been performed. Each argument hash is associated with a function symbol, and any subsequent call on the same arguments returns a call to this function. We give two layouts for arithmetic expressions. First, a naive layout with pointers and blocks:

𝑊 24 ⋉ . : (= 2) (_.𝐸.1 as 𝜏 optim) (_.𝐸.2 as 𝜏 optim)