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ABSTRACT
The two vegetation transfer parameters of τ (Vegetation Optical Depth,VOD) and ω (Omega) 
could vary significantly across microwave channels in terms of frequencies, polarizations, and 
incidence angles, and their channel-dependent characteristics have not yet been fully investi-
gated. In this study, we investigate the channel dependence of vegetation effects on micro-
wave emissions from soils using a higher-order vegetation radiative transfer model of Tor 
Vergata. Corn was selected as the subject of investigation, and a corn growth model was 
developed utilizing field data collected from the multifrequency and multi-angular ground- 
based microwave radiation experiment from the Soil Moisture Experiment in the Luan River 
(SMELR). Upon compilation of the simulation dataset of microwave emissions of the corn field, 
the effective scattering albedo across different channels were calculated using the Tor Vergata 
model. Results show that vertical polarization of the vegetation optical depth is more affected 
by incidence angle changes, while horizontal polarization exhibits lower variations in vegeta-
tion optical depth due to incidence angle adjustments. The channel dependence of vegetation 
optical depth can be described as the polarization dependence parameter (CP) and the 
frequency dependence parameter (Cf ). These two parameters enable the calculation of vegeta-
tion optical depth at any channel under three adjacent frequencies (L-band, C-band and 
X-band). The effective scattering albedo of vegetation does not vary significantly with vegeta-
tion height or angle. It primarily depends on frequency and polarization, showing an overall 
increasing trend with increasing frequency. The effective scattering albedo with vertical 
polarization is slightly higher than that with horizontal polarization at higher frequencies, 
while both are lower in the L-band. This investigation is helpful for understanding the vegeta-
tion effects on microwave emissions from soils, ultimately advancing the accuracy of large- 
scale soil moisture retrieval in vegetated areas.
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1. Introduction

In addition to being crucial to the surface water, 
energy, and carbon cycles, the temporal and spatial 
variability of soil moisture is a major contributor to 
and indicator of climate change. The majority of the 
Earth’s surface is also covered in vegetation, which has 
a significant impact on the water cycle, carbon cycle, 
and surface energy balance (Gentine et al. 2019; 
Natsagdorj et al. 2017; Pampaloni and Paloscia  
1986). Through canopy radiative transfer and photo-
synthesis, vegetation affects the global carbon cycle 
and the distribution of surface energy. The processes 
of canopy radiation transmission and photosynthesis 
are crucial parts of the physical and biochemical pro-
cesses in the land surface model, which is an impor-
tant tool for studying land surface dynamics. While 
passive microwave remote sensing is a well-established 

technology for monitoring soil moisture changes at 
a large scale, its effectiveness in vegetated areas is 
reduced. This reduction is due to the scattering and 
attenuation of soil microwave signals by the vegetation 
layer, as well as the contribution of the vegetation layer 
to microwave radiation. As a result, the radiometer’s 
ability to detect soil moisture based on brightness 
temperature measurements is compromised in such 
areas. One of the ongoing difficulties in the microwave 
retrieval of soil moisture is an accurate correction for 
the effects of vegetation scattering and absorption over 
a variety of vegetation canopies (Kurum 2013).

Numerous variables, including the texture of bare 
soil and the soil’s dielectric constant, have an impact 
on the emissivity of soil in vegetated areas. The sensi-
tivity to soil moisture starts to significantly decrease as 
vegetation density rises. In order to retrieve soil 
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moisture and establish a connection between ground 
parameters and microwave observations, it is essential 
to develop an accurate model. Several models have 
been developed for this purpose, including the zero- 
order model (Mo et al. 1982), the first-order model 
(Ulaby 1982), and the higher-order radiative transfer 
model (Bracaglia, Ferrazzoli, and Guerriero 1995; 
Ferrazzoli and Guerriero 1996), among others. The 
zero-order radiative transfer model typically treats 
the vegetation canopy as a homogeneous and contin-
uous medium. Due to its straightforward design, the 
zero-order radiative transfer model is suitable for easy 
inversion and can be analytically solved with addi-
tional assumptions (Zhao et al. 2021). However, stu-
dies reveal that when the interior volume scattering is 
ignored, the total emissivity is usually underestimated 
and is only appropriate for low-frequency or sparse 
vegetation (Cheng, Huang, and Gong 2015; Park et al.  
2020). As the frequency increases, the first-order 
volume scattering becomes more pronounced. The 
extension of the zero-order model to higher frequen-
cies and higher biomass areas has generated great 
interest in the scientific community.

Indeed, to gain a comprehensive understanding 
of the impact of vegetation on passive microwave 
radiation signals, it is necessary to consider the 
multiple scattering effects generated by components 
such as leaves and branches within the vegetation 
canopy. These components contribute to the overall 
scattering process and can significantly influence 
the observed microwave signals. Using a geometric 
and physical approximation, Ferrazzoli and 
Guerriero devised a discrete passive microwave 
radiation transfer model in 1996 to simulate the 
brightness temperature of plants at different fre-
quencies (Ferrazzoli and Guerriero 1996). Several 
similar thin sub-layers of the vegetation canopy are 
continuously stacked. The radiative transfer pro-
cess, which has been confirmed in prior research, 
completely takes into account the scattering process 
inside the vegetation canopy. With good findings 
from both model estimates and radiometer observa-
tions, Ferrazzoli and Guerriero in 1996 analyzed 
forest brightness temperature data obtained at 
seven distinct bands in Switzerland, ranging from 
1.5 GHz to 11 GHz. The simulated emissivity of the 
Tor Vergata model and the emissivity determined 
by Della Vecchia et al. using the airborne L-band 
data of Les Landes data are likewise in good agree-
ment (Della Vecchia et al. 2007). Zhang et al. tested 
the applicability of the Tor Vergata model in low 
transmissivity areas by studying the relationship 
between emissivity, transmissivity, and biomass 
under dense vegetation (Zhang et al. 2014). In addi-
tion, this approach performs well in other passive 
microwave applications, such as simulating micro-
wave radiation signals from dry snow with high 

volume scattering (Jiang et al. 2007). Somayeh eval-
uated and calculated the Microwave Vegetation 
Index (MVI) model in 2019 using the brightness 
temperature approximated by the Tor Vergata 
model, and she also provided additional suggestions 
for upcoming satellite and algorithm development 
using MVI (Talebiesfandarani et al. 2019).

Most of the current soil moisture retrieval algo-
rithms are based on the zero-order model, which 
directly obtains the parameters related to the physi-
cal characteristics of vegetation through the empiri-
cal relationship (Kurum 2013). In the zero-order 
model, vegetation is regarded as a uniform medium, 
and the multiple scattering effect of electromagnetic 
waves passing through the medium layer is ignored 
(Fung et al. 1994). The model divides the total 
brightness temperature into three parts: the bright-
ness temperature contributed by vegetation, the 
brightness temperature contributed by the soil 
layer after the scattering and attenuation of the 
vegetation, and the brightness temperature contrib-
uted by the interaction between the vegetation and 
soil. If we want to calculate the total brightness 
temperature accurately, accurate τ and ω are indis-
pensable. Due to the complexity of surface vegeta-
tion types, τ and ω differ greatly under different 
microwave frequencies, polarizations, and incidence 
angles, which will greatly affect the calculated 
brightness temperature of vegetated areas 
(Wigneron et al. 2003). Due to the differences in 
vegetation optical depth and single scattering albedo 
at different channels, quantifying channel- 
dependent parameters can calculate radiative char-
acteristic parameters more accurately in unknown 
channels, thus improving the retrieval accuracy of 
the zero-order radiative transfer model.

The accurate accounting of multiple scattering 
effects in vegetation on passive microwave radiation 
signals is a critical challenge. Developing more pre-
cise models that consider the scattering process 
inside the vegetation canopy is essential for better 
estimating the brightness temperature of plants at 
different frequencies. To improve the accuracy of 
soil moisture retrieval in vegetated areas, the parameters 
of the zero-order τ-ω model need to be optimized.

In this study, the model of corn crop growth under 
different environmental conditions and vegetation 
properties was employed to establish an input data-
base. The Tor Vergata model was then substituted to 
simulate microwave emissions from corn-covered soil. 
The simulations generated by the Tor Vergata model 
were used to optimize the model parameters of the 
zero-order τ-ω model. Furthermore, the analysis of the 
dependence of the vegetation effects on the frequency, 
polarization, and incidence angle was carried out, 
considering vegetation optical depth and effective 
scattering albedo.
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2. Experimental data

The site (42.18°N, 116.47°E) of the multifrequency and 
multiangle ground-based microwave radiation obser-
vation experiment was located in the Luan River basin 
(Zhao, Shi et al. 2020). In this study, the dataset served 
as a validation set for the accuracy of the Tor Vergata 
model. This dataset includes the brightness tempera-
ture data, soil data, and vegetation data (Zhao, Hu 
et al. 2020, 2021). The experimental site has taken 
into account the effects of soil moisture, soil proper-
ties, soil roughness, and planting density on the 
experimental results. Additionally, data processing 
has been done in a way that aims to achieve as much 
uniformity as possible. Therefore, it is considered that 
the influence of heterogeneity on brightness tempera-
ture can be ignored.

2.1. Microwave radiometry

The vehicle-mounted dual-polarized multi-frequency 
radiometer (RPG-6CH-DP) used in this study con-
tains three frequencies: L-band (1.41 GHz), C-band 
(6.925 GHz) and X-band (10.65 GHz). The L-band 
works with a planar patch array, and the C- and 
X-bands share a parabolic antenna (configurations 
shown in Table 1). All three bands (six channels) can 
work simultaneously to obtain dual-polarized multi- 
frequency brightness temperatures.

2.2 Soil properties and surface roughness

The soil moisture (Figure 1) and temperature were 
simultaneously measured by Decagon EM50 data 

loggers with 5TM probes every 10 min. The nominal 
resolution and accuracy of the 5TM probe are 0.0008  
cm3/cm3 (±0.03 cm3/cm3) for soil moisture and 0.1 
K (±1 K) for soil temperature. Soil moisture and tem-
perature were measured at depths of 2.5 cm, 10 cm, 20  
cm, 30 cm and 50 cm. The soil texture was measured 
in the laboratory, and it was found that the field con-
sists of loamy sand with a sand fraction of 80% and 
a clay fraction of 10%

The soil surface roughness may lead to different 
effects on the microwave observations in terms of the 
frequency, polarization and incidence angle used 
(Anderson et al. 2004). The surface roughness was 
measured by taking pictures of a 1-m needle board, 
and the root mean squared height, s, and correlation 
length, l, were calculated after digitalizing the surface 
height profile. Measurements were taken in both the 
north‒south direction and east‒west direction over 
the field. The surface roughness did not vary greatly 
during the experimental period, with average values of 
s = 0.82 cm and l = 12.21 cm for the corn field.

2.3 Vegetation properties

During the growth of crops, the vegetation contribu-
tion of the microwave radiation is becoming increas-
ingly important. Measurements of vegetation 
properties, including the vegetation water content, 
Leaf Area Index (LAI), the half-leaf length, thickness, 
and density of leaves and the radius, length, and den-
sity of branches., were conducted manually on selected 
days. The vegetation water content was measured by 
using a destructive sampling method (the fresh and 
dry weights), with the leaf and stem water contents 
measured separately. Crop LAI was obtained with 
destructive vegetation samples by digital photograph 
analysis. The plant height was acquired with 
a measuring tape. Geometric parameters include the 
leaf radius and thickness. Occasionally, a leaf is not in 
the shape of a standard disc; thus, a smaller disk with 
the same half leaf length is used to simulate the leaf 
radius. Moreover, the stem length was also measured 
during the experiment.

Table 1. The specifications of the RPG-6CH-DP radiometer.
Parameter L-band C-band X-band
Frequency 1.41 GHz 6.925 GHz 10.65 GHz
Bandwidth 20 MHz 400 MHz 400 MHz
Geometry Planar 64 square  

patch array
Parabolic antenna

Half power beam width 11° 6.85° 6.11°
Side lobe level < −30 dB < −30 dB < −35 dB
Radiometric resolution <0.2 K @ 1 second integration time

Figure 1. Soil moisture data.
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A square plot of 25 m by 15 m was planted with corn, 
and the brightness temperature data were routinely 
recorded from 19 July 2017, to 30 August 2017, with 
the exception of a radiometer storage malfunction that 
caused data collection to be suspended between 
August 11 and August 17. The multifrequency and mul-
tiangle brightness temperatures of corn, as well as asso-
ciated soil and vegetation data, are covered. These data 
are crucial for modeling and verifying surface microwave 
radiation as well as developing and testing soil moisture 
retrieval algorithms.

3. Methodology

3.1. Crop growth model of corn

Simulations of microwave emissions from land surfaces 
are challenging to perform due to the complexity of soil 
and vegetation properties. In terms of the soil parameters, 
the soil texture, soil moisture, and soil surface roughness 
(correlation length and root mean squared height) can 
influence microwave emissions. Regarding vegetation, 
the total microwave emission can be affected by branches, 
leaves, trunks and their size, density and water content. 
To simulate the various scenarios during vegetation 
growth, a crop growth model for corn with a large num-
ber of dynamic parameters was used in this study.

During the Soil Moisture Experiment in the Luan 
River (SMELR), vegetation parameters were measured 
by destructive sampling. Since the vegetation water con-
tent (kg/m2) measurements are discontinuous, we need 
to construct a continuously changing dataset for the 
subsequent analysis. Here, we used a two-variable linear 
model in which the vegetation water content is the sum 
of the water content of its leafy parts and stem parts: 

VWC à VWCleaf á VWCstem à A � LAI
á B � hgt Ö1Ü

where VWC is the vegetation water content; A � LAI is 
the leaf water content VWCleaf ; and B � hgt accounts 
for the stem water content VWCstem.

It is assumed that there is also a linear relationship 
between LAI and vegetation height hgt (Byrne, Kiely, 
and Leahy 2005; Della Vecchia et al. 2006), according 
to previous studies. The slope is approximated by the 
ratio between the maximum LAI (LAImax) and the 
maximum vegetation height (hgtmax). 

LAI à LAImax

hgtmax
� hgt (2) 

A simple “S”-shaped growth model was then used to 
predict the vegetation height as a function of time 
Figure 2(a):

hgt à hgtmax � 1� exp �k � tb� �� �
(3) 

where k and b are fitted coefficients; and t is the time in 
days, counting from the day of sprouting (29 June 2017). 
Figure 2(a) shows the fitting results of the measured 
vegetation water content with the daily values from the 
dataset. Figures 2(b-d) illustrate the growth stages of corn 
in the experimental field as it varies with time.

This growth model is mostly based on the measured 
data discussed in the previous section. The crop 
growth model of corn uses the height of the vegetation 
as the primary variable parameter to calculate the 
physical properties of the corn leaf, petiole, and trunk.

Firstly, due to the non-linear nature of corn devel-
opment, different parts of the plant will exhibit vary-
ing growth rates at different stages of the growth cycle. 

Figure 2. (a) Measurements of height. Dots show the measured values, and solid lines are the fitted functional relationships. (b) 
photography on July 23, 2017, (c) photography on August 2, 2017, and (d) photography on August 23, 2017.
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Studies have revealed a large dynamic range of bright-
ness temperature from the sowing to the maturity 
stages, and a strong relationship of brightness tem-
perature with biomass and height (Dela Torre, Gao, 
and Macinnis-Ng 2021). In this model, the plant 
height of corn is used as the main parameter. For 
example, the vertical stem parameters are directly 
related to plant heights, and the specific equation is 
expressed as follows: 

hstalk à 0:75⇥ hgt (4) 

rstalk à
hgt ⌅ 50; hgt  50
1á 0:75⇥ hgt � 50Ö Ü ⌅ 150Ü; 50< hgt  200

⇢

(5) 

where hstalk (cm) is the height of the corn stalk, hgt 
(cm) is the total height of the corn plant, and rstalk (cm) 
is the radius of the corn stalk. The growth rate of the 
stem radius is slightly slower than that of the flowering 
spike stage when the height of corn vegetation is less 
than 50 cm. It was found that the corn stalk diameter 
increases as the plant grows up to maximum value of 
1.75 cm.

The canopy of corn is primarily characterized by 
the single leaf area, which serves as an indicator of the 
canopy scatterer parameter. Before the maturity stage, 
corn leaves and petioles continue to grow constantly, 
but once the maturity stage has passed and more corn 
nutrition has been directed into the development of 
corn grains, the fundamental growth range of the corn 
leaves and petioles is much smaller. The specific per-
formance equation of the canopy scatterer parameters 
is as follows: 

Sleaf à
150⇥ hgt ⌅ 50; hgt  50
150á 250⇥ hgt � 50Ö Ü ⌅ 150; 50< hgt  200

⇢

(6) 

rleaf à
ÅÅÅÅÅÅÅÅÅÅÅ
Sleaf

8⇥ π

r
(7) 

rperiole à rmax ⇥
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Sleaf ⌅ 400
� �4

q
(8) 

where Sleaf is the single leaf area, rleaf is the radius of 
the small disk, and rpetiole is the radius of the small 
cylinder of the petiole. The leaf density was then 
determined using LAI from the dataset.

If we want to generate a comprehensive vegetation 
radiative transfer characteristics database, we must 
additionally establish the soil conditions, with the 
soil moisture change set to 2%-30% and the step size 
set to 2%. This occurs after the vegetation parameters 
are specified. The soil roughness root mean square 
error is set to 0.8 cm–1.2 cm, the step size is 0.2 cm, 
the surface roughness correlation length is set to 9 cm- 
12 cm, and the step size is 1 cm because the soil rough-
ness conditions are also fairly varied. The Tor Vergata 

model was used to simulate parameters including the 
total emissivity, transmissivity, and bare soil emissivity 
when the above parameter sets were complete, and 
a corresponding database was created.

3.2. Radiative transfer model of the vegetated 
surface

3.2.1 Tor vergata model
The Tor Vergata model is a higher-order radiative 
transfer model based on the matrix doubling algo-
rithm that models the physical interactions between 
electromagnetic waves and vegetation as discrete scat-
terers. The model divides the vegetation layer into 
multiple thin sublayers and calculates the scattering 
matrix of the entire plant layer using the matrix dou-
bling algorithm. The emissivity of the whole vegeta-
tion layer is then determined through energy 
conservation calculations. The model includes three 
layers: the canopy layer, trunk layer, and soil layer.

The Tor Vergata model uses electromagnetic waves 
and geometric approximations to model the scatterers in 
the canopy layer. In Figure 3(a), small discs represent 
leaves, and small cylinders represent branches or petioles, 
with the number of discs calculated based on the LAI and 
leaf width. For plants like corn with broad leaves and 
a certain curvature, using a leaf model that better fits the 
curvature of vegetation leaves is more appropriate 
because it can better capture the complex geometric 
shape and orientation of corn leaves (Della Vecchia 
et al. 2006). However, in the design process of multi- 
frequency and multi-angle ground-based observation 
experiments, more emphasis was placed on the varia-
tions of simple shape parameters during vegetation 
growth, and detailed leaf curvature data were missing. 
Therefore, the traditional approach of modeling with 
small discs was ultimately adopted (Monsivais- 
Huertero and Judge 2010; Monsivais-Huertero, Liu, 
and Judge 2018; Stiles, Sarabandi, and Ulaby 2000).

The scattering phase matrix and extinction vector 
for disks and cylinders are calculated using the 
Rayleigh approximation at low frequencies (Eom and 
Fung 1984, 1986; Osborn 1945), and the physical opti-
cal approximation is used for discs at frequencies 
higher than 5 GHz (Levine et al. 1983). For small 
cylinders, an infinite length approximation is used to 
represent the inner field (Karam and Fung 1988). The 
scatter matrix S of the scatterer was calculated after 
obtaining the Bistatic scattering cross section through 
the above simulations. 

Sijpq0 à
Ö2π

0

nΔzΔθ sin θj

4π cos θsi
σijpq Φs � ΦÖ Üd Φs � ΦÖ Ü (9) 

where σijpq Φs � ΦÖ Ü is the bistatic scattering cross 
section averaged among θj and θsi belonging to the 
j-th = and i-th intervals of the upper half space, 
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respectively. Moreover, p and q are the scattering and 
incidence polarizations, respectively. Similarly, the 
elements of the T matrix can be computed by: 

Tijpq0 à
Ö2π

0

nΔzΔθ sin θj

4π cos θsi
σ 0ijpq Φs � ΦÖ Üd Φs � ΦÖ Ü

(10) 

where σ 0ijpq Φs � ΦÖ Ü is the bistatic scattering cross 
section averaged among θj and θsi belonging to the 
j-th and i-th intervals of the upper half space, 
respectively.

In Figure 3(b), the core of the matrix doubling 
algorithm is to assign these scatterers to each sublayer 
and then use the lower hemisphere scatter matrix T 
and the upper hemisphere scatter matrix S to merge 
the two adjacent thin sublayers. The specific equation 
is as follows: 

S à S1 á T⇤1S2T1 á T⇤1S2S⇤1SzT1 á . . .

à S1 á T⇤1S2 1� S⇤1S2
� ��1T1 (11) 

T à T2 1á S⇤1S2 á S⇤1S2
� �2 á � � �

h i
T1

à T2 1� S⇤1S2
� ��1T1 (12) 

In Equations (11) and (12), S1 and S2 represent the 
upper hemisphere scatter matrix of Incident Sublayer 
1 and Incident Sublayer 2 from above, respectively. 
After reversing the incidence angle, the scattering 
matrix is represented by the superscript *. In the 
process of dividing the vegetation canopy into thin 
layers, the thickness of each thin layer is denoted as 
Δz1. Respectively, combining the sublayers Δz1 and 
Δz2 into a new thicker sublayer Δz (Δz=Δz1+Δz2), 
then repeating this combination N times, the scatter-
ing matrix of the full canopy can be obtained.

The Tor Vergata model uses an infinite length 
approximation to represent the trunk layer and the 
Integral Equation Model (IEM) to represent the soil 
layer. The input parameters for the soil layer 
include the soil roughness height standard, soil 
roughness correlation length, and soil moisture. 
The scattering matrix of the vegetation-soil layer is 
calculated by using the Matrix Doubling algorithm 
to double the vegetation layer and soil layer scatter-
ing matrix, obtained by first calculating the scatter-
ing matrix and transmission matrix for the entire 
canopy layer and then using the soil layer scattering 
matrix calculated using IEM. The total scattering 
matrix ST is: 

ST à Sveg á T⇤vegSsoilÖ1� S⇤vegSsoilÜ�1Tveg (13) 

The subscripts veg and soil represent the vegetation 
layer and soil layer, respectively, and the emissivity 
contributed by each component can be calculated by 
integrating the upper half space. The equation is as 
follows: 

ejiq à 1�
XNθ

ià1

X2

pà1

cos θsi sin θsi
cos θj sin θj

STijpq (14) 

The brightness temperature (TB) of the vegetation 
may be determined from the total emissivity of the 
vegetation if the actual temperature Tveg of the vegeta-
tion is known. The equation reads as follows: 

TBjiq à ejq ⇥ Tveg (15) 

3.2.2 Tau-Omega model
The zero-order model, which is a semiempirical model 
based on radiative transfer theory, is commonly used 
in conventional soil moisture retrieval algorithms. The 

Figure 3. (a) scatterer representation of corn leaves in the model. (b) Tor Vergata model structure and matrix doubling algorithm 
diagram.

6 J. ZHANG ET AL.



total brightness temperature (TB) can be calculated 
using the following equation: 

TB
total
P;θ; f à Tveg � 1� ωP;θ; f

� �
� 1� ΓP;θ; f
� �

á Tveg � 1� ωP;θ; f
� �

� 1� ΓP;θ;f
� �

� γsoil
P;θ;f � ΓP;θ; f � áTsoil � 1� γsoil

P;θ; f

⇣ ⌘
� ΓP;θ; f

(16) 

The microwave radiometer received signal during the 
passive microwave remote sensing of vegetation is com-
posed of three components, as described by Equation 
(16). Tveg � 1� ωP;θ; f

� �
� 1� ΓP;θ; f
� �

represents the 
radiation contributed by the vegetation layer, where 
Tveg is the actual temperature of the vegetation, ω is the 
scattering albedo, and τ is the vegetation optical depth. 
Tveg 1� ωP;θ; f

� �
� 1� ΓP;θ; f
� �

� γsoil
P;θ;f � ΓP;θ; f represents 

downwelling and reflected from the vegetation, where 
γsoil

P;θ; f is the reflectivity of the surface. Tsoil�

1� γsoil
P;θ; f

⇣ ⌘
� ΓP;θ; f represents the radiation scattered 

by the vegetation onto bare soil. To accurately explain 
the microwave radiation characteristics of vegetation, 
accurate bare soil data and plant parameters are needed. 
The τ-ω model is widely used in soil moisture retrieval 
algorithms due to its simplicity and commonly required 
parameters. However, from a theoretical perspective, the 
τ-ω model is not as accurate in areas with dense vegeta-
tion and scatterers since these scatterers are large in 
relation to the wavelength and require the application 
of a higher-order model to account for scattering within 
the vegetation. By applying the τ-ω model and maintain-
ing the model’s basic structure, more precise vegetation 
optical depth and scattering albedo may more effectively 
explain the multiple scattering effects of vegetation and 
simulate the scattering properties of the vegetation 
canopy.

3.3. Vegetation optical depth

The τ-ω model considers the vegetation layer as 
a homogeneous and continuous interference medium 
during the transmission of vegetative radiation. This 
model is widely used in large-scale soil moisture 
retrievals due to its simple structure. The scattering 
albedo and vegetation optical depth are two essential 
inputs for the model. The Tor Vergata model uses the 
vegetation input parameters for different frequency 
bands, such as the scattering albedo and vegetation 
optical depth, to compute the scattering matrix and 
extinction vector of disks and cylinders using the 
Rayleigh-Gans approximation and physical optical 
approximation. The number of thin sublayers and 
the extinction vector equation can be used to deter-
mine the canopy transmissivity, which is expressed as: 

Γveg à e�kel�keb
� �n (17) 

where kel is the extinction vector of small discs in 
each thin sublayer, keb is the extinction vector of small 
cylinders in each thin sublayer, and n is the number of 
thin sublayers in the canopy.

Therefore, the vegetation optical depth of the 
canopy in the Tor Vergata model can be defined as: 

ΓP;θ;f à exp �τP;θ;f � secθ
� �

(18) 

Since the Gauss‒Legendre method is used in the 
Tor Vergata model, each of them is divided into 
a range of angles. The direction of the simulated inci-
dent angle is also determined by the size of the angular 
interval because the angular interval is also deter-
mined by the real incident angle. As a result, the 
vegetation’s transmissivity will vary depending on 
the incident angle, which will also have an impact on 
the vegetations optical depth.

Specific frequency, angle, and polarization depen-
dences apply to the optical depth of vegetation. 
Therefore, it will be useful for next zero-order models 
if its dependency can be parameterized or empirically 
represented. Development is truly beneficial. We use 
the following equation to represent the vegetation 
optical depth for any two different channels: 

τ1

τ2
à f1

f2

✓ ◆Cf sin2θ1CP1 á cos2θ1

sin2θ2CP2 á cos2θ2
(19) 

where Cf is the frequency-dependent parameter of 
vegetation optical depth, and CP is the polarization- 
dependent parameter. At the same time, Cf and CP 
also have a specific correlation with vegetation types. 
It has been reported that Cf = 0.5 in Pampaloni and 
Paloscia (Pampaloni and Paloscia 1986). Jackson and 
Schmugge reported that Cf = 1.08 for wheat and Cf =  
1.38 for soybeans. The “isotropic” case, CP = 1, corre-
sponds to the assumption used in this study that the 
vegetation tau is independent of both the polarization 
and incidence angle (τV = τH = τ0 at nadir), which is 
a commonly used assumption in previous studies 
(Fernandez-Moran et al. 2017; Kerr et al. 2012; 
Wigneron et al. 2004).

3.4. Effective scattering albedo

Scattering albedo refers to the proportion of radiation 
that is scattered during the extinction process. Due to 
the simple structure of the zero-order radiative trans-
fer model, only single scattering within the vegetation 
canopy is considered. The higher-order radiative 
transfer model, which simulates the interactions of 
scattering bodies within the vegetation and multiple 
extinction processes, cannot be simply defined as the 
vegetation single-scattering albedo in order to achieve 
better simulation results. In this study, an effective 
scattering albedo is defined as a simplified representa-
tion of the scattering effect in the vegetation canopy. 
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The zero-order radiative transfer model can be opti-
mized by fitting it to the computed emissivity from the 
Tor Vergata model using a least squares approach: 

σ à

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
XN

ià1
e1i � e2iÖ Ü2

vuut (20) 

where N is the number of simulated experiments, e1i is 
the total vegetation emissivity calculated by the Tor 
Vergata model, and e2i is the total vegetation emissiv-
ity calculated by the τ-ω model. The acquired vegeta-
tion optical depth, obtained through least-squares 
fitting, can be utilized to calculate the effective albedo. 
The integration of the Tor Vergata model and the tau- 
omega model into the computation allows for a more 
precise representation of the volume scattering inside 
vegetation features, improving the accuracy of the 
brightness temperature modeling for various plant 
types.

4. Results and discussion

In this study, ground-based multi-frequency, multi- 
angle microwave radiometer observations were used 
for model validation and combined with simultaneous 
observations to develop a corresponding corn growth 
model. Different channels and different soil condi-
tions were simulated and a database of microwave 
radiation properties was established using the Tor 
Vergata model.The Degree of Information (DoI) 
ensures that no more parameters are retrieved than 
the information content in the observations allows 
(Konings et al. 2015).

In the radiometer dataset, the calculated DoI values 
for various frequencies, angles, and polarizations are 
as follows: 5.9004 for the L-band, 5.8204 for the 
C-band, and 5.7280 for the X-band. And in the simu-
lated database, the calculated DoI values are as follows: 
13.6538 for the L-band, 13.7483 for the C-band, and 
13.3450 for the X-band. Notably, when considering 
the dual-angle combination, the L-band exhibits 
a higher DoI compared to the C- and X-bands. This 
finding suggests that, in a multi-angular configuration, 
the L-band offers greater sensitivity to overall vegeta-
tion and soil moisture, making it an optimal band for 
soil moisture retrievals. Furthermore, the incorpora-
tion of multiple frequencies results in an increased 
DoI, with the database’s overall DoI calculated as 
40.5307, indicating sufficient information content for 
the inversion of omega.

4.1. Validation of the tor vergata model

In this study, the reliability of the Tor Vergata model 
was evaluated by comparing the simulated brightness 
temperature with real-world brightness temperature 

obtained from field observations. The accuracy of the 
model was assessed using data collected during an 
experiment that measured ground-based microwave 
radiation at various frequencies and angles on a corn 
field. The leaf area index and fitted corn height data 
were incorporated into the corn growth model, and 
the vegetation and soil data were input into the Tor 
Vergata model for brightness temperature simulation.

Figure 4 presents a scatter plot comparing the 
radiometer-observed brightness temperature with 
that simulated by the Tor Vergata model between 
July 19 and August 30 in the dataset under horizontal 
polarization of the L-band, C-band, and X-band. The 
results demonstrate that the Tor Vergata model com-
bined with the corn growth model achieves a high 
verification accuracy in all three bands. The correla-
tion coefficient (R) of the simulated results ranges 
from 0.8765, and the Root Mean Square Error 
(RMSE) ranges from 8.6K to 16.2K. The validation 
confirms the high accuracy of the Tor Vergata 
model. Furthermore, the simulation results of the 
Tor Vergata model are consistently better for horizon-
tal polarization compared to vertical polarization.

The three components that make up the emissivity 
in the tau-omega model are the radiation produced by 
the vegetation layer, the radiation produced by the 
vegetation layer’s downwards reflection through the 
ground, and the radiation emitted by the vegetation’s 
scattering on the bare ground. Using a corn plant with 
a height of 200 cm and grown in similar soil condi-
tions, the independent components of the Tor Vergata 
model can also be computed.

In Figures (5-7), the contribution of each component 
to the overall emissivity is depicted. The changing trend 
and contribution degree with the angle are found to be 
in good agreement with the Tau-Omega and Tor 
Vergata models in the L-band, with vegetation depicted 
as the dark green area. The contribution component in 
the Tau-Omega model’s equation is represented by 
1� ωP;θ;f
� �

� 1� e�τP;θ;f �secθ� �
. The bright green area 

represents the radiation emitted by plants on bare soil, 
represented as 1� γsoil

P;θ;f

⇣ ⌘
� e�τP;θ;f �secθ, while the vege-

tation component is denoted by e�τP;θ;f . As the inci-
dence angle increases, the primary component of the 
emissivity contribution shifts from soil to vegetation 
due to the increasing extinction effect of vegetation. 
As shown in Figure 6, in the C-band, the volume scatter 
inside the vegetation increases, making vegetation scat-
tering more emissive and rendering the tau-omega 
model less applicable.

As shown in Figure 7, similar radiative behavior is 
also observed in the higher frequency X-band. 
However, as frequency rises and penetration 
decreases, the extinction impact of vegetation becomes 
more pronounced, and the influence of the soil’s con-
tribution to the scattering and absorption of the 
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microwave passing through the vegetation becomes 
more evident, resulting in a steady decline in the 
ground’s contribution to emissivity. Although the 
contributions of its many components can vary 
greatly, there may not be a noticeable change in the 
overall emissivity performance.

4.2. Channel dependency of the vegetation 
optical depth

The transmissivity of corn at various angles, polariza-
tions, and heights was derived from simulations. The 
results reveal a high degree of regularity in the trans-
missivity behavior. As the height of the plant canopy 
increases, the transmissivity decreases gradually due to 
the growth of leaves and branches, resulting in an 
increase in the biomass. Additionally, as the incidence 
angle increases, the path length of the electromagnetic 
wave through the vegetation increases, leading to 
a decrease in the transmissivity. The frequency also 
influences the transmissivity, with the transmissivity 
decreasing as the frequency increases due to the 
decrease in the penetration with shorter wavelengths. 
The relationship between the vegetation optical depth 

in the L-band, C-band, and X-band and Vegetation 
Water Content (VWC) under vertical polarization is 
shown in Figure 8. A strong linear relationship has 
been demonstrated between the vegetation optical 
depth and vegetation water content. The VOD can 
be estimated using the traditional semiempirical equa-
tion, τ à b � VWC, where the factor b is influenced by 
the frequency and plant structure, with the influence 
diminishing as the frequency increases. However, it 
has been shown that the traditional semiempirical 
model does not fully account for the increase in the 
vegetation canopy volume scattering signal at high 
frequencies. The physical model employed by the 
Tor Vergata model provides a more precise estimate 
of the VOD compared to the conventional semiempi-
rical technique. As a result, when computing the effec-
tive scattering albedo, the VOD estimated by the Tor 
Vergata model may be used as the true value.

As depicted in Figure 9, the correlation between the 
vegetation optical depth, incidence angle, and height 
was determined using the Tor Vergata model for three 
different wavebands. The model is more accurate and 
has a stronger physical model foundation than the 
traditional empirical vegetation optical depth 

Figure 4. Scatter plot comparing soil moisture experiment in the Luan River observations brightness temperature with Tor Vergata 
model simulations brightness temperature (a) L-band vertical polarization (b) C-band vertical polarization (c) X-band vertical 
polarization (d) L-band horizontal polarization (e) C-band horizontal polarization (f) X-band horizontal polarization.
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Figure 5. Tau-Omega model and Tor Vergata model brightness temperature composition in the L-band.

Figure 6. Tau-Omega model and Tor Vergata model brightness temperature composition in the C-band.
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approach. Based on the results presented in Figure 9, it 
can be observed that an increase in vegetation height is 
positively correlated with an increase in vegetation opti-
cal depth. However, when the incidence angle increases, 
the H and vertical polarizations show different trends. 
Under vertical polarization, the incidence angle has 
a greater impact on the vegetation optical depth com-
pared to that under horizontal polarization, in which 
the difference in the vegetation optical depth caused by 

the incidence angle is lower. Additionally, the vegeta-
tion optical depth at nadir in the L-band increases with 
the incidence angle, while in the C-band and X-band, it 
decreases. The L-band has a longer wavelength and 
more effective penetration compared to other bands, 
thus having a significant impact on the transmissivity of 
the vegetation optical depth at nadir, particularly under 
a specific biomass. As the angle of incidence increases, 
the vegetation optical depth also increases. The vegeta-
tion optical depth exhibits a significant change from the 
L-band to the C-band, indicating a strong sensitivity to 
this transition. However, the sensitivity decreases from 
the C-band to the X-band. This observation can be 
attributed to the fact that as the frequency increases, 
the penetrability of vegetation optical depth remains 
relatively constant. It further confirms that passive 
microwaves are more sensitive in the L-band, making 
it the optimal frequency band for soil moisture retrieval 
in vegetated areas.

To study the vegetation optical depth during the 
growth process, the experimental data are chosen to 
represent corn plants with a planting density of 
0.001 cm−2. Cf is calculated after initially solving 
for CP in the solution procedure.

(1) As specified in Equation (19), the computation 
of the polarization-dependent parameter, CP, is 

Figure 7. Tau-Omega model and Tor Vergata model brightness temperature composition in the X-band.

Figure 8. The relationship between the VOD calculated by the 
model and the VWC in the L-b and, C-b and, and X-b and 
(τ à b � VWC).
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performed first. The impact of the polarization 
and frequency components is ignored in favor 
of the angle as the main factor. The CP corre-
sponding to two channels at different angles 
under the same polarization was computed, as 
well as the vegetation optical depth at various 
angles under the same frequency and polariza-
tion. The CP of dual polarization under the 
three bands is depicted in the Figure 10. The 
CP of 0° to 65° does not drastically influence 
after acquiring the abovementioned six distinct 
channels. As shown in Table 2, the CP of six 
channels is derived by averaging the CP of 0° to 
65°. Then, Equation (19) can be used to deter-
mine the τ2 values of various angles within the 
same band and polarization using CP.

(2) The polarization is considered to be the main 
factor, and the impacts of the angle and fre-
quency parameters are ignored for the time 
being. As a result, when considering the polar-
ization dependency of the vegetation optical 
depth, τV à τH à τ0 is obtained under the ver-
tical polarization and horizontal polarization. 
By meeting this requirement, the CP values 
can be used to calculate two channels with 
different polarizations and angles.

(3) The frequency is considered as the main 
issue, and the effects of the angle and polar-
ization are ignored for the time being. 
Therefore, to obtain Cf of the frequency- 
dependent parameter values of two different 
frequency channels, we must count τ0 under 
three different polarizations and then insert 
those values into the analysis equation. 
Table 3 below displays the Cf values that 
were determined by the analysis.

In future studies, the analysis presented here 
can provide valuable insights into the frequency- 
dependent and angle polarization-dependent 
parameters of the vegetation optical depth. The 
determination of CP and Cf can aid in a more 
accurate calculation of the VOD for large-scale 
satellite observations and improved soil moisture 
retrieval.

4.3. Channel dependency of the effective 
scattering albedo

The effective scattering albedo of corn was calculated 
using the least square method after fitting the data 

Figure 9. Vegetation optical depth with observation angle for different channels.
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simulated by the Tor Vergata model for the emissivity, 
transmissivity, and ground emissivity to various polar-
izations and heights across different frequency bands. 
The results are shown in Figure 11, which displays the 
effective scattering albedo of corn for the L-band, 
C-band, and X-band.

After fitting the data simulated by the Tor Vergata 
model using the least squares method, the effective 
scattering albedo of corn at different polarizations, 
heights, and frequency bands was calculated. 
Figure 11 shows the effective scattering albedo of 
corn in three frequency bands. The results indicate 
that the effective scattering albedo of vegetation does 
not vary significantly with vegetation height or angle. 
It primarily depends on frequency and polarization, 
showing an overall increasing trend with increasing 
frequency. The effective scattering albedo with vertical 
polarization is slightly higher than that with horizontal 
polarization at higher frequencies, while both are 
lower in the L-band. The analysis reveals a more 

Figure 10. Polarization dependence parameter CP at two different angle channels.

Table 2. Polarization dependence parameter (CP) at different 
channels.

Frequency V Polarization H Polarization
L-Band (1.4Ghz) 1.5404 1.0067
C-Band (6.92Ghz) .8801 .9519
X-Band(10.65Ghz) .7750 .9070

Table 3. The frequency dependence parameter between two 
different bands.

f1 f2 Cf

1.4 Ghz 6.925 Ghz 0.9154
1.4 Ghz 10.65 Ghz 0.7978
6.925 Ghz 10.65 Ghz 0.3682
6.925 Ghz 1.4 Ghz 0.9172
10.65 Ghz 1.4 Ghz 0.8058
10.65 Ghz 6.925 Ghz 0.3845

Table 4. The effective scattering albedo at six channels.
Frequency V Polarization H Polarization
L-Band (1.4Ghz） .0619 .0536
C-Band (6.92Ghz) .0814 .1025
X-Band(10.65Ghz) .0888 .1052
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pronounced variation between the L-band and 
C-band, whereas as the frequency gradually increases, 
the multiple scattering effects of microwaves result in 
smaller changes in the effective scattering albedo, and 
the sensitivity of the effective scattering albedo to 
frequency becomes limited. Statistical analysis of the 
simulated results from the Tor Vergata model demon-
strates high fitting accuracy, encompassing all angles 
and vegetation heights. As show in Table 4, the effec-
tive scattering albedo was obtained for six different 
channels, and the equivalent scattering albedo derived 
from these six channels can be more easily and accu-
rately applied in the inversion of large-scale zero-order 
radiative transfer models for satellite observations.

5. Conclusions

In this work, the vegetation optical depth and effective 
scattering albedo of corn crops at different stages of 
development were estimated through model simulations 
and their frequency, polarization, and angle dependen-
cies were investigated and discussed. By utilizing the 
simulated results of the advanced vegetation radiative 
transfer model (Tor Vergata Model), we can calculate 
the vegetation optical depth and effective scattering 

albedo based on the higher-order radiative transfer 
model. This approach indeed expands the applicability 
range of the zero-order model.

The vegetation height is positively correlated with 
vegetation optical depth. However, when the inci-
dence angle increases, the H and vertical polariza-
tions show different trends. Under vertical 
polarization, the incidence angle has a greater impact 
on the vegetation optical depth compared to that 
under horizontal polarization, in which the differ-
ence in the vegetation optical depth caused by the 
incidence angle is lower. Additionally, the vegetation 
optical depth at nadir in the L-band increases with 
the incidence angle, while in the C-band and 
X-band, it decreases. The analysis of vegetation opti-
cal depth determined the polarization dependence 
parameter (CP) and frequency dependence para-
meter (Cf ). The CP values for vertical and horizontal 
polarizations in the L-band were 1.5404 and 1.0067, 
respectively, while in the C-band, they were 0.8801 
and 0.9519, respectively, and in the X-band, they 
were 0.7750 and 0.9070, respectively. The CP values 
can be used to convert the vegetation optical depth 
between channels of the same frequency with differ-
ent angles and polarizations. The frequency 

Figure 11. Effective scattering albedo at different angles and different heights.
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dependence parameter (Cf ) can convert vegetation 
optical depth between channels of different frequen-
cies with the same angles and polarizations. The Cf 
value between the L-and C-bands was 0.9164, 
between the L- and X-bands was 0.8018, and 
between the C- and X-bands was 0.3764. By combin-
ing CP and Cf values and incorporating traditional 
experience in calculating vegetation optical depth, 
the accuracy of vegetation microwave radiation 
simulation can be improved. The study concluded 
the effective scattering albedo in six bands with two 
polarizations in three adjacent bands, with values of 
0.0619 and 0.0536 for vertical and horizontal polar-
izations in the L-band, 0.0814 and 0.1025 in the 
C-band, and 0.0888 and 0.1052 in the X-band. 
Future large-scale satellite observations will greatly 
benefit from the study of the effective scattering 
albedo and the computation of the scattering albedo 
in six channels.

In this paper, we only discussed corn crops. Future 
research will be expanded to more commonly encoun-
tered vegetation-covered areas such as forests, shrubs, 
and grasslands to better serve large-scale satellite 
observations and soil moisture retrievals.
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