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Abstract

Microalgae biofilm emerged as a solid alternative to conventional suspended cultures

which present high operative costs and complex harvesting processes. Among several

designs, rotating biofilm‐based systems stand out for their scalability, although their

primary applications have been in wastewater treatment and aquaculture. In this work, a

rotating system was utilized to produce a high‐value compound (astaxanthin) using

Haematococcus pluvialis biofilms. The effect of nitrogen regime, light intensity, and light

history on biofilm traits was assessed to better understand how to efficiently operate the

system. Our results show that H. pluvialis biofilms follow the classical growth stages

described for bacterial biofilms (from adhesion to maturation) and that a two‐stage

(green and red stages) allowed to reach astaxanthin productivities of 204mgm−2 d−1.

The higher light intensity applied during the red stage (400 and 800µmolm−2 s−1)

combined with nitrogen depletion stimulated similar astaxanthin productivities. However,

by training the biofilms during the green stage, using mild‐light intensity (200µmol

m−2 s−1), a process known as priming, the final astaxanthin productivity was enhanced by

40% with respect to biofilms pre‐exposed to 50µmolm−2 s−1. Overall, this study shows

the possibility of utilizing rotating microalgae biofilms to produce high‐value compounds

laying the foundation for further biotechnological applications of these emerging

systems.

K E YWORD S

astaxanthin, elemental composition, FTIR‐spectroscopy, Haematococcus pluvialis, microalgae
biofilms, priming

1 | INTRODUCTION

Microalgae farming, recognized for its applications within the blue

economy and its role in climate change mitigation, currently occupies

a small niche in the global market (van Duinen et al., 2023). The

primary constraint in expanding microalgae production lies in the

complexity of scaling up cultivation facilities to meet industrial

demands. This includes challenges from the inoculation of the

cultivation system to the maintenance of a stable culture until the

extraction and purification of bioproducts. There are various
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cultivation systems available for microalgae production, from open

ponds to closed photobioreactors. Yet, the minimal productivity

benefits of one system over another are often outweighed by the

overall costs of the cultivation process. Expenses arising from energy

and water inputs, coupled with low biomass concentration and

further costs in downstream processing, hinder microalgae farming

from being economically sustainable (Khan et al., 2018; Moreno‐

Garcia et al., 2017).

Biofilm‐based cultivation systems have emerged in response,

presenting a more efficient solution with reduced water use,

simplified harvesting processes, and improved light availability, as

reviewed by Mantzorou and Ververidis (2019) and Moreno Osorio

et al. (2021). Various algal biofilm cultivation strategies are in place,

including submerged, intermittently submerged, and perfused sys-

tems (Berner et al., 2015). Depending on their specific design, these

systems can be static, such as in porous substrate bioreactors (PSBRs)

(Podola et al., 2017), or dynamic, like rotating biofilm‐based systems

(Bernard et al., 2015; Christenson & Sims, 2012; Gross et al., 2013).

Life‐cycle analyses (LCAs) have already highlighted their eco-

nomic advantages compared to open raceway systems, where

rotating biofilm‐based systems can reduce energy and water

consumption by approximately 55% and 30%, respectively (Morales

et al., 2020). These systems have been so far mainly used in

wastewater treatment (Elystia et al., 2023; Gross‐Wen Technolo-

gies, 2014; Kesaano & Sims, 2014) and aquaculture (Inalve, 2016),

leaving their potential for producing high‐value compounds largely

unexplored (Wood et al., 2022).

Given the prohibitive costs associated with microalgae industrial

production, there is a pressing focus on targeting markets for

aquaculture feed and specialty chemicals in nutraceuticals, pharma-

ceuticals, and cosmetics (van Duinen et al., 2023). Among these,

astaxanthin emerges as a molecule of interest. Large‐scale facilities

around the world produce astaxanthin by cultivating Haematococ-

cus pluvialis as a two‐stage process based on its life cycle and cell

biology: the green stage focuses on cell multiplication and growth,

while the red stage targets astaxanthin accumulation under stress

conditions (e.g., high light and low nutrients) (Li et al., 2020).

Although PSBR technology has been used with H. pluvialis, such

systems are difficult to scale up (Podola et al., 2017). Also, a more in‐

depth comprehension of how cells undergo the different stages of

biofilm formation is needed to improve operational efficiency. It is

worth noting that since H. pluvialis activates its astaxanthin

biosynthetic pathway under stress, training the cells to better

withstand the triggering period could be an interesting area of

unexplored research, especially within a biofilm context. In this

respect, pre‐exposing cells to a mild stress, a process known as

priming (Conrath et al., 2006), may be utilized to gain faster or higher

levels of astaxanthin. Indeed, cells pre‐exposed to unfavorable

conditions might have the metabolic machinery ready to respond to

a new stress event. This approach has been already investigated from

an ecological point of view (Jueterbock et al., 2021), in several

microorganisms (Andrade‐Linares et al., 2016), and in plants for crop

production (Liu et al., 2022).

In this study, we investigated the production of astaxanthin using

the classical two‐stage process in a rotating biofilm‐based system,

with H. pluvialis biofilms grown on cotton carriers. The pre‐exposition

of the biofilm to different light intensities (priming) was investigated

as a possible enhancer of astaxanthin productivity. An in‐depth

characterization of biomass and astaxanthin productivity was

conducted and the biofilm dynamics were studied at different scales

of resolution. A microscopic evolution of the biofilms on cotton

carriers was investigated using confocal laser scanning microscopy,

and changes in macromolecular and elemental composition were

followed to elucidate the acclimation mechanisms in H. pluvialis

biofilms.

2 | MATERIALS AND METHODS

2.1 | Planktonic culture maintenance

H. pluvialis CCAC 0125 from the Central Collection of Algal Cultures

(CCACs) at the University of Duisburg‐Essen (UDE) Cologne,

Germany, was grown in continuous mode in 3N‐Bristol medium

(Nichols & Bold, 1973) in a chemostat of 2‐L working volume at a

dilution rate of 0.3 d−1. The reactor was illuminated with a

photosynthetic photon flux density (PPFD) of 80 µmol m−2 s−1 of

continuous light, bubbled with air, and mixed using a magnetic stirrer.

The pH of the culture was regulated at 7.0 ± 0.1 by automatically

adding CO2 to the airflow using a pH controller (JBL Proflora CO2

controller).

The continuous culture was used to prepare two batch reactors

(2‐L each) that were grown for 7 days (final biomass concentration of

0.75 g L−1) and used as inoculum for the rotating biofilm system. The

batch reactors were grown under the same conditions described

above.

2.2 | Rotating biofilm‐based system

The design of the rotating biofilm system used in this study is

reported in Figure 1. Each cylinder was covered with 18 rectangular

100% cotton carriers (250 gm−2), with an average area of 22 cm2,

used for biofilm growth. The cotton carriers were fixed on the

cylinder by silicone tubes of 1.3 mm in diameter. After the system

was assembled, the cylinders and the cotton carriers were chemically

sterilized for 4 h, with a 9:1 (v:v) mixture of de‐ionized water and a

mixture of hydrogen peroxide and peracetic acid (Contec™ Peri-

doxRTU). The system was then rinsed overnight, in batch operation,

with de‐ionized sterile water.

The inoculum was performed by filling each PP container with

1 L of the 7‐day batch cultures. This volume ensured that half of each

cylinder was submerged in the medium, to maintain the same

exposure over time of the cotton carriers to the growth medium and

to light and darkness cycles. The pH of each reactor was regulated at

7.0 ± 0.1 by automatically adding CO2 to the container using a pH
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controller. Continuous illumination with photosynthetically active

radiation (PAR) was provided by a 48W system (Alpheus led, France)

equipped with 16 red, 7 blue, and 7 white LEDs on the top surface of

each cylinder. The temperature was maintained at an average of

22 ± 1°C (room‐controlled).

2.3 | Experimental design

A set of experiments was carried out to determine the conditions

under which astaxanthin accumulation in the biofilms could be

triggered by varying nutrient and light levels, simulating a two‐stage

cultivation method (biomass growth or green stage and astaxanthin

production or red stage). The system consisted of four independent

reactors, allowing for the assessment of multiple conditions in

parallel. Each experiment was conducted over a period of 15 days,

divided into two stages.

During the first 7 days of each experiment, all reactors were

maintained under replete nitrogen conditions—green stage. Two

reactors were exposed to a PPFD of 50 µmol m−2 s−1, while the other

two were exposed to a PPFD of 200 µmol m−2 s−1. After 7 days, the

light intensity was increased in all reactors to a fixed level of either

400 or 800 µmol m−2 s−1. At this point, the medium of the two

reactors was changed to a nitrogen‐deplete condition (N‐deplete)—

red stage, while the other two were maintained under replete

nitrogen conditions (N‐replete). The nitrogen‐depleted medium was

prepared by removing NaNO3.

Samples were taken at regular intervals throughout the 15‐day

experiment at Days 0 (after 4 h from the inoculum), 1, 2, 4, 5, 7, 8, 9,

11, 12, and 15. Biofilm morphology, structure, and cell distribution on

the cotton carriers were observed at macroscopic and microscopic

scales. Biofilm traits such as biomass and cell areal densities,

pigments as well as elemental composition and macromolecular

pools were quantified.

2.4 | Sample preparation

Differently from other studies on rotating biofilm‐based systems,

where biomass growth is followed by repeated harvest and regrowth

cycles (Blanken et al., 2014; Mousavian et al., 2023), for each

sampling point, one cotton carrier was collected from each reactor.

The cotton carrier was placed in 50mL tubes and the biofilm was

removed with de‐ionized water using multiple vortex steps until all

biomass was re‐suspended. The total volume of the suspended

biofilm (Vtotal) was recorded and aliquots from the algal suspension

were used for the following measurements.

2.5 | Biomass and cell areal densities

Whatman glass microfiber filters (d= 47mm) were pre‐dried at 100°C.

The empty filters (WF) were weighted, and a determined volume (VDW) of

suspended biofilm was filtrated under vacuum (5–10mL depending on

the growth stage). The wet filters with biomass (WB) were dried at 100°C

overnight and weighed. The area (Ac) was determined by image analysis

on ImageJ (Schneider et al., 2012) from pictures of the cotton carriers.

The biomass areal density (g m−2) of the samples was then calculated

according to Equation (1):

W W

V
V

A
Biomass areal density(g m ) =

−
× ×

1
.

B F

c

−2

DW
total

(1)

Cell number (N) (cell mL−1) was determined using a Guava EasyCyte

HT flow cytometer (Luminex). Aliquots of the suspended biofilm were

diluted up to 10 times (Df) to obtain samples with cell concentrations

around 200 cells µL−1. Measurements were based on a combination of

forward scatter (FSC) and side scatter (SSC), in conjunction with

chlorophyll fluorescence. Chlorophyll a was excited at 488 nm, and its

fluorescence was detected at 680 nm. Chlorophyll a was excited at

F IGURE 1 Schematics of the design of the rotating biofilm system. It consisted of a motor and a stainless steel axis of 1.20m length, on
which four reactors were assembled. Each reactor consisted of a 1‐L polypropylene (PP) container equipped with a 110mm diameter × 125mm
length poly(methyl methacrylate) (PMMA) cylinder. The four cylinders were mounted on a rotating 90W motor (Panasonic M9M), operated at a
linear velocity of 0.0346m s−1 (6 rpm). Each PP container was placed on a stirring platform that ensured continuous mixing.
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488 nm and fluorescence was detected at 680 nm. The cell areal density

(cells m−2) was then calculated according to Equation (2):

N D V
A

Cell areal density (cells m ) = × × ×
1
.f

c

−2
total

(2)

2.6 | Astaxanthin and chlorophyll quantification

Pigments were extracted using dimethyl sulfoxide (DMSO, >99.9%,

Thermo Fisher Scientific) in a water bath at 70°C for 10min. Astaxanthin

content was measured spectrophotometrically at 530 nm (Evolution 60S

UV‐visible spectrophotometer, Thermo Fisher Scientific), to avoid the

interference of other carotenoids, as described by Li et al. (2012).

Chlorophylls a and b were determined at 649 and 665 nm, as described

by Wellburn (1994). Respective equations are described in Supporting

Information (Figure S1 and Equations S1, S2, and S3). Total chlorophyll

content, calculated as the sum of chlorophylls a and b, and astaxanthin

content, were calculated as milligrams per gram of dry weight (% of DW).

Subsequent estimation of both pigments per areal density (g m−2) was

obtained by multiplying the pigments content with the respective

biomass areal density.

2.7 | Biomass and astaxanthin productivity

Biomass and astaxanthin productivities (g m−2 d−1) were calculated

according to Equation (3):

∆

X X

t
Productivity (g m d ) =

−
,

t i t−2 −1 + (3)

where xt represents biomass or astaxanthin areal densities obtained

at time t and x+i represents biomass or astaxanthin areal densities

obtained after the interval of time i.∆t is the interval of time (t + i)−t.

2.8 | ATR‐FTIR spectroscopy

The macromolecular composition of the biofilm was analyzed using an

ATR‐FTIR PerkinElmer Spectrum‐two Spectrometer (PerkinElmer). Ali-

quots of the suspended biofilm were centrifuged at 7000g for 1min and

washed two times. About 2 μL of a concentrated sample was transferred

on a 45° ZnSe crystal and dried for 20min. The empty crystal was

measured as a background before loading the algal samples. Infrared

spectra were recorded in the range of 4000–400 cm−1 using an

accumulation of 16 scans with a spectral resolution of 4 cm−1. The

spectra were baselined and the maximum absorption values in the

spectral ranges of carbohydrates (C–O–C; 1200–950 cm−1), lipids (C=O

vibration; 1770–1720 cm−1), and proteins (Amide I; 1700–1630 cm−1)

were used to estimate the ratios between these macromolecular pools

(lipids to proteins, carbohydrates to proteins and carbohydrates to lipids)

(Fanesi et al., 2019).

2.9 | CHNS

The carbon, nitrogen, hydrogen, and sulfur content of the biofilm

samples (1–2mg of dried biomass) was determined using an

Elemental Analyzer (Organic Elemental Analyzer FLASH 2000

CHNS/O, Thermo Fisher Scientific).

2.10 | Biofilm imaging

The macroscopic coverage of the cotton carriers was captured using

a smartphone camera, and pictures (3000 × 4000 pixels) were taken

under similar illumination conditions. The microscopic structure of

the biofilms was observed using a confocal laser scanning micro-

scope (CLSM). CLSM images (1536 × 1536 pixels) were acquired

using an inverted Zeiss LSM700 confocal microscope (Carl Zeiss

Microscopy GmbH) and 10× (0.25 N.A.) objective. Voxel size was

2.5 × 2.5 × 7 µm3 and each image covered an area of 3.8 × 3.8 mm2.

Microalgae cells were observed by detecting chlorophyll a auto-

fluorescence (ex. 639 nm).

2.11 | Statistics

Statistics were performed using Python 3.9.13. Two‐way ANOVA

was used to test the statistical significance of mean differences

among different light conditions and over time. The level of

significance was always set at 5%. All results are reported as mean

and standard deviations of several independent biological replicates

(see Table 1 in Section 3 for number of replicates). All layouts were

generated in Inkscape 1.3 (Harrington et al., 2003).

TABLE 1 Biofilm and carotenogenesis stages: adhesion, green
stage low light (Green‐LL), green stage high light (Green‐HL), and red
stage high light (Red‐HL).

Stage N‐condition Days Light history Light intensity n

Adhesion N‐replete 0 2 ─ 50 7a

200

Green‐LL N‐replete 4 7 ─ 50 8

200

Green‐HL N‐replete 8 15 50 400 4

200 4

Red‐HL N‐deplete 8 15 50 800 4

200 4

Note: n refers to the number of replicates for each stage.
aFor the adhesion stage, one sample was lost due to an experimental
problem.
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3 | RESULTS

3.1 | H. pluvialis biofilm development under
rotating conditions

Our data clearly demonstrated that H. pluvialis biofilm growth

dynamics are markedly influenced by nutrient availability and light

intensity. Four main stages were identified and are reported in

Table 1.

For the first time, the evolution of the life‐cycle stages of H.

pluvialis during biofilm development was described (Figure 2). An

increase in surface coverage and a shift from small to bigger cells

could be observed from Days 0 to 7 (Figure 2B,C). Interestingly, after

Day 7, once the biofilms were subjected to higher light intensity

F IGURE 2 Haematococcus pluvialis biofilm development on cotton carriers at the macroscopic and microscopic scale. In panel (a), images of the
cotton carriers colonized by the biofilms in the presence and absence of nitrogen are reported. Panel (b) depicts the microscopic spatial organization of
H. pluvialis biofilms on the cotton fibers, whereas in (c), representative zoom is reported to highlight morphological changes of H. pluvialis cells and
colonies. All images are Z‐projections of 3D stacks obtained using a confocal laser scanning microscope. The autofluorescence of chlorophyll a is
reported in red, whereas the cotton fibers are in green. Brightness and contrast were adjusted for visualization purposes.
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(PPFD of 400 or 800), cells formed palmelloid aggregates character-

ized by the presence of groups of 8–32 cells. As expected, the cell

cycle also changed with the nitrogen regime. Under N‐deplete

conditions, the palmelloid aggregates remained prominent but

there was no discernible increase in the number of cells or in the

surface coverage. Conversely, in N‐replete, the cotton carriers

were completely covered, but the biofilm was represented mainly

by single larger cells, closely mirroring the observations from Day 7.

No evidence of the palmelloid aggregates was visible.

Morphological changes at the cell and biofilm scales were

accompanied by important adjustments in biomass, pigments, and

macromolecular contents in response to light intensity and nutrient

concentration. Upon inoculation, planktonic cells displayed an initial

adhesion to the cotton carrier, noticeable already after 4 h.

Interestingly, no significant difference in biomass areal density until

Day 2 was observed as a function of light (Figure 3a) (p > 0.05). This

light‐independent adhesion registered a rate of 3.5 ± 0.8 gm−2 d−1

(calculated between Days 0 and 2, for both 50 and 200 PPFD). After

the adhesion stage, biomass accumulation on the cotton carriers

slowed down, reaching a plateau under both light intensities. Notably,

at the plateau, the biofilms exposed to PPFD of 200 exhibited both

higher biomass areal density (44%) and astaxanthin content (81%)

compared to those at PPFD of 50 (p < 0.05) (Figure 3).

After Day 7, higher light intensity (PPFD of 400 or 800) led to an

increase in biomass areal density in both nitrogen conditions. In the

N‐replete biofilms, by Day 15, there was a fourfold increase, and the

biomass areal density was found to be 17% higher at a PPFD of 800

compared to 400 (Figure 4a). On the other hand, in terms of pigment

content, macromolecular, and elemental compositions, no significant

fluctuations were observed. Total chlorophyll represented around 1.6%

of dry weight, while astaxanthin remained under 1.1% (Figure 5). Steady

internal quotas (Supporting Information: Table S1) were also observed

for both carbon (46%) and nitrogen (6.3%), yielding a C:N ratio of

approximately 7.3. The lipids to proteins ratio also remained consistently

below 0.2 (Figure 6c).

Under N‐deplete conditions, although biomass increased from Days

7 to 15, the cell areal density remained unchanged (Figure 4d and

Supporting Information: Figure S2). As a result, cell weight tripled by Day

11, leveling off at the end of the experiment, and was double that

observed in N‐replete cells (Figure 4f and Supporting Information:

Figure S2). The C:N ratio increased 2.7‐fold and 2‐fold (Figure 6a), and

the lipids to proteins ratio increased 2‐fold and 3‐fold at PPFD of 400

and 800, respectively (Figure 6c). Regardless of the light intensity, the

cells exhibited an eightfold increase in astaxanthin content, reaching up

to 3.5% of dry weight (Figure 5d), while total chlorophyll was reduced

threefold from 1.8%–0.6% of dry weight (Figure 5b).

3.2 | Light history effect on H. pluvialis biofilm
astaxanthin production

While both nitrogen and light intensity markedly impacted biofilm

traits and life cycles, light history in itself turned out to play a key

role. This effect was especially pronounced under N‐deplete biofilms.

Pre‐exposure to a PPFD of 200 instead of 50, enhanced growth

metrics such as biomass and cell areal densities, regardless of the

subsequent light intensities (either 400 or 800, Figure 4). In contrast,

astaxanthin content remained unchanged. Therefore, astaxanthin pro-

ductivity of the biofilms previously exposed to 200 PPFDwas boosted by

37% and 41% at PPFD of 400 and 800, respectively (p<0.05) (Figure 7).

4 | DISCUSSION

4.1 | Rotating H. pluvialis biofilms: From cell
adhesion to maturation

For the first time, H. pluvialis biofilms were cultivated on cotton

carriers using a rotating biofilm system, successfully reproducing the

typical stages of astaxanthin production (carotenogenesis) observed

(a) (b)

F IGURE 3 Dynamics of Haematococcus pluvialis during the adhesion and green stages exposed to a photosynthetic photon flux density
(PPFD) of either 50 (light green) or 200 µmol m−2 s−1 (dark green). (a) Biomass areal density (g m−2) and (b) astaxanthin content (as % dry weight)
(n = 7). Statistically significant differences between PPFDs are represented by the asterisks (*p < 0.05, ***p < 0.005, ****p < 0.0005), and were
determined using a two‐way ANOVA analysis.
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in both planktonic and biofilm‐based culture technologies (Boussiba

& Vonshak, 1991; Boussiba, 2000; Kiperstok et al., 2017; Zhang

et al., 2017). Thanks to an in‐depth characterization, the classical life

cycle of biofilms reported in the state‐of‐the‐art was identified (Sauer

et al., 2022; Schnurr & Allen, 2015).

The adhesion of cells to a substrate is the first step in biofilm

formation. Furthermore, the inoculum acts as a key step that can

potentially introduce an additional layer of complexity into experi-

mental designs or commercial processes (Gross et al., 2015). Indeed,

previous studies have highlighted the impact of inoculum character-

istics, such as cell density and light history, on subsequent biofilm

maturation in both biomass and molecule productivity (Cheng

et al., 2018; Li et al., 2021). Therefore, special attention must be

given to the way the inoculum of the reactor is performed to ensure

healthy and stable biofilm development. In biofilm‐based systems,

cell seeding typically employs a concentrated microalgae paste,

obtained either through flocculating agents or centrifugation. This

paste is then applied to the carrier material through filtration or by

brushing/spraying the cells onto them (Naumann et al., 2013;

Schultze et al., 2015; Zheng et al., 2019). In our study, the inoculation

procedure is simpler, energy‐efficient, and cost‐effective. From an

initial planktonic culture concentration of 0.75 g L−1, a fast and

uniform biomass distribution on the cotton carrier was achieved

(Figure 2). Indeed, the affinity of H. pluvialis for cotton fabric was

(a) (b)

(c) (d)

(e) (f)

F IGURE 4 Biomass (g m−2) and cell (cells m−2) areal densities and biomass per cell (ng cell−1) dynamics in Haematococcus pluvialis biofilms
over 15 days of cultivation Biofilms growth stages (vertical dashes lines) are detailed in Table 1. On Day 7, in panels (a), (c), and (e), the biofilms
were N‐replete, and in panels (b), (d), and (f), the biofilms were N‐deplete.
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notably high. Within just 4 h, the cells were collected by the rotating

cylinders, achieving a biomass areal density of 3.0 ± 0.5 g m−2.

Interestingly, the adhesion stage followed similar dynamics, indepen-

dent of light intensity. This stage was therefore attributed to the

rotation of the cylinders (Figure 3).

In rotating systems, while initial adhesion is influenced by the natural

ability of microalgae to attach to the substrate and by its surface's

physico‐chemical properties and texture, it becomes significantly easier

for subsequent algal cells to attach once colonies have formed (Gross

et al., 2015; Li et al., 2021; Ozkan & Berberoglu, 2013). Indeed, cell‐to‐

substratum interactions that are often modeled using the thermo-

dynamic DLVO, and XDLVO approaches, do not always align with

observed algal adhesion behaviors due to the production of EPS (Cheah

& Chan, 2021). In H. pluvialis, glycosidic moieties present on the cell wall

during both nonmotile vegetative and cyst stages (Gutman et al., 2011),

may confer to the cells a higher affinity toward cotton fibers explaining

the rapid adhesion to the cotton carriers observed in this study.

Corroborating this, Kiperstok et al. (2017) highlighted the exceptional

biofilm‐forming capabilities of the CCAC 0125 strain among several

others.

Once the cells adhere to a substrate, they undergo several

transitions to obtain a better fitness under immobilized conditions. In

bacterial cells, this transition stage often involves a transcriptional

reorganization that yields phenotypic and metabolic alterations. For

(a) (b)

(c) (d)

(e) (f)

F IGURE 5 Total chlorophyll content (% DW), astaxanthin content (% DW), and astaxanthin areal density (g m−2) dynamics in Haematococcus
pluvialis biofilms over 15 days of cultivation. Biofilm growth stages (vertical dash lines) are detailed inTable 1. On Day 7, in panels (a), (c), and (e),
the biofilms were N‐replete, and in panels (b), (d), and (f), the biofilms were N‐deplete.
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instance, bacteria often lose their flagella and produce extracellular

polysaccharides as stress responses, contributing to their persistence

in favorable niches (Jefferson, 2004; Wu et al., 2021). Analogous

behaviors have been observed in microalgae biofilms (Schnurr and

Allen (2015) and references therein).

In their planktonic state, H. pluvialis cells are typically motile due

to their pair of flagella. However, within the first 2 days post‐

immobilization, we primarily observed them in the nonmotile

vegetative stage (Figure 2). In planktonic cultures, this shift is

typically associated with the onset of an external stressor (Boussiba &

Vonshak, 1991). In biofilms, the triggering factor responsible for this

transition could be the change in local growth conditions accompa-

nying the immobilized lifestyle (Li et al., 2024). Accordingly, together

with the loss of motility, in this stage, the cells also started to

accumulate astaxanthin, suggesting an ongoing acclimation to the

new light environment (Figure 3b).

Upon adhering to a substrate, the next step in H. pluvialis life

cycle is growth and division to further sustain biofilm maturation.

(a) (b)

(c) (d)

F IGURE 6 Temporal dynamics of the elemental composition (as C:N ratio) and lipids to proteins ratio in Haematococcus pluvialis biofilms
(a and c), along with their relationships with astaxanthin content (b and d).

(a) (b)

F IGURE 7 Light history effect on biomass and astaxanthin productivities in Haematococcus pluvialis biofilms. Biomass (a) and astaxanthin
productivity (b) at different light intensities and nutrient conditions, considering the light history at which the biofilms were pre‐exposed to.
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However, by Day 4, the growth rate decreased reaching a plateau.

This suggests that the cotton carriers had saturated their biomass

adsorption capacity and that the incoming photons limited further

growth (Figure 3a). Interestingly, at Day 7, regardless of the presence

or absence of nutrients, the higher PPFDs (400 or 800) stimulated a

rapid increase in areal biomass (Figure 4a), supporting the hypothesis

that the previous stage was light‐limited. However, depending on the

nutrient level (N‐replete or N‐deplete), this increase was the outcome

of two different processes related to the cell cycle. Under N‐replete

conditions, the increase in PPFD stimulated cell division leading to a

threefold increase in cell areal density, in line with the biomass areal

density (Figure 4c), which maintained a stable macromolecular and

elemental composition typical of balanced growth (Support Informa-

ton: Table S1) (Panis & Carreon, 2016). Conversely, under the

N‐deplete condition, cell division ceased (stable cell densities from

Day 7 onwards) (Figure 4), resulting in lipids and astaxanthin

accumulation, with cells doubling in weight (Figure 4f). This is a

typical response in H. pluvialis triggered by light or nutrient stress.

Cells arrest in specific cell cycle stages and increase their volume

drastically during encystment (Boussiba, 2000). It is remarkable to

notice that in this condition, the different growth patterns (cell

growth but no cell division) resulted in just a 20% reduction of

biomass areal density, with respect to N‐replete ones, despite the

threefold difference in cell areal density.

From a physiological point of view, nitrogen deprivation triggers

intensive carbohydrate production. These carbohydrates are later

partially catabolized to support fatty acid synthesis, resulting in the

formation of cytoplasmic lipid droplets which act as a repository for

astaxanthin molecules (Solovchenko, 2015). This pronounced macro-

molecular reshuffling, especially when linked to core metabolic

processes, results in noticeable changes in cellular stoichiometry. For

instance, the C:N ratio increased from 7 to 22 and these changes were

reflected in the FTIR spectral fingerprint of the cells (Figure 6). Our

findings indicate a three‐ to fourfold surge in the lipids to proteins ratio,

enabling us to distinguish between N‐replete cells (with a ratio <0.2) and

N‐depleted cells (ratio >0.3). Notably, previous research has also shown

that the ratio of the IR absorption band at 1740 cm−1 to the band at

1156 cm−1 can be used to identify astaxanthin hyperproducing strains

(Liu & Huang, 2016). All these cellular dynamics are closely correlated

with astaxanthin content (Figure 6b,d). Intriguingly, meriting further

investigation, we observed distinct patterns associated with the two light

intensities. For the same astaxanthin content, there is a higher lipids to

proteins ratio but a lower C:N ratio for a PPFD of 800 compared to 400

(Figures 6a,c), suggesting that the partitioning of carbon and nitrogen

within cells, as elucidated by Recht et al. (2012, 2014), is selectively

impacted by different light intensities.

4.2 | Light history of biofilms affects astaxanthin
productivity

Microalgae, either in the planktonic or in the immobilized state, are

able to rapidly respond to external fluctuations by adjusting their

composition and metabolic activity to perform at their best under the

new conditions (Raven & Geider, 2003). The change in local external

conditions related to immobilization (nutrient transport and light

availability) may induce further stress on the cells, which may fail to

acclimate under the new conditions. In support of this hypothesis,

previous works have shown how the light history of photosynthetic

biofilms strongly affects important traits such as productivity,

composition, and resistance to stressors (metals, chemicals, and

intense light conditions) (Bonnineau et al., 2012; Li et al., 2021). In

particular, the light history of the cells may play a key role during the

initial stages of immobilization. This is a crucial period when cells

need to acclimate to the new environment. From another point of

view, manipulating specific light histories could be strategically

employed, especially when there is a need to induce conditions that

stimulate the synthesis of a specific molecule to boost its

productivity.

In this study, we tested how the initial light conditions used to

cultivate H. pluvialis biofilms affect the later astaxanthin productivity

in mature biofilms. Biofilms pre‐exposed to relatively high light are

supposed to perform better, or at least to have a shorter transitory

acclimation phase, because of a smaller gap between the vegetative

and induction stages. Indeed, stepwise light irradiation can result in

the gradual transformation of cells to cysts and contribute to better

accumulation of astaxanthin, because the cells are capable of coping

with increasing levels of stress (Park et al., 2014). Interestingly, we

found that the light history seemed to have an influence on various

biofilm traits. When they were pre‐exposed to mid‐light (PPFD of

200), their biomass productivity was promoted (58.5% and 41.1% to

a PPFD of 400 and 800, respectively) with respect to the biofilms

pre‐exposed to a PPFD of 50. Although the final astaxanthin content

(as % of DW) was not directly affected by the light history, we

observed higher astaxanthin productivity in the biofilms pre‐exposed

to a PPFD of 200 due to their higher areal biomass. We propose that

inducing the transition from green to brown biofilms with mid‐light

(PPFD of 200) (Figure 2a) may result in higher phenotypic resistance

of the cells (Figure 2c). Accordingly, nonmotile cells have been

described to be more resistant to stress than vegetative cells (Han

et al. (2012). In this study, this could explain the ability of the biofilms

to better withstand the subsequent induction stage, leading to

greater biomass and astaxanthin productivity (Figure 7). It is also

possible that the immobilization itself, during biofilm formation, might

induce a higher basal resistance when cells become nonmotile. Wang

et al. (2014) suggested that in planktonic cultures, the transition from

motile to nonmotile cells before the red‐stage conditions minimizes

cell mortality and may greatly enhance astaxanthin and lipid

production. This strategy was also corroborated by Li et al. (2019)

and must be further investigated in biofilms.

Our findings emphasize the strategic importance of light history

during the green stage to enhance the productivity and resilience of a

determined biofilm‐based process. Interestingly, priming is nowadays

being researched in plants for improving crops productivity

(Liu et al., 2022), in marine macrophytes, including seagrasses

and macroalgae, to become less susceptible to heat events

10 | MORGADO ET AL.
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(Jueterbock et al., 2021) and few studies have investigated its

potential on bacterial biofilms (Andrade‐Linares et al., 2016; Navada

et al., 2020). Our results seem to suggest that photosynthetic biofilms

may possess a similar “stress memory”; however, it remains an open

question whose metabolic mechanisms are behind this response.

4.3 | Rotating systems as a possible alternative to
static biofilm systems

Most reported approaches for the cultivation of H. pluvialis biofilms,

and immobilized microalgae in general, involve the use of membranes

or porous substrates (PSBR) (Do et al., 2021; Kiperstok et al., 2017;

Tran et al., 2019;Wan et al., 2014; Yin et al., 2015; Zhang et al., 2014).

These cultivation technologies offer several advantages, including the

counter gradient of light and nutrients which facilitates the

production of astaxanthin in a one‐stage process (Kiperstok

et al., 2017). However, such systems have intrinsic limitations in

terms of up‐scaling (Podola et al., 2017).

Our research introduces the rotating biofilm reactor as an innovative

and scalable alternative for H. pluvialis cultivation and astaxanthin

production. While we observed productivity values comparable with

previous works (Supporting Information: Table S2), the transition to a

biofilm‐based system is not without challenges, and several hurdles need

to be addressed to establish an economically viable process.

To date, biofilm‐based systems for H. pluvialis, including our study,

have predominantly been limited to laboratory scales, with a few

attempts at pilot scale (Tran et al., 2019). The results, though promising,

may significantly deviate from the actual productivity achievable in

outdoor environments. Also, it must be kept in mind that, the inherent

difficulties associated with the scaling up of suspension photobioreactors

also apply to biofilm systems. Issues related to contamination, light, and

CO2 supply, persist (Teng et al., 2023; Yu et al., 2022). However,

emerging industrial rotating systems and recent LCAs point to the

possibility of a growing market (Morales et al., 2020; Penaranda

et al., 2023).

A critical observation is that, despite the many merits of biofilm‐

based systems, especially concerning biomass and astaxanthin

productivity, they still did not show significant improvements over

traditional planktonic cultures (Li et al., 2020). Consequently, the shift

toward a biofilm approach primarily leans toward comparative cost‐

effectiveness and operational simplicity rather than an improvement

in biological productivity (Li et al., 2020).

In this context, rotating systems might hold an edge over PSBR due

to the ability to exploit the rotating mechanism to improve astaxanthin

productivity. By modulating the rotational speed, light exposure can be

fine‐tuned during each process stage (Gao et al., 2023; Grenier

et al., 2019; Grobbelaar et al., 1996), ensuring optimal conditions during

both green and red stages. Additionally, exploring the rotation dynamics

to introduce additional stressors, such as a controlled drought of the

biofilm, may be a cost‐effective strategy to induce astaxanthin synthesis

for industrial applications (Boussiba, 2000; Roach et al., 2022).

The next step forward for commercial utilization hinges on the

development of noninvasive monitoring tools that can provide an on‐

line characterization of the biofilm traits. Integrating these tools as

real‐time sensors, combined with research into the biofilm formation

capability of other high value‐added producing microalgae (Levasseur

et al., 2020), could fundamentally further improve this technology.

Finally, it becomes evident that additional progress in mathematical

models (Bara et al., 2019; Jones et al., 2023; Zhang et al., 2016) and

optimization of control strategies will be crucial to ensure that the

implementation of microalgae biofilm‐based technology is robust on

an industrial scale.

5 | CONCLUSION

In this study, we have successfully pioneered the use of a rotating

biofilm‐based system for producing astaxanthin using H. pluvialis

biofilms. We characterized biofilm traits, morphology, and structure,

from adhesion to maturation, influenced by light intensity, nutrient

regime, and biofilm priming.

Astaxanthin synthesis was triggered by high light intensities and

N‐deplete conditions, which also led to a parallel chlorophyll decline,

an increase in the biomass per cell, and a higher C:N and lipids to

proteins ratio. Interestingly, biofilm priming during the green stage

significantly improved astaxanthin productivity.

We demonstrated the potential of using rotating systems to

produce high‐value compounds and the introduction of new

strategies such as priming to operate them efficiently. The

astaxanthin productivity in our system was comparable with that of

other biofilm‐based systems (PSBR), even without a targeted and

dedicated system optimization, validating the proof of concept.

Further advancements in monitoring, and consequent implementa-

tion of mathematical models and control strategies will be necessary

for its implementation at larger scale.
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