A Deep Learning Framework for Automated ICD-10 Coding - Archive ouverte HAL
Article Dans Une Revue Studies in Health Technology and Informatics Année : 2021

A Deep Learning Framework for Automated ICD-10 Coding

A. Chraibi
  • Fonction : Auteur
D. Delerue
  • Fonction : Auteur
J. Taillard
  • Fonction : Auteur
I. Chaib Draa
  • Fonction : Auteur
A. Hansske
  • Fonction : Auteur

Résumé

The International Statistical Classification of Diseases and Related Health Problems (ICD) is one of the widely used classification system for diagnoses and procedures to assign diagnosis codes to Electronic Health Record (EHR) associated with a patient’s stay. The aim of this paper is to propose an automated coding system to assist physicians in the assignment of ICD codes to EHR. For this purpose, we created a pipeline of Natural Language Processing (NLP) and Deep Learning (DL) models able to extract the useful information from French medical texts and to perform classification. After the evaluation phase, our approach was able to predict 346 diagnosis codes from heterogeneous medical units with an accuracy average of 83%. Our results were finally validated by physicians of the Medical Information Department (MID) in charge of coding hospital stays.
Fichier principal
Vignette du fichier
SHTI-281-SHTI210178.pdf (194.81 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04388521 , version 1 (11-01-2024)

Licence

Identifiants

Citer

A. Chraibi, D. Delerue, J. Taillard, I. Chaib Draa, Regis Beuscart, et al.. A Deep Learning Framework for Automated ICD-10 Coding. Studies in Health Technology and Informatics, 2021, Studies in Health Technology and Informatics, 281, p. 347-351. ⟨10.3233/SHTI210178⟩. ⟨hal-04388521⟩

Collections

UNIV-LILLE
19 Consultations
14 Téléchargements

Altmetric

Partager

More