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Towards Better Certified Segmentation via Diffusion Models

The robustness of image segmentation has been an important research topic in the past few years as segmentation models have reached productionlevel accuracy. However, like classification models, segmentation models can be vulnerable to adversarial perturbations, which hinders their use in criticaldecision systems like healthcare or autonomous driving. Recently, randomized smoothing has been proposed to certify segmentation predictions by adding Gaussian noise to the input to obtain theoretical guarantees. However, this method exhibits a trade-off between the amount of added noise and the level of certification achieved. In this paper, we address the problem of certifying segmentation prediction using a combination of randomized smoothing and diffusion models. Our experiments show that combining randomized smoothing and diffusion models significantly improves certified robustness, with results indicating a mean improvement of 21 points in accuracy compared to previous state-of-the-art methods on Pascal-Context and Cityscapes public datasets. Our method is independent of the selected segmentation model and does not need any additional specialized training procedure.

INTRODUCTION

Neural networks have been known to be vulnerable to adversarial perturbations [START_REF] Szegedy | Intriguing properties of neural networks[END_REF][START_REF] Madry | Towards deep learning models resistant to adversarial attacks[END_REF][START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF][START_REF] Carlini | Towards evaluating the robustness of neural networks[END_REF], i.e., imperceptible variations of natural examples, crafted to deliberately mislead the models. In recent years, significant efforts have been made to develop certified defenses that guarantee a specified level of robustness against adversarial inputs within a certain radius. (e.g., 1-Lipschitz Networks [START_REF] Trockman | Orthogonalizing convolutional layers with the cayley transform[END_REF][START_REF] Meunier | A dynamical system perspective for lipschitz neural networks[END_REF][START_REF] Araujo | A unified algebraic perspective on lipschitz neural networks[END_REF], bound propagation [START_REF] Gowal | On the effectiveness of interval bound propagation for training verifiably robust models[END_REF][START_REF] Huang | Training certifiably robust neural networks with efficient local lipschitz bounds[END_REF], randomized smoothing (Li et al., 2019a;[START_REF] Cohen | Certified adversarial robustness via randomized smoothing[END_REF][START_REF] Hadi Salman | Provably robust deep learning via adversarially trained smoothed classifiers[END_REF]). Although most defenses focus on classification tasks, in this paper, we focus on certifying segmentation models and argue that certified segmentation is an even more pressing issue as these models are already used in critical systems such as healthcare and autonomous vehicles.

Randomized smoothing has emerged as the leading technique for certified robustness due to its scalability and model-agnostic properties. It consists in applying a convolution between a base classifier and a Gaussian distribution, enabling the method to handle large input sizes (e.g., ImageNet, Pascal-Context, Cityscapes), while providing state-of-the-art certified accuracy. However, this technique exhibits a trade-off between adding enough noise for certification and preserving the input's semantic information for accurate predictions. In fact, several impossibility results from an information-theory perspective have been introduced [START_REF] Kumar | Curse of dimensionality on randomized smoothing for certifiable robustness[END_REF][START_REF] Blum | Random smoothing might be unable to certify ℓ ∞ robustness for high-dimensional images[END_REF][START_REF] Yang | Randomized smoothing of all shapes and sizes[END_REF] and inherently limit randomized smoothing from providing large certified radii. Nevertheless, recent works, both theoretical [START_REF] Ettedgui | Towards evading the limits of randomized smoothing: A theoretical analysis[END_REF][START_REF] Mohapatra | Higher-order certification for randomized smoothing[END_REF] and empirical (Salman et al., 2020;[START_REF] Carlini | certified!!) adversarial robustness for free[END_REF], have explored potential solutions to this trade-off. To address the issue of removed information due to noise injection, several works, in the context of classification tasks, have proposed methods to denoise the input after the noise injection step (Salman et al., 2020;[START_REF] Carlini | certified!!) adversarial robustness for free[END_REF]. While Salman et al. (2020) trained their own denoiser models on Gaussian noise for the specific task of certified robustness, [START_REF] Carlini | certified!!) adversarial robustness for free[END_REF] extended the work of Salman et al. (2020) by using off-the-shelf Denoising Diffusion Probabilistic Models [START_REF] Sohl-Dickstein | Deep unsupervised learning using nonequilibrium thermodynamics[END_REF][START_REF] Ho | Denoising diffusion probabilistic models[END_REF]Nichol and Dhariwal, 2021), a form of generative models that takes a random Gaussian noise and generates a real-world image.

In this paper, we build upon previous work on certified robustness to improve certified segmentation extending the Accepted for the 39 th Conference on Uncertainty in Artificial Intelligence (UAI 2023). work of [START_REF] Fischer | Scalable certified segmentation via randomized smoothing[END_REF] and [START_REF] Carlini | certified!!) adversarial robustness for free[END_REF]. We present a comprehensive set of experiments on PASCAL-Context [START_REF] Mottaghi | The role of context for object detection and semantic segmentation in the wild[END_REF] and Cityscapes [START_REF] Cordts | The cityscapes dataset for semantic urban scene understanding[END_REF] datasets and successfully achieve state-of-the-art results on certified robustness for segmentation tasks. Our results show that combining randomized smoothing and diffusion models significantly improves certified robustness, with a mean increase of 21 points in accuracy and 14 points in mIoU when compared to previous methods. Our main contributions are summarized as follows:

• First, we build upon the work of [START_REF] Fischer | Scalable certified segmentation via randomized smoothing[END_REF] and [START_REF] Carlini | certified!!) adversarial robustness for free[END_REF] and propose for the first time, a certified segmentation approach leveraging diffusion models. Through a series of experiments, we demonstrate that incorporating a denoiser in conjunction with a segmentation model that has been trained with noise injection presents certain trade-offs in the certified accuracy achieved, depending on the variance of the noise.

• Second, we further improve certified accuracy by combining off-the-shelf diffusion and state-of-the-art segmentation models allowing us to reach state-of-the-art results for certified segmentation.

• Third, we propose an in-depth analysis through a series of experiments on the use of noise during training as well as the generalization of denoising diffusion models with respect to image resolution and data distribution.

RELATED WORK

Adversarial Attacks & Certified Defenses. Since the discovery of adversarial examples [START_REF] Szegedy | Intriguing properties of neural networks[END_REF], a wealth of work focused on devising attacks [START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF]Kurakin et al., 2018;[START_REF] Carlini | Towards evaluating the robustness of neural networks[END_REF]Croce andHein, 2020, 2021) and defenses [START_REF] Goodfellow | Explaining and harnessing adversarial examples[END_REF][START_REF] Madry | Towards deep learning models resistant to adversarial attacks[END_REF][START_REF] Pinot | Theoretical evidence for adversarial robustness through randomization[END_REF][START_REF] Araujo | Advocating for multiple defense strategies against adversarial examples[END_REF][START_REF] Araujo | On lipschitz regularization of convolutional layers using toeplitz matrix theory[END_REF], leading to an ongoing back-and-forth battle. Most of these defenses relied on smoothing the local neighborhood around each point, resulting in very small gradients on which attacks were based. However, it has become apparent that many of the empirical defenses that have been created could be circumvented with stronger attacks [START_REF] Athalye | Obfuscated gradients give a false sense of security: Circumventing defenses to adversarial examples[END_REF].

This false sense of security and the persistent cat-and-mouse game called for certified defenses that provide provable robustness guarantees. In recent years, mainly two types of certified defenses have been proposed. The first approach provides robustness guarantees based on the Lipschitz constant of the networks and their margin (i.e., the difference between the highest and second highest logits). This connection was introduced by [START_REF] Tsuzuku | Lipschitz-margin training: Scalable certification of perturbation invariance for deep neural networks[END_REF] and opened an important research direction in the design and training of 1-Lipschitz neural networks [START_REF] Miyato | Spectral normalization for generative adversarial networks[END_REF][START_REF] Farnia | Generalizable adversarial training via spectral normalization[END_REF]Li et al., 2019b;[START_REF] Trockman | Orthogonalizing convolutional layers with the cayley transform[END_REF][START_REF] Singla | Skew orthogonal convolutions[END_REF][START_REF] Yu | Constructing orthogonal convolutions in an explicit manner[END_REF][START_REF] Meunier | A dynamical system perspective for lipschitz neural networks[END_REF][START_REF] Prach | Almost-orthogonal layers for efficient general-purpose lipschitz networks[END_REF][START_REF] Xu | LOT: Layer-wise orthogonal training on improving l2 certified robustness[END_REF][START_REF] Araujo | A unified algebraic perspective on lipschitz neural networks[END_REF]. Although this approach offers fast certificate computation, it suffers from important drawbacks. Indeed, due to the strict constraint on the networks and reduced expressiv- [START_REF] Carlini | certified!!) adversarial robustness for free[END_REF].

Certified Segmentation. Deep neural networks trained for segmentation tasks have been shown to be vulnerable to adversarial attacks [START_REF] Xie | Adversarial examples for semantic segmentation and object detection[END_REF][START_REF] Arnab | On the robustness of semantic segmentation models to adversarial attacks[END_REF][START_REF] He | Non-local context encoder: Robust biomedical image segmentation against adversarial attacks[END_REF][START_REF] He | Non-local context encoder: Robust biomedical image segmentation against adversarial attacks[END_REF][START_REF] Kang | Adversarial attacks for image segmentation on multiple lightweight models[END_REF]. In this context, [START_REF] Fischer | Scalable certified segmentation via randomized smoothing[END_REF] use the work of [START_REF] Cohen | Certified adversarial robustness via randomized smoothing[END_REF] and propose a method to certify segmentation with randomized smoothing for norm-bounded perturbations. Other lines of work investigate certified robustness for structured outputs, for example, [START_REF] Kumar | Center smoothing: Certified robustness for networks with structured outputs[END_REF] proposed a procedure based on randomized smoothing to find the minimum enclosing ball in the output space and Yatsura et al. ( 2023) introduced a method called demasked smoothing to defend against adversarial patch attacks for semantic segmentation tasks.

In this paper, we build upon the work of [START_REF] Fischer | Scalable certified segmentation via randomized smoothing[END_REF] and [START_REF] Carlini | certified!!) adversarial robustness for free[END_REF] and introduce, for the first time, a randomized smoothing approach with a denoising step in the context of certified semantic segmentation.

BACKGROUND

In this section, we review the necessary background on randomized smoothing and on certified segmentation.

ADVERSARIAL ATTACKS & RANDOMIZED SMOOTHING FOR CLASSIFICATION

We first introduce adversarial attacks and randomized smoothing in the setting they have been introduced, i.e., for a classification task. We will generalize it to the segmentation task in the next paragraph.

Let X ⊂ R d and Y = {1, . . . , K} be the input space and target space respectively with K denoting the number of classes. Let us denote a classifier f : X → Y (e.g., a neural network) such that for a given couple input-label (x, y) ∈ X × Y, we say the classifier f correctly classifies x if: f (x) = y. An adversarial attack is a small norm-bounded perturbation δ ∈ R d with ∥δ∥ 2 ≤ ϵ such that:

f (x + δ) ̸ = y. (1) 
Randomized smoothing, introduced in Cohen et al. ( 2019), considers a smooth version of the classifier f , such that:

g(x) = arg max c P η∼N (0,σ 2 I) [f (x + η) = c] . (2)
To compute the probability in Equation 2, [START_REF] Cohen | Certified adversarial robustness via randomized smoothing[END_REF] proposed a Monte-Carlo approach where the prediction is computed from a small number of samples, i.e., n 0 , with a majority vote and a lower-bound on the certified radius computed with a higher number of samples, i.e., n.

A benefit of using the smooth classifier g is obtaining a certified radius of robustness for each data point, thus determining a certified level of accuracy within a specified attack 'budget' ϵ. More formally, Cohen et al. introduced the following theorem:

Theorem 1 (From [START_REF] Cohen | Certified adversarial robustness via randomized smoothing[END_REF]). Suppose y ∈ Y, let

p y = P η∼N (0,σ 2 I) [f (x + η) = y] (3) 
and let p y the lower bound of p y computed via Monte-Carlo sampling. Let p ¬y = 1 -p y , then, if

P η [f (x + η) = y] ≥ p y ≥ p ¬y ≥ max c̸ =y P η [f (x + η) = c] , (4 
) then g(x + δ) = y for all δ satisfying ∥δ∥ 2 ≤ R with R := σΦ -1 (p y ) and Φ is the cumulative distribution function of the standard Gaussian distribution.

To properly approximate the probability p y with a confidence interval, [START_REF] Cohen | Certified adversarial robustness via randomized smoothing[END_REF] proposed a procedure which samples n realizations of η ∼ N (0, σ 2 I) and computes f (x + η). From these n realizations, a vector of counts for each class in Y is computed and these counts are then used to estimate the probability p y and the radius R with confidence 1 -α with α ∈ [0, 1]. If the confidence level is not reached (for example, the number of samples is not enough), the procedure will abstain.

Algorithm 1 Predict & Certify by [START_REF] Fischer | Scalable certified segmentation via randomized smoothing[END_REF] 1: function SEGCERTIFY(g, σ, x, n, n 0 , δ, α)

2: cnts 0 1 , . . . , cnts 0 N ← SAMPLE(g, x, n 0 , σ) 3: cnts 1 , . . . , cnts N ← SAMPLE(g, x, n, σ) 4:
for i ← {1, . . . , N }:

5: ĉi ← top index in cnts 0 i 6: n i ← cnts i [ĉ i ] 7: pv i ←BINPVALUE(n i , n, ≤, δ) 8: r 1 , . . . , r N ← FWERCONTROL(α, pv 1 , . . . , pv N ) 9:
for i ← {1, . . . , N }:

10: if ¬r i : ĉi ← ⊘ 11: R ← σΦ -1 (δ) 12: return ĉ1 , . . . , ĉN , R Algorithm 2 Sample Function 1: function SAMPLE(g, x, n, σ) 2: cnts ← [] 3: for 0 to n -1 do 4: t ⋆ , β t ⋆ ← computeTimestep(σ) 5: x t ⋆ ← √ β t ⋆ (x + N (0, σ 2 I)) 6:
y ← g(denoise(x t ⋆ ; t ⋆ )) First, given that the certified radius of a particular region will be the minimum radius over the entire region, the algorithm may report an extremely low certified radius based on only a few bad pixels. Second, since Cohen et al.'s certification algorithm is applied to each pixel separately, and the certification is only valid with a probability of 1 -α, considering the entire region and applying the union bound could significantly reduce the overall confidence in the certificate.

To address the first challenge and limit the impact on bad pixels on the overall result, [START_REF] Fischer | Scalable certified segmentation via randomized smoothing[END_REF] proposed a simple solution which consists in defining a threshold τ ∈ [ 1 2 , 1] and instead of checking p y > 1 2 , they advise p y > τ . To account for the multiple testing problem, i.e., low confidence due to the union bound of the entire region, [START_REF] Fischer | Scalable certified segmentation via randomized smoothing[END_REF] introduce the FwerControl function used in Algorithm 1 which is based on the Holm-Bonferroni method [START_REF] Holm | A simple sequentially rejective multiple test procedure[END_REF], and performs multiple-testing correction. Conceptually, the idea is to control the type I error (rejecting the null hypothesis when it is actually true) while reducing type II errors (not rejecting the null hypothesis when it is false). Now that we have reviewed randomized smoothing for classification and segmentation tasks, we will present how it is possible to improve upon the current state-of-the-art with diffusion models.

CERTIFIED SEGMENTATION VIA DIFFUSION MODELS

To prevent a distribution shift when using randomized smoothing for inference, it is common practice to train networks with noise injection [START_REF] Cohen | Certified adversarial robustness via randomized smoothing[END_REF]. However, from an information theory perspective, randomized smoothing has inherent trade-offs and limitations. While adding noise during training can enhance the certified accuracy of models compared to those trained without noise, it may also lower the model's natural accuracy, as the variance of the noise decreases the information present in the input. These limitations have led to a series of no-go results for randomized smoothing [START_REF] Blum | Random smoothing might be unable to certify ℓ ∞ robustness for high-dimensional images[END_REF][START_REF] Hayes | Extensions and limitations of randomized smoothing for robustness guarantees[END_REF][START_REF] Kumar | Curse of dimensionality on randomized smoothing for certifiable robustness[END_REF][START_REF] Yang | Randomized smoothing of all shapes and sizes[END_REF][START_REF] Mohapatra | Hidden cost of randomized smoothing[END_REF][START_REF] Wu | Completing the picture: Randomized smoothing suffers from the curse of dimensionality for a large family of distributions[END_REF][START_REF] Ettedgui | Towards evading the limits of randomized smoothing: A theoretical analysis[END_REF], suggesting that achieving high certified accuracy may be challenging due to the significant variance that must be introduced in the input. Consequently, the destruction of information due to noise can result in information loss, potentially leading to a useless classifier.

To address this important limitation of randomized smoothing, Salman et al. ( 2020) have investigated denoising the input before giving it to the classifier. The idea is to use trained neural networks to reconstruct the removed information of the image due to the noise. This process has two main advantages: it mitigates the no-go results of randomized smoothing since the destroyed information is "reconstructed" by the denoiser and it does not involve training the classifier with noise mitigating the reduced natural accuracy of training with noise injection. Of course, in this new setting, the quality of the denoiser will matter. Salman et al. ( 2020) were able to boost the certified accuracy by up to 33% on the ImageNet dataset with respect to previous state-of-the-art defenses. 2023) proposes a procedure to use these models for denoising instead of generating new images. The idea is to start the reverse process with a noisy image instead of Gaussian noise in order for the DPM to output an image from the initial data distribution that resembles the original image. As explained by [START_REF] Carlini | certified!!) adversarial robustness for free[END_REF], to use the DPM in the context of randomized smoothing, one needs to convert the noise added for randomized smoothing, i.e., x rs = x + τ with τ ∼ N (0, σ 2 I) to the specific step in the diffusion process:

x DPM = √ β t x + τ (1 -β t )
where β t denotes a constant from the timestamp t that controls the amount of noise added to the image during the diffusion process. For more details on how to compute the timestamp t, one can refer to Section 3 of [START_REF] Carlini | certified!!) adversarial robustness for free[END_REF]. We provide in Algorithm 2 an updated version of the algorithm to compute the samples for the Predict & Certify function of [START_REF] Fischer | Scalable certified segmentation via randomized smoothing[END_REF].

Pipeline. Our pipeline starts by passing the image through a Denoising Diffusion Probabilistic Model (DDPM) and then calling a semantic segmentation model for prediction. For both components, we use an off-the-shelf model made publicly available. To denoise images, we use the class unconditional DDPM from [START_REF] Dhariwal | Diffusion models beat gans on image synthesis[END_REF]. This 552M-parameter denoiser has been trained on ImageNet and performs very well on images from both Cityscapes and Pascal-Context. For segmentation, we use two model architectures with different training strategies. First, we test on High-resolution networks, HRNet from [START_REF] Wang | Deep highresolution representation learning for visual recognition[END_REF], trained in two different ways. The non-robust HRNet has been trained with natural images and the base model is an HRNet trained with a Gaussian noise of σ = 0.25. The second architecture we use is the Vision Transformer Adapter for Dense Predictions, ViT from [START_REF] Chen | Vision transformer adapter for dense predictions[END_REF], that was trained only on natural images. We use the 568Mparameter model trained on Pascal-Context and the 571Mparameter model trained on Cityscapes. Both models were reported to provide state-of-the-art accuracy and mean intersection over union (mIoU) on the task of semantic segmentation. Our code is provided at: https://github. com/othmanela/certified_segmentation

EXPERIMENTS

We evaluate our method on a set of experiments with multiple approaches. First, we compare our technique with SEGCERTIFY, the state-of-the-art introduced by [START_REF] Fischer | Scalable certified segmentation via randomized smoothing[END_REF]. Then, we set new state-of-the-art results using off-the-shelf models. We name our method DENOISECER-Table 2: Performance of SEGCERTIFY and DENOISECERTIFY (ours) on an off-the-shelf HRNet model trained without Gaussian noise. Scale corresponds to the image sizing scale used as input to the segmentation model (e.g., a scale of 0.5 on cityscapes will resize the images to 512 × 1024). Accuracy, mean intersection over union (mIoU) and percentage of abstentions (%⊘) are certified given a noise level σ and radius R. All results are provided with Holm correction. Datasets. All of our experiments are performed on the task of semantic image segmentation on Pascal-Context and Cityscapes datasets, two very common datasets for this task. Pascal-Context [START_REF] Mottaghi | The role of context for object detection and semantic segmentation in the wild[END_REF] consists of an extension of the Pascal-VOC [START_REF] Everingham | The pascal visual object classes challenge: A retrospective[END_REF] dataset with all of the image pixels annotated. There are 60 classes (59 foreground and 1 background). Typical evaluation strategies use either all of the 60 classes or the 59 foreground classes only. We evaluate here on the 59 foreground classes in order to have a fair comparison with SEGCERTIFY. The Cityscapes dataset [START_REF] Cordts | The cityscapes dataset for semantic urban scene understanding[END_REF] contains high resolution 1024 × 2048 images of diverse street scenes from 50 different cities. The images are annotated in 30 classes but only 19 of them are used for evaluation. Similar to SEGCERTIFY, we evaluate our method on the same 100 images set from both datasets. We use every 5 th image on the Cityscapes dataset and every 51 st on Pascal.

Scale

DENOISECERTIFY on models trained with noise. We start first by comparing DENOISECERTIFY with SEGCER-TIFY. The state-of-the-art certification results proposed by the latter were obtained with an HRNet trained with a Gaussian noise of σ = 0.25. A comparison of both methods is provided in the first two sections of Table 1. We notice that DENOISECERTIFY outperforms SEGCERTIFY for all sigmas except for 0.25. In fact, for σ = 0.5 the accuracy jumps from 0.34 to 0.55 and the mIoU from 0.06 to 0.21 which corresponds to an increase of 61% and 250% respectively. This gives us an idea of the power of denoising diffusion models when used to certify segmentation models. Since our pipeline contains an added denoising step, we note an increase in the reported runtime in seconds. On the largest images of the dataset (1024 × 2048), the runtime increases from 92.69 to 131.42 seconds with HRNet, which per image is minor. We did not perform any optimization on the code to make our pipeline faster. With more engineering, the runtime can be optimized further. Also, we believe that the gain in performance easily outweighs the increase in runtime. For σ = 1.0, it appears from Table 1 that SEGCER-TIFY has a lower number of abstentions than DENOISECER-TIFY. However, looking at the segmentations it looks like SEGCERTIFY predicts a large number of pixels in the image with the wrong class. An example is provided in the last row of Figure 1. For σ = 0.25, SEGCERTIFY outperforms our technique but this may be due to two main reasons. First, the model we are using was trained with a Gaussian noise of 0.25. Thus, it is performing best when provided with images with the same level of noise. In the next section, we show that given the right model, DENOISECERTIFY outperforms SEGCERTIFY. Second, one of the limitations of using the off-the-shelf denoiser provided by Dhariwal and Nichol ( 2021) is rescaling the images to 256 × 256. Therefore scaling them back to their original size may decrease the image quality, especially when using high-resolution images like Cityscapes. We perform experiments with multiple scales and report them in the subsequent section.

DENOISECERTIFY on non-robust models. Here we use an HRNet model that was trained on natural images only without any introduction of Gaussian noise. We compare our performance with SEGCERTIFY and report our results in Table 2. Focusing on a scale of 1, we notice that SEGCERTIFY achieves a poor performance. In fact, as σ increases to values > 0.25 the mIoU and accuracy end up becoming 0. This is an expected result since models trained on natural images are very sensitive to Gaussian noise. However, those types of models perfectly suit our methodology, as we denoise images, we are able to use off-the-shelf segmentation models and achieve a much better prediction. This introduces a paradigm shift as we no longer require training robust deep learning models that need highly engineered strategies and that also degrade the natural accuracy significantly. As reported in Table 1, when comparing the first two rows, the non-robust HRNet accuracy drops from 0.97 to 0.91 and the decrease is more significant for the mIoU, going from 0.81 to 0.57. Therefore, our technique allows us to limit the drop in performance that traditional models used to suffer from while keeping strong certification guarantees.

Impact of image scales on performance. One of the limitations of using off-the-shelf models is having to comply with their restrictions. The unconditional DDPM we are using only takes as input images of size 256 × 256. We thus have to downscale the input images and upscale them back to their original size for prediction. As stated above, this is the main limitation of our method. But, since semantic segmentation models can be invoked with multiple scales, we can use them to predict at a given scale and then upsample the output probabilities back to the original size of the image. This also has the advantage of providing faster predictions. As an example, at a scale of 0.5 for Cityscapes, we downsample the images to 256 × 256 in order to call the DDPM, the denoised image is then reshaped to 512 × 1024 and serves as input to the segmentation model. The output probabilities of the segmentation model are then upsampled to their original size (1024 × 2048) to be compared with the ground truth. We always perform the certification on the original size of the image in order to follow the same strategy as SEGCERTIFY and perform a fair comparison.

The performance of both methods with multiple scales is reported in Table 2. Examples of denoised and upscaled images are provided in Figure 3. For Cityscapes, we notice that the smaller the scale, the better the performance. In fact, the accuracy jumps from 0.58 to 0.74, and 0.78 for Training DDPMs on images of higher resolution would be another way to circumvent this limitation. Also, with the improvement of powerful techniques that rely on the denoising backbone, our approach would still be able to leverage the resources made available.

We believe that having a denoiser that is also able to upscale images to very high resolutions would allow us to improve our results even further.

DENOISECERTIFY on state-of-the-art segmentation models. So far we have discussed how DENOISECERTIFY performs on both a robust and non-robust HRNet model. We have empirically shown that it achieves the best results on standard deep learning-based segmentation models. Going a step further, we can leverage the power of Vision Transformers which have been reported to be more robust to attacks [START_REF] Mao | Towards robust vision transformer[END_REF], but also give state-of-the-art results on semantic segmentation tasks [START_REF] Chen | Vision transformer adapter for dense predictions[END_REF].

In this section, we use the ViT Adapter trained with natural images and report the results in the last section of Table 1.

When comparing with the results of Table 2 on the same scale of 1, we notice that the ViT model provides a considerable increase. For the lowest σ = 0.25, the accuracy and mIoU are respectively boosted to 0.77 and 0.41 compared to 0.58 and 0.26 previously. This empirically proves the points of [START_REF] Mao | Towards robust vision transformer[END_REF] and would even encourage us to make the assumption that we would be able to obtain higher certification results with stronger transformer models. Overall, DENOISECERTIFY combined with a ViT achieves state-of-the-art semantic segmentation certification results for Pascal-Context and Cityscapes.

Generalization of Denoising Diffusion Models. As stated above, we use an off-the-shelf denoising diffusion model that was trained on ImageNet. We set the number of channels to 256 and apply a linear scheduler with 1000 steps. Qualitative results are provided in Figure 2. We clearly notice that the DDPM is able the denoise the image with the highest level of noise (σ = 1.0) while keeping all of the information of the picture. Therefore, it is important to state that diffusion models generalize well to datasets they were not trained on. Pascal-Context and Cityscapes are the first two examples. Future work will involve testing DDPMs on images from other distributions (e.g., the medical domain).

Multistep Denoising Diffusion Model. Denoising diffusion probabilistic models have been introduced as a class of generative models that beat GANs on image synthesis [START_REF] Dhariwal | Diffusion models beat gans on image synthesis[END_REF]. Starting with Gaussian noise, each step of the DDPM consists in denoising an input image at timestep t to a marginally less noisy image at timestep t -1. The complete diffusion process is an iterative procedure starting from t * until t = 0. Programmatically, each call to the denoiser d at timestep t performs two actions; it predicts the completely denoised image and returns the average between the estimated denoised image and the noisy image of timestep t -1. We conduct experiments on the two possible denoising strategies. The top section of Table 3 reports the results of a single-step denoised image prediction from the class unconditional DDPM. The bottom section of Table 3 on the other hand reports results of a multiple-step denoising strategy going from t * until t = 0 iteratively on the same class unconditional DDPM. Both use the ViT as the segmentation model. From the presented results, it is clear that the single-step denoiser performs better than the multi-step one in terms of accuracy, mIoU, percentage of abstentions, and runtime. This shows that denoising the image in a single shot is better than repeatedly denoising it multiple times. Intuitively, since the DDPMs are generative models at heart, they will tend to behave as such when denoising an image multiple times. Therefore, the output image at t = 0 may have lost a lot of its original information or may even end up from a different distribution.

Qualitative results from Figure 2 support this claim as we can clearly notice that elements of the image were removed in the multi-step approach (the flower pot, as well as the reader disappeared, and the shape of the furniture changed).

Another advantage of single-step denoising is the runtime efficiency. Instead of having to call the denoiser multiple times passing the outputted image at each timestep t, the denoiser is only called once (e.g., For σ = 1.0 a denoiser with linear scheduling will be called 258 times compared to a single time with the first scheme). This represents a nonnegligible advantage of the single-shot denoising since we are using multiple calls to the denoiser for each image in order to obtain the certificate. We deduce that denoising diffusion models are powerful but should be used accordingly. In our case, we would like to leverage the denoising properties of the DDPM more than their generative properties. Thus, a single-step denoising strategy should be adopted.

CONCLUSION

We present the first work on certified semantic segmentation that leverages denoising diffusion probabilistic models and vision transformers. We conduct a comprehensive set of experiments on Pascal-Context [START_REF] Mottaghi | The role of context for object detection and semantic segmentation in the wild[END_REF] and Cityscapes [START_REF] Cordts | The cityscapes dataset for semantic urban scene understanding[END_REF] datasets and show that our method achieves state-of-the-art results on certified robustness for semantic segmentation tasks. We were able to achieve significant improvements in accuracy and mIoU using off-the-shelf models that are not trained or fine-tuned for robustness. This work provides a new direction for certified image segmentation with off-the-shelf models. However, an interesting direction would be to explore task-specific training. For instance, in the context of certified 

  Figure 1: Examples of our approach (DENOISECERTIFY) compared to SEGCERTIFY proposed by Fischer et al. (2021) on the Cityscapes dataset. From left to right: (a) the initial image with added noise, (b) the ground truth segmentation, (c) the abstained segmentation obtained with SEGCERTIFY, (d) the abstained segmentation obtained with DENOISECERTIFY (ours). Each row corresponds to a noise level, from top to bottom: σ = 0.25, 0.5 and 1.0.

Figure 2 :

 2 Figure 2: Qualitative results of the performance of a denoising diffusion model on Pascal Context images. Top row from left to right: ground truth and ground truth with a noise of σ = 1.0. Bottom row: single-step denoised image and multistep denoised image.
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 3 Figure 3: Examples of denoised and upscaled images from the Denoising Diffusion Model. On the left, a Pascal-Context image denoised on size 256 × 256 and upscaled to 373 × 480. On the right, a Cityscapes image denoised on 256 × 256 and upscaled to 1024 × 2048.

Table 1 :

 1 Segmentation results of DENOISECERTIFY (ours) and SEGCERTIFY proposed by[START_REF] Fischer | Scalable certified segmentation via randomized smoothing[END_REF] on both Cityscapes and Pascal-Context datasets. Two network architectures were used for both pipelines, HRNet trained with noise and ViT trained without noise. We also report the performance of HRNet trained without noise. For each dataset, we used the same 100 images with n 0 = 10, n = 100, α = 0.001 and τ = 0.75. Results are certified at radius R, acc. being the mean per-pixel accuracy, mIoU the mean intersection over union and %⊘ the mean percentage of pixel abstentions on all images.

	Model	Architecture	Trained with noise	σ	R	Cityscapes Acc mIoU %⊘	Pascal Context Acc. mIoU %⊘
	Non-robust	HRNet	✗	0.00 0.00 0.97 0.81 0.00	0.77	0.42 0.00
			✓	0.00 0.00 0.91 0.57 0.00	0.53	0.18 0.00
	SEGCERTIFY	HRNet	✓ ✓	0.25 0.17 0.88 0.59 0.11 0.50 0.34 0.34 0.06 0.40	0.55 0.17	0.22 0.22 0.03 0.41
			✓	1.00 0.67 0.06 0.00 0.31	0.08	0.00 0.13
	DENOISECERTIFY	Diffusion +HRNet	✓ ✓ ✓	0.25 0.17 0.70 0.32 0.26 0.50 0.34 0.55 0.21 0.41 1.00 0.67 0.36 0.09 0.60	0.47 0.42 0.15	0.17 0.27 0.15 0.46 0.04 0.77
	(ours)		✗	0.00 0.00 0.94 0.67 0.00	0.85	0.58 0.00
		Diffusion	✗	0.25 0.17 0.77 0.41 0.24	0.67	0.48 0.28
		+ViT	✗	0.50 0.34 0.65 0.28 0.36	0.54	0.32 0.40
			✗	1.00 0.67 0.47 0.15 0.53	0.28	0.15 0.62

[START_REF] Carlini | certified!!) adversarial robustness for free[END_REF] 

go even further and propose to use stateof-the-art Diffusion Probabilistic Models (DPM) to perform the denoising step. With this approach, they were able to further improve the state of the art by up to 14% on the ImageNet dataset. Denoising diffusion probabilistic models, which have been introduced by Sohl-Dickstein et al.

(2015) 

and further improved by

[START_REF] Ho | Denoising diffusion probabilistic models[END_REF] 

and

Nichol and Dhariwal (2021)

, are a class of generative models and have shown to beat Generative Adversarial Networks (GANs)

[START_REF] Goodfellow | Generative adversarial networks[END_REF] 

on image synthesis. Conceptually, the training of these models consists in adding noise at each step of the diffusion process until purely random noise is reached. The reverse process then starts from random noise and generates a new image from the data distribution.

Carlini et al. (

Table 3 :

 3 Comparison of two denoising strategies on the DENOISECERTIFY pipeline. All of the reported results use a Vision Transformer (ViT) segmentation model with a scale of 1. For the denoising diffusion model, we use the same timestep t * found with the COMPUTETIMESTEP function presented in Algorithm 2.

	Denoise Method	σ	R		Cityscapes	Pascal Context
				Acc. mIoU %⊘	Acc. mIoU %⊘
		0.00 0.00	0.94	0.67 0.00	0.85	0.58 0.00
	Denoise single step	0.25 0.17 0.50 0.34	0.77 0.65	0.41 0.24 0.28 0.36	0.67 0.54	0.48 0.28 0.32 0.40
		1.00 0.67	0.47	0.15 0.53	0.28	0.15 0.62
		0.00 0.00	0.89	0.39 0.00	0.80	0.49 0.00
	Denoise multi-step	0.25 0.17 0.50 0.34	0.70 0.52	0.27 0.33 0.15 0.50	0.61 0.46	0.34 0.34 0.24 0.49
		1.00 0.67	0.29	0.06 0.73	0.14	0.07 0.75

  segmentation, Salman et al. (2019) improved upon the work of Cohen et al. (2019) by training classifiers with noise injection and adversarial training. It would be straightforward to extend this approach to certified segmentation with our DENOISECER-TIFY procedure by adversarially training a classifier or a diffusion model. Although computationally expensive, this method may lead to further improvements. Moreover, we have seen that the diffusion model is able to generalize to Pascal-Context and Cityscapes datasets. A promising future direction would be to investigate the generalization of this model for denoising medical images and provide certified segmentation for critical healthcare applications.
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