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Abstract

The robustness of image segmentation has been
an important research topic in the past few years
as segmentation models have reached production-
level accuracy. However, like classification models,
segmentation models can be vulnerable to adversar-
ial perturbations, which hinders their use in critical-
decision systems like healthcare or autonomous
driving. Recently, randomized smoothing has been
proposed to certify segmentation predictions by
adding Gaussian noise to the input to obtain theo-
retical guarantees. However, this method exhibits
a trade-off between the amount of added noise and
the level of certification achieved. In this paper,
we address the problem of certifying segmenta-
tion prediction using a combination of randomized
smoothing and diffusion models. Our experiments
show that combining randomized smoothing and
diffusion models significantly improves certified
robustness, with results indicating a mean improve-
ment of 21 points in accuracy compared to pre-
vious state-of-the-art methods on Pascal-Context
and Cityscapes public datasets. Our method is in-
dependent of the selected segmentation model and
does not need any additional specialized training
procedure.

1 INTRODUCTION

Neural networks have been known to be vulnerable to ad-
versarial perturbations (Szegedy et al., 2013; Madry et al.,
2018; Goodfellow et al., 2014; Carlini and Wagner, 2017),
i.e., imperceptible variations of natural examples, crafted
to deliberately mislead the models. In recent years, signif-
icant efforts have been made to develop certified defenses
that guarantee a specified level of robustness against ad-
versarial inputs within a certain radius. (e.g., 1-Lipschitz

Networks (Trockman and Kolter, 2021; Meunier et al., 2022;
Araujo et al., 2023), bound propagation (Gowal et al., 2018;
Huang et al., 2021), randomized smoothing (Li et al., 2019a;
Cohen et al., 2019; Salman et al., 2019)). Although most
defenses focus on classification tasks, in this paper, we focus
on certifying segmentation models and argue that certified
segmentation is an even more pressing issue as these models
are already used in critical systems such as healthcare and
autonomous vehicles.

Randomized smoothing has emerged as the leading tech-
nique for certified robustness due to its scalability and
model-agnostic properties. It consists in applying a con-
volution between a base classifier and a Gaussian distribu-
tion, enabling the method to handle large input sizes (e.g.,
ImageNet, Pascal-Context, Cityscapes), while providing
state-of-the-art certified accuracy. However, this technique
exhibits a trade-off between adding enough noise for certifi-
cation and preserving the input’s semantic information for
accurate predictions. In fact, several impossibility results
from an information-theory perspective have been intro-
duced (Kumar et al., 2020; Blum et al., 2020; Yang et al.,
2020) and inherently limit randomized smoothing from pro-
viding large certified radii. Nevertheless, recent works, both
theoretical (Ettedgui et al., 2022; Mohapatra et al., 2020)
and empirical (Salman et al., 2020; Carlini et al., 2023), have
explored potential solutions to this trade-off. To address the
issue of removed information due to noise injection, sev-
eral works, in the context of classification tasks, have pro-
posed methods to denoise the input after the noise injection
step (Salman et al., 2020; Carlini et al., 2023). While Salman
et al. (2020) trained their own denoiser models on Gaussian
noise for the specific task of certified robustness, Carlini
et al. (2023) extended the work of Salman et al. (2020) by
using off-the-shelf Denoising Diffusion Probabilistic Mod-
els (Sohl-Dickstein et al., 2015; Ho et al., 2020; Nichol and
Dhariwal, 2021), a form of generative models that takes a
random Gaussian noise and generates a real-world image.

In this paper, we build upon previous work on certified ro-
bustness to improve certified segmentation extending the
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(a) Image with noise (b) Ground truth segmentation (c) SEGCERTIFY segmentation (d) Our segmentation

Figure 1: Examples of our approach (DENOISECERTIFY) compared to SEGCERTIFY proposed by Fischer et al. (2021)
on the Cityscapes dataset. From left to right: (a) the initial image with added noise, (b) the ground truth segmentation, (c)
the abstained segmentation obtained with SEGCERTIFY, (d) the abstained segmentation obtained with DENOISECERTIFY
(ours). Each row corresponds to a noise level, from top to bottom: σ = 0.25, 0.5 and 1.0.

work of Fischer et al. (2021) and Carlini et al. (2023). We
present a comprehensive set of experiments on PASCAL-
Context (Mottaghi et al., 2014) and Cityscapes (Cordts et al.,
2016) datasets and successfully achieve state-of-the-art re-
sults on certified robustness for segmentation tasks. Our
results show that combining randomized smoothing and dif-
fusion models significantly improves certified robustness,
with a mean increase of 21 points in accuracy and 14 points
in mIoU when compared to previous methods. Our main
contributions are summarized as follows:

• First, we build upon the work of Fischer et al. (2021)
and Carlini et al. (2023) and propose for the first time,
a certified segmentation approach leveraging diffusion
models. Through a series of experiments, we demon-
strate that incorporating a denoiser in conjunction with
a segmentation model that has been trained with noise
injection presents certain trade-offs in the certified
accuracy achieved, depending on the variance of the
noise.

• Second, we further improve certified accuracy by com-
bining off-the-shelf diffusion and state-of-the-art seg-
mentation models allowing us to reach state-of-the-art
results for certified segmentation.

• Third, we propose an in-depth analysis through a se-
ries of experiments on the use of noise during training
as well as the generalization of denoising diffusion
models with respect to image resolution and data dis-
tribution.

2 RELATED WORK

Adversarial Attacks & Certified Defenses. Since the dis-
covery of adversarial examples (Szegedy et al., 2013), a
wealth of work focused on devising attacks (Goodfellow
et al., 2014; Kurakin et al., 2018; Carlini and Wagner, 2017;
Croce and Hein, 2020, 2021) and defenses (Goodfellow
et al., 2014; Madry et al., 2018; Pinot et al., 2019; Araujo
et al., 2020, 2021), leading to an ongoing back-and-forth
battle. Most of these defenses relied on smoothing the local
neighborhood around each point, resulting in very small gra-
dients on which attacks were based. However, it has become
apparent that many of the empirical defenses that have been
created could be circumvented with stronger attacks (Atha-
lye et al., 2018).

This false sense of security and the persistent cat-and-mouse
game called for certified defenses that provide provable ro-
bustness guarantees. In recent years, mainly two types of
certified defenses have been proposed. The first approach
provides robustness guarantees based on the Lipschitz con-
stant of the networks and their margin (i.e., the difference
between the highest and second highest logits). This connec-
tion was introduced by Tsuzuku et al. (2018) and opened
an important research direction in the design and training
of 1-Lipschitz neural networks (Miyato et al., 2018; Farnia
et al., 2019; Li et al., 2019b; Trockman and Kolter, 2021;
Singla and Feizi, 2021; Yu et al., 2022; Meunier et al., 2022;
Prach and Lampert, 2022; Xu et al., 2022; Araujo et al.,
2023). Although this approach offers fast certificate compu-
tation, it suffers from important drawbacks. Indeed, due to



the strict constraint on the networks and reduced expressiv-
ity, 1-Lipschitz neural networks offer a reduced natural and
certified accuracy and do not scale to large datasets (e.g.,
ImageNet, Pascal-Context, Cityscapes). On the other hand,
a second approach called Randomized Smoothing leverages
randomization. This method, introduced by Lecuyer et al.
(2019) and further improved by Li et al. (2019a); Cohen
et al. (2019) and Salman et al. (2019), consists in convolving
the function with a Gaussian probability distribution during
the inference phase. The desirable property of a smooth
classifier is ensuring that the prediction is constant within
an ℓ2 ball around any input.

Diffusion models. Diffusion probabilistic models have been
introduced by Sohl-Dickstein et al. (2015), and further re-
fined by Ho et al. (2020) and Nichol and Dhariwal (2021).
The goal was to design a generative Markov chain that trans-
forms a known distribution (e.g., Gaussian) into a target
(data) distribution using a diffusion process. However, in-
stead of using a Markov chain to evaluate the model, they de-
fined the probabilistic model as the endpoint of the Markov
chain. Subsequently, this methodology was refined and ap-
plied for producing high-quality samples, such as images, as
demonstrated by Ho et al. (2020) and Nichol and Dhariwal
(2021). The results indicated that this type of model can gen-
erate better images in comparison to other methods and also
demonstrated a connection with denoising. Recently, diffu-
sion probabilistic models have been applied successfully in
the context of certified robustness for classification tasks
where a diffusion model is used as a first step to denoise
inputs for randomized smoothing (Carlini et al., 2023).

Certified Segmentation. Deep neural networks trained for
segmentation tasks have been shown to be vulnerable to ad-
versarial attacks (Xie et al., 2017; Arnab et al., 2018; Xiang
et al., 2019; He et al., 2019; Kang et al., 2020). In this con-
text, Fischer et al. (2021) use the work of Cohen et al. (2019)
and propose a method to certify segmentation with random-
ized smoothing for norm-bounded perturbations. Other lines
of work investigate certified robustness for structured out-
puts, for example, Kumar and Goldstein (2021) proposed
a procedure based on randomized smoothing to find the
minimum enclosing ball in the output space and Yatsura
et al. (2023) introduced a method called demasked smooth-
ing to defend against adversarial patch attacks for semantic
segmentation tasks.

In this paper, we build upon the work of Fischer et al. (2021)
and Carlini et al. (2023) and introduce, for the first time, a
randomized smoothing approach with a denoising step in
the context of certified semantic segmentation.

3 BACKGROUND

In this section, we review the necessary background on
randomized smoothing and on certified segmentation.

3.1 ADVERSARIAL ATTACKS & RANDOMIZED
SMOOTHING FOR CLASSIFICATION

We first introduce adversarial attacks and randomized
smoothing in the setting they have been introduced, i.e.,
for a classification task. We will generalize it to the segmen-
tation task in the next paragraph.

Let X ⊂ Rd and Y = {1, . . . ,K} be the input space and
target space respectively with K denoting the number of
classes. Let us denote a classifier f : X → Y (e.g., a
neural network) such that for a given couple input-label
(x, y) ∈ X ×Y , we say the classifier f correctly classifies x
if: f(x) = y. An adversarial attack is a small norm-bounded
perturbation δ ∈ Rd with ∥δ∥2 ≤ ϵ such that:

f(x+ δ) ̸= y. (1)

Randomized smoothing, introduced in Cohen et al. (2019),
considers a smooth version of the classifier f , such that:

g(x) = argmax
c

Pη∼N (0,σ2I) [f(x+ η) = c] . (2)

To compute the probability in Equation 2, Cohen et al.
(2019) proposed a Monte-Carlo approach where the pre-
diction is computed from a small number of samples, i.e.,
n0, with a majority vote and a lower-bound on the certified
radius computed with a higher number of samples, i.e., n.
A benefit of using the smooth classifier g is obtaining a
certified radius of robustness for each data point, thus de-
termining a certified level of accuracy within a specified
attack ‘budget’ ϵ. More formally, Cohen et al. introduced
the following theorem:

Theorem 1 (From Cohen et al. (2019)). Suppose y ∈ Y , let

py = Pη∼N (0,σ2I) [f(x+ η) = y] (3)

and let py the lower bound of py computed via Monte-Carlo
sampling. Let p¬y = 1− py , then, if

Pη [f(x+ η) = y] ≥ py ≥ p¬y ≥ max
c̸=y

Pη [f(x+ η) = c] ,

(4)
then g(x+ δ) = y for all δ satisfying ∥δ∥2 ≤ R with R :=
σΦ−1(py) and Φ is the cumulative distribution function of
the standard Gaussian distribution.

To properly approximate the probability py with a confi-
dence interval, Cohen et al. (2019) proposed a procedure
which samples n realizations of η ∼ N (0, σ2I) and com-
putes f(x+η). From these n realizations, a vector of counts
for each class in Y is computed and these counts are then
used to estimate the probability py and the radius R with
confidence 1 − α with α ∈ [0, 1]. If the confidence level
is not reached (for example, the number of samples is not
enough), the procedure will abstain.



Algorithm 1 Predict & Certify by Fischer et al. (2021)

1: function SEGCERTIFY(g, σ, x, n, n0, δ, α)
2: cnts0

1, . . . ,cnts
0
N ← SAMPLE(g, x, n0, σ)

3: cnts1, . . . ,cntsN ← SAMPLE(g, x, n, σ)
4: for i← {1, . . . , N}:
5: ĉi ← top index in cnts0

i

6: ni ← cntsi[ĉi]
7: pvi ←BINPVALUE(ni, n, ≤, δ)
8: r1, . . . , rN ← FWERCONTROL(α, pv1, . . . , pvN )
9: for i← {1, . . . , N}:

10: if ¬ri: ĉi ← ⊘
11: R← σΦ−1(δ)
12: return ĉ1, . . . , ĉN , R

Algorithm 2 Sample Function

1: function SAMPLE(g, x, n, σ)
2: cnts← []
3: for 0 to n− 1 do
4: t⋆, βt⋆ ← computeTimestep(σ)
5: xt⋆ ←

√
βt⋆(x+N (0, σ2I))

6: y ← g(denoise(xt⋆ ; t
⋆))

7: cntsy ← cntsy + 1
8: return cnts
9:

10: function COMPUTETIMESTEP(σ)
11: t⋆ ← find t s.t. 1−βt

βt
= σ2

12: return t⋆, βt⋆

3.2 CERTIFIED SEGMENTATION VIA
RANDOMIZED SMOOTHING

Fischer et al. (2021) extended the work of Cohen et al.
(2019) for segmentation tasks and presented the first ap-
proach for certified segmentation. To perform image seg-
mentation, each pixel in an image is assigned a segmentation
class. This can be seen as a type of classification task, but
instead of predicting the content of the entire image, the goal
is to predict the class of each individual pixel. In this setting,
the target space corresponds to regions/categories to seg-
ment (e.g., cars, roads, pedestrians, etc.), and the classifier
f : Rd → Yd outputs a class for each pixel and classifies
each component individually. It is relatively straightforward
to extend the certification algorithm proposed by Cohen et al.
(2019) for the segmentation task. Nevertheless, Fischer et al.
(2021) identified two primary challenges with the method.
First, given that the certified radius of a particular region
will be the minimum radius over the entire region, the algo-
rithm may report an extremely low certified radius based on
only a few bad pixels. Second, since Cohen et al.’s certifi-
cation algorithm is applied to each pixel separately, and the
certification is only valid with a probability of 1−α, consid-
ering the entire region and applying the union bound could
significantly reduce the overall confidence in the certificate.
To address the first challenge and limit the impact on bad
pixels on the overall result, Fischer et al. (2021) proposed
a simple solution which consists in defining a threshold
τ ∈ [ 12 , 1] and instead of checking py > 1

2 , they advise
py > τ . To account for the multiple testing problem, i.e.,
low confidence due to the union bound of the entire region,
Fischer et al. (2021) introduce the FwerControl function
used in Algorithm 1 which is based on the Holm-Bonferroni
method (Holm, 1979), and performs multiple-testing cor-
rection. Conceptually, the idea is to control the type I error
(rejecting the null hypothesis when it is actually true) while
reducing type II errors (not rejecting the null hypothesis
when it is false). Now that we have reviewed randomized
smoothing for classification and segmentation tasks, we

will present how it is possible to improve upon the current
state-of-the-art with diffusion models.

4 CERTIFIED SEGMENTATION VIA
DIFFUSION MODELS

To prevent a distribution shift when using randomized
smoothing for inference, it is common practice to train net-
works with noise injection (Cohen et al., 2019). However,
from an information theory perspective, randomized smooth-
ing has inherent trade-offs and limitations. While adding
noise during training can enhance the certified accuracy of
models compared to those trained without noise, it may
also lower the model’s natural accuracy, as the variance
of the noise decreases the information present in the input.
These limitations have led to a series of no-go results for
randomized smoothing (Blum et al., 2020; Hayes, 2020;
Kumar et al., 2020; Yang et al., 2020; Mohapatra et al.,
2021; Wu et al., 2021; Ettedgui et al., 2022), suggesting that
achieving high certified accuracy may be challenging due
to the significant variance that must be introduced in the
input. Consequently, the destruction of information due to
noise can result in information loss, potentially leading to a
useless classifier.

To address this important limitation of randomized smooth-
ing, Salman et al. (2020) have investigated denoising the
input before giving it to the classifier. The idea is to use
trained neural networks to reconstruct the removed infor-
mation of the image due to the noise. This process has two
main advantages: it mitigates the no-go results of random-
ized smoothing since the destroyed information is “recon-
structed” by the denoiser and it does not involve training
the classifier with noise mitigating the reduced natural ac-
curacy of training with noise injection. Of course, in this
new setting, the quality of the denoiser will matter. Salman
et al. (2020) were able to boost the certified accuracy by up
to 33% on the ImageNet dataset with respect to previous
state-of-the-art defenses.



Table 1: Segmentation results of DENOISECERTIFY (ours) and SEGCERTIFY proposed by Fischer et al. (2021) on both
Cityscapes and Pascal-Context datasets. Two network architectures were used for both pipelines, HRNet trained with noise
and ViT trained without noise. We also report the performance of HRNet trained without noise. For each dataset, we used the
same 100 images with n0 = 10, n = 100, α = 0.001 and τ = 0.75. Results are certified at radius R, acc. being the mean
per-pixel accuracy, mIoU the mean intersection over union and %⊘ the mean percentage of pixel abstentions on all images.

Model Architecture Trained
with noise σ R

Cityscapes Pascal Context

Acc mIoU %⊘ Acc. mIoU %⊘
Non-robust HRNet ✗ 0.00 0.00 0.97 0.81 0.00 0.77 0.42 0.00

SEGCERTIFY HRNet

✓ 0.00 0.00 0.91 0.57 0.00 0.53 0.18 0.00
✓ 0.25 0.17 0.88 0.59 0.11 0.55 0.22 0.22
✓ 0.50 0.34 0.34 0.06 0.40 0.17 0.03 0.41
✓ 1.00 0.67 0.06 0.00 0.31 0.08 0.00 0.13

DENOISECERTIFY
(ours)

Diffusion
+HRNet

✓ 0.25 0.17 0.70 0.32 0.26 0.47 0.17 0.27
✓ 0.50 0.34 0.55 0.21 0.41 0.42 0.15 0.46
✓ 1.00 0.67 0.36 0.09 0.60 0.15 0.04 0.77

Diffusion
+ViT

✗ 0.00 0.00 0.94 0.67 0.00 0.85 0.58 0.00
✗ 0.25 0.17 0.77 0.41 0.24 0.67 0.48 0.28
✗ 0.50 0.34 0.65 0.28 0.36 0.54 0.32 0.40
✗ 1.00 0.67 0.47 0.15 0.53 0.28 0.15 0.62

Carlini et al. (2023) go even further and propose to use state-
of-the-art Diffusion Probabilistic Models (DPM) to perform
the denoising step. With this approach, they were able to
further improve the state of the art by up to 14% on the
ImageNet dataset. Denoising diffusion probabilistic models,
which have been introduced by Sohl-Dickstein et al. (2015)
and further improved by Ho et al. (2020) and Nichol and
Dhariwal (2021), are a class of generative models and have
shown to beat Generative Adversarial Networks (GANs)
(Goodfellow et al., 2020) on image synthesis. Conceptually,
the training of these models consists in adding noise at each
step of the diffusion process until purely random noise is
reached. The reverse process then starts from random noise
and generates a new image from the data distribution. Carlini
et al. (2023) proposes a procedure to use these models for
denoising instead of generating new images. The idea is
to start the reverse process with a noisy image instead of
Gaussian noise in order for the DPM to output an image
from the initial data distribution that resembles the original
image. As explained by Carlini et al. (2023), to use the
DPM in the context of randomized smoothing, one needs
to convert the noise added for randomized smoothing, i.e.,
xrs = x + τ with τ ∼ N (0, σ2I) to the specific step in
the diffusion process: xDPM =

√
βtx+ τ(1− βt) where βt

denotes a constant from the timestamp t that controls the
amount of noise added to the image during the diffusion
process. For more details on how to compute the timestamp
t, one can refer to Section 3 of Carlini et al. (2023). We
provide in Algorithm 2 an updated version of the algorithm
to compute the samples for the Predict & Certify function
of Fischer et al. (2021).

Pipeline. Our pipeline starts by passing the image through
a Denoising Diffusion Probabilistic Model (DDPM) and
then calling a semantic segmentation model for prediction.
For both components, we use an off-the-shelf model made
publicly available. To denoise images, we use the class un-
conditional DDPM from Dhariwal and Nichol (2021). This
552M-parameter denoiser has been trained on ImageNet
and performs very well on images from both Cityscapes
and Pascal-Context. For segmentation, we use two model
architectures with different training strategies. First, we
test on High-resolution networks, HRNet from Wang et al.
(2020), trained in two different ways. The non-robust HRNet
has been trained with natural images and the base model
is an HRNet trained with a Gaussian noise of σ = 0.25.
The second architecture we use is the Vision Transformer
Adapter for Dense Predictions, ViT from Chen et al. (2023),
that was trained only on natural images. We use the 568M-
parameter model trained on Pascal-Context and the 571M-
parameter model trained on Cityscapes. Both models were
reported to provide state-of-the-art accuracy and mean in-
tersection over union (mIoU) on the task of semantic seg-
mentation. Our code is provided at: https://github.
com/othmanela/certified_segmentation

5 EXPERIMENTS

We evaluate our method on a set of experiments with mul-
tiple approaches. First, we compare our technique with
SEGCERTIFY, the state-of-the-art introduced by Fischer
et al. (2021). Then, we set new state-of-the-art results using
off-the-shelf models. We name our method DENOISECER-

https://github.com/othmanela/certified_segmentation
https://github.com/othmanela/certified_segmentation


Table 2: Performance of SEGCERTIFY and DENOISECERTIFY (ours) on an off-the-shelf HRNet model trained without
Gaussian noise. Scale corresponds to the image sizing scale used as input to the segmentation model (e.g., a scale of 0.5
on cityscapes will resize the images to 512 × 1024). Accuracy, mean intersection over union (mIoU) and percentage of
abstentions (%⊘) are certified given a noise level σ and radius R. All results are provided with Holm correction.

Scale Model σ R
Cityscapes Pascal Context

Acc. mIoU %⊘ Acc. mIoU %⊘

0.25

SEGCERTIFY
0.25 0.17 0.34 0.05 0.29 0.18 0.05 0.67
0.50 0.34 0.18 0.01 0.14 0.07 0.01 0.70
1.00 0.67 0.18 0.01 0.06 0.02 0.00 0.58

DENOISECERTIFY
0.25 0.17 0.78 0.41 0.22 0.45 0.19 0.28
0.50 0.34 0.68 0.29 0.32 0.37 0.11 0.45
1.00 0.67 0.46 0.15 0.54 0.11 0.03 0.74

0.50

SEGCERTIFY
0.25 0.17 0.48 0.07 0.19 0.34 0.13 0.49
0.50 0.34 0.19 0.01 0.15 0.12 0.03 0.62
1.00 0.67 0.17 0.01 0.11 0.03 0.00 0.43

DENOISECERTIFY
0.25 0.17 0.74 0.37 0.26 0.56 0.23 0.27
0.50 0.34 0.60 0.22 0.40 0.43 0.18 0.46
1.00 0.67 0.32 0.11 0.67 0.12 0.04 0.64

1.00

SEGCERTIFY
0.25 0.17 0.18 0.01 0.08 0.31 0.10 0.52
0.50 0.34 0.17 0.01 0.08 0.08 0.01 0.45
1.00 0.67 0.01 0.00 0.98 0.01 0.02 0.49

DENOISECERTIFY
0.25 0.17 0.58 0.26 0.42 0.47 0.22 0.27
0.50 0.34 0.42 0.15 0.55 0.36 0.10 0.53
1.00 0.67 0.24 0.70 0.70 0.10 0.02 0.73

TIFY.

Datasets. All of our experiments are performed on the
task of semantic image segmentation on Pascal-Context and
Cityscapes datasets, two very common datasets for this task.
Pascal-Context (Mottaghi et al., 2014) consists of an exten-
sion of the Pascal-VOC (Everingham et al., 2015) dataset
with all of the image pixels annotated. There are 60 classes
(59 foreground and 1 background). Typical evaluation strate-
gies use either all of the 60 classes or the 59 foreground
classes only. We evaluate here on the 59 foreground classes
in order to have a fair comparison with SEGCERTIFY. The
Cityscapes dataset (Cordts et al., 2016) contains high res-
olution 1024× 2048 images of diverse street scenes from
50 different cities. The images are annotated in 30 classes
but only 19 of them are used for evaluation. Similar to
SEGCERTIFY, we evaluate our method on the same 100
images set from both datasets. We use every 5th image on
the Cityscapes dataset and every 51st on Pascal.

DENOISECERTIFY on models trained with noise. We
start first by comparing DENOISECERTIFY with SEGCER-
TIFY. The state-of-the-art certification results proposed by
the latter were obtained with an HRNet trained with a Gaus-
sian noise of σ = 0.25. A comparison of both methods is
provided in the first two sections of Table 1. We notice that

DENOISECERTIFY outperforms SEGCERTIFY for all sig-
mas except for 0.25. In fact, for σ = 0.5 the accuracy jumps
from 0.34 to 0.55 and the mIoU from 0.06 to 0.21 which
corresponds to an increase of 61% and 250% respectively.
This gives us an idea of the power of denoising diffusion
models when used to certify segmentation models. Since
our pipeline contains an added denoising step, we note an
increase in the reported runtime in seconds. On the largest
images of the dataset (1024× 2048), the runtime increases
from 92.69 to 131.42 seconds with HRNet, which per im-
age is minor. We did not perform any optimization on the
code to make our pipeline faster. With more engineering,
the runtime can be optimized further. Also, we believe that
the gain in performance easily outweighs the increase in
runtime. For σ = 1.0, it appears from Table 1 that SEGCER-
TIFY has a lower number of abstentions than DENOISECER-
TIFY. However, looking at the segmentations it looks like
SEGCERTIFY predicts a large number of pixels in the image
with the wrong class. An example is provided in the last row
of Figure 1. For σ = 0.25, SEGCERTIFY outperforms our
technique but this may be due to two main reasons. First,
the model we are using was trained with a Gaussian noise
of 0.25. Thus, it is performing best when provided with
images with the same level of noise. In the next section, we
show that given the right model, DENOISECERTIFY outper-
forms SEGCERTIFY. Second, one of the limitations of using



Table 3: Comparison of two denoising strategies on the DENOISECERTIFY pipeline. All of the reported results use a Vision
Transformer (ViT) segmentation model with a scale of 1. For the denoising diffusion model, we use the same timestep t∗

found with the COMPUTETIMESTEP function presented in Algorithm 2.

Denoise Method σ R
Cityscapes Pascal Context

Acc. mIoU %⊘ Acc. mIoU %⊘

Denoise single step

0.00 0.00 0.94 0.67 0.00 0.85 0.58 0.00
0.25 0.17 0.77 0.41 0.24 0.67 0.48 0.28
0.50 0.34 0.65 0.28 0.36 0.54 0.32 0.40
1.00 0.67 0.47 0.15 0.53 0.28 0.15 0.62

Denoise multi-step

0.00 0.00 0.89 0.39 0.00 0.80 0.49 0.00
0.25 0.17 0.70 0.27 0.33 0.61 0.34 0.34
0.50 0.34 0.52 0.15 0.50 0.46 0.24 0.49
1.00 0.67 0.29 0.06 0.73 0.14 0.07 0.75

Figure 2: Qualitative results of the performance of a de-
noising diffusion model on Pascal Context images. Top row
from left to right: ground truth and ground truth with a noise
of σ = 1.0. Bottom row: single-step denoised image and
multistep denoised image.

the off-the-shelf denoiser provided by Dhariwal and Nichol
(2021) is rescaling the images to 256× 256. Therefore scal-
ing them back to their original size may decrease the image
quality, especially when using high-resolution images like
Cityscapes. We perform experiments with multiple scales
and report them in the subsequent section.

DENOISECERTIFY on non-robust models. Here we use
an HRNet model that was trained on natural images only
without any introduction of Gaussian noise. We compare our
performance with SEGCERTIFY and report our results in Ta-
ble 2. Focusing on a scale of 1, we notice that SEGCERTIFY
achieves a poor performance. In fact, as σ increases to val-
ues > 0.25 the mIoU and accuracy end up becoming 0. This
is an expected result since models trained on natural images
are very sensitive to Gaussian noise. However, those types

of models perfectly suit our methodology, as we denoise
images, we are able to use off-the-shelf segmentation mod-
els and achieve a much better prediction. This introduces
a paradigm shift as we no longer require training robust
deep learning models that need highly engineered strategies
and that also degrade the natural accuracy significantly. As
reported in Table 1, when comparing the first two rows, the
non-robust HRNet accuracy drops from 0.97 to 0.91 and the
decrease is more significant for the mIoU, going from 0.81
to 0.57. Therefore, our technique allows us to limit the drop
in performance that traditional models used to suffer from
while keeping strong certification guarantees.

Impact of image scales on performance. One of the lim-
itations of using off-the-shelf models is having to comply
with their restrictions. The unconditional DDPM we are
using only takes as input images of size 256× 256. We thus
have to downscale the input images and upscale them back
to their original size for prediction. As stated above, this
is the main limitation of our method. But, since semantic
segmentation models can be invoked with multiple scales,
we can use them to predict at a given scale and then up-
sample the output probabilities back to the original size of
the image. This also has the advantage of providing faster
predictions. As an example, at a scale of 0.5 for Cityscapes,
we downsample the images to 256× 256 in order to call the
DDPM, the denoised image is then reshaped to 512× 1024
and serves as input to the segmentation model. The output
probabilities of the segmentation model are then upsampled
to their original size (1024 × 2048) to be compared with
the ground truth. We always perform the certification on
the original size of the image in order to follow the same
strategy as SEGCERTIFY and perform a fair comparison.
The performance of both methods with multiple scales is
reported in Table 2. Examples of denoised and upscaled
images are provided in Figure 3. For Cityscapes, we notice
that the smaller the scale, the better the performance. In
fact, the accuracy jumps from 0.58 to 0.74, and 0.78 for



Figure 3: Examples of denoised and upscaled images from
the Denoising Diffusion Model. On the left, a Pascal-
Context image denoised on size 256× 256 and upscaled to
373 × 480. On the right, a Cityscapes image denoised on
256× 256 and upscaled to 1024× 2048.

scale values of 1, 0.5, and 0.25 respectively. DENOISECER-
TIFY performs best for a scale of 0.25, corresponding to
a Cityscapes image size of 256× 512 which is very close
to the output of the DDPM. Therefore, the rescaling does
not impact the details and overall quality of the denoised
image. The same happens for the Pascal-Context dataset,
the best performance is obtained for a scale of 0.5 which
corresponds to images of size 240×240, again very close to
the 256×256 DDPM output. Training DDPMs on images of
higher resolution would be another way to circumvent this
limitation. Also, with the improvement of powerful tech-
niques that rely on the denoising backbone, our approach
would still be able to leverage the resources made available.
We believe that having a denoiser that is also able to upscale
images to very high resolutions would allow us to improve
our results even further.

DENOISECERTIFY on state-of-the-art segmentation
models. So far we have discussed how DENOISECERTIFY
performs on both a robust and non-robust HRNet model.
We have empirically shown that it achieves the best results
on standard deep learning-based segmentation models. Go-
ing a step further, we can leverage the power of Vision
Transformers which have been reported to be more robust
to attacks (Mao et al., 2022), but also give state-of-the-art
results on semantic segmentation tasks (Chen et al., 2023).
In this section, we use the ViT Adapter trained with natural
images and report the results in the last section of Table 1.
When comparing with the results of Table 2 on the same
scale of 1, we notice that the ViT model provides a con-
siderable increase. For the lowest σ = 0.25, the accuracy
and mIoU are respectively boosted to 0.77 and 0.41 com-
pared to 0.58 and 0.26 previously. This empirically proves
the points of Mao et al. (2022) and would even encourage
us to make the assumption that we would be able to obtain
higher certification results with stronger transformer models.
Overall, DENOISECERTIFY combined with a ViT achieves
state-of-the-art semantic segmentation certification results
for Pascal-Context and Cityscapes.

Generalization of Denoising Diffusion Models. As
stated above, we use an off-the-shelf denoising diffusion

model that was trained on ImageNet. We set the number
of channels to 256 and apply a linear scheduler with 1000
steps. Qualitative results are provided in Figure 2. We clearly
notice that the DDPM is able the denoise the image with
the highest level of noise (σ = 1.0) while keeping all of the
information of the picture. Therefore, it is important to state
that diffusion models generalize well to datasets they were
not trained on. Pascal-Context and Cityscapes are the first
two examples. Future work will involve testing DDPMs on
images from other distributions (e.g., the medical domain).

Multistep Denoising Diffusion Model. Denoising diffu-
sion probabilistic models have been introduced as a class
of generative models that beat GANs on image synthe-
sis (Dhariwal and Nichol, 2021). Starting with Gaussian
noise, each step of the DDPM consists in denoising an in-
put image at timestep t to a marginally less noisy image at
timestep t−1. The complete diffusion process is an iterative
procedure starting from t∗ until t = 0. Programmatically,
each call to the denoiser d at timestep t performs two ac-
tions; it predicts the completely denoised image and returns
the average between the estimated denoised image and the
noisy image of timestep t− 1. We conduct experiments on
the two possible denoising strategies. The top section of
Table 3 reports the results of a single-step denoised image
prediction from the class unconditional DDPM. The bottom
section of Table 3 on the other hand reports results of a
multiple-step denoising strategy going from t∗ until t = 0
iteratively on the same class unconditional DDPM. Both
use the ViT as the segmentation model. From the presented
results, it is clear that the single-step denoiser performs
better than the multi-step one in terms of accuracy, mIoU,
percentage of abstentions, and runtime. This shows that de-
noising the image in a single shot is better than repeatedly
denoising it multiple times. Intuitively, since the DDPMs
are generative models at heart, they will tend to behave as
such when denoising an image multiple times. Therefore,
the output image at t = 0 may have lost a lot of its original
information or may even end up from a different distribution.
Qualitative results from Figure 2 support this claim as we
can clearly notice that elements of the image were removed
in the multi-step approach (the flower pot, as well as the
reader disappeared, and the shape of the furniture changed).
Another advantage of single-step denoising is the runtime
efficiency. Instead of having to call the denoiser multiple
times passing the outputted image at each timestep t, the de-
noiser is only called once (e.g., For σ = 1.0 a denoiser with
linear scheduling will be called 258 times compared to a
single time with the first scheme). This represents a nonneg-
ligible advantage of the single-shot denoising since we are
using multiple calls to the denoiser for each image in order
to obtain the certificate. We deduce that denoising diffusion
models are powerful but should be used accordingly. In our
case, we would like to leverage the denoising properties of
the DDPM more than their generative properties. Thus, a



single-step denoising strategy should be adopted.

6 CONCLUSION

We present the first work on certified semantic segmenta-
tion that leverages denoising diffusion probabilistic models
and vision transformers. We conduct a comprehensive set
of experiments on Pascal-Context (Mottaghi et al., 2014)
and Cityscapes (Cordts et al., 2016) datasets and show that
our method achieves state-of-the-art results on certified ro-
bustness for semantic segmentation tasks. We were able to
achieve significant improvements in accuracy and mIoU us-
ing off-the-shelf models that are not trained or fine-tuned for
robustness. This work provides a new direction for certified
image segmentation with off-the-shelf models. However, an
interesting direction would be to explore task-specific train-
ing. For instance, in the context of certified segmentation,
Salman et al. (2019) improved upon the work of Cohen et al.
(2019) by training classifiers with noise injection and ad-
versarial training. It would be straightforward to extend this
approach to certified segmentation with our DENOISECER-
TIFY procedure by adversarially training a classifier or a
diffusion model. Although computationally expensive, this
method may lead to further improvements. Moreover, we
have seen that the diffusion model is able to generalize to
Pascal-Context and Cityscapes datasets. A promising future
direction would be to investigate the generalization of this
model for denoising medical images and provide certified
segmentation for critical healthcare applications.
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