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Abstract In medical imaging, segmentation models have known a
significant improvement in the past decade and are now used daily in
clinical practice. However, similar to classification models, segmentation
models are affected by adversarial attacks. In a safety-critical field like
healthcare, certifying model predictions is of the utmost importance.
Randomized smoothing has been introduced lately and provides a
framework to certify models and obtain theoretical guarantees. In this
paper, we present for the first time a certified segmentation baseline
for medical imaging based on randomized smoothing and diffusion
models. Our results show that leveraging the power of denoising
diffusion probabilistic models helps us overcome the limits of randomized
smoothing. We conduct extensive experiments on five public datasets
of chest X-rays, skin lesions, and colonoscopies, and empirically show
that we are able to maintain high certified Dice scores even for highly
perturbed images. Our work represents the first attempt to certify
medical image segmentation models, and we aspire for it to set a
foundation for future benchmarks in this crucial and largely uncharted
area.

Keywords: Certified Robustness · Randomized Smoothing · Denoising
Diffusion Models · Segmentation.

1 Introduction

For the past decade, deep neural networks have dominated the computer vision
community and provided near human performance on many different tasks,
including classification [18], segmentation [24], and image generation [16]. Given
these impressive results, convolutional neural networks are now used on a daily
basis in fields like healthcare, self-driving cars, and robotics, to cite a few. In
medical imaging, convolutional neural networks are particularly used to segment
organs or regions of interest on different modalities such as X-rays, CT scans,
MRIs, or ultrasound [36]. Indeed, segmentation techniques and variations of 2D
and 3D U-Nets are currently the state-of-the-art to identify and isolate tumors,
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blood vessels, organs, or other structures within an image and provide crucial
help to physicians for medical diagnosis, screening, and prognosis [32].

Nowadays, segmentation models are gaining widespread adoption in modern
clinical practice and are being used with increasing frequency, making the results
of these models critical for many patients. However, it is now commonly known
that neural networks can be vulnerable to adversarial attacks [17,34], i.e., small
input perturbations invisible to humans crafted specifically such that the network
performs errors. Over the past few years, a large body of work has devised
empirical defenses against adversarial attacks for classification tasks [17,25,3], as
well as segmentation tasks [37], including applications on medical imaging [27].
Although state-of-the-art empirical defenses provide significant robustness, these
defenses do not guarantee theoretical robustness and stronger attacks can be
crafted to break them [5]. Recently, certified defenses, for classification [11,26,2]
and segmentation [15,23], have been proposed to guarantee the accuracy and
reliability of neural networks. However, certified defenses for segmentation in the
context of medical imaging are still lacking, even if models are getting market
approvals (e.g ., FDA, CE) and are already adopted in clinical practice.

In this paper, we provide the first method for certified robustness in the
context of segmentation for medical imaging. We leverage the randomized
smoothing strategy [11,15], and the recent work on diffusion models [7] to achieve
state-of-the-art certified robustness for segmentation models. Randomized
smoothing consists in convolving the neural network with a Gaussian distribution
(i.e., by adding noise to the input) in order to obtain a smooth segmentation
model. From the smoothness properties of the segmentation model, we can derive
a robustness guarantee and compute a certified Dice score. We go even further
by using diffusion models to first denoise the perturbed input and boost the
certified robustness. By extension, we show that current diffusion models, trained
on ‘classical images’ generalize well to medical datasets for denoising tasks.
Extensive experiments on five public medical datasets of chest X-rays [31,21],
skin lesions [10], and colonoscopies [6], and different popular segmentation
models, prove the potential of our method. We hope that this study will provide
the first step towards robustness guarantees for medical image segmentation.

2 Related Work

Since the discovery of adversarial attacks [34,17], numerous defenses [25,17,8]
and attacks have been devised [8,25], demonstrating that neural networks are
sensitive to small input perturbation and vulnerable to attacks. Adversarial
training, which has been acknowledged as one of the most successful empirical
defenses, consists in training a network directly on adversarial examples [25].
However, it is now known that even strong defenses can be bypassed by adaptive
attacks [12]. Paschali et al. [27] were among the first to study adversarial attacks
in the context of medical imaging. They conducted experiments using several
neural network architectures [33,20] (i.e., Inception V3, V4, MobileNet) and
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several attacks [17,25] to demonstrate that the vulnerability of neural networks
is extended to medical images.

More specifically, in the context of classification, a previous work [4]
has analyzed the robustness of neural networks for chest X-ray images and
showed that gradient-based attacks were successful in fooling both machines
and humans. In a similar line of work, Yao et al. [38] proposed an add-on
to known attacks that bypasses state-of-the-art adversarial detectors making
current defenses even less robust. On the other hand, several works have been
focused on crafting defense strategies specifically in the context of medical
imaging. For example, Almalik et al. [1] proposed a self-ensembling method to
enhance the robustness of Vision Transformers in the presence of adversarial
attacks. In the context of segmentation in medical imaging, [30] introduced
a vector quantization approach by learning a discrete representation in a low
dimensional embedding space and improving the robustness of a segmentation
model. Finally, Daza et al. [13] proposed a lattice architecture that segments
organs and lesions on MRI and CT scans and leveraged an efficient approach of
adversarial training to defend against adversarial examples.

Although a large body of work has focused on constructing defenses for
classification and segmentation tasks in the context of medical imaging, certified
defenses are under-studied by the medical community. In this paper, we
propose to leverage randomized smoothing and diffusion models for certified
segmentation on medical datasets, setting the first baseline for this challenging
problem and certifying popular segmentation architectures.

3 Randomized Smoothing

Randomized smoothing is a model agnostic technique, proposed by Cohen et
al. [11], used to improve and certify the robustness of neural networks against
adversarial attacks. This method consists in adding random noise (e.g ., noise
generated from a Gaussian distribution) to the input data and then classifying
the perturbed data using the neural network. Let D = X × Y denote the data
distribution where X ⊂ Rd and Y = {1, . . . , k} represent the input space and
target space respectively and k is the number of classes. Let f : X → Y be
a neural network such that for (x, y) ∈ D, the classifier correctly classifies if
f(x) = y. An adversarial attack is a small norm-bounded perturbation δ ∈ Rd

with ∥δ∥2 ≤ ϵ such that: f(x+ δ) ̸= y. Randomized smoothing is a procedure to
construct a new smooth classifier g given any base classifier f . Let N (0, σ2I) be
a Gaussian distribution of mean 0 and variance σ, then, the smooth classifier g
is defined as follows:

g(x) = Pη∼N (0,σ2I) [f(x+ η) = y]

Cohen et al. [11] have shown that if R = σΦ−1(g(x)) where Φ is the cumulative
distribution function of the standard Gaussian distribution and R can be
considered the certified radius, then, g(x+ δ) = y for all δ satisfying ∥δ∥2 ≤ R.
However, since it is not possible to compute g at x exactly, they proposed using
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Monte Carlo algorithms as an alternative approach for estimating g(x) using
random sampling. In order to obtain a reliable estimate of the probability g(x),
they also suggested a method that involves generating n samples of η from a
normal distribution N (0, σ2I) and evaluating f(x + η) for each sample. The
resulting counts for each class in Y are then used to estimate probability py
and the radius R with confidence 1 − α (where α is a value between 0 and
1). If the confidence level cannot be achieved (for example, due to insufficient
samples), the method will abstain from providing an estimate. More recently,
Fischer et al. [15] built upon the work of [11] by introducing SegCertify,
the first certified approach for image segmentation. The segmentation process
involves assigning a segmentation class to every pixel in the image, which can be
viewed as a form of classification at the pixel level. In the segmentation settings,
the output space consists of regions or categories to be segmented, such as cars,
roads, pedestrians, etc. The classifier function f : X → Yd determines the class
for each pixel and categorizes each component independently. In this context,
the certification algorithm proposed by Cohen et al. [11] can be extended to
accommodate the segmentation task.

To obtain a smooth classifier, it is necessary to add random noise to the
input of the classifier. However, this creates a trade-off between accuracy
and robustness. If low variance noise is added, accuracy won’t be impacted
significantly, but the certified radius will remain low. Conversely, adding high
variance noise can improve certificates but at the expense of accuracy. To address
this issue, Cohen et al. proposed a simple trick of training the network with noise
injection during the training phase. While this method may reduce accuracy
when evaluating the classifier with noise during the certification process, it can
also help mitigate the trade-off between accuracy and robustness. One can note
that during training, the network’s objective is to learn to ignore the noise and
classify at the same time. To improve the natural as well as the certified accuracy,
Salman et al. [29] proposed to separate the two tasks with two networks trained
separately. First, a network, h : X → X , is trained to denoise the data such that
for η ∼ N (0, σ2I), we have h(x + η) ≈ x, then, the output of the denoiser is
given to the classifier.

In this paper, we leverage randomized smoothing and diffusion probabilistic
models to obtain state-of-the-art results on certified segmentation for medical
imaging. To the best of our knowledge, we are the first to propose a
comprehensive study on certified segmentation for medical imaging.

4 Diffusion Probabilistic Models for Certification

The training of a Denoising Diffusion Probabilistic Model (DDPM) is an iterative
process that involves adding a small amount of noise at every step of the diffusion
process until random noise is reached. The reverse process then starts from
random noise and generates a new image that conforms to the data distribution.
Since DDPMs are inherently iterative denoising models, we can leverage this
property for randomized smoothing. The idea would be to start the reverse
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process with a noisy image, rather than Gaussian noise, enabling the DDPM to
output an image that resembles the original image.

Similar to Carlini et al.[7], our proposed pipeline is composed of two main
steps: we denoise, then we certify. In order to complete the denoising, we need
to first map between the noise model utilized in diffusion models and the one
used in randomized smoothing. Randomized smoothing needs a data point that
is enhanced with Gaussian noise added to it, given by xrs = x + δ with δ ∼
N (x, σ2I). On the other hand, diffusion models suppose the noise model for
xDDPM ∼ N (

√
αtx, (1 − αt)I). Programmatically, we start by adding Gaussian

noise to an image x, obtaining xrs. Then the timestep t∗ on which we can use the
diffusion model for randomized smoothing is defined. Depending on the scheduler
of the denoiser, we compute t∗ such that σ2 = 1−αt∗

αt∗
(obtained by scaling xrs with

√
αt and pairing the variances). We then calculate xDDPM =

√
αt∗(x + δ), δ ∼

N (0, σ2I). After that, we apply a single-step denoiser and predict the completely
denoised image. A single-step denoising involves directly predicting the image
from t∗ to t = 0. A multi-step denoising strategy implies iteratively predicting
all images at t∗, t∗ − 1, . . . until t = 0. Both techniques are explored in the next
section and supplementary material.

Since randomized smoothing is applied to each pixel separately with a
probability of 1 − α, considering the entire segmentation region would imply
considering a union bound with significantly reduced confidence. Similar to
Fischer et al. [15], we leverage the Holm-Bonferroni method [19] and perform
multiple-testing corrections. For each image, we repeat this process n = 100
times, identifying pixels on which the model abstains, and computing the
certified scores. We extend the work of Fischer et al. [15] to also compute
a certified Dice score that is calculated ignoring the abstain class (⊘). Our
approach has a significant advantage compared to SegCertify since it leverages
off-the-shelf and state-of-the-art pre-trained denoisers and segmentation models.
SegCertify, on the other hand, relies on models trained with Gaussian noise.

5 Experiments

Datasets: We perform experiments on 5 different publicly available datasets.
All datasets were divided to 70% for training, 10% for validation, and 20% for
testing. The testing set is the one used to compute certified results.

Chest X-rays datasets: JSRT dataset [31] with annotations of lung, heart,
and clavicles provided by [35] is used. This dataset contains 247 images. For
lung segmentation only, we use both the Montgomery and Shenzen datasets
[21]. Montgomery consists of 138 and Shenzen of 662 annotated images.

Skin lesion: Skin images with their annotations provided by the ISIC 2018
boundary segmentation challenge [10] were used. This dataset consists of 2694
RGB dermatoscopy images.

Colonoscopy images: CVC-ClinicDB dataset [6] containing 612
colonoscopy images in RGB together with their annotations were utilized.
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Table 1: Comparison of our approach with three different model architectures on
chest X-ray datasets. We report certified Dice, IoU and percentage of abstentions
(%⊘) for different noise levels σ and radii R.

JSRT Montgomery Schenzen

σ R
Lung Heart Clavicles Lung Lung

Dice IoU Dice IoU Dice IoU %⊘ Dice IoU %⊘ Dice IoU %⊘

UNet [28]

0.25 0.17 0.94 0.91 0.88 0.79 0.75 0.63 0.07 0.93 0.89 0.07 0.95 0.90 0.05
0.50 0.34 0.90 0.83 0.88 0.79 0.61 0.45 0.09 0.89 0.80 0.07 0.93 0.90 0.02
1.00 0.67 0.87 0.79 0.84 0.75 0.23 0.15 0.15 0.88 0.80 0.14 0.89 0.83 0.10

ResUNet++ [22]

0.25 0.17 0.95 0.91 0.93 0.87 0.78 0.65 0.05 0.96 0.93 0.02 0.95 0.91 0.01
0.50 0.34 0.94 0.88 0.91 0.83 0.63 0.48 0.08 0.94 0.89 0.03 0.93 0.90 0.02
1.00 0.67 0.90 0.82 0.87 0.77 0.28 0.19 0.12 0.89 0.83 0.07 0.90 0.85 0.06

DeeplabV2 [9]

0.25 0.17 0.94 0.91 0.91 0.86 0.85 0.75 0.04 0.93 0.91 0.07 0.80 0.71 0.07
0.50 0.34 0.88 0.81 0.87 0.79 0.63 0.49 0.10 0.91 0.87 0.02 0.34 0.25 0.15
1.00 0.67 0.88 0.80 0.83 0.74 0.20 0.11 0.14 0.85 0.79 0.17 0.04 0.02 0.11

Implementation Details: We train three different segmentation models
namely, a UNet[28], a ResUNet++[22], and a DeeplabV2[9] with and without
noise. The models trained without noise are used exclusively with our method.
The models trained with a Gaussian noise of 0.25 are used to compute
SegCertify scores. All 6 models use an image input size of 512×512 for X-ray
images, 384× 512 for skin lesions, and 288× 384 for colonoscopy. As a denoiser,
we use an off-the-shelf denoising diffusion probabilistic model provided by [14].
We perform our experiments with the 256 × 256 class unconditional denoiser
with a linear scheduler and without timestep respacing. For each noise level, our
method follows the steps described in the previous section and uses n0 = 10,
n=100 for each image, and α = 0.001, and τ = 0.75. Our code is made publicly
available at: https://github.com/othmanela/medical_cert_seg

Results and Discussion: For all five datasets, we compute a certified Dice
Score and certified mean Intersection over Union (IoU). We also report the
percentage of abstentions (%⊘) representing the mean number of pixels on which
the model’s prediction confidence was insufficient with respect to the radius R.
The lower the percentage of abstentions the better the segmentation model is.

In Table 1, we compare our method using 3 different and popular
architectures (UNet, ResUNet++, and DeeplabV2) on the chest X-rays datasets.
We notice that our method maintains overall good results on all three model
backbones. A similar table with SegCertify results is provided in Table S2
of the supplementary material. Overall, for both methods, ResUNet++ is the

https://github.com/othmanela/medical_cert_seg
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Table 2: Certified segmentation results of our technique and SegCertify [15]
on the chest X-ray JSRT dataset. We report Dice, IoU, and percentage of
abstentions (%⊘) for each class.

Model Trained
with noise σ R

Lung Heart Clavicles

Dice IoU Dice IoU Dice IoU %⊘

ResUNet++[22] ✗ 0.00 0.00 0.97 0.94 0.94 0.91 0.93 0.91 0.00
✓ 0.25 0.00 0.91 0.90 0.89 0.87 0.84 0.79 0.00

SegCertify[15]
✓ 0.25 0.17 0.96 0.92 0.93 0.88 0.83 0.72 0.04
✓ 0.50 0.34 0.89 0.84 0.85 0.79 0.58 0.43 0.13
✓ 1.00 0.67 0.07 0.04 0.02 0.01 0.00 0.00 0.24

Ours
✗ 0.25 0.17 0.95 0.91 0.93 0.87 0.78 0.65 0.05
✗ 0.50 0.34 0.94 0.88 0.91 0.83 0.63 0.48 0.08
✗ 1.00 0.67 0.90 0.82 0.87 0.77 0.28 0.19 0.12

most robust architecture followed by UNet and then DeeplabV2 for all σ and
R combinations. Moreover, certified metrics for lungs and heart remain high for
our method, even with high levels of noise. However, the increasing level of noise
affects the clavicles since these are smaller structures.

A comparison of our method and SegCertify using the ResUNet++
architecture is presented in Table 2 for the three chest X-ray datasets. We observe
that we outperform SegCertify, especially for high sigma values. For σ = 0.25,
SegCertify performs slightly better. This is due to the fact that the model
used with SegCertify is trained with a noise level of 0.25. The main drawback
however is that its Dice on unperturbed images drops considerably (e.g ., from
0.96 to 0.91 on lung segmentation). On the other hand, our pipeline does not
require training a segmentation model with noise or even a denoising model.
Our methodology relies only on off-the-shelf models. For the highest noise level
of σ = 1.0, we notice that the certified Dice and IoU with SegCertify both
drop to 0 whereas our proposed method is able to maintain high certified scores.

Qualitative results are provided in Figure 1 for our proposed method and
SegCertify for the different datasets and different levels of noise. Regarding
the structures to segment, we notice that the abstentions around the clavicles
(the smallest benchmarked region of interest on chest X-rays) get bigger. We also
notice that the fine segmentation boundaries (e.g ., area around the skin lesion)
may not be as sharp after denoising. As we increase the noise, the decision
boundary is harder to find for all models. This may be due to the fact that fine
details on the image are lost after the denoising step. However, our method is
still able to segment the large majority of pixels properly on the image, contrary
to its competitor, especially for high noise levels (third row on chest X-rays).

Table 3 reports certified segmentation results for skin lesions and colonoscopy
on both techniques. We notice that our method is still performing better than
SegCertify. This supports our claim that DDPMs generalize quite well to
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Table 3: Results on skin lesions [10] and CVC-ClinicDB [6] segmentation.

Model Method σ R
Skin Lesions CVC-ClinicDB

Dice IoU %⊘ Dice IoU %⊘

ResUNet++[22]

SegCertify[15]
0.25 0.17 0.79 0.68 0.07 0.63 0.56 0.05
0.50 0.34 0.41 0.27 0.06 0.15 0.10 0.01
1.00 0.67 0.00 0.00 0.01 0.00 0.00 0.00

Ours
0.25 0.17 0.85 0.77 0.03 0.65 0.57 0.04
0.50 0.34 0.83 0.76 0.04 0.45 0.39 0.07
1.00 0.67 0.77 0.69 0.06 0.26 0.23 0.14

Figure 1: Qualitative results of SegCertify and our method on colonoscopy,
skin lesion, and chest X-ray images. From left to right: image with added noise,
ground truth, SegCertify segmentation, our segmentation. White pixels denote
abstention areas of the segmentation models. We increase the noise level from
top to bottom: σ = 0.25, 0.5, and 1.0.

medical images and that harnessing their potential boosts the state-of-the-art.
Regarding the denoiser, we used a single-step denoising strategy, i.e., we perform
a single call to the DDPM to compute the denoised image from t∗ to t = 0.
Another strategy could be to iteratively denoise from t∗, t∗ − 1, ... until t = 0.
However, this implies predicting a denoised image multiple times and in the end,
may result in images with unwanted artifacts. We perform multi-step denoising
experiments and report results in Table S1 of the supplementary material. We
note that the single-step denoising performs best since it relies more on the
denoising power of DDPMs rather than their generative capabilities, and is also
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faster than the multi-step approach. Finally, we perform a comparison with
another denoiser architecture. We train three UNet models (one for each noise
level) on the JSRT dataset. We report results in Table S3 and notice that
even with custom-trained denoisers, the DDPM outperforms the UNet denoising
architecture. A comparison of denoised images is provided in Figure S1. We
notice that the DDPM is able to keep high-fidelity images compared to the
UNet and is therefore more relevant for certified medical image segmentation.

6 Conclusion

In this paper, we present the first work on certified segmentation for medical
imaging, and extensively evaluate it on five different datasets and three deep
learning segmentation models. Our technique leverages off-the-shelf denoising
and segmentation models and provides the highest certified Dice and mIoU on
multi-class and binary segmentation of five different datasets. With that, we are
able to remove the overhead of having to train and fine-tune models specifically
for robustness. This paradigm shift alleviates the dilemma of having to choose
between highly accurate segmentation models or models robust to attacks. We
hope that this work serves as a baseline for the unexplored yet critical topic of
certified segmentation in medical imaging. Future work will involve extending
our approach to 3D medical imaging modalities as well as exploring the realm
of certified classification.
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