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Abstract. Orchestration is the process of creating music for a group
of instruments, combining, blending, and contrasting their sounds to
produce a unique orchestral texture. In this research/creation project,
our team was commissioned to create an AI/human orchestration of
two movements of Angeles, a piano composition by Gissel Velarde. The
project turned out as a perfect case study for computational creativ-
ity in music and orchestration, where the role of the model is between
AI as a colleague and AI as a tool. Our main contribution is a prelimi-
nary framework for computer assisted orchestration. By modeling a layer
score and an orchestration plan in the orchestration process, we imple-
ment a simple Markov model that selects possible instrumentations for
each score segment. Personalization of the AI and AI/human interac-
tion occur through human segmentation of the score at two stages of the
process (layer score, orchestral segments with loudness profile), through
instrumentation presets, and finally through selection of the final orches-
tral plan and through the actual orchestration. We detail the research
aspects of this co-creative project and analyze the roles of the actors in-
volved in the creation of the final piece: the Music Information Retrieval
(MIR) researchers, the orchestrators, and the algorithms.

Keywords: Orchestration, Computational Creativity, Co-creativity, Mu-
sic Generation.

1 Introduction

1.1 Orchestration and Creativity

Orchestration Orchestration involves composing or arranging music for a large
group of instruments, mixing or contrasting their sounds to create an orches-
tral texture. Orchestration goes well beyond distributing the voices among the
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instruments. Formalization and teaching of instrumentation and orchestration
has improved over time, with various treatises covering topics such as the mu-
sical capabilities of each individual instrument, and their combination in or-
der to shape the sound of the orchestra, and to render specific perceptual ef-
fects [8,23,57,37,55,47,2].

We can characterize orchestral music and orchestration through musical tex-
ture. In Western music, there are several commonly discussed types of texture,
including monophony, polyphony, heterophony, and homophony [18]. In his defi-
nition of musical texture, Huron proposes to analyze the sound material accord-
ing to the number of elements happening simultaneously (density) and their
homogeneity or heterogeneity (diversity) [30]. Benward and Saker [7] describe
texture by identifying different parts (or layers), which have different roles, such
as melodies or (static, harmonic, or rhythmic) support. Complex textures can
be created through the varying timbers of the large number of orchestral instru-
ments and their combinations [47].

This richness of possible instrument combinations makes the analysis and
generation of orchestral music particularly challenging for computational musi-
cology [52,9,15,50,49,19]. Perceptual studies focused on how instruments com-
bination affects timbral response, blending qualities, and on the use of timbral
consonance and dissonance to create sounds [36,60,62]. Open corpora have been
created to help research in orchestration techniques, automation, and perception.
Crestel et al. published the Projective Orchestral Database (POD) linking piano
and orchestral scores [15]. We proposed with Le a bar-to-bar textural analysis
of 24 movements of symphonies [38]. The Orchestration Analysis & Research
Database (OrchARD, orchard.actor-project.org, data not published) rather
targets on specific auditory effects [44].

Computational Creativity and Music Generation The spread of systems for AI-
based music generation studies has contributed to drive a growing interest in
machine creativity [48]. Many questions emerge regarding the definition, evalua-
tion, and uses of creative machines [34,33]. Esling and Devis suggest considering
generative AI algorithms as creativity-enhancing tools [20]. This proposal finds
its place in Lubart’s classifications of modes of human-machine interaction in a
co-creative process [41]. Among them, the computer as a colleague mode implies
a direct involvement of algorithms in the creation of the final output, rather than
a mere assisting role (algorithm as a tool) for the creator. Similar categories are
found in Kantosalo and Jordanous’s description of the roles of AI in creative pro-
cesses. They divide them in the categories of co-creative colleague and creativity
support tool [35].

Some studies focused on human creativity in music [56], and on the way it
can be enhanced with Machine Learning (ML) models [43] through modes of
interaction between the artist and the model [24,5]. Difficulties emerge in the
evaluation of the creativity of such systems [4]. The impact of a good interface
for steering AI on the ability of users to express musical ideas and “own” the re-
sulting creation has also been highlighted [40]. Co-creative systems in music gen-
eration [21,27,10,11,31] can be divided into two categories: for live performance
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improvisation [5,22,54,65], and for composition and production [6,1,61,58]. The
AI song contest, a competition specifically focused on co-creation in songwriting,
inspired different uses of AI and reflexion [28]. Some of us have been part of such
a team, involving a composer the right from the beginning of the system design,
resulting in personalized AI models [16].

Machine Learning, Creativity, and Orchestration In the realm of orchestral mu-
sic, specific ML models were proposed for tasks related to arrangement [29,64],
instrumentation [17], orchestration [53,26,14,12], and generation of orchestral
music [39]. Beethoven X experiment was an AI-assisted composition of orches-
tral music that aimed to be a plausible Beethoven symphony [25], obtained by the
collaboration between the composer Walter Werzowa, musicologists, and compu-
tational methods including generative ML models. No code nor data are publicly
available, but their co-creative methodology is interesting, divided into contin-
uation (expanding melodic lines and themes, from the original melodic material
from Beethoven’s own sketches), harmonization (composition of accompaniments
parts for the melodic ideas, including, for example, homophony, counterpoint,
and fugue), transition (orchestral/polyphonic inpainting, to connect different
ideas), and orchestration (organizing across the available instruments and in-
strumental families of the orchestra).

1.2 Goal and Contents

We carried out this project to orchestrate two piano pieces by Gissel Velarde,
focusing on co-creativity, i.e. putting human beings and computer models in the
same loop to make music. In order to get an outcome of high quality scores,
ready to be distributed to the orchestra, in a limited time frame, we focused on
modeling the art of orchestration as a formal process, and on the possible ways
of interaction between a human orchestrator and computational algorithms. We
explicitly searched for a balance between having simple but high-level conceptual
data that can be handled by AI and patterns that can be explained so that the
musician can interact with them. Following Benward and Saker [7], we charac-
terize orchestration in the “classical style” as an overlay of different layers, which
have the roles of melodies or (harmonic/rhythmic) accompaniment, played by
the different instruments of the orchestra and their combinations.

Our workflow of orchestration is the following (Figure 1):

– The first step is an analysis: the goal is to extract from the piano score
a layer score, that is an abstract version of the piece analyzing musical
texture (Figure 2 and Section 2). Voices are represented together with their
role: melody, harmonic accompaniment, or rhythmic accompaniment. At this
stage we do not provide any information about the instrumentation.

– The second step is to build an orchestration plan: We assign each layer to
an instrument or a group of instruments, taking care of the balance between
the different timbres. We have developed a Markov model for this stage, that
uses probabilities of finding instruments together, of instrument sequences,
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Fig. 1: The workflow of the co-creative orchestration builds on a layer score and
on an orchestration plan.

and instrumental density, building from instrumentation presets as well as
from a segmentation of the score (Section 3).

– The last step is to write the actual instrumental parts, following the
orchestration plan and taking care of the peculiarities of range and dynamics
of each instrument (Section 4).

For this experiment, the first and third step were done by human orches-
trators, who are two of us: Mael Oudin (professional orchestrator, PO), and
Mathieu Giraud (amateur orchestrator, AO). They both are also researchers for
the project. The focus on human/AI co-creativity is thus here in the second step
but also in the very decision of modeling the layer score and the orchestration
plan to enable these three steps. We neither claim that this three-steps process
fully models the art of orchestration, nor that it represents an optimal process,
but rather that it is a plausible workflow to orchestrate a piece, which could
be followed by human orchestrators alone, but that has the advantage to allow
interaction between humans and AI.

The rest of the article details those three steps (Sections 2, 3, 4) and the
results of this orchestration model, analyzing the roles of the actors – MIR
researchers, orchestrators, and computational models. We conclude by discussing
the challenges encountered, our positioning in computational creativity research,
and perspectives (Section 5).

2 Modeling a Layer Score

2.1 Behind Orchestral Music: Analyses, Sketches

Any music, any score, may be seen as a rendering of high-level musical ideas, that
may be intermediate steps when composing or improvising music, or serve ana-
lytical purposes. Describing and modeling these ideas is a challenge for (digital)
musicology and music analysis.
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Fig. 2: First eight measures of the first movement of Symphony #9 by L. van
Beethoven, op. 125. (a) The orchestral score can be decomposed into three layers:
one with an harmonic role (red), one with a rhythmic role (blue), and a third one
with a front role, that is nevertheless difficult to categorize as a melody (yellow).
(b) The layer score contains one part for each of these three layers, ℓharmony,
ℓrhythm, and ℓfront. (c) In the piano reduction, the harmonic and rhythmic layer
are blended together and rendered with a pianistic texture, which is different
from the orchestral version. The left hand alternates between that harmonic-
rhythmic layer, and the front layer.

(a) Full Orchestral Score 13 tracks/instruments (7 in this extract)
Transcribed by ClassicMan on musescore.com
Textural labels from [38]. Front: Vl1, Vla, Cb; Rhythm: Vl2, Vc; Harmony: Cl, Hrn

(b) Layer Score 3 layers

(c) Piano reduction Arr. by Franz Liszt, ed. Breitkopf & Härtel

musescore.com
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Analytical concepts. As usual in music analysis, an orchestral score can be stud-
ied at different levels. Taking an orchestral score as a “neutral level” [51], the
analyst can examine orchestration techniques. Focusing on textural/instrumental
aspects, music can be split into a number of parts, or layers, with a predominantly
melodic, rhythmic, or harmonic role, or a mix of them [7]. In orchestral music
functional layers are highlighted by combinations of instrumental timbres [38].
At a higher level, orchestral effects arise from auditory grouping processes [44].

Composer/orchestrator sketches. Were these layers and effects present in the
composer’s – or the orchestrator’s – mind? Composers may have some sketches
(in their mind and/or onto paper) of these parts and then complete those sketches
into more elaborated music [59,66]. The study of Beethoven’s sketches have re-
vealed precise musical ideas such as patterns, themes, and sometimes orches-
tration sketches [32]. The options available to composers for orchestral music
encourage them to explore textural spaces [63], but it is unclear to what extent
they can model complex organization of layers in their mind.

Concurrent musical parts and layers can thus pre-exist the orchestral score,
which can be heard as an expansion of these initial materials. Some MIR studies
on orchestration already used this idea: Gotham et al. name as a short score
a set of raw materials before orchestration [25]. Somehow, in jazz/pop styles,
lead sheets with melodies and chords may also be seen as a condensed version
of a music piece – or could correspond to a sketch of the final song. MIR and
AI methods aiming at (co-)creating such music often generate such lead sheets
at first, then proceed with accompaniment generation [28], even if the split is
debatable and an end-to-end generation is sometimes preferred [3].

2.2 Defining and Modeling a Layer Score

Inspired by such hypothetical intermediary “sketch scores” and by analytical
considerations, we define here the layer score as a score with a variable number
of layers, each one with a given role, following the description of roles we gave
in [38] for classical-romantic orchestral music, but without any indication on the
instrument.

On the opening of the Beethoven’s 9th Symphony, we analyze three layers
with different roles, ℓfront, ℓrhythm, and ℓharmony (Figure 2b). Those layers are dis-
tributed on several instruments in the full orchestral score. Here, one part in the
layer score roughly corresponds to one layer in the orchestral score, but the ac-
tual music in the orchestral part could be more different from the content of the
layer score, possibly depending on the capabilities of the instruments chosen to
render a layer. For example, rhythmic motion could be rendered with a different
density of notes if reproduced through a timpani roll, or through tremolo strings
sul ponticello.

At the opposite, if we consider now a piano reduction of an orchestral score,
the same layers will be blended together into the two staves of the piano reduction
– a single pianist should be able to play it. In the layer ℓrhythm of the opening of
the Beethoven’s 9th Symphony, the lower strings repeat chords made of A and
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E, whereas the piano reduction by Liszt alternates between the same pitches
(Figure 2c). Again, the actual music in the piano reduction could be different,
in the rhythm organization for instance. In practice, the octaves often differ in
piano reduction, the pianist hands not having the same ambitus as the orchestra.
In some cases, the actual pitches may even differ between instrumentations, for
example including patterns or scales in some of them.

The layer score therefore generally has fewer staves than a full orchestral
score and more staves than a piano reduction, but could be (anachronistically)
viewed as the common ancestor between the two – or, more generally, an an-
cestor of any other instrumentation of the music. The layer score includes the
structural, melodic, harmonic content, and some of the textural content, but not
the actual music rendering. This concept of layer score allows thus to decouple
composition from instrumentation and orchestration (although this decoupling
may be artificial) and to devote our attention mainly to the latter ones.

Back to the question of composer sketches, a layer score is not intended to
reproduce an existing compositional practice. We do not claim either that writing
such layer scores would be a desirable practice. Writing music for the orchestra
(or for any other instrument) can be a non-linear process, with iterations between
high-level ideas and actual music content. For example, the constraints given
by the ambitus of each instrument influence the composition itself, forcing the
composer to rethink some of the choices they have already made, and even to
rewrite major sections of the composition.

Anyway, layer scores give new perspectives on topics related to orchestra-
tion. For example, piano reduction and orchestration from piano are symmetri-
cal tasks. Orchestration from piano usually requires “de-pianotizing” the piano
music, including voice separation [42] or texture analysis [13] – as piano reduc-
tion requires “de-orchestrating” the orchestral music. Modeling such a layer score
thus increases the possibilities for a human intervention.

2.3 Results on Angeles

We illustrate our methodology through the first two measures of El Jardin Etero,
the last movement of Angeles (Figure 3). In the layer score, we have separated
into two different staves the melodic ℓmel and rhythmic ℓrhy1 layers that emerge
from the piano score. We also decided to stress the two last notes in a separate
layer ℓrhy2 and to add another rhythmic layer ℓrhy3. Such decisions in the analyt-
ical process have their part of subjectivity and contribute to the co-creativity,
allowing to recreate new textures. The professional orchestrator states:

PO: My role was to make human musical choices during all stages of the
AI-assisted orchestration process. As an orchestrator, identifying the tex-
ture is my first job. Analyzing the piano score allows me to deconstruct
the music into different roles: the main melody, harmony, rhythm, res-
onance. . . I prepare the addition of new parts. The piano is limited by
its technique. As I orchestrate, I will add what is “absent but suggested”,
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Fig. 3: First two measures of movement 6 “El Jardin Etereo” from Angeles by
Gissel Velarde, op. 7. (a) Original Piano score, provided by the composer. Clearly,
the main melody is at the bass, and the right hand plays a rhythmic layer. (b)
Layer Score elaborated as an intermediate step of the orchestration process. A
melody in the low register ℓmel, and a rhythmic layer ℓrhy1 have been directly
identified by splitting the right and left hand of the piano score. Other layers
(ℓrhy2, ℓrhy3) have been added to stress the importance of some notes and to have
more possibilities of rhythms, departing from a typical pianistic texture. (c)
Layer instrumentation, assigning instruments to each one of these three layers.
The human orchestrator decided to have one rhythmic layer ℓrhy1+3, with added
notes in the downbeats. (d) Orchestration of the piece by Mael Oudin. The
instrumental parts have been written following the selected orchestration plan.
Scores and rendered audio for selected extracts of the piece are available at
http://www.algomus.fr/data.

(a) Piano score

(b) Layer score

(c) Layer instrumentation

LI =

 ℓimel = {Vc,Cb}
ℓirhy1+3 = {Horn1,Horn2,Trp1}
ℓirhy2 = {Fl1,Fl2,Cl1,Cl2}

(d) Full orchestral score

http://www.algomus.fr/data
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resonance, missing registers, textures to be recreated. The first stage in-
volved the creation of the “layer score” for this movement.

Creative choices, such as adding a layer, can already be made at this stage,
going beyond a pure analysis of the original score. For example, a music pattern
may have at the same time a melodic and an harmonic role. In that case, the
layer score should define a mixed melodic/harmonic layer (see Section 5).

3 Modeling, Generating, Selecting an Orchestration Plan

3.1 Orchestration Plans

Once a score is split into layers, we have to map them to the available in-
struments, and instrument groups, in the ensemble, in order to describe the
envisioned instrumentation for the piece. Given a set of layers such as L =
{ℓmel, ℓrhy1+3, ℓrhy2}, a layer instrumentation is a list LI of instruments in each
layer, each instrument occurring in at most one layer (see Figure 3c).

Each orchestration change, being it progressive, or a contrast, uses a new layer
instrumentation. We thus define an orchestration plan as a set of layer instrumen-
tations LI1, LI2, . . . , LIn, one for each orchestration segment s ∈ {1, 2, . . . , n}
of the score. In the current model, it is the musician who segments the score
at relevant points where they want orchestration changes. The syntax of the
orchestration plan describes, for each segment, the layers using instruments in a
predefined order and details the layers and roles (Figure 4c).

3.2 Personalized Orchestration Plan with Markov Models

Once they have set the orchestration segmentation, the artist could themselves
write the layer instrumentation for every segment, and create an orchestration
plan. Here, instead, we decided to have a simple knowledge-based algorithm to
experiment with AI/human interaction. This model for semi-automated layer
instrumentation follows two goals. The layers should include instruments that
blend together, drawn from presets of possible instrumentations. Moreover, the
“loudness” of the instrumentation at each segment should be close to the musi-
cian’s desired outcome, for which they provide a loudness profile as input. These
concepts are detailed in the following paragraphs.

Loudness profile and acoustic weights. To underline the form, the musician in-
puts a loudness profile as a list of targeted loudness values (λ1, λ2, . . . , λn) for
the n segments. The effective loudness depends on the dynamics, but also on
the number and the qualities of each instrument4. A simple model is to consider
that each instrument i has an acoustic weight wi. We decided here to have higher
coefficients for brasses and instrument of lower range, using the following values:

4 We call “instrument” an instrument group. Groups may include several people (Vl1).
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(Fl:1, Ob:1, Cl:1, Fg:1.5, Hrn:1.5, Trp:2, Vln1:1, Vln2:1, Vla:1, Vc:1, Cb:1.5)

The loudness could be estimated as the sum of the weights of the instruments
involved. However, selecting only the instruments according to such values would
not realize a proper orchestration, as it would ignore blending qualities and
orchestrator preferences.

Possible instrumentations. For each layer ℓα ∈ L, the musician will thus define
a set of possible layer instrumentations pℓiα = {pℓiα1 , pℓiα2 , . . .}, each one being
a weighted list of instruments. For instance, a rhythmic layer ℓrhy1 could be
associated to two distinct instrumentations, either on woodwinds, or brasses:

pℓirhy1 =

{
pℓirhy1wood = (Fl : .3,Ob : .1,ClBb : .2,Fg : .15) L(pℓirhy1wood) = .825

pℓirhy1brass = (HrnF : .7,TrpBb : .2) L(pℓirhy1brass) = 1.45

Each component (i, pi) tells that the instrument i should have a probability
pi of being used in this pℓi: The actual instruments that will be used will be a
subset of that pℓi. Selecting a pℓi ensures that these instruments blend together
for this particular layer. The sum

∑
pi of the probabilities of a pℓi is the expected

number of instruments in that pℓi. We rather use the expected loudness of the
pℓi, that is L(pℓi) =

∑
wipi, weighting each probability by the acoustic weight

of each instrument.

Selecting the pℓi then the instrumentation for each segment. Given a layer ℓα ∈ L
and a segment s ∈ {1, 2, . . . , n}, the pℓiα,s is selected in pℓiα according to a
Markov model (Figure 5) that depends on the previous pℓiα,s−1. In order to
match the prescribed loudness λs, the model also tries to minimize δα = |λs −
L(pℓiα,s)| by applying a further e|δ

ατ | coefficient with τ = 2.0.
For a given segment s, once all pℓiα,s are selected for all layers ℓα, instruments

are assigned following the individual probabilities pi. At the end of this step, it
may happen that either a layer has no instrument assigned, or that an instrument
is assigned to more than one layer. Such cases are resolved by further random
assignations, based again on the pi in the pℓi.

The personalization of the AI “to the style of the orchestrator” and the possi-
bility to steer the AI are thus done both on the presets/pℓi selections and on the
loudness profile input. Moreover, the implemented method generated segments
with three levels of relative loudness for each segment (Figure 4b), enabling the
orchestrator to further select instrumentations at each segment, but still keeping
the coherency of the pℓi.

3.3 Results on Angeles

PO: To develop the model that generates orchestration plans, I collabo-
rated with the Algomus team to propose instrument combinations that I
enjoy using, and to fine-tune the model.
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Fig. 4: Creating the orchestration plan of Angeles, mvt 6. (a) The score is split by
the musician into 16 instrumentation segments, each with a target loudness. (b)
The model generates, for each segment, three layer instrumentations taking into
account the expected segment loudness and another relative loudness coefficient
(0.5, 1.0, 4.0) (c) In the selected orchestration plan, for the segment [p01] (first
two measures), there are four layers instrumentations ℓrhy1brass, ℓ

rhy2
wood, ℓ

rhy3
brass, and

ℓmel
mel2. The layers are mapped to the instruments appearing in the order declared

in InstList: For example, the "<2.2.|" bloc in the woodwinds refers to the layer
instrumentation ℓrhy2wood, with here flutes (Fl) and clarinets (ClBb).

(a) Loudness profiles

LOUDNESS = [ 0.20, 0.40, 0.20, 0.50, 0.30, 0.40, 0.20, 0.50,
0.30, 0.50, 0.30, 0.60, 0.40, 0.50, 0.60, 0.70 ]

(b) Generated orchestration plans, with several relative loudness

InstList: <Fl.Ob.ClBb.Fg|HrnF.TrpBb|Vln1.Vln2.Vla.Vc.Cb>
## Gen 104a (0.5) 104b (1.0) 104c (4.0)
[p01] <..2.|13|...m.> <2.2.|13|...m.> <2.2.|13|...mm> {0.20}
[p02] <....|..|123mm> <....|..|123mm> <...3|m3|123mm> {0.40}
[p03] <....|13|..2m.> <....|13|.22m.> <....|13|.22m.> {0.20}

(c) Final orchestration plan

InstList: <Fl.Ob.ClBb.Fg|HrnF.TrpBb|Vln1.Vln2.Vla.Vc.Cb>
[p01] <2.2.|13|...mm> 1:rhy1:brass 2:rhy2:wood 3:rhy3:brass m:mel:mel2 (0)
[p02] <....|..|123mm> 1:rhy1:string 2:rhy2:string 3:rhy3:string m:mel:mel2 (4)
[p03] <....|13|.22m.> 1:rhy1:brass 2:rhy2:string 3:rhy3:brass m:mel:mel1 (0)

According to our orchestrator, there are several goals that a good orches-
tration should pursue: respecting and enhancing the piano composition, a good
balance between layers (especially, the melody should not be muzzled by accom-
paniment), variation (contrasting moments in the piece should carry different or-
chestrations), and efficient dynamics (through loudness values and coefficients).

Respecting the piano composition means that the score brings constraints
in register and dynamics that need to be reflected in the orchestration plan.
For example, movement 6 was a Vivace, with the melody on the bass and an
accompaniment more rhythmic than harmonic. The orchestration then had to
address the character of the piece and abide by the register of each layer.

PO: The bass melody could only be performed by three instruments in the
orchestra: the cellos, the contrabasses, and the bassoons. But not every
choice would give a satisfying balance to the other layers played by the rest
of the orchestra. The bassoons or contrabasses alone, for instance, would
not be prominent enough so cellos were necessary here. Any generated
orchestration plan that would not nominate cellos for that layer would be
in practice almost unusable.
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Fig. 5: Extract of the transition table of the Markov model modeling the evolu-
tion of pℓimel = {pℓimel

H1 , pℓi
mel
H2 , pℓi

mel
B , . . .} for movement 6. The transition table

was created through iterations between the MIR researchers and the orchestra-
tor. These coefficients are further adjusted by a loudness factor, then normalized.

pℓimel,s−1
H1 −→ pℓimel,s

H1 : .8 pℓimel,s−1
H2 −→ pℓimel,s

H1 : .6 pℓimel,s−1
B −→ pℓimel,s

H1 : .3

−→ pℓimel,s
H2 : .6 −→ pℓimel,s

H2 : .8 −→ pℓimel,s
H2 : .3

−→ pℓimel,s
B : .1 −→ pℓimel,s

B : .1 −→ pℓimel,s
B : .8

Balance in an orchestration is also reached through the separation of the
orchestra into different groups (namely, the strings, the woodwinds, the brass,
and the percussion). Harmonic blending is best achieved when all the notes of
a chord are performed by instruments in the same group. This was a constraint
to our model if we wanted to avoid too much disparity in the instrument com-
binations proposed in the orchestration plans. Movement 6 had a continuous
3-voice rhythmic layer and we wanted these three voices to be performed by in-
struments from the same group. This wasn’t always the case in the orchestration
plans generated so this was also a criteria in the selection of the best outputs.

The ensemble of these parameters creates many constraints on orchestration
possibilities, so one of the first human tasks when analysing the output generated
by the model is to remove what seems impossible, for reasons as varied as reg-
ister limitations, number of voices to be played, and poor blending or contrast.
Perspectives include (semi-)automatizing some of these tasks. At the same time,
the challenge was to foresee the potential of each generated combination when
formalized into a musical score at the next stage of the process. Some combina-
tions, such as opening the rhythmic layer with brass only, were unexpected by
the orchestrators but rather “proposed” by the model (Figure 4c).

PO: I worked on the outer sections of “El Jardin Eterno” using several
dozens of orchestration plans generated by the model. It was my responsi-
bility to sort through them and select the most convincing ones according
to my taste (while also being open to surprises).

4 Writing and Performing the Orchestral Score

Once the orchestration plan is decided, the orchestrator has a large space of pos-
sibilities related to the range, dynamics, and playing techniques of each instru-
ment that can still be creatively explored. The orchestration plan only suggests
the instruments to be used in every portion of the piece, but many decisions still
need to be taken to get a playable score, in particular to have idiomatic patterns
for each instrument of the orchestra.

In the final orchestral score, on the same first two measures (Figure 3d), the
choice has been made to fill the rest of the first beat of the rhythmic texture
to provide a more efficient and easier line to the brass instruments at this fast
tempo. The rhythmic layer is then rendered differently from the original pianistic
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texture, but it preserves the intention. Likewise, the choice of writing pizzicati
for the contrabass part, to lighten the orchestral texture and express the mezzo-
piano dynamic, was taken at that stage of the process.

Our orchestrator shared some reflections on the artistic side of this final step:

PO: The distribution of instruments is suggested by the model, but there
is still considerable freedom in the choice of notes and registers. It is also
up to me to choose and indicate nuances, phrasing, playing modes and
expressive indications. Some of the model’s choices wouldn’t have been
what I would have done, like starting directly with the trumpets at the
beginning of movement 6. But it’s stimulating!

Movement 2 “Inexorable” and the outer sections of movement 6 “El Jardin
Eterno” have been orchestrated with this procedure whereas the middle section
of movement 6 has been orchestrated with a “traditional” method. The other
movements have been commissioned to orchestrators outside of our team. The
whole suite has been performed by the Orquesta Kronos conducted by Andrés
Guzmán-Valdez at Nuna Theatre in La Paz, Bolivia, on 19th July 2023.

The experience of working with different methods showed that the AI-assisted
method starts to offer a gain in productivity once the orchestration plan is
reliable. It is also a tool for creative thinking:

AO: Like any creative work, an orchestrator may face the anxiety of
the blank page. Especially as an amateur orchestrator, I enjoyed having
such suggestions. Even when they were inappropriate, they stimulated
creativity through reinforcement, contrast, or opposition.

5 Discussion and Perspectives

In [16] the use of low-tech AI is advocated, to ease the communication between
the composer and the researchers, and to obtain tailor-made models with scarce
data. We adopted a similar approach here, to focus on modeling the process
of orchestration by identifying possible steps, and adapting it to the co-creation
environment. The computational model used to generate orchestration plans has
been conceived and designed with a continuous back and forth between the artist
and the research team. It is meant to be the simplest possible, so that it can be
more easily modified to experiment with different inputs and controls. Concepts
like loudness profiles and coefficients have been added to the model to respond
to the ideas and the necessities of the orchestrator.

We believe that we have succeeded in individuating three well-separated
stages of orchestration (Fig. 1), which could be performed by three different
(human or algorithmic) actors. Each step included a self-refining feedback loop.
For example, the human task at the final stage of the process (3. writing or-
chestral score) can be described in two phases, the second of which is usual
for "traditional orchestration": (3.1) interpret and adapt the orchestration plan,
(3.2) write notes for the instruments. In the first stage, the orchestrator will read
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the output made by the machine and mentally link it to the score to find the best
strategy to transform these outputs into music notes (this phase is fundamental
to selecting the best outputs from the machine). The second phase consists of
writing the notes idiomatically for the instruments, but also the dynamics and
the phrasing and expressive instructions.

The current model has limitations. The process is not always linear: it was
sometimes in phase (3.2) that choices made in phase (3.1) retrospectively ap-
peared to be pitfalls, and the entire process had to be made again (when, for
example, a particular arrangement was not compatible with the plan selected for
the subsequent section). Other points could also be improved, as for example the
formation of mixed layers. More generally, a challenge is to better model large-
scale orchestral thinking. Orchestral contrast is typically achieved when the same
instrument (or combination of instruments) is not used in the same way in two
successive contrasting parts. This may lead orchestrators to “reserve” an instru-
ment on purpose for a specific moment in the piece. Somehow, the pℓi presets
combined to the acoustic weights and the targeted loudness profiles help such a
large-scale homogeneity and steerability, but these models could be refined.

Looking back to the categories proposed by Kantosalo and Jordanous [35],
we have experimented with a process rooted in the interaction between the
computational models and the artist, in which the role of the model is in between
AI as a colleague and AI as a tool. Dividing the orchestration process into steps
has facilitated the introduction of computational models. In this way, the role
of the AI is to act on a well defined and specific task, making the model an
essential tool in the overall process. The algorithm is acting on the product of
human actions (the layer score), and is enabling further human processing with
its output (writing the final orchestral score). At the same time, the model is
able to “suggest” unforeseen ideas to the humans, acting more as a co-creative
colleague, who can inspire and enhance the inspiration of the human artist.

Any co-creative project confronts us with questions related to the authentic-
ity and the ownership of the such art [46]. When dealing with AI-generated art,
ethical, legal, and moral concerns emerge, questioning the status of the product
itself as having artistic qualities [45]. In this research and creation project, the
development of the algorithm and the artistic creation of the orchestrated score
were intertwined processes. For this reason, the score have been signed with Or-
chestrated by Mael Oudin and the Algomus team, recognizing authorship to all
members of the project, musicians and computer scientists.

In summary, we proposed a framework for AI assisted orchestration, in which
the orchestrators craft their art in collaboration with AI algorithms. We divided
the process into three steps, modeling layer scores and orchestration plans as
intermediate objects. The code for generating orchestration plans is available
under an open-source licence at algomus.fr/code. Through this preliminary
project, this approach has proven to be effective in formalizing the art of or-
chestration, enabling the involvement of both machine and human actors, each
contributing at different moments. The possibilities for the employment of AI
in the process are not limited to the ones selected for the scope of this project.

algomus.fr/code
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Perspectives include modeling other tasks in the process with Deep Learning
AI, both for texture analysis tasks related to the creation of the layer score, and
for constrained notes generation, in the creation of the final score. Co-creative
interactions would be allowed through model parameters, and through creative
modifications of the outputs at several stages: when writing the layer score, the
orchestration plan, and the final rendering of the notes. All these steps can be
accomplished partly by the machine and partly by the human being, with a
fruitful continuous exchange of information.

Acknowledgements

We deeply thank Gissel Velarde, Andrés Guzmán-Valdez and the Orquesta Kro-
nos, and the Nuna Theatre in La Paz, Bolivia. We thank the valuable input
and comments provided by Dinh-Viet Toan Le, the Algomus team, and the
anonymous reviewers. We also extend our gratitude to the ACTOR project for
facilitating collaboration among the authors of this paper and inspiring enriching
discussions.

References

1. Adkins, S., Sarmento, P., Barthet, M.: LooperGP: A Loopable Sequence Model
for Live Coding Performance Using GuitarPro Tablature. In: Johnson, C.,
Rodríguez-Fernández, N., Rebelo, S.M. (eds.) Artificial Intelligence in Music,
Sound, Art and Design. pp. 3–19. Lecture Notes in Computer Science, Springer Na-
ture Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-29956-8_
1

2. Adler, S.: The Study of Orchestration. Norton (1982 (first ed))
3. Agostinelli, A., Denk, T.I., Borsos, Z., Engel, J., Verzetti, M., Caillon, A., Huang,

Q., Jansen, A., Roberts, A., Tagliasacchi, M., Sharifi, M., Zeghidour, N., Frank,
C.: Musiclm: Generating music from text (2023)

4. Agres, K., Forth, J., Wiggins, G.A.: Evaluation of musical creativity and musical
metacreation systems. Computers in Entertainment (CIE) 14(3), 1–33 (2016)

5. Assayag, G.: Creative symbolic interaction. In: Sound and Music Computing Con-
ference (SMC 2014) (2014)

6. Ben-Tal, O., Harris, M.T., Sturm, B.L.: How music ai is useful: Engagements with
composers, performers and audiences. Leonardo 54(5), 510–516 (2021)

7. Benward, B., Saker, M.: Music in Theory and Practice (Volume 1). McGraw-Hill
Professional (2008 (8th ed))

8. Berlioz, H.: Grand Traité d’instrumentation et d’orchestration Modernes. Novello
(1844 (first ed))

9. Bosch, J.J., Marxer, R., Gómez, E.: Evaluation and combination of pitch estimation
methods for melody extraction in symphonic classical music. Journal of New Music
Research 45(2), 101–117 (2016)

10. Briot, J.P., Hadjeres, G., Pachet, F.D.: Deep learning techniques for music gener-
ation. Springer (2019)

11. Briot, J.P., Pachet, F.: Deep learning for music generation: Challenges and direc-
tions. Neural Computing and Applications 32(4), 981–993 (2020-02-01). https:
//doi.org/10.1007/s00521-018-3813-6

https://doi.org/10.1007/978-3-031-29956-8_1
https://doi.org/10.1007/978-3-031-29956-8_1
https://doi.org/10.1007/s00521-018-3813-6
https://doi.org/10.1007/s00521-018-3813-6


16 F. Maccarini et al.

12. Cella, C.E.: Orchidea: A comprehensive framework for target-based computer-
assisted dynamic orchestration. Journal of New Music Research (2022). https:
//doi.org/10.1080/09298215.2022.2150650

13. Couturier, L., Bigo, L., Levé, F.: Annotating symbolic texture in piano music: A
formal syntax. In: Sound and Music Computing Conference (SMC 2022) (2022)

14. Crestel, L., Esling, P.: Live Orchestral Piano, a system for real-time orchestral
music generation. In: Sound and Music Computing Conference (SMC 2017). p. 434
(2017), https://hal.archives-ouvertes.fr/hal-01577463

15. Crestel, L., Esling, P., Heng, L., McAdams, S.: A database linking piano and or-
chestral midi scores with application to automatic projective orchestration. In:
International Society for Music Information Retrieval Conference (ISMIR 2017)
(2017)

16. Déguernel, K., Giraud, M., Groult, R., Gulluni, S.: Personalizing AI for Co-Creative
Music Composition from Melody to Structure. In: Sound and Music Comput-
ing (SMC 2022). pp. 314–321. Sound and Music Computing (SMC 2022), Saint-
Étienne, France (2022). https://doi.org/10.5281/zenodo.6573287

17. Dong, H.W., Donahue, C., Berg-Kirkpatrick, T., McAuley, J.: Towards Automatic
Instrumentation by Learning to Separate Parts in Symbolic Multitrack Music. In:
International Society for Music Information Retrieval Conference (ISMIR 2021)
(2021). https://doi.org/doi.org/10.5281/zenodo.5624447

18. Dunsby, J.: Considerations of texture. Music & Letters 70(1), 46–57 (1989)
19. Esling, P., Carpentier, G., Agon, C.: Dynamic musical orchestration using ge-

netic algorithms and a spectro-temporal description of musical instruments. In:
European Conference on the Applications of Evolutionary Computation (EvoCOP
2010). pp. 371–380 (2010)

20. Esling, P., Devis, N.: Creativity in the era of artificial intelligence. arXiv:2008.05959
(2020)

21. Fernández, J.D., Vico, F.: AI methods in algorithmic composition: A comprehen-
sive survey. J. Artificial Intell. Res. 48(1), 513–582 (Oct 2013)

22. Fernández, J.M., Köppel, T., Lorieux, G., Vert, A., Spiesser, P.: GeKiPe, a gesture-
based interface for audiovisual performance. In: New Interfaces for Musical Expres-
sion Conference (NIME 2017). pp. 450–455 (2017)

23. Forsyth, C.: Orchestration. Courier Corporation (1914 (first ed), 1935)
24. Ghisi, D.: Music across music: towards a corpus-based, interactive computer-aided

composition. Ph.D. thesis, Paris 6 (2017)
25. Gotham, M.R.H., Song, K., Böhlefeld, N., Elgammal, A.: Beethoven X: Es könnte

sein! (It could be!). In: Conference on AI Music Creativity (AIMC 2022) (2022).
https://doi.org/10.5281/zenodo.7088335

26. Handelman, E., Sigler, A., Donna, D.: Automatic orchestration for automatic com-
position. In: Artificial Intelligence and Interactive Digital Entertainment Confer-
ence (AIIDE 2012) (2012)

27. Herremans, D., Chuan, C.H., Chew, E.: A Functional Taxonomy of Music Gener-
ation Systems. ACM Computing Surveys 50(5), 69:1–69:30 (2017-09-26). https:
//doi.org/10.1145/3108242

28. Huang, C.Z.A., Koops, H.V., Newton-Rex, E., Dinculescu, M., Cai, C.J.: AI song
contest: Human-AI co-creation in songwriting. In: International Society for Music
Information Retrieval Conference (ISMIR 2020) (2020)

29. Huang, J.L., Chiu, S.C., Shan, M.K.: Towards an automatic music arrangement
framework using score reduction. ACM Transactions on Multimedia Computing,
Communications, and Applications 8(1), 8:1–8:23 (2012). https://doi.org/10.
1145/2071396.2071404

https://doi.org/10.1080/09298215.2022.2150650
https://doi.org/10.1080/09298215.2022.2150650
https://hal.archives-ouvertes.fr/hal-01577463
https://doi.org/10.5281/zenodo.6573287
https://doi.org/doi.org/10.5281/zenodo.5624447
https://doi.org/10.5281/zenodo.7088335
https://doi.org/10.1145/3108242
https://doi.org/10.1145/3108242
https://doi.org/10.1145/2071396.2071404
https://doi.org/10.1145/2071396.2071404


Co-creative orchestration 17

30. Huron, D.: Characterizing musical textures. In: International Computer Music
Conference (ICMC 1989). pp. 131–134 (1989)

31. Ji, S., Luo, J., Yang, X.: A comprehensive survey on deep music genera-
tion: Multi-level representations, algorithms, evaluations, and future directions.
arXiv:2011.06801 (2020)

32. Johnson, D.P., Tyson, A., Winter, R.: The Beethoven sketchbooks: History, recon-
struction, inventory. Univ of California Press (1985)

33. Jordanous, A.: A standardised procedure for evaluating creative systems: Compu-
tational creativity evaluation based on what it is to be creative. Cognitive Com-
putation 4(3), 246–279 (2012)

34. Jordanous, A.: Has computational creativity successfully made it “beyond the
fence” in musical theatre? Connection Science 29, 350–386 (10 2017). https:
//doi.org/10.1080/09540091.2017.1345857

35. Kantosalo, A., Jordanous, A.: Role-based perceptions of computer participants in
human-computer co-creativity. In: AISB Symposium of Computational Creativity
(CC@AISB 2020) (2020)

36. Kendall, R.A., Carterette, E.C.: Identification and blend of timbres as a basis for
orchestration. Contemporary Music Review 9(1-2), 51–67 (1993)

37. Koechlin, C.: Traité de l’orchestration. Max Eschig (1941 (completed), 1954-1959
(posthumous ed))

38. Le, D.V.T., Giraud, M., Levé, F., Maccarini, F.: A corpus describing orchestral
texture in first movements of classical and early-romantic symphonies. In: Digital
Libraries for Musicology (DLfM 2022). pp. 22–35 (2022)

39. Liu, J., Dong, Y., Cheng, Z., Zhang, X., Li, X., Yu, F., Sun, M.: Symphony
generation with permutation invariant language model. In: International Soci-
ety for Music Information Retrieval Conference (ISMIR 2022) (2022). https:
//doi.org/10.48550/arXiv.2205.05448

40. Louie, R., Coenen, A., Huang, C.Z., Terry, M., Cai, C.J.: Novice-AI music co-
creation via AI-steering tools for deep generative models. In: Conference on Human
Factors in Computing Systems (CHI 2020). pp. 1–13 (2020)

41. Lubart, T.: How can computers be partners in the creative process: classification
and commentary on the special issue. International Journal of Human-Computer
Studies 63(4-5), 365–369 (2005)

42. Makris, D., Karydis, I., Cambouropoulos, E.: VISA3: Refining the voice inter-
gration/segregation algorithm. In: Sound and music computing conference (SMC
2016) (2016)

43. Mateja, D., Heinzl, A.: Towards machine learning as an enabler of computa-
tional creativity. IEEE Transactions on Artificial Intelligence 2(6), 460–475 (2021).
https://doi.org/10.1109/TAI.2021.3100456

44. McAdams, S., Goodchild, M., Soden, K.: A taxonomy of orchestral grouping effects
derived from principles of auditory perception. Music Theory Online 28(3) (2022)

45. McCormack, J., Cruz Gambardella, C., Rajcic, N., Krol, S.J., Llano, M.T., Yang,
M.: Is Writing Prompts Really Making Art? In: Johnson, C., Rodríguez-Fernández,
N., Rebelo, S.M. (eds.) Artificial Intelligence in Music, Sound, Art and Design. pp.
196–211. Lecture Notes in Computer Science, Springer Nature Switzerland, Cham
(2023). https://doi.org/10.1007/978-3-031-29956-8_13

46. McCormack, J., Gifford, T., Hutchings, P.: Autonomy, authenticity, authorship
and intention in computer generated art. In: International Conference on Compu-
tational Intelligence in Music, Sound, Art and Design (EvoMUSART 2019). pp.
35–50 (2019)

https://doi.org/10.1080/09540091.2017.1345857
https://doi.org/10.1080/09540091.2017.1345857
https://doi.org/10.48550/arXiv.2205.05448
https://doi.org/10.48550/arXiv.2205.05448
https://doi.org/10.1109/TAI.2021.3100456
https://doi.org/10.1007/978-3-031-29956-8_13


18 F. Maccarini et al.

47. McKay, G.F.: Creative Orchestration. Allyn and Bacon (1963)
48. Miller, A.I.: The Artist in the Machine: The World of AI-Powered Creativity. The

MIT Press (10 2019). https://doi.org/10.7551/mitpress/11585.001.0001
49. Miron, M., Carabias-Orti, J.J., Bosch, J.J., Gómez, E., Janer, J.: Score-informed

source separation for multichannel orchestral recordings. Journal of Electrical and
Computer Engineering (2016)

50. Miron, M., Carabias-Orti, J.J., Janer, J.: Audio-to-score alignment at the note
level for orchestral recordings. In: International Society for Music Information Re-
trieval Conference (ISMIR 2014). pp. 125–130 (2014). https://doi.org/10.5281/
zenodo.1416150

51. Nattiez, J.J.: Fondements d’une Sémiologie de La Musique. Dufrenne (1975)
52. Nordgren, Q.R.: A Measure of Textural Patterns and Strengths. Journal of Music

Theory 4(1), 19–31 (1960). https://doi.org/10.2307/843045
53. Pachet, F.: A joyful ode to automatic orchestration. ACM Transactions on Intel-

ligent Systems and Technology 8(2), 18:1–18:13 (2016-10-03). https://doi.org/
10.1145/2897738

54. Parmentier, A., Déguernel, K., Frei, C.: A modular tool for automatic soundpaint-
ing query recognition and music generation in Max/MSP. In: Sound and Music
Computing Conference (SMC 2021) (2021)

55. Piston, W.: Orchestration. Norton (1955)
56. Reybrouck, M.M.: Musical creativity between symbolic modelling and perceptual

constraints: The role of adaptive behaviour and epistemic autonomy. In: Musical
Creativity, pp. 58–76. Psychology Press (2006)

57. Rimsky-Korsakov, N.: Principles of Orchestration: With Musical Examples Drawn
from His Own Works, vol. 1. Édition russe de musique (1873 (begun), 1912 (posthu-
mous ed))

58. Rosselló, L.B., Bersini, H.: Music Generation with Multiple Ant Colonies Inter-
acting on Multilayer Graphs. In: Johnson, C., Rodríguez-Fernández, N., Rebelo,
S.M. (eds.) Artificial Intelligence in Music, Sound, Art and Design. pp. 34–49.
Lecture Notes in Computer Science, Springer Nature Switzerland, Cham (2023).
https://doi.org/10.1007/978-3-031-29956-8_3

59. Sallis, F.: Music sketches. Cambridge University Press (2015)
60. Sandell, G.J.: Roles for spectral centroid and other factors in determining “blended”

instrument pairings in orchestration. Music Perception 13(2), 209–246 (1995)
61. Sarmento, P., Kumar, A., Chen, Y.H., Carr, CJ., Zukowski, Z., Barthet, M.: GTR-

CTRL: Instrument and Genre Conditioning for Guitar-Focused Music Generation
with Transformers. In: Johnson, C., Rodríguez-Fernández, N., Rebelo, S.M. (eds.)
Artificial Intelligence in Music, Sound, Art and Design. pp. 260–275. Lecture Notes
in Computer Science, Springer Nature Switzerland, Cham (2023). https://doi.
org/10.1007/978-3-031-29956-8_17

62. Schnittke, A.: Timbral relationships and their functional use. Orchestration: An
anthology of writings pp. 162–175 (2006)

63. de Sousa, D.M.: Textural design: A Compositional Theory for the Organization of
Musical Texture. Ph.D. thesis, Universidade Federal do Rio de Janeiro (2019)

64. Takamori, H., Sato, H., Nakatsuka, T., Morishima, S.: Automatic arranging musical
score for piano using important musical elements. In: Sound and Music Computing
Conference (SMC 2017). pp. 35–41 (2017)

65. Vechtomova, O., Sahu, G.: LyricJam Sonic: A Generative System for Real-Time
Composition and Musical Improvisation. In: Johnson, C., Rodríguez-Fernández,
N., Rebelo, S.M. (eds.) Artificial Intelligence in Music, Sound, Art and Design. pp.

https://doi.org/10.7551/mitpress/11585.001.0001
https://doi.org/10.5281/zenodo.1416150
https://doi.org/10.5281/zenodo.1416150
https://doi.org/10.2307/843045
https://doi.org/10.1145/2897738
https://doi.org/10.1145/2897738
https://doi.org/10.1007/978-3-031-29956-8_3
https://doi.org/10.1007/978-3-031-29956-8_17
https://doi.org/10.1007/978-3-031-29956-8_17


Co-creative orchestration 19

292–307. Lecture Notes in Computer Science, Springer Nature Switzerland, Cham
(2023). https://doi.org/10.1007/978-3-031-29956-8_19

66. Zembylas, T., Niederauer, M.: Composing processes and artistic agency: Tacit
knowledge in composing. Routledge (2017)

https://doi.org/10.1007/978-3-031-29956-8_19

	Co-creative orchestration of Angeles  with layer scores and orchestration plans

