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ABSTRACT

Brain research often segments the cortex into regions based
on an atlas, assuming a perfect matching of the regions across
different subjects. However, due to genetic and environmen-
tal factors, inter-subject variability makes it challenging to
produce a single brain atlas with a perfect correspondence
of region labels across subjects, especially at a fine-grained
scale. Previous work has proposed to use structural connec-
tomes constructed from diffusion magnetic resonance imag-
ing to permute brain regions across subjects and align the
cortical regions from one subject to another, leading to an
improved similarity of connectomes across subjects. In this
work, we propose a multimodal approach to exploit simul-
taneously structural and functional connectivity information
in the alignment process. Spatial constraints are included to
prevent unlikely permutations between remote regions. Ex-
perimental results show the validity of the approach and the
effectiveness of the constraint.

Index Terms— graph alignment, inter-subject variability,
structural connectivity, functional connectivity, cortical atlas

1. INTRODUCTION

Due to the billions of cells in the brain, current imaging tech-
niques cannot capture the activity of every single neuron. A
general and feasible approach is to subdivide the cortex into
regions, and then assess activity per region. Those regions
are assumed to be homogeneous in terms of structural con-
nectivity or functional connectivity and ideally both. How-
ever, the cortex and white matter are shaped by environmental
and genetic factors [1] and therefore differ between subjects.
Spatial inter-subject variability of brain activity has been the
topic of numerous studies, e.g. [2]. For instance, it has been
shown that activation peaks for language areas have a stan-
dard deviation reaching 19.5 mm [3]. Nonetheless, brain at-
lases generally do not account for inter-individual variabil-
ity. Especially at a fine-grained level, labels of tiny brain
regions probably do not correspond from one subject to an-
other. One approach to make the structural and functional
connectivity correspond across subjects is to permute the re-
gion labels to increase the similarity of brain regions across

subjects. In our context, connectivity strengths between re-
gions are stored in a connectome, represented as a N × N
matrix, with N being the number of regions. The permuta-
tions of regions is a graph alignment problem, it boils down to
permuting the rows and columns of a subject connectome ma-
trix to match the connectome of another subject (Fig.1). The
alignment of the brain regions has been shown to improve the
similarity of structural connectomes (SC) [4] computed from
diffusion Magnetic Resonance Imaging (MRI) but has never
been tested on functional connectomes (FC) computed from
functional MRI (fMRI). This paper proposes a simultaneous
alignment of structural and functional connectomes. More-
over, we add a regularization term to favor permutations of
local regions rather than remote ones. We show that it is pos-
sible to identify permutations that simultaneously align struc-
tural and functional connectomes while respecting plausible
anatomical constraints.

2. MATERIALS AND METHODS

2.1. Network alignment, FAQ algorithm

Finding the permutation matrix that maximizes the similarity
between two connectomes is formulated as:

min
P∈P

∥PCPT − Cr∥2F , (1)

where P is a permutation matrix belonging to the permu-
tation group P = {P ∈ {0, 1}N×N : PT 1 = P1 = 1}
inducing a permutation of rows and columns of the connec-
tome C to align it with the reference connectome Cr. The
similarity of the connectomes is based on the Frobenius norm
∥.∥F . Solving this problem is NP-hard. The Fast Approx-
imate Quadratic Assignment Problem (FAQ) algorithm [5]
tackles this difficulty by solving a relaxed version of the above
optimization problem by allowing P to be in the space of bis-
tochastic matrices to enable optimization by gradient descent.
The obtained matrix is then projected onto the set of permu-
tation matrices, yielding an approximate solution to Eq.(1).
The optimization is initialized as the identity matrix, as we
suppose it is a close approximation of the resulting permuta-
tion.
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Fig. 1. Example of alignment of regions using permutations
of rows and columns on a pair of subject’s connectomes from
a given subject 1 to a given subject of reference 2.

To combine the information of two brain networks com-
ing from different modalities, we modified the FAQ algorithm
to minimize the criterion

L1(P ) = α∥PSPT −Sr∥2F +(1−α)∥PFPT −Fr∥2F (2)

with S and F being respectively the symmetric SC and
resting-state FC (rs-FC) of a given subject, and Sr and Fr

the corresponding connectomes of a subject chosen as ref-
erence. The same permutation matrix P is applied to both
connectome’s modalities, as we suppose the regions to have
the same role in the brain from both structural and functional
perspectives. The weighting term α taking values between 0
and 1, balances the two modalities in the optimization. Spe-
cific cases are α = 0 or 1, corresponding to respectively an
alignment of rs-FC or SC only, as in Eq.(1).

To incorporate spatial information in the alignment opti-
mization, we add a regularization term:

L2(P ) = L1(P )− λTrace(PTR). (3)

The regularization term, weighted by the hyperparameter λ
requires a binary regularization matrix R. We construct R so
that the entry at row i and column j is 1 if we allow the per-
mutation from region i to j. This regularization term is mini-
mized if the entries of the permutation matrix P are 1 where
the entries of R are also 1, in which case Trace(PTR) = N .
The regularization term behaves similarly in the bistochastic
matrix space, as any matrix that minimizes the regularization
term is a permutation matrix. For a sufficiently large value
of λ, the regularization term will thus be constant and mini-
mal (equals to −λN ), therefore only containing permutations
allowed by R.

In this work, we propose 3 different optimization strate-
gies:

• Hemispheric Alignment (HA), performed separately on
the two connectomes restricted to left and right hemi-
spheres, neglecting the inter-hemispheric information.
The left and right permutation matrices of shape N

2 × N
2

are computed using L1(P ) and recombined in a N × N
permutation matrix;

• Whole-brain Alignment (WBA), P is the min argument of
L2(P ) with permutations restricted to regions within the
same hemisphere, allowing to use the inter-hemispheric
information of whole-brain connectomes;

• Whole-brain Alignment with Neighborhood Constraints
(WBANC), P is the min argument of L2(P ) with permu-
tations restricted to neighbor regions and forbidding inter-
hemispheric permutations.

2.2. Assessement of identified permutations

To validate the permutations, the following error criterion is
computed:

∥C − Cr∥F − ∥PCPT − Cr∥F (4)

which is the difference between the connectomes’ distances
C and Cr before and after the permutations of the rows and
columns using P . The matrices P are identified on each pair
of subjects for each optimization strategy, for α from 0 to 1
with a step size of 0.1 and λ = 1000 (determined experimen-
tally).

A Wilcoxon test is used to assess the significance of our
results. A statistically significant result indicates that the dis-
tribution of the distance’s differences is statistically greater
than a distribution symmetric about 0, which is equivalent to
testing whether the distribution of the distances after align-
ment is statistically lower than the distribution of the distances
before the alignment.

2.3. Data processing

We selected the first 200 subjects from the Human Connec-
tome Project (HCP) S1200 release. The images included
resting-state fMRI (rs-fMRI), diffusion MRI (dMRI), and
task-evoked fMRI (t-fMRI) for motor, language, social, gam-
bling, emotion, relational, and working memory tasks. The
imaging protocols have been described in detail in [6].

The fine-grained atlas of 1000 regions proposed by [7]
is used to produce symmetric connectomes. The pipeline of
connectome generation is as follows.

Rs-fMRI data originate from the “FIX-Denoised (Ex-
tended)” dataset of HCP in 4D volumetric format. The time
series of rs-fMRI of left-right and right-left phase encoding
are concatenated along the time axis. Irrelevant parts of the
BOLD signal are removed with a bandpass filter with cut-off
frequencies of 0.06 and 0.125 Hz. The processed BOLD
signals are averaged over the regions of the atlas. The corre-
lation matrix is computed on processed BOLD signals using



Pearson’s coefficient. The previous pipeline is applied to the
two runs of resting-state separately, leading to two rs-FC per
subject. Task-evoked functional images were preprocessed
through the HCP Minimal Preprocessing Pipeline (MPP) [8]
and the same pipeline is applied on the seven t-fMRI concate-
nated along the time axis, leading to a single task-state-FC [9]
(ts-FC), averaging the seven tasks.

Diffusion images are preprocessed through MPP [8]. We
used the TractoFlow pipeline [10] to reconstruct tractograms
from preprocessed dMRI, with spherical harmonics of or-
der 10 maximum fitted to the preprocessed dMRI data. The
streamlines are reconstructed using a step size for Particle
Filter Tracking of 0.3125 mm with 120 seeds per voxel at
the intersection between white and gray matter. Streamlines
from 20 to 300 mm are kept. The other parameters of the
TractoFlow script are set to their default values. We construct
streamline count connectomes. Each SC is symmetrized and
normalized to have the same Frobenius norm as the FC of the
same subject.

The rs-FC from the first run and the SC will be used in
the optimizations, considered as ”training” connectomes. The
”validation” connectomes, rs-FC from the second run, and the
ts-FC of the concatenated 7 tasks are used to test the robust-
ness of the identified permutations.

3. RESULTS AND DISCUSSION

The distributions of the differences of Eq.(4) are illustrated in
Fig.2. Statistically significant results are presented with one
(p < 0.005) or two (p < 0.001) stars. For α = 1 (right col-
umn in Fig.2, alignment on SC only) the distributions of the
difference of distances after and before the alignment of SC
(red) are significantly positive. This means we can find per-
mutations for every optimization (HA, WBA, WBANC) that
reduce the distance between the SC matrices. Conversely, for
α = 0 (left column, alignment on run 1 of rs-FC only) the
distances between the rs-FC (run 1) (dark green) always de-
creased thanks to the alignment (distributions of the differ-
ences shifted above 0).

We also observe that permutations do not always gener-
alize to other connectome modalities. In other words, the
permutations identified on one type of connectome, do not
always allow to also decrease the connectome’s distances of
other types of connectomes (distributions sometimes shifted
below 0). However, for multimodal alignments (α between
0 and 1 excluded), particularly for α = 0.5, the distribu-
tions of the differences of distances for SC (red) and run 1
of rs-FC (dark green) are both shifted to the right for every
method. We conclude that our algorithm can find permuta-
tions that simultaneously align SC and rs-FC matrices. Note
that when including the first run of rs-FC in the alignment
optimization (first 3 columns, α ̸= 1), the identified permuta-
tions decrease the distances between the rs-FC of the second
run (light green), even if not used in the optimization. We can
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Fig. 2. Distributions of the differences of the distances be-
tween connectomes after and before alignment, for the three
methods: HA (first row), WBA (middle row), WBANC (last
row) and for different values of α.

Fig. 3. Distances between permuted regions on average for
WBA and WBANC methods and α = 0.5. Distance is cal-
culated as the minimum number of regions in between two
permuted regions.

say that permutations generalize to the rs-FC of the second
run.

Comparing the HA and WBA optimizations (first and sec-
ond rows), we observe that the distributions of SC for α = 1
(red distribution in right column) and rs-FC (run 1) for α = 0
(dark green in left column) are more shifted to the positive
using WBA than HA. This means that the inter-hemispheric
connectivity improves the alignment.

The WBANC optimization (last row) has a weaker effect
on the shift of the distributions because we are restricting the
set of possible permutations. However, restricting the per-
mutations to neighboring regions still allows us to identify
permutations that decrease the connectomes distances. In ad-
dition, it is the only optimization that generalizes to ts-FC at
α = 0.1 (blue distribution at the third row and second col-
umn), because when applied to ts-FC, the connectomes’ dis-



tances decrease.
Our results show that the regularization term acts almost

as a constraint because, in the WBA alignment, 99.9% of the
permutations concern regions within the same hemispheres,
and in the WBANC alignment 99.9% of the permutations are
restricted to neighboring regions. Fig.3 shows for each region
on a brain map the distance to its permuted regions over all
the subject’s alignment, for WBA and WBANC methods, and
α = 0.5. A distance between two permuted regions is cal-
culated as the minimum number of regions in between. The
permutation distance for a region not permuted in a subject’s
alignment is thus 0.

4. CONCLUSION

Our framework of brain alignment shows that it is possible to
simultaneously align structural and functional connectomes
from resting-state fMRI. Moreover, permutations also gener-
alize to resting-state connectomes not used during the align-
ment optimization. The inter-hemispheric connectivity in-
forms the alignment. The restriction to local permutations
has a less significant effect on the decrease of the distances
between the connectomes but induces permutations probably
more robust because it generalizes to task functional connec-
tomes.

5. COMPLIANCE WITH ETHICAL STANDARDS

This research study was conducted retrospectively using hu-
man subject data made available in open access by the Human
Connectome Project. Ethical approval was not required as
confirmed by the license attached with the open access data.
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