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ABSTRACT

By subdividing the cortex into regions according to a given
atlas, we assume that all the regions match across different
subjects. However, because of inter-subject variability, it may
not be possible to produce a single brain atlas for all subjects.
Previous works have proposed to use structural connectomes
constructed from diffusion magnetic resonance imaging trac-
tography to align brain regions across a group of subjects,
leading to an improved similarity of connectomes. In this
work, we propose to simultaneously exploit structural and
functional information in the alignment process. This allows
us to explore multiple perspective of brain networks. Our re-
sults show the permutations induced by one type of connec-
tivity (structural, functional) are not always supported by the
other connectivity network, but when considering combined
alignment, it is possible to find permutations of regions which
are supported by both connectome modalities, leading to an
increased similarity of functional and structural connectivity
across subjects.

Index Terms— Brain network,
Structure-Function, Graph matching

Brain connectivity,

1. INTRODUCTION

Due to the large number of neurons in the brain [1], detect-
ing all of their individual activation patterns responsible for
human behavior is technically impossible. A reasonable ap-
proach consists in subdividing the gray matter surface into
homogeneous neuronal areas [2]. The regions and their re-
lationships can be represented as a graph, with the regions
being the nodes and the connectivity between them being
the edges [3, 4, 5]. The connectivity, corresponding to the
edges of the graph, is usually represented as a square matrix
called a connectome [3], of dimensions N x N, with N
being the number of brain regions. In our case, we consider
symmetric connectome matrices. It is generally assumed
that the regions of connectomes correspond across subjects,
meaning regions with the same label are expected to have
the same structural and functional roles in the brain net-
work. However, spatial organization of both cortex and white
matter is shaped by environmental and genetic factors [6].
This leads to spatial neuronal inter-subject variability and

consequently in structural and functional variability. As a
result, it is challenging to produce a single brain atlas for all
subjects [7]. The inter-subject variability can be observed
during neurosurgery, where patients undergo highly invasive
awake-surgery with electrical cortical stimulation to precisely
localize given functional areas [8]. The problem of produc-
ing a single brain atlas is exacerbated for atlases with very
small regions, as the spatial variability across subjects may be
larger than the region size [9]. In particular, it is problematic
when we want to carry out group-level analysis or modeling
of brain networks, because a particular label of the chosen
atlas may not represent the same neuronal structure across
subjects [10], therefore limiting the specificity of the results.
A previous approach used connectivity fingerprint to find a
matching of regions [11]. Another one [12] proposes to in-
crease the similarity between graphs of structural connectivity
across subjects, computed from diffusion magnetic resonance
imaging (dMRI) tractography, by allowing permutations of
regions (the nodes of the graph). Two subject’s brain atlas can
be aligned by selecting the connectome of a subject as the ref-
erence to align the other subject’s connectome. A matching of
the regions across subjects is found by maximizing the graph
similarity, a process known as graph alignment [13]. Graph
alignment was shown to improve the inter-subject similarity,
as it captures the inter-subject variability of connectivity in
insect brains [14]. It was observed that brain function con-
nectivity often differs spatially across subjects [15], but the
previous approach has only been tested using structural con-
nectomes (SCs) and never on functional connectomes (FCs)
derived from resting-state functional MRI (rs-fMRI). In this
work, we present the results of graph matching using both
structural and functional networks. More specifically, we
investigate whether it is possible to find permutations that
are consistent in structural and functional graphs, resulting
in an improvement of similarity for both SCs and FCs across
subjects.

2. MATERIALS AND METHODS

2.1. Network alignment, FAQ algorithm

As mentioned previously, the regions of an atlas may not be
mapped coherently from one subject to another. To find the



mismatched regions, we can compare the connectivity of re-
gions of the atlas to the rest of the cortex, i.e. one row of the
symmetric structural connectome, across subjects. We will
then permute the labels of the regions if the permutation in-
creases the similarity of the region connectivity with respect
to the reference graph. More precisely, for a given subject,
a region labeled [, is permuted with a region labeled [ if
the permuted connectome is more similar to the connectome
of reference. Finding the optimal permutation, i.e. finding
the permutation matrix that maximizes the similarity between
two graphs is formulated mathematically as:

inimize |[PCP" — C™|3 1
minimize || 17 q))

where P is a permutation matrix belonging to the permuta-
tion group & = {P € {0,1}"*" : PT1 = P1 = 1} and
induces a permutation of rows and columns of the connec-
tome C' to align it with the reference connectome C"¢/. The
similariry of the connectomes is based on the Frobenius norm
l-ll=. Unfortunately, solving this problem is NP-hard. The
Fast Approximate Quadratic Assignment Problem (FAQ) al-
gorithm [16] tackles this difficulty by solving a relaxed ver-
sion of the above optimization problem: P is allowed to be in
the set of bistochastic matrices instead of just the set of per-
mutation matrices to enable optimization by gradient descent.
The obtained bistochastic matrix is then projected onto the set
of permutation matrices [17], yielding an approximate solu-
tion to Eq. (1). The gradient descent is initialized as the bis-
tochastic projection of the adjacency matrix of the spatially
adjacent regions of the atlas, as it was shown to be the best
choice for initializing the algorithm [12] by favoring local
permutations.

To combine the information of two brain networks com-
ing from different modalities, we modified the FAQ algorithm
such that it solves the optimization problem

minimize a |PC4PT — C%F||%

Pez

+ (1-a) |[PCPT = CF'|% ()

with C4 and Cp being the symmetric connectomes of
modality A and B, and C*¢f and C%! the corresponding ref-
erence connectomes. The same permutation matrix P is ap-
plied to both connectomes. The weight term « is used to favor
one modality over the other. Indeed, if one modality is more
noisy than the other, we may disfavor it with respect to the
less noisy one. Specific cases are a = 1, which corresponds
to an alignment with modality A only and a = 0 for an align-
ment considering only modality B. Both are equivalent to the
original FAQ algorithm of Eq. (1) for C4 or Cp respectively.
We kept the same initialisation depicted above as a starting
point.

In the work of [12], the FAQ algorithm is applied on struc-
tural connectomes, and shows significant alignment of struc-
tural networks. In our work, C'4 will correspond to SC and

Cp to FC. The connectomes of references C'¢f and O are
the Fréchet means of the SCs and FCs of the cohort. Us-
ing Frobenius distance, the Fréchet mean corresponds to the
connectome that minimizes the sum of the variance to all the
other connectomes [18].

Note that the network alignment is carried out on the left
and right hemisphere of the brain independently. Otherwise
the algorithm would be very likely to permute regions across
hemispheres because of relative symmetry of the brain, which
is undesirable.

2.2. MRI acquisition and preprocessing, HCP data

In this work, we consider 1050 subjects of the HCP diffusion
MRI and resting-state MRI young-adults dataset. For each
subject, 288 dMRI volumes have been acquired: 18 volumes
at b-value 0 s/mm?, 90 volumes at b-values 1000 s/mm?, 90
volumes at b-values 2000 s/mm?, and 90 volumes at b-values
3000 s/mm?. Each volume is composed of 145 x 174 x 145
voxels with a resolution of 1.25 x 1.25 x 1.25 mm?3. Diffusion
data has been preprocessed according to the Minimal Pre-
processing HCP pipeline [19], including EPI distortion and
eddy-current correction. Functional data are originated from
FIX-Denoised (Extended) rs-fMRI dataset of HCP [20]. The
rs-fMRI data is rescaled in MNI space.

2.3. Data processing
2.3.1. fMRI

To filter out irrelevant parts of the BOLD signal, we used a
Butterworth bandpass filter of order 8 and with cut-off fre-
quencies of 0.06 and 0.125 Hz [21]. The processed BOLD
signals are averaged over the regions of a multimodal atlas,
and their respective temporal mean of every region averaged
signal is removed. The correlation matrix is computed on
processed BOLD signals using Pearson’s coefficient. Re-
garding the atlas, we chose a multimodal atlas [22] with the
FreeSurfer surface of subjects registered in the MNI space.
The subcortical region of the hippocampus has been removed,
leading to 179 regions per hemisphere. Because FCs are cor-
relation matrices, there are by definition symmetric.

2.3.2. dMRI

We used the TractoFlow [23] pipeline to reconstruct trac-
tograms from preprocessed dMRI. Spherical harmonics of
order 10 maximum are fitted to the preprocessed dMRI data.
Then, 120 seeds per voxels at the intersection of the gray
matter and white matter are positioned as starting points of
streamlines. The streamlines are reconstructed using a step
size for Particle Filter Tracking (PFT) of 0.3125 mm. Only
valid streamlines with a length ranging from 20 to 300 mm
are kept. The other parameters of TractoFlow script are set to
their default values. The structural connectome is constructed



by counting the number of streamlines included in the trac-
togram that connects the two regions of the given matrix
entry [4]. A local search is performed to find the closest cor-
tical region to the endpoints of the streamline, with a upper
bound distance of 5.0 mm. The same atlas as for the FC is
used, but with the FreeSurfer surface of subjects in the origi-
nal space. The connectomes are symmetrized by adding their
transpose and dividing by 2. Then they are normalized such
that they become dimensionless and have the same Frobenius
norm as the FC of the same subject.

3. RESULTS AND DISCUSSION

Our implementation of the FAQ algorithm, sometimes, does
not find a permutation matrix that increases the connectome
similarity with respect to the reference connectomes. It then
returns the identity matrix, meaning no permutations. More-
over, the permutation matrix may increase the similarity of
one connectome modality, but not the similarity of the other.
A relevant criterion to evaluate the performance of our algo-
rithm is, therefore, the percentage of subjects in the dataset
where the connectome similarity strictly increased with re-
spect to the respective references for both structural and func-
tional modality.

3.1. Hyperparameter alpha

To empirically find the « value, we track the percentage of
subjects whose connectomes are more similar to the Frechet
mean connectomes after the permutation, for the SCs and FCs
(See Fig. 1).
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Fig. 1. The percentage of subjects where the connectome sim-
ilarity increased after graph matching, depending on the hy-
perparameter «.. The percentage of SC (blue curve) increases,
whereas the percentage of FC (yellow curve) decreases with
« because the alignment on SCs is favored. The red curve
represents the percentage of subjects who have both their SC
and FC more similar to the respective references with the
alignment. The highest percentage of subjects is reached for
« = 0.65, and is equal to 73.4%.

The percentage of subjects that have an increased similar-

ity after graph matching depends on the value of the hyperpa-
rameter « (See Fig. 1). Recall that the particular cases where
a = 0 and o« = 1 correspond to aligning the FCs and SCs in-
dependently. We observe that matching networks using only
one modality (o = 0 or 1) does not improve the connectome
similarity of the other modality. However, there is a trade-off
for o = 0.65, where we improve the structural and functional
similarity in more than 73% of the subjects. This result shows
that it is possible to find a permutation matrix that strictly in-
creases the similarity for both structural and functional brain
networks for a majority of subjects.

3.2. Comparison of alignment on SC, on FC, and on com-
bined SC-FC

We take a particular look at the specific cases where we align
only on SC (o« = 1) or only on FC (o = 0). Indeed, those
two specific cases give very different results on the set of per-
mutations, which explains why alignment with SC does not
align properly the FCs and conversely. On average, over the
1050 subjects, 18.5% of labels have been permuted with the
alignment on SC only (« = 1) and 61.3% of labels have been
permuted with the alignment on FC only (o« = 0), but only
15.6% of the labels are permuted for a combined alignment
with & = 0.65. Moreover, 57.7% of the permutations (pro-
jection of one label onto another) from the alignment with
a = 0.65 are either given by the alignment of SC (o = 1)
or by the alignment of FC (o« = 0). More precisely, 42.7%
of the permutations for the combined alignment are shared
with the alignment on SC and only 16.3% are shared with the
alignment on FC. The numbers of permutations given by the 3
approaches (3 values of o) averaged per subject are illustrated
in Fig.2d.

The permutations can be illustrated as edges on the brain
cortex networks, linking two regions of the atlas when they
are permuted. Those edges are weighted by their frequencies
of permutations in the dataset of 1050 subjects (See Fig.2a-c).

The alignments on SC only (Fig.2a) or FC only (Fig.2b)
induce many permutations throughout the cortical surface.
Most of them are discarded in the combined alignment
(Fig.2c). We observe that the combined alignment shares
more permutations with the SC alignment than with the FC
alignment (Fig.2b,d). The edges are mostly located in the
frontal and in the occipital lobes.

The alignment on FC gives more permutations than the
alignment on SC because FCs represent statistical correla-
tion of BOLD signals which contains a non-negligible level
noise, leading to quite similar connectivity profiles across the
regions, that can be permuted without a great change in the
FC.

One important feature of the permutations to notice is that
they are almost all short-range permutations, which we ex-
plicitly favored with the initialization based on the adjacency
matrix. This is consistent with the fact that it is very unlikely
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Fig. 2. Distribution of permutations for alignment on SC
(@) (¢ = 1), FC (b) (¢ = 0) and combined alignment (c)
(v = 0.65) in the left hemisphere. The gravity centers of
the atlas regions are represented by green dots. The width of
the edges represents the frequency of permutations of the two
nodes that are incident with the given edge.

(d) presents a Venn diagram, showing the total amount and
overlap of permutations that are common in the 3 cases (av-
eraged over left and right hemispheres).

to have distant matching regions across subjects. Moreover,
a lower number of permutations is provided by the FAQ al-
gorithm when considering SC and FC together, than when
considering only one modality. This suggests that irrelevant
permutations are removed by the addition of one modality.
Those irrelevant permutations proposed in the one-modality
alignment might be the results of remaining noise, artifacts or
lack of information.

Interestingly, Fig.2a shows permutations which agreed
with the variability in the left-hemisphere of language areas
in the meta-analysis of Vigneau et al. [9]

The permutations localized in the visual cortex are un-
expected because of the strong assumptions about their spa-
tial organization. Indeed, those suggested permutations sup-
ported by both structural and functional connectivity informa-
tion might occur due to the similar connectivity of the visual
regions to the rest of the cortex and may only align remaining
noise. This needs further investigation. A confidence index
might be used on the permutations, such as the connectivity
variability of the permuted regions of the same subject. If
two permuted regions have similar connectivity profile on the
same subjects (as for the regions in the visual cortex) we are

less confident in the permutation as for permuted regions that
present weak connectivity similarity.

Often, two regions would not be entirely mislabeled, but
their boundaries might be rotated, shrunk or shifted in cer-
tain directions and thus do not really delineate a homogeneous
neuronal region, and overlap more of another region than the
one it is supposed to delineate. In that case, the permutation
of labels is a way to partially improve the similarity across
subjects of regions with same labels.

4. CONCLUSION

In this work, we propose a method which improved the align-
ment of atlas regions, incorporating functional connectivity
information. We modified the FAQ algorithm in order to find
a single permutation matrix that aligns the brain atlas using
both structural and functional connectivity. Using only struc-
tural connectivity entails permutations often not consistent in
the functional data, whereas using only functional connec-
tivity seems noisy and suggests a lot of irrelevant permu-
tations. Our novel approach of aligning the cortex regions
across subjects finds permutations of regions that remain con-
sistent both in structural and functional networks. Our results
suggest that, before any group processing of brain networks,
this alignment step should be performed to avoid considera-
tion of mismatched regions across subjects.
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