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Abstract. Surrogate models have become a widely used solution for reducing computation times along design
processes. In this work, a Gaussian Process surrogate model is built and used to predict the performance and
losses of a wound field electrical machine in a fast manner. This approach is relevant, especially for drive cycle
calculations that rapidly generate rising computation costs if they are computed using physical models, espe-
cially finite elements analysis. We present in detail the established method and a comparison of the obtained
results with finite elements results. In addition, a detailed analysis of the optimized current supply is presented,
and the advantages of variable excitation current are highlighted.
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1 Introduction

Computer experiments i.e., the generation of data by com-
puter codes, are employed in most fields nowadays. In gen-
eral, computer experiments are deterministic as opposed to
real-life experiments where noise and measurement errors
can be observed. In optimization problems and many other
cases, the computation time of these experiments becomes
problematic, leading to the rise of interest in surrogate
models.

Surrogate models, also known as metamodels, are
constructed using a few sample responses calculated by
computer experiments. They are then used to build a surro-
gate model that is able to give a prediction of the concerned
function without additional calls of the computer code [1].

Metamodels have been applied in many fields such as
complex physical phenomena approximation [2], groundwa-
ter modeling [3], aerodynamic design optimization [4], elec-
trical machine optimization [5], and hybrid electric vehicle
optimized control [6]. The application’s framework in this
work is electric mobility since hybrid and electric vehicles
have gained more and more attention intending to reduce
greenhouse gas emissions.

Our focus is on the electrical machine whose optimiza-
tion is now an inevitable step in the automotive industry.
In addition, optimization over the whole drive cycle gives
more realistic results than conventional methods that con-
sider only a few operating points. Taking into consideration
the whole drive cycle containing thousands of points in the
parametric design optimization process is very costly in
terms of computation time: based on the numerical tools
used in this paper, it can take around 6 years to evaluate
10,000 machines using Finite Elements (FEs). Recent works
avoid this problem by presenting drive cycles using a
reduced number of operating points in the context of
Permanent Magnet Synchronous Machines (PMSMs)
optimization [7–10].

In this work, the goal is to develop a fast, versatile, and
precise model for current supply optimization that can be
integrated into the design optimization process of electrical
machines. We present an optimization methodology over
the whole Worldwide Harmonised Light Vehicle Test
Procedure (WLTP) [11] drive cycle for a Wound Field
Synchronous Machine (WFSM) using metamodels.

The choice of sample points and the construction of the
surrogate model are detailed. An analysis of the obtained
current parameters and the influence of the excitation
current are investigated.* Corresponding author: rebecca.mazloum@stellantis.com
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Even though this study is focused on electrical machine
optimization for automotive applications, the methodology
described can be generalized and adapted for predicting
other quantities of interest.

2 Electrical machine

Optimization of electric motors is crucial to obtain
improved performance and reduced costs. Many types of
electric motors are used in the automotive industry [12].
While permanent magnet synchronous machines are domi-
nant, we can also find induction and wound field syn-
chronous motors. The methodology, developed in the
following section, is applied to a wound field synchronous
machine. The advantages of this type of machine are the
absence of permanent magnets and the optimal field weak-
ening operations due to the additional excitation current at
the rotor. In fact, WFSMs have three current parameters:
armature current density Jind and current angle w, as well
as the excitation current density Jexc. This third parameter
increases the complexity of the problem compared to the
case of PMSMs that only have the first two parameters
since excitation is fixed by magnets. The 59 kW machine
used for the study is taken from [13]. A parametric geome-
try of the considered e-motor is implemented in MATLAB
and interfaced with an external Finite Element Analysis
(FEA) software, XFEMM [14]. Figure 1 shows the cross-
section of the studied machine, the mesh considered, and
flux density for a current density of 10 A/mm2 in both
the stator and rotor. Note that mesh size must be carefully
chosen since it has a non-negligible impact on computation
time. In our case, the FE model is based on a 2D mesh that
is composed of 1012 nodes and 1599 triangle elements of or-
der 1 (1599 degrees of freedom). One resolution requires
around 5 s1 per operating point (for 15 angular positions).
The machine’s meshing has been optimized to ensure that
it does not compromise the quality of the quantities of inter-
est (torque, losses, etc.)

In this context, the goal is to develop a fast model cap-
able of precise performance evaluation. Many quantities are
calculated in a motor such as flux, torque, voltage, and
losses. Luckily, not all these quantities need to be predicted
using metamodels. Torque and voltage can be analytically
calculated using d and q-axes fluxes as in (1) and (2). The
dq frame introduced by Park [15] is widely used in electrical
machine modeling due to the reduced computation time.
Fluxes calculation is initially done in an abc frame consider-
ing non-linearity and harmonics. Then, to reduce the
complexity the transition to dq frame is done taking into
account cross-coupling effects [16]:

T ¼ 3
2
� p � Ud id ; iqð Þiq � Uq id ; iqð Þidð Þ; ð1Þ

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2d þ v2q

q
; ð2Þ

where

id ¼ �Imax � sin wð Þ; ð3Þ

iq ¼ Imax � cos wð Þ; ð4Þ

vd ¼ R �id þ dUdðid ; iqÞ
dt

� x �Uqðid ; iqÞ; ð5Þ

and

vq ¼ R � iq þ dUqðid ; iqÞ
dt

þ x � Udðid ; iqÞ; ð6Þ

where Ud, Uq, vd, vq, id and iq are d and q-axes fluxes, volt-
ages, and currents, respectively, p is the number of pole
pairs, R is the phase resistance and w is the current angle.

The d and q-axes fluxes are considered independent of
the motor speed, so their estimations using metamodels
require FE calculations without speed variation. However,
this is not the case for iron losses since they cannot be pre-
cisely calculated using fluxes for the WFSM [17]. Thus, an
additional speed input parameter must be considered in the
metamodel building, increasing complexity and computa-
tion time. To avoid this, we decided to predict iron losses
at two speeds (base and maximum speed). For each speed,
a separate metamodel will be created. Since the variation of
iron losses as a function of speed can be approximated by a
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Figure 1. Studied WFSM (a) cross-section (b) mesh (c) flux
density for 10 A/mm2.

1 Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz, 32 GB @ 2933
MHz

Figure 2. Variation of iron losses as a function of speed.
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second-order polynomial (Fig. 2), the complexity of the
problem can be reduced by fitting a curve using the
three-speed points [0, Nbase, Nmax] and the corresponding
estimated iron losses at these points [0, ILbase, ILmax]. Note
that iron losses are calculated using the method of Bertotti
[18].

Figure 3 shows the variation of iron losses at base speed
as a function of stator current density and current angle for
two different excitation current densities: 5 and 25 A/mm2.
We notice that minimum iron losses values are located
when excitation and armature current densities have simi-
lar values and for maximum current angle (90 degrees).
This is where we have maximum flux weakening, d-axis flux
being at its minimum and thus giving minimal iron losses
values. The same curve trends can also be observed at the
maximum speed of rotation of the machine.

Coupling the metamodels with the previous analytical
expressions will allow us to compute torque and voltage val-
ues. This method is more computationally efficient than FE
calculations, where only one computation requires around
15 s of computation time. Considering thousands of operat-
ing points and many current input combinations, the finite
elements approach is not usable due to the enormous com-
putation times that must be considered.

3 Gaussian process metamodel

Metamodels are built and then used to replace costly classi-
cal methods. Two types of metamodels exist: parametric
and non-parametric. In the first type, parameters need to
be determined for the metamodel construction while

in the second, no internal parameter determination is
required. Gaussian Process (GP), Radial Basis Functions
(RBF), Support Vector Machine (SVM), and Neural Net-
works (NN) are parametric metamodels, while linear, quad-
ratic, and polynomial regressions are examples of non-
parametric metamodels [19].

A GP metamodel is considered in this work [20]. Its dis-
tribution is defined by (7), where m is a mean function –

generally chosen as a polynomial or as a constant unknown
function-, k is a kernel function that models the covariance
between each pair in x:

Y xð Þ � GP m xð Þ; k x; x0ð Þð Þ: ð7Þ
Kernel functions, also known as covariance functions, are a
crucial ingredient since they represent the hypothesis we
tend to make about the quantity we want to predict.
Another critical factor in metamodel creation is the sample
points: their number and distribution in space can largely
affect the results. These two elements are addressed in
detail in the following sections.

3.1 Sample points

Sample points used to build the surrogate model must be
carefully chosen to yield good precision along the design
space. Many sampling methods exist in the literature [1].
Latin Hypercube Sampling (LHS) has been proven to gen-
erate better sample points distribution than random and
factorial sampling methods [21], however further improve-
ments can be considered.

Distributed Hypercube Sampling (DHS), interesting for
three variables or above, has then been introduced [22]. An
additional constraint aims to minimize the coefficient of
variation of the minimum distance between sample points
projected on 2D surfaces of the hypercube. Compared to
classical LHS, DHS adds hypercube surface distributions,
but volume distributions are still left out. These distribu-
tions are addressed in the improved hypercube sampling
IHS [23].

In the following study, sample points are generated
based on this IHS method using the multi-DOE toolbox
[24]. The number of these points will determine the required
computation time and the built metamodel’s prediction
accuracy.

3.2 Kernel functions

The kernel function represents the correlation between
responses at two points. To better understand this concept,
the following example is given. Let x be a sampling point in
the design space and y it’s corresponding response and let x0

be another point in the sampling space that is very close to
x. Depending on the studied function, y0 might be close to y
in the case of smooth behavior or far if the function presents
oscillations. This is where the choice of the kernel function
becomes important. Note that in the case of electric machi-
nes, a small variation in input current(s) will not usually
yield high variation in losses and electromagnetic perfor-
mances under the same speed and temperature conditions.

(a) 

(b) 

Figure 3. Variation of iron losses at base speed. (a) Excita-
tion current density 5 A/mm2; (b) Excitation current density
25 A/mm2.
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Many kernel functions exist and some are more used
than others, but one can also build new covariance
functions from existing ones [20]. A summary of several
commonly used covariance functions is presented in Table 1.
A function is called stationary when it is function of x – x0.
In addition, a function is called isotropic if it is a function of
r = |x – x0|. The parameter l defines the characteristic
length scale and is a constant parameter in the case of
isotropic functions while r corresponds to the standard
deviation. These two hyperparameters are optimized using
the MATLAB integrated function “fitrgp” [25].

Five of these isotropic functions are chosen for compar-
ison in this study and illustrated in Figure 4: exponential,
squared exponential, rational quadratic(a = 1), Matérn
3/2 and Matérn 5/2.

We can create anisotropic versions of these functions by
setting r2 x; x0ð Þ ¼ x � x0ð ÞTMðx � x0Þ where M is a
positive semidefinite matrix. In this case, the length scale
is no longer constant but varies for each input parameter
(i.e. along each component of x). Anisotropic versions are
also included in the study leading to a total of 10 functions
to be compared. The prefix “ard”, corresponding to Auto-
matic Relevance Determinator, is the MATLAB terminol-
ogy for designating anisotropic functions.

For each of the four quantities to be estimated (/d, /q,
ILbase, ILmax), 100 samplings are generated for different
sample numbers. This helps us to compare the kernel func-
tions as well as choose the number of sample points needed
to obtain the desired accuracy. The Root Mean Squared
Error (RMSE) criterion is used to compare these covariance
functions. The RMSE is calculated between GP and FE
evaluations over 50 independent test points also generated
using IHS. The exponential kernel function yields higher
mean RMSE for the four quantities of interest, so it is dis-
carded from the comparison.

Figure 5 shows the mean of the RMSE along the 100
considered samplings for each of the four quantities of inter-
est: d and q axes fluxes, iron losses at the base, and maxi-
mum speed. The three colors correspond to the different
sample point numbers considered (20, 40, and 80) and each
point along the x-axis corresponds to one of the four aniso-
tropic kernel functions compared. More detailed graphs can
be found in [26] including the four isotropic kernel functions

as well as the variance of the RMSE in the comparison. As
expected, it is shown that increasing the number of sample
points clearly reduces the mean and variance of the errors
observed for the four quantities. Nevertheless, the variance
has shown very low values compared to the mean of the
RMSE. So, unless we want to be very exigent in our choices,
we can base our selection of kernel functions on the mean of
the RMSE criterion. We also noticed that anisotropic func-
tions yield better results, especially for iron losses estima-
tion. Depending on the application and studied quantities,
the kernel function that gives better results may vary.

Depending on the specifications of the studied problem
and on the required precision as well as the constraints on
computation time, the number of sample points is chosen
to respect these previous requirements. For example, if
errors greater than 100 W on high-speed iron losses are
not tolerated, it is certain that we will need more than 20
sample points to achieve this requirement.

Figure 4. Isotropic covariance functions for l ¼ 1 and r = 1.

Table 1. Commonly used covariance functions.

Kernel function Expression k(x, x0|l, r)

Constant r20

Exponential r2 exp � r
l

� �
Squared exponential r2 exp � r2

2l2

� �
c� exponential r2 exp � r

l

� �c� �
Matérn 3/2 r2 1þ

ffiffi
3

p
r

l

� �
exp �

ffiffi
3

p
r

l

� �

Matérn 5/2 r2 1þ
ffiffi
5

p
r

l þ 5r2

3l2

� �
exp �

ffiffi
5

p
r

l

� �

Rational quadratic r2 1þ r2

2al2

� ��a
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4 Drive cycle application

This section describes the applied drive cycle approach.
Forty sample points are used for this study to reduce the

needed computation time as much as possible. The kernel
function chosen is the anisotropic Matérn 5/2 function for
the four quantities of interest. This choice is based on the
comparison of kernel functions in the previous section: for
40 sample points, the chosen kernel function is the one that
gives the minimum mean RMSE for each of the four
quantities.

Once the metamodels are created with the chosen
number of sample points and kernel functions conditioning
the computation time and precision, we can evaluate fluxes
and iron losses for any current inputs in a fast manner. Due
to thermal limitations, maximum excitation and current
densities are fixed at 15 A/mm2.

Fluxes prediction allows torque and voltage calculations
using (1) and (2). Iron losses prediction at two particular
speeds is used to create a second-order polynomial. This
allows for accurate iron losses estimation for any considered
speed as explained in Section 2. Using these predicted
quantities along with joule losses, we can create a large
table containing these results for different combinations of
the three current parameters (Jexc, Jind, w). This perfor-
mance table contains torque, voltage, and losses data for
motor mode (0 < w <90�) and generator mode
(90 < w < 180�). The generator mode results are deduced
from motor mode results due to symmetry. Since the meta-
models give iron losses at two particular speeds, these losses
are then adapted for different cycle speeds using polynomial
estimation. Using this created performance table, we can
search for optimal current inputs allowing us to minimize
total losses at each point of the WLTP drive cycle while
respecting torque and voltage constraints. Total losses in
this case include iron and Joule losses in the stator and
rotor. The optimization problem is formulated as follows:

min Totallosses J exc; J ind; wð Þ;

subject to
T J exc; J ind; wð Þ � T requested ��T

V J exc; J ind; wð Þ < Vmax:

�

The applied methodology, as well as the computation times
associated with each step, are presented in Figure 6 (mea-
sured on an Intel� Core ™ i7-10700 CPU @ 2.90 GHz com-
puter with a 32 GB, 2933 MHz RAM). By using the GP
models, a few calls to the FE code are required only for
building the metamodels, requiring approximately 5 s per
call. Then, the four metamodels are created in 60 s. The
creation of the performance table along with the adaptation
over the drive cycle speeds requires only 5 s, while 35 s are
needed for the search for optimal current parameters over
the drive cycle.

While approximately 5 min are needed to predict the
quantities of interest in the performance table using the
metamodels (FE calculations of 40 sample points and build-
ing the metamodels included), finite element calculations
require approximately 30 days to create a performance
table of the same size. Thus, one cannot imagine using
FE calculations to create the performance table. Repeating
this process using only FE models in a design optimization
problem of electrical machines will lead to an exorbitant
computational cost.

Figure 5. Kernel functions comparison for different sample
point numbers.
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Obtained results from the previously described GP
method are compared to FE calculations for identical speed
and current inputs. Only the last 800 points of the WLTP
drive cycle are presented in Figure 7 to have a closer view of
torque and iron losses results. While very good precision is
obtained for torque values (mean relative error of 0.1% over
the whole drive cycle), iron losses prediction can be
improved if more precision is required (mean relative error
of 20%). This error is calculated as the average of the rela-
tive errors obtained for each operating point of the consid-
ered drive cycle as in (8). Reducing the error can be done by
increasing the number of sample points:

relerror ¼ 100 � ILFE � ILGPj j
ILFE

: ð8Þ

5 Optimal current supply analysis

The previously developed methodology allows optimal cur-
rent parameter calculations over drive cycles as well as for
any point in the speed/torque plane. Current parameters,
current angle, losses, and efficiency maps in the speed/
torque plane are shown in Figure 8. A maximum torque
of 140 Nm and a maximum speed of 12,000 rpm is reached
with the used current densities maximum values. For the
current angle, we notice an increase, especially for speeds
greater than 8000 rpm in order to weaken the d-axis flux
and be able to reach these speeds. One can wonder why
the flux weakening is obtained by increasing the current
angle rather than decreasing the excitation current density.
In this section, a detailed explanation and analysis of these
results are presented. Thanks to surrogate models, it is
possible to analyze the control parameters easily since
results are obtained in a fast manner.

Figure 9 shows torque and total losses values as a func-
tion of current angle for different excitation current densi-
ties in two cases: Jind = 5 A/mm2 and Jind = 10 A/mm2.

For a speed of 10,000 rpm, let us have a closer look at the
current parameters needed to achieve a certain torque aswell
as the resulting losses. Figure 9a shows that obtain ing 40
Nm, with a fixed armature current density of 5 A/mm2, re-
quires an excitation current density greater than 7 A/mm2.
If we want to achieve flux weakening by reducing this exci-
tation current density, we must increase the level of arma-
ture current density to be able to reach the desired torque.
For an armature current density of 10 A/mm2, a torque of
40 Nm can be easily achieved by injecting an excitation
current density of 5 A/mm2 (Fig. 9b). This will lead to
an eventual increase in total losses as can be seen in
Figures 9c and 9d. Going from input current parameters
[7.5 A/mm2; 5 A/mm2; 21�] to [5 A/mm2; 10 A/mm2;
28�] increases losses by approximately 200 W.

Given that the stator Joule losses are dominant for this
machine (refer to the losses maps in Fig. 8) and that the
objective of the optimization is to minimize total losses
overall operating points, the algorithm will not automati-
cally decrease the excitation current for flux weakening. It
will rather find the best combination (Jexc, Jind, w) that
gives the requested torque while minimizing the total losses.

In order to achieve flux weakening by reducing the exci-
tation current density in this case, we must modify the
objective of the optimization to minimize rotor Joule losses
rather than minimizing the total losses in the machine. One
advantage of this strategy is that losses in the rotor will be
reduced, and its thermal management will be easier while
extracting calories in the rotor is more difficult to achieve
than in the stator. This way, stator Joule losses, and iron

(a)

(b)

Figure 7. Comparison of FE and GP results. (a) Torque;
(b) iron losses.

Figure 6. Flowchart of the drive cycle current optimization
method.
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losses will not influence the chosen optimal current param-
eters, and we will observe a decrease in Jexc as the speed
increases as shown in Figure 10. As previously discussed,
this will lead to an increase in the armature current density
to reach the required torque levels. This increase will then
affect the stator Joule losses and eventually, the efficiency
map shows a noticeable deterioration (Fig. 10) compared
to the efficiency map in Figure 8 where all losses are
minimized.

The goal of the following paragraph is to study the con-
tribution of a machine with variable excitation compared to
a fixed excitation, which is the case of a PMSM, and the
influence of this variable excitation on the efficiency in
the torque/speed plane.

In order to compare to a PMSM where excitation is
fixed by magnets, we can easily fix our excitation current
and repeat the same study as above. We notice that for
Jexc � 11 A/mm2 we cannot reach all operating points at
high speed due to the voltage limitation. On the other hand,
for Jexc � 10 A/mm2, we can no longer achieve the maxi-
mum torque of 140 Nm. This shows the interest and flexibil-
ity of having a variable excitation rather than a fixed one.
In order to have a closer look at the influence of a fixed exci-
tation, maps are shown in Figure 11 for Jexc = 10 A/mm2.
These maps are obtained for a minimization of the total
losses in the machine, including the rotor Joule losses. In
this case, a maximum torque of 120 Nm can be reached.
To reach higher speeds, the current angle must be consider-
ably increased compared to Figure 8. The efficiency map in

(a) (b) 

(c) (d) 

Figure 9. Torque and total losses curves for different current
inputs.

Figure 10. Maps obtained for rotor Joule losses minimization.

Figure 8. Maps obtained for total losses minimization.
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this case shows a very small area where the efficiency
reaches 96% and a reduced area having an efficiency greater
than 94% compared to the efficiency map in Figure 8.

Figure 12 shows the efficiency map without rotor Joule
losses consideration. The objective of this illustration is to
approach the case of a PMSM, where we neglect permanent
magnet losses. The obtained map is similar to that of an
optimized PMSM presented in [27].

While the efficiency map relative to a PMSM shows a
bigger 97% efficiency area in the middle of the speed/torque
plane, the efficiency map of the WFSM (Fig. 8) presents
better values at higher speeds.

6 Conclusion

In this work, we developed a Gaussian Process surrogate
model to efficiently replace the finite element model of a
wound field synchronous machine in order to estimate losses
over a drive cycle. Due to the gain in computation time,
drive cycle calculations become computationally affordable.

The method was described in detail and the associated
computation times were presented. A total of 5 min is proved
to be sufficient for drive cycle current parameters optimiza-
tion using the proposed method. It is shown that the most
time-consuming step remains the calculation of actual
responses at sample points using finite elements analysis.
However, the number of calls to the finite elements code is
considerably reduced compared to an approach without
metamodels.

Enhancing the accuracy of this method can be done by
increasing the number of sample points. To further improve
precision without increasing the number of sample points,
adaptive sampling methods can be proposed [28, 29].
Another area of improvement is to consider a multivariate
GP model [30]. This method consists of creating one model
with many outputs considering non-separable covariance
structures since these outputs are related and modeling
them independently might result in the loss of information.

The developed methodology is applied to a predefined
wound field synchronous machine topology but is not
restricted to this type of motor. It can be exploited in a the-
oretical manner as in Section 5 to study current parameters
and their influence on the energetic performance of the
machine. It can also be used in a practical way to determine
optimal current inputs of the machine in real-time once the
developed model is implemented in a target (Digital Signal
Processor (DSP) or Field Programmable Gate Arrays
(FPGA) for example). Since no prototype was available,
a theoretical analysis is presented and the impact of a vari-
able excitation current is observed, especially for high-speed
efficiency, compared to the case of a fixed excitation in
PMSM machines.

Given the reduced time costs fulfilled by the metamodel
approach, parametric design optimization of electrical
machines over a drive cycle will be part of our future work.
Since time dependency is no longer eliminated, it will be pos-
sible to consider transient phenomena (thermal, electrical,
battery charge/discharge phenomena, etc.) in future work.
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