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Abstract— Multi-hop wireless networks can be optimized using
directional antennas, as they allow for in-depth interference
management and network topology optimization. This type
of optimization involves ensuring high operational guarantees
such as instantaneous connectivity, minimum SNRs and SINRs
thresholds, and improved QoS. It simplifies tasks of future
network layers and allows for more relaxed routing protocols and
scheduling. However, attaining optimal performance via network
configuration involves selecting an antenna orientation for each
node to create a link with another node. This is challenging,
especially when the process is carried out in real-time. To tackle
this challenge, we present nodes2net, a Deep Neural Network
(DNN) that is trained to imitate solved, ideal network instances.
This approach uses nodes’ positions as inputs and produces a
set of links as output. By leveraging learning of patterns and
theoretically driven properties, nodes2net can generate reliable
network configuration solutions when dealing with new sets of
node positions. It utilizes efficient neural network aggregation
operators to facilitate and process information about the nodes,
to finally produce the final solution as set of links. Our results
demonstrate the competitive performance of this method.

I. INTRODUCTION

Multi-hop wireless networks, especially with the current
deployment of 5G technologies and research work on 6G,
constitute a very active field of research. While the per-user
capacity and throughput of a network are known to scale
poorly with the increase of users [1], it has been proven
that using directional antennas with reduced beamwidth can
help mitigate the loss in Quality of Service (QoS) by a factor
inversely proportional to the beamwidth [2].

Using directional antennas allows for both higher per-link
throughput and much better interference management. One
must chose wisely, for each antenna, towards which node to
point. In effect, we want to steer all the antennas in a way
that avoids creating low SNR links, and high interference
patterns. In order for the antennas to be aligned at transmission
time, paths from users to others have to be computed in
advance, either in the form of routes computed along with the
resource allocation and traffic control level (OSI layer 3), or
even beforehand to reduce later computations, by computing
carefully an optimized network topology (OSI layer 2) to allow
for easier network and traffic management afterwards. Usually,

on top of the network constituted by the links, proper routing
and scheduling need to be computed. An example is given by
[3], that assumes a slotted frame structure, as well as some
known antenna orientations, and that, on that basis, computes
a routing table, and then establishes a transmission schedule.
The most essential constraint is connectedness; moreover, the
network must respect several physical constraints. We observe
that this problem has a highly combinatorial aspect: global
connectedness relies on complex combinations of links, and
physical constraints require taking into account interdepen-
dence and interference between created links. We aim to create
a topology that provides instantaneous global connectedness
and fair adherence to physical constraints to alleviate further
network tasks. To mitigate some of the combinatorial and
computational burdens, we propose a one-step process that
generates such a topology. In this article, we address the
most important issue, connectedness, and focus on configuring
the network, e.g., steering antennas, which we entirely solve
using deep learning techniques. For this purpose, we train
a Deep Neural Network to imitate the results of an Integer
Programming (IP) instance of the problem. It can then be
used to infer graphs that hold the same properties as the
ones labeled as solutions of the IP problem, in constant time
The rest of the article is organized as follows: in Sec. II, we
present articles and literature related to optimizations of such
networks. In Sec. III, we detail the system model and our
problem statement. Then we introduce our solution and its
properties in Sec. IV-A. In Sec. V we present some results
that confirm the value of our method and illustrate how its
components impact its performance, thus proving their merit.
We finally conclude in Sec. VI.

II. RELATED WORK

The computation of efficient network solutions has recently
been the target of great effort, especially in the context of
the rise of 5G and 6G technologies. While mathematical
formalization via Integer Programming is often used to obtain
optimal solutions, with typical path, links and flows linear
formulations such as in [4], one must also often derive
heuristics to enable faster solving such as in [3]. While this



notably accelerates the computation of solutions, the process
is still most of the time iterative, often based on greedy
algorithms and often relies on an iterative process, which
can be problematic in some operational applications. A key
advantage of Deep Learning methods is that the generation
of a solution involves a straightforward series of matrix
multiplications, with coefficients that have been pre-learned,
simplifying the overall computational process. Using Deep
Learning algorithms for such tasks can be seen as a way to
turn combinatorial problems into non linear and multivariate
parametrized statistical problems. Whether we deal with link
or graph-level prediction, clustering or network performance
prediction, such difficult problems require a fine use and
complex combinations of the inputs. Another positive aspect of
Deep Neural Networks is that they scale well with the number
of users, as their complexity can be made to scale linearly with
the number of inputs nodes, where combinatorial methods can
struggle to handle high number of inputs nodes.

While they can be used on simpler tasks such as a network
performance prediction, e.g. in [5], Deep Neural Networks
can also be used to infer network graphs, often in a dynamic,
temporal prediction manner as in [6]. Networks are graphs, and
Deep Learning for graphs has been receiving strong attention
lately, as Graph Neural Networks (GNN) [7, 8] have become
one of the hottest topics of research in the Deep Learning
community. Generative models for graphs such as GraphVAE
[9], which embeds the whole graph thanks to a GNN and
a global pooling operation, have been presented and allow
for continuous and possibly conditioned graph generation.
When dealing with graphs, we need nodes to be able to
gather information about other nodes and to organize this
information to get a better knowledge of the situation of the
nodes. In neural networks, this is usually the role of the fearure
aggregator, which is the operator that we train to combine
signal coming from the data objects in a relevant way. It
enables the learning of high level features that help solving
the problem. What is problematic is that nodes come with a
totally arbitrary node ordering, that must not be taken into
account by a feature aggregator that would treat the set of
nodes as an ordered sequence, processing each node depending
on their position in the sequence and combining their features
accordingly. The whole challenge of learning on graphs is
hence finding a learnable, permutation invariant, feature ag-
gregator that allows nodes to communicate information, which
GNNs do with edge-conditioned convolutions or any edge-
conditioned message passing operators. In our problem, since
we do not have edges, as they are the objects we wish to infer,
we need another feature extractor that follows the same type
of guidelines as GNNs. The famous Attention mechanism is
a perfect candidate for that. It has mainly been introduced in
[10], while [11] popularized it even further with a retrieval-
system-like formulation and empirically proved its expressivity
with the Transformer model.

III. SYSTEM MODEL

We consider a set V' of n nodes described by their
respective 2D coordinates (z,y). We assume an idealized
“protocol model”, where nodes can transmit iff they are
within the radio range. Each node has a fixed number of
independent antennas, each of which can establish at most
one link. Candidate links correspond to pairs of nodes that
are in range of each other, and hence are represented as
undirected edges. Our problem is to find a subset of those
edges, denoted F, that satisfies some constraints while
possibly optimizing some objective function f. E is exactly
the links obtained after orienting (configuring) antennas. Once
the edges are given, we then have a graph G = (V, E) that
can serve as the network link topology. As a comprehensive
example, and throughout this work, we will consider the
problem of the creation of a network of n nodes under some
physical link constraints (limited number of communication
links per user, a fixed maximum length for each link...) that
must ensure global connectedness while minimizing the total
number of links. It can be viewed as an optimization problem
with several constraints corresponding to physical limitations
of the communication links. We formalize our problem as
an Integer Programming one to obtain optimal solutions,
and will train a neural network to output graphs as close as
possible to these solutions.

Our problem can be formalized as follows :

e V is the set of nodes 1,2,...,n

e ¢€;; is a binary decision variable that indicates that there is
an edge between node ¢ and node j (i.e. after orientation
of one of their antennas to create this link)

e One node is also described by its 2D coordinates z;, y;

We want to solve the following optimization problem
n n
mind > e M
=1 =1
S.t.

Logical and physical constraints (2)-(9) :

One node holds 7apennas. Since one antenna can not
form several links one node can then form at most Napennas
links :

VieV, Z €ij < Nantennas (2)

j=1
One link can be formed between two nodes only if they are
within a maximum radio range D,,,, one from the other:

Vi,j e V2 eij x [(xj — 2:)* + (yj — ¥%i)?] < Dinaz (3)
Links are bidirectional:
Vi, j € V2, €ij = €ji 4)
One node can not form a link with itself:

Vi,j€V? i=j=e€;=0 (5)



In addition, it is necessary to establish a mathematical
formalization for the connectivity of the entire network. A
commonly used technique is to introduce phantom flows
originating from a virtual source at a specific node (without
loss of generality, let’s denote it as vy). These phantom flows
are required to traverse through every node in the network,
and flow conservation equations are formulated accordingly.
The network is considered connected if such flows can be
identified. The constraints that enforce connectedness through
phantom flows are as follows:

Virtual source distributes n — 1 flows through the network:

> foj=n—1 6)
=0

Flows propagate through existing links:

Vi,jeV? i#j=fi;<(n—1)xe; (7
Each node absorbs one flow and transmits the rest:
VieV, > fij=> fii—1 ®)
j=0 j=0
One node can not send a flow to itself:
Vi, jeV? i=j=fi;=0 )

IV. OUR APPROACH: NODES2NET
A. Model

In this paper, we propose nodes2net, an Attention-based
Deep Neural Network that produces a set of network links
from the nodes’ positions.

Our model takes as inputs the set V' of nodes described as:
v, = (z4,9;) Vi€ [l,n].

It outputs an adjacency matrix:

€11 €12 €1n

€21 €22 €2n
Apred -

€nl  €n2 €Enn

that describes the set of edges E of the desired graph.

We want to find a function F, namely a Deep Neural
Network, parametrized by its weights 6, such that

Fo(V) = Apred-

In the training phase, we first solve the optimization problem
(1)-(9) on some random instances of graphs through a MILP
solver (after linearization of the equations). We use these
solved instances to constitute the dataset mapping input

nodes’ positions to their respective desired topology of links.
For each datapoint of nodes’ positions V' this hence yields
the label adjacency matrix corresponding to the true solution
called Ap,eq, that the model should then “predict”. We then
want to find the best model to learn this mapping between
nodes and topologies.

Challenges: While a Multi-Layer Perceptron (MLP)
may initially seem like a straightforward network architecture
well suited for such problems, it is biased by the ordering
of the nodes. One main issue with creating a graph from
nodes is indeed the need for a good permutation-invariant
feature aggregator between nodes. While GNNs use edge-
conditioned, spectrally defined convolutions, or message
passing algorithms, they are not suited for a whole graph
prediction task since the edges are yet to be predicted, hence
not usable to serve as signal propagation intermediates.
Another mentionable aspect is that, since we are dealing
with rather small spatial graphs, using pooling and global
aggregators to capture structural and high level features
might not be entirely suitable, since we wish to find precise
features at node level that capture local dependencies and
interactions between nodes given their position. We must also
keep node-level features instead of whole graph-level features
in most of the network since we must condition the signal on
nodes’ position, and allow the nodes to exchange information
accordingly.

Our Architecture: We use the Attention mechanism
[11] as the main permutation invariant feature aggregator. We
also use residual connections [12] from the input to further
layers not to lose the position signal of each node (in practice
we rather concatenate the positions to further layers instead
of adding them, as it showed to be more efficient, they
are hence not textbook residual connections) and between
layers not to lose each node’s individual embedding. The
simplified embeddings of the set of nodes V going through
one Attention layer ! (for one Attention head, in practice we
use up to 8) can be described as below:
W,QWpKT
Vi,

where Vj represents the positions of the inputs nodes, V;
the embeddings of the nodes at layer 1 and @ is either a
dimensionally arranging addition (because the inputs and
the embeddings do not have the same dimension) or a
concatenation. () is the pack of Queries formulated by the
nodes, K the pack of the Keys that the nodes use to describe
themselves and V' the pack of Values corresponding to the
embeddings of the nodes. W,, W; and W, are learnable
matrices that are what we train to get the Attention to capture
the relevant features. We use MultiHead Attention, which
defines several different instances of these learnable weights
to allow attending to different characteristics, then aggregates
them.

Vis1 = V; + softmax < > W,Vie W
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Figure 1: Overview of our solution: the model takes the nodes’ positions as input and outputs the set of edges to connect them.
The 2D positions of the nodes and the selected links correspond on one actual dataset sample and its proposed solution.

The idea is that one node v; which is relevant to attend
to for a node v; will learn to define a Wj K; rather similar
(to maximize W,Q; W K;) to W,Q; such that v; "wins" the
softmax i.e. v; "understands” that it must attend to node v;.
The point is then to learn a parametrization of the weight
matrices W,, W, in order to learn a reliable transformation
that captures relevant pairs of nodes so that they present well-
aligned Query and Key. The Value weight matrix W, learns
how to finally embed the node combining the attended nodes
information.
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Figure 2: Illustration of one embedding layer applied to one
node v; in a 4-node-network

The network is composed of a succession of such Attention
layers connected by Linear layers, that we notably use to in-
crease the dimension of the signal. We use the first Linear layer
to increase the dimension of the signal fed to the Attention
layer. In our experiments, we used two Attention layers since
it offered good performance and kept the model rather light.
We top the network with a flattened Fully-Connected layer
as the prediction layer, which combines the learned nodes
embeddings to make the adjacency matrix prediction.

While the Attention-based feature extractor is permutation
invariant, the prediction layer, similar to the prediction layers
of typical ConvNets [13], is not. We found that it still offers
good performance and generalization, and induces a practical
node ordering bias that allows to organize easily edges as an
adjacency matrix.

We also implement a permutation invariant prediction layer

that consists in computing Attention scores and in feeding
them into a few Linear layers to get the per-node link predic-
tions, but the method does not do as well as the previous one,
especially in terms of generalization (as showcased in Table I,
and II). Furthermore, more costly Graph Matching algorithms
that still allow the gradients to flow can be used for similar
tasks [9] but demand higher effort to align predicted nodes
and edges with labeled ones.

B. Graph-level attributes

We can also add graph-level attributes by adding them
as inputs and concatenating them with the nodes, allowing
the nodes to attend to them, using FiLM Layers [14][15]
or a HyperNetwork [16] architecture. We then search F
parametrized by € such that

FG(V> ’Y) = Apred

where 7 is a sequence of graph level attributes. Graph
attributes can be for example several spectral properties such
as the algebraic connectivity, or can be related to the density
of links, centrality, and can also be learned. The respect of the
desired graph attribute in the predicted matrix can be enforced
using Lagragian Duality framework described in [17] as long
as they are differentiable w.r.t. the weights of the model.

C. Deterministic formulation: Variational Inference

The problem itself is not deterministic, which might lead
to unstable training in the supervised learning setting, since
one correct output of the model can cause great error. It
has not been extremely problematic in practice, since, while
the problem is not deterministic, the dataset is, and the
model training still seems to converge rather easily. We still
derive a Variational Inference method, similar to a Variational
Autoencoder version of the network, so that the problem
becomes a reconstruction, hence deterministic, problem. The
learning problem consists in feeding the graph to the encoder,
compressing it into a continuous and low dimensional latent
space, then decoding the compressed signal to reconstruct
the inputs. We condition the decoder on the positions of
the nodes. Infering a new graph then consists in sampling
in a continuous latent space, adding the nodes’ positions as



a conditioning signal and feeding them to the decoder. To
enable sampling, and thus generation, we want a smooth,
continuous latent space. To do so, we enforce the encoder’s
output to follow a multivariate gaussian distribution. On the
other hand, we train the decoder to output values close to the
input being reconstructed. The encoder consists in a graph
feature aggregator, which can be a GNN, or a "classical"
model based on Laplacian Eigenmaps PE [18] for instance. We
can either concatenate or attend to this encoded vector with
the positions of the nodes as a conditioning signal, then use
Attention in the same way we used it in the supervised version,
allowing for permutation invariant feature agregation of the
nodes encodings, and globally follow the same architecture as
described above.

The problem then results in maximizing the following:

£(97 ¢1 G(l)) = Eq(b(z\G(i)) |:10gp9 (E(Z) ‘V(Z)a z)i| -

Dici (461G ) lp(2))

ge represents the approximated posterior latent distribution
pp represents the approximated likelihood of the data

p(z) represents the prior distribution of the latents, we assume
it to follow a multivariate Gaussian distribution.

The first term is the Reconstruction Loss, maximizing it
enforces the reconstructed edges to be as close as possible
to the input edges. The second term is the Kullback-Leibler
Divergence, minimizing it enforces the approximated latent
distribution to be close to the prior distribution z that is
assumed to follow a multivariate Gaussian.

Infering a graph prediction hence consists in the network
estimating:

decoder(V(i) ) = Do (E(i) |V(i) ,Z).

The idea that motivates this formulation is that, despite
the strong signal brought by the position of the nodes, the
variational encoder can still provide sufficient information to
distinguish one particular solution. It is useful considering
an asymptotically large dataset, where each set of positions
admits many labeled solutions. In our case, we observed that
the model mainly learns a mapping from nodes’ positions to
predicted links without making great usage of the encoded
vector.

V. EXPERIMENTAL RESULTS

We conduct our experiments with an Intel Xeon(R) E5-
2650v3 at 2.30 GHz CPU and a Tesla T4 GPU.
With such hardware, inference time does not exceed 1 ms
even with the largest versions of the model. Our method is
implemented using PyTorch. We use AdamW optimizer with
weight decay rates between 0.1 and 0.15, a learning rate of
le-4, a batch size of 64, for 100 epochs. We use a dataset of
multiple instances with randomly generated nodes’ positions.
It is composed of 100k samples of 16 nodes’ positions and
the adjacency matrix obtained solving the IP problem with a
solver (namely Gurobi). We also conduct another experiment
on 8 nodes graphs where the network is built iteratively

Table I: Results on dataset with 100k samples of 16 nodes.
We can see that nodes2net outperforms a simple baseline as
well as the positive effect of each component on performance.

Model val acc test acc

95.61 %
94.87 %
nodes2net (attention score prediction) 92.29 %

MLP (flattened) 90.31 %

89.77 %
88.81 %
84.83 %
84.73 %

nodes2net
nodes2net (no residual connections)

starting from a random node and respecting some more strict
geometrical constraints that simulate the positions of the
antennas on the nodes. The dataset is more diverse as, for
instance, some graphs are not entirely connected. This dataset
is composed of 800k graphs.

Table II: Results on the iteratively-constructed 8 nodes dataset.
We observe slightly better performance than on the IP dataset
and similar observations as regards the comparison with the
baseline and the impact of the components.

Model val acc test acc

96.08%
95.14 %
nodes2net (attention score prediction) 92.71 %

MLP (flattened) 90.59 %

90.82 %
89.56 %
85.21%
85.11 %

nodes2net

nodes2net (no residual connections)

The accuracy is measured as in a classical link prediction
task for each link: we round the output of the network to
either 0 or 1 and we measure the difference with the true
label for each entry of the adjacency matrix. The dataset of
Table I contains almost 80% zeros, it is easier to predict
the absence of link than to predict a link, so this has to be
taken into account when reading the accuracy scores. The
8 nodes iterative dataset of Table II contains around 65%
zeros, in theory, it should then be harder to predict in that
regard, but it does not show there. We can hypothesize that
the stricter geometric constraints are well captured and help
reduce the number of possible links for each node, hence
making the prediction task easier. Test set graphs are not
always reproduced well but it is not necessarily a problem
since, as we mentioned before, several graphs can be solutions
for a single set of nodes, and the applicative goal of the paper is
to generate plausible graphs with similar properties as the ones
learned. We can still sometimes observe, almost exclusively
when dealing with never seen nodes’ positions, and more often
with 16 nodes scenarios than with 8, some impossible, illogical
links that violate some constraints or seem really sub-obtimal
given the optimization task. Larger prediction layer can help
prevent such issues but imply greater computation cost and
careful training to avoid overfitting. Error management in
such DNNs can be challenging because of the "one-shot"
nature of the inference (all links are created in a single
computation stage) but can still be addressed using hardcoded
security checks. While the permutation invariance guarantees



better generalization properties of the learned features, we also
conducted multiple experiments to evaluate the impact of using
the Attention mechanism instead of a simple MLP with several
flattened layers on the training itself.

0.950 mip

—— nodes2net
0.945 1

0.940

0.935

0.930

Accuracy

0.925 1

0.920

0.915 4

0.910 A . .
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Figure 3: Convergences of nodes2net (attention-based) and
MLP visualized after the sigmoid convergence. We can see
that nodes2net continues to converge durably after the standard
flattened MLP stagnates.

In Fig. 3 we visualize the per-epoch averaged accuracy of
the model after the "sigmoid drop", the MLP struggles to
gain more accuracy while the attention model shows much
better figures and a rather stable convergence, we conducted
this experiment with and without residual connections and
the tendency was similar in both cases (note that the values
are slightly different than those from Table I because we only
train them for 40 epochs and the accuracy is computed live
without rounding the prediction values to O or 1). We can
deduce that the Attention mechanism captures characteristics
that could not be captured with the MLP and hence allows
for much more accurate predictions.

VI. CONCLUSION

With nodes2net, we provide an effective framework to
allow for a constant time and flexible network creation,
which can be really useful, especially in the here described
field of wireless network topology optimization, where
solving optimization problems on the go, or using online
convergence algorithms, are not possible. Using Attention
between nodes as a feature extractor suits our problem well
and allows to efficiently capture features between nodes while
respecting permutation invariance and without suffering from
oversmoothing of the input signal. We derived a variational
inference formulation that overcomes the theoretical limit
of supervised learning for a non-deterministic problem. The
good inductive bias that our model seems to present are
confirmed by our experiments. Future work will aim at
improving even further the generalization capabilities and
allowing to enforce strict respect of constraints. Future work
will also consist in more applicative studies to jump from

our Deep Learning method to a whole operational network
solution and measure the performance and the QoS we can
expect from it. We will also work on the integration of such
a neural network on embedded devices. Given that the model
is small and can be parallelized, and in view of the recent
advances in network quantization and pruning, real time
graph prediction seems realistic.
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