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aUniv. Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007, 43 bd du 11 novembre 1918, F-69100
Villeurbanne, France (emails: vincent.andrieu@univ-lyon1.fr, ulysse.serres@univ-lyon1.fr)
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(email: lucas.brivadis@centralesupelec.fr)

cUniversité de Toulon, Aix Marseille Univ, CNRS, LIS, France (email: jean-paul.gauthier@univ-tln.fr)
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Abstract

For nonlinear analytic control systems, we introduce a new paradigm for dynamic output feedback stabi-
lization. We propose to periodically sample the usual observer based control law, and to reshape it so that
it coincides with a “control template” on each time period. By choosing a control template making the
system observable, we prove that this method allows to bypass the uniform observability assumption that
is used in most nonlinear separation principles. We prove the genericity of control templates by adapting a
universality theorem of Sussmann.

1. Introduction

Dynamic output feedback stabilization of nonlinear systems is a central problem in control theory. The
most commonly accepted idea for synthesizing a control law is to split this problem into two subtasks:
designing a stabilizing state feedback law, and designing an estimation procedure (an observer) to reconstruct
the state from the available measurements. The dynamic output feedback scheme is formed from the
combination of these two steps. This approach is used in the seminal articles by Teel and Praly [27, 28] as
well as Jouan and Gauthier [15], who obtained so-called nonlinear separation principles. Their results and
those they inspired require, with few exceptions discussed below, the uniform observability property:

o1. for any input, any two different states lead to different outputs,

which was proved not to be generic by Gauthier and Kupka in [13] if the output dimension is less than or
equal to the input dimension. Therefore, other feedback methods have been developed to overcome non-
uniform observability, often allowing time-varying feedbacks. Originally, Coron proposed this approach in
[11], achieving local asymptotic stabilization through output feedback for general nonlinear systems using
a periodic time-varying strategy. Assuming the target is the origin and an equilibrium of the system for
null-input, Coron’s results require the following two weaker notions of observability:

o2.i. given two different states, there exists an input leading to different outputs;

o2.ii. for the null-input, if the output vanishes identically, then the state is at the target.

The results from [11] are local, meaning that the basin of attraction for the output feedback loop is limited
to a neighborhood of the origin whose size cannot be prefixed. Inspired by this work, Shim and Teel obtained
in [24] a semiglobal result by assuming (essentially) that:

o3. there exists an input such that any two different states lead to different outputs.

Their strategy employs two periodically activated modes: in a first mode, a control making the system
observable in a sufficiently short time, so that a high-gain observer can be designed to quickly estimate
the state; in a second mode, the stabilizing control law based on the observer is applied. Since the input
ensuring observability is fixed and applied periodically, only practical convergence is achieved, i.e., within an
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arbitrarily small neighborhood of the target. More generally, modes switching hybrid methods have proven
to be a powerful tool to solve non-uniform observability issues for presenting specific structures [9, 10, 17].

The first main contribution of this paper, Theorem 5, falls directly in line with the seminal efforts of
[11] and [24], but we adopt a different viewpoint. Although our output feedback is periodic and realized
through hybrid dynamics, we do not separate the control in two modes: each time step simultaneously
allows to observe and control the system. To do so, we propose a templated output feedback strategy,
which aims to generalize sampled-and-hold output feedback. The combination between classical nonlinear
separation principles and digital controllers have been thoroughly investigated in [16], but always in the case
of uniformly observable systems. In our work, on each time interval, we sample the observer-based control
law value at the beginning of the interval and we modulate it into the shape of a control template, rather
than holding it constant.

We pick as control template an input whose any rescaling or isometry makes the system observable,
allowing the use of a high observer for an as fast as we want simultaneous state estimation and semiglobal
output feedback stabilization. This control strategy is new, and helps in the context of non-uniformly
observable systems, which have recently gathered attention because of their prevalence in various modern
applications [1, 6, 22, 25]. Because any rescaling of a control template induces observability, a necessary
condition for this method is:

o4. for the null input, any two different states lead to different outputs.

Though the existence of a control template may seem restrictive, we prove in Theorem 6, second main
contribution of this paper, that it is actually equivalent to o4) for analytic systems. Our proof builds upon
arguments used by Sussmann in 1979 for the genericity of universal inputs [26]. This result is a significant
contribution in its own right that generalizes Sussmann’s findings. Obviously, o1 ⇒ o4 ⇒ o3 ⇒ o2.i and
o4 ⇒ o2. Assumption o4 naturally excludes the case of systems unobservable at the target (see e.g. [8]),
but is nonetheless generic.

Organization of the paper. The rest of the paper is divided into three parts. Section 2 is a general
preliminary section that discusses the method we introduce. It contains the definitions and assumptions
necessary to the paper and a full presentation of the control strategy. The section ends with the statements
of the two main results of the paper Theorem 5 and Theorem 6 whose proofs are the purposes of Sections 3
and 4 respectively.

Notation. Let n, m and p be positive integers. If N ∈ N, RN is endowed with its canonical Euclidean
canonical scalar product ⟨·, ·⟩ and the induced norm | · |; BRN (x, r) denotes the open ball centered at x of
radius r for this norm, and SN−1 the unit sphere. If I ⊂ R is an interval and X ⊂ RN is open, PC0(I,RN )
denotes the space of càglàd piecewise continuous functions endowed with the uniform norm ∥·∥∞, Ck(X ,RN )
the space of k-times continuously differentiable maps (k ∈ N ∪ {∞}), and Cω(X ,RN ) the space of analytic

functions If u ∈ Ck(I,RN ), u(k) = dku
dtk

is a shorthand notation for its derivative of order k. For any

h ∈ C1(Rn,RN ), ∂h
∂x (x) denotes its differential at x ∈ Rn. Finally, for any set S in a topological space, S̊,

S̄, and ∂S denote its interior, closure and boundary, respectively.

2. Templated output feedback

2.1. Definitions and main assumptions

Consider an analytic control system {
ẋ = f(x, u)

y = h(x)
(1)

where x in Rn is the state of the system, u in Rp is the control input, y in Rm is the measured output and
f : Rn×Rp → Rn and h : Rn → Rm are analytic maps. According to the Cauchy-Lipschitz theorem, for any
input u ∈ PC0(R+,Rp) and any initial condition x0 ∈ Rn, the Cauchy problem associated to (1) admits
a unique maximal solution that we denote by t 7→ X(x0, t, u). When the dependence in x0 and u does not
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need to be emphaised, we simply write x(t) = X(x0, t, u). Moreover, we denote by Te(x0, u) ∈ R+ ∪ {+∞}
its maximal time of existence. We abuse the notation X to include inputs defined on subintervals of R
containing 0.

Our main objective being to stabilize system (1) by means of a dynamic output feedback, we make the
first of three main assumptions of the paper: the existence a priori of a stabilizing feedback.

Assumption 1. There exists a feedback law λ : Rn → Rp that is locally Lipschitz continuous such that (1)
in closed-loop with u = λ(x) is locally exponentially stable (LES) at the origin, with a basin of attraction X .

With no loss of generality, we assume that λ(0) = 0 and h(0) = 0 in the following. When X = Rn,
the vector field x 7→ f(x, λ(x)) is globally asymptotically stable (GAS) and LES at the origin, but not
necessarily globally exponentially stable (GES). While the historic results on output feedback stabilisation
only require asymptotic stabilization by state feedback, exponential stabilisation of the origin is imposed to
cope with the sampling techniques we introduce. This nuance is well explored in [16].

To stabilize (1) by means of a dynamic output feedback, we combine an observer (an online estimation
algorithm of the state based on the measurement of the output) with the state-feedback law [3]. This
strategy has been extensively studied under assumptions of observability for all inputs (known as uniform
observability) [15, 27, 28]. Essentially, uniformly observable systems that are state feedback stabilizable
are also semi-globally stabilizable by means of a dynamic output feedback. However, uniform observability
assumptions are not generic [13, Chapter 3], so we aim for weaker assumptions.

To properly introduce notions of observability for (1), let us inductively construct the derivatives of the
output as mappings of the state and the derivatives of the input. Set H0 = h, and for any positive integer
k, let Hk+1 : Rn × (Rp)k → Rm be such that for all (x, σ) ∈ Rn × (Rp)k,

Hk+1(x, σ0, σ1, . . . , σk) =
∂Hk

∂x
(x, σ0, σ1, . . . , σk−1)f(x, σ0)

+

k−1∑
i=0

∂Hk

∂σi
(x, σ0, σ1, . . . , σk−1)σi+1.

Let T > 0 and k ∈ N. The k-jet of u ∈ Ck([0, T ],Rp) at t ∈ [0, T ] is the (k+1)-tuple u[k](t) ∈ (Rp)k+1 given
by

u[k](t) =
(
u(t), u(1)(t), . . . , u(k)(t)

)
.

Define Hk : Rn × [0, T ]× Ck([0, T ],Rp) → (Rm)k+1 by

Hk(x, t, u) =
(
H0(x), H1

(
x, u(t)

)
, . . . ,Hk

(
x, u[k−1](t)

))
.

Clearly, Hj

(
x(t), u[j−1](t)

)
= dj

dtj h
(
X(x0, t, u)

)
= y[j](t) for any 0 < j ⩽ k, as soon as the solution to (1)

initialized at x0 and with input u is defined up to time t.

Definition 1 (Observability) (see, e.g., [13]). We say that system (1) is:

(i) observable over S ⊂ Rn in time T for the input u ∈ PC0([0, T ],Rm) if, for any different initial
conditions xa, xb ∈ S, there exists t ∈ (0, T )∩

(
0,min{Te(xa, u), Te(xb, u)}

)
such that h(X(xa, t, u)) ̸=

h(X(xb, t, u)).

(ii) differentially observable over S ⊂ Rn of order k ∈ N for the input u ∈ Ck([0, T ],Rm) if x 7→ Hk(x, 0, u)
is injective over S, and strongly differentially observable if moreover it is an immersion.

Clearly, differential observability implies observability in any positive time. Also, by definition, differen-
tial (resp. strong differential) observability of some order k0 implies differential (resp. strong differential) ob-
servability of any order k ⩾ k0. Since f and h are analytic, from which follows analyticity of x 7→ Hk(x, t, u)
for any (k, t, u) ∈ N × [0, T ] × Ck([0, T ],Rp), we also have the following lemma (whose proof can be found
in Appendix) showing that, for analytic inputs, observability implies differential observability on compact
sets.
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Lemma 2. If system (1) is observable over a compact set K ⊂ Rn in some positive time T for some input
u ∈ Cω([0, T ],Rm), then there exists k ∈ N such that (1) is also differentially observable over K of order k.

The proof of Lemma 2 is postponed to Appendix. We now give our other main assumption of the paper,
regarding observability for the null-input u = 0. It is a twofold assumption, that expresses o4 from the
introduction rigorously.

Assumption 2.i. The null-input makes system (1) observable over X in some time.

Assumption 2.ii. For each x ∈ X , there exists k ∈ N such that Hk(·, 0, 0) is an immersion at x.

If system (1) is strongly differentially observable over X of some order for the null-input, then As-
sumptions 2.i and 2.ii clearly hold. The converse also holds in restriction to compact sets. Since strong
differential observability of order 2n + 1 for the null-input is generic by [13, Chapter 4, Theorem 2.2], the
weaker Assumptions 2.i and 2.ii are generic, contrarily to uniform observability.

Our aim is to obtain a nonlinear separation principle in line with [15, 27, 28] in the case where uniform
observability is replaced by Assumptions 2.i and 2.ii. Doing so, we get a generic nonlinear separation
principle. The price to pay is double: (i) in Assumption 1, as discussed previously, the stabilizing state-
feedback law is supposed to make the system LES instead of locally asymptotically stable (LAS) as in the
uniformly observable case; (ii) we allow the dynamic output feedback to have hybrid dynamics.

2.2. Hybrid dynamic output feedback design

Our strategy relies on the use of particular inputs called control templates which we define below.

Definition 3 (Control template). Let λ̄ > 0. An input v ∈ C∞([0, T ],Rp) is called a control template of
order q ∈ N on a compact K ⊂ Rn if v(0) = (1, 0, . . . , 0) and the map x 7→ Hq(x, t, µRv) is an injective
immersion over K, for all (t, µ,R) ∈ [0, T ]× [0, λ̄]×O(p).

In Theorem 6, we state that control templates are generic under Assumptions 2.i and 2.ii. Roughly
speaking, a control template is an input making the system strongly differentially observable over K, and
such that any rescaling (µ) or isometry (R) of this input preserves this observability property. The key
property of control templates is given by the following lemma.

Lemma 4. Let v ∈ C∞([0, T ],Rp) be a control template of order q ∈ N on a compact K ⊂ Rn. There exists
ϕ ∈ C0(Rm(q+1) × [0, T ] × [0, λ̄] × O(p),Rn) such that for any x0 ∈ K and any (µ,R) × [0, λ̄] × O(p) the
solution (x, y) to system (1) initialized at x0 with input u = µRv satisfies

x(t) = ϕ
(
y[q](t), t, µ,R

)
(2)

for all t ∈ [0, T ] such that x(t) ∈ K. Moreover, there exists a positive constant Lϕ such that for all
(za, zb) ∈ (Rm(q+1))2 and all (t, µ,R) ∈ [0, T ]× [0, λ̄]×O(p),

|ϕ(za, t, µ,R)− ϕ(zb, t, µ,R)| ⩽ Lϕ|za − zb|.

This lemma is an immediate application of Lemma 22-(iii) to the map (x, (t, µ,R)) 7→ Hq(x, t, µRv), as
ϕ
(
y[q](t), t, µ,R

)
= ϕ

(
Hq(x(t), t, µRv), t, µ,R

)
.

We are now ready to design a hybrid dynamic output feedback for system (1) based on control templates.
Let K ⊂ X be a compact set, ∆ > 0 and θ > 0 be observer parameters to be tuned later on.

Define λ̄ = maxK |λ|. Now we assume the existence of a control template v ∈ C∞([0, T ],Rp) of order q
on K and we let ϕ be as in Lemma 4. Let also (ℓi)0⩽i⩽q ∈ Rq+1 be coefficients of a Hurwitz polynomial.

We wish to be able to select a pair (µ,R) for which µRv(0) matches a specific value, say a nominal
w ∈ Rp. To do so, we define, for each w ∈ Rp, the nonempty set

R(w) = {R ∈ O(p) : |w|R(1, 0, . . . , 0) = w} .

We propose the following hybrid dynamic output feedback:
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Figure 1: Trajectory of the input u = µRv applied to the system when using the templated output feedback strategy of (3).
To lighten the notations, here we write x̂ = ϕ(z,∆, µ,R). The illustration corresponds to the case of a one-dimensional input.
After each jump, u(τi) = λ(x̂(τi)). Then, over each time-interval, the input follows the shape of the control template v, rescaled
by |λ(x̂(τi))|.



ṡ = 1, µ̇ = 0, Ṙ = 0

ẋ = f(x, µRv(s))

ż0 = z1 + θℓ0(h(x)− z0)

ż1 = z2 + θ2ℓ1(h(x)− z0)

...

żq−1 = zq + θqℓq−1(h(x)− z0)

żq = Hq+1

(
ϕ(z, s, µ,R), µRv[q](s)

)
+ θq+1ℓq(h(x)− z0)


s ∈ [0,∆],

s+ = 0, µ+ =
∣∣λ ◦ ϕ(z,∆, µ,R)

∣∣
R+ ∈ R

(
λ ◦ ϕ(z,∆, µ,R)

)
x+ = x

z+ = Hq

(
ϕ(z,∆, µ,R), 0, µ+R+v

)

 s = ∆.

(3)

Let us explain the above output feedback dynamics. The jump times are periodically triggered each time
the timer s reached ∆. Over each interval of length ∆, the control law applied to the system is u := µRv,
making the system observable due to the definition of control templates. We employ a high-gain observer
during the flow (z variable) to estimate the state thanks to the knowledge of the output h(x) and input
u. As usual with high-gain observers, the design suppose the knowledge of the map ϕ, whose existence is
guaranteed by Lemma 4 but that can be difficult to compute in practice. Since ϕ satisfies (2) and z(t)
approaches y[q](t), the state estimation is given by

x̂ = ϕ(z,∆, µ,R). (4)

At each jump, the scaling parameter µ and the isometry R are updated, such that at the beginning of each
time period, µRv(0) = λ(x̂). Since ∆ is to be chosen small enough, this guarantees that u remains close to
λ(x̂). Note that the z dynamics also jump, because the immersion Hq depends on the input u, which jumps
from µRv(∆) to µ+R+v(0). Figure 1 illustrates the trajectory of the control law µRv during the stabilization
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procedure. Remark that the amplitude of the input over each time interval is proportional to its value at
the beginning of the interval: this is the role of the scaling parameter µ, and it is crucial to guarantee that
u → 0 when x̂ → 0.

Note that in the case where v is constant, the above closed-loop simply consists in a sample-and-hold of
the dynamic output feedback based on the usual high-gain observer. Indeed, since v(0) = (1, 0, . . . , 0) and
due to the definition of R, the input u := µRv is piecewise constant.

2.3. Main results

Given the existence of a control template, our first result is that the output feedback strategy proposed
above successfully achieves semiglobal dynamic output feedback stabilization within the basin of attraction
X under the assumptions of exponential stabilizability. Here, semiglobal stabilization is to be understood
in the sense that for any arbitrarily large compact set of initial conditions K0 ⊂ X , we can tune the hybrid
dynamic output feedback to ensure convergence towards the target.

Theorem 5 (Output feedback stabilization theorem). Suppose Assumption 1 holds. Let K0 be a compact
subset of X . Then there exists a compact K ⊂ X , with K0 ⊂ K̊ such that for any control template v ∈
C∞([0, T ],Rp) on K, there exist ∆∗ ∈ (0, T ] such that for any ∆ ∈ (0,∆∗), any compact Z0 ⊂ (Rm)q+1,
there exists θ∗ ⩾ 1 such that for all θ > θ∗, the set {0} × {0} × [0,∆] × {0} × O(p) is LES for system (3),
with basin of attraction containing K0 ×Z0 × [0,∆]× [0, λ̄]×O(p).

The proof of Theorem 5 is the goal of Section 3. In the case where the control template is constant,
this result shows that sampling-and-holding the control periodically over small time intervals is sufficient to
achieve a nonlinear separation principle. We exploit the same high-gain observer based strategy than the
literature [15, 27, 28] that used to require uniform observability, whereas we only rely on observability at
the target.

Because control templates are not necessarily constant (for example, almost all bilinear systems admit
constant inputs making unobservable, as roots of the characteristic polynomial of the observability matrix
[7, Theorem 2.6]), our method proposes a generalization of the sample-and-hold strategy.

After sampling the control (the input is computed at each sampling time by composing the stabilizing
feedback law with the observer), we propose, instead of “holding” it constant during a time ∆, to follow the
shape of the control template v from this starting point (up to a dilation µ and an isometry R that preserve
observability).

The natural remaining question is the existence of control templates, and how generic they are. We
propose to show their genericity with the following second main result, that is an extension of Sussmann’s
universality theorem [26].

Theorem 6 (Universality theorem). Suppose that Assumptions 2.i and 2.ii are satisfied. Let K be a compact
subset of X . Let T̄ > 0 and let UK be the set of inputs v in C∞([0, T̄ ],Rp) (endowed with the compact-open
topology) for which there exist T ∈ (0, T̄ ], q integer, such that the map x 7→ Hq(x, t, µRv) is an injective
immersion over K, for all t ∈ [0, T ], all µ ∈ [0, 1] and all R ∈ O(p). Then

(i) UK contains a countable intersection of open and dense subsets of C∞([0, T̄ ],Rp);

(ii) the restriction of UK to analytic inputs, UK ∩ Cω([0, T̄ ],Rp), is dense in C∞([0, T̄ ],Rp).

The proof of Theorem 6 is the goal of Section 4. It is an extension of the universality theorem of
Sussmann [26]. In short, we use the stronger assumption that the null-input makes the system strongly
differentially observable on K (while [26] relies on differential observability only), under which we prove:
(i) the immersion property in addition to the injectivity; (ii) uniformity of the genericity with respect to
parameters lying in a compact set. The choice of compact-open topology for this result is completely natural
and follows from [26]. Notions on this topology will be recalled when necessary. See also [12, Chapter 3] for
a general reference on the topic.

With Theorem 6, control templates can be obtained in the following manner. Let vref be the constant
input equal to (λ̄+ 1, 0, . . . , 0). By genericity of UK, arbitrarily choose w ∈ UK such that ∥w − vref∥∞ < 1.
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Then |w(0)| > λ̄. Pick Rref ∈ R(w(0)) and set v = R−1
refw|[0,T ]/|w(0)|. Then v(0) = (1, 0, . . . , 0), and by

definition of UK, v is a control template. Note that, as any genericity result based on transversality theory,
Theorem 6 does not propose an explicit construction of the control template, but rather states that almost
any choice of template must be good. In applications, one can either apply this reasoning and choose an
arbitrary template, or propose an ad-hoc analysis on the system to construct a specific control template and
apply Theorem 5 with this template.

By combining Theorems 5 and 6, we therefore obtain a nonlinear separation principle based on the
use of control templates, under the assumptions of exponential stabilizability and a generic observability
assumption.

3. Output feedback stabilization theorem

This section is devoted to the proof of Theorem 5 which we prove showing that there exist γ⋆, ω⋆ > 0
such that, for any (x0, z0, s0, µ0,R0) ∈ K0 × Z0 × [0,∆]× [0, λ̄]×O(p), the corresponding solution of (3) is
complete and satisfies for all t ⩾ 0

∥(x, z, µ)(t)∥ ⩽ γ⋆ e
−ω⋆t ∥(x0, z0, µ0)∥.

First we ensure well-posedness of the closed-loop hybrid system (3) and provide a preliminary result con-
cerning the high-gain observer convergence. Then, we prove the output feedback stabilization result.

3.1. Well-posedness

We use the framework of hybrid systems developed in [14] to define solutions of (3). Note that (3) clearly
satisfies the hybrid basic conditions [14, Assumption 6.5]. Moreover, the jump times of (3) are determined
by the autonomous decoupled hybrid subdynamics of s.

Consequently, the jump times (τi)i∈N are given by τi = ∆ − s0 + i∆ for i ∈ N. Thus, any solution
(x, z, s, µ,R) : E → Rn×Rm(q+1)× [0,∆]×R+×O(p) to (3) is a hybrid arc defined on a hybrid time domain

E ⊂ R+ × N of the form E =
⋃I−1

i=−1[0, Te) ∩ [τi, τi+1] × {i} (with τ−1 := 0) where either Te = +∞ and
I = +∞ (complete trajectory) or Te ∈ R∗

+, I ∈ N∗, and τI−1 < Te ⩽ τI (non-complete trajectory). Since the
flow map of (3) is singled-valued and locally Lipschitz continuous, the Cauchy problem associated to the flow
map admits a unique maximal solution of class C1. Thus, for any parameters ∆ > 0, (ℓi)0⩽i⩽q ∈ Rq+1 and
θ > 0, and for eachcolorred/every initial condition (x0, z0, s0, µ0,R0) ∈ Rn × Rm(q+1) × [0,∆]× R+ ×O(p),
(3) admits a unique maximal solution (x, z, s, µ,R) : E → Rn × Rm(q+1) × [0,∆] × R+ × O(p) such that
t 7→ (x, z, s, µ,R)(t, i) is C1 for each i. We denote by Te ∈ R+∪{+∞} the time of existence of such solutions.
Moreover, if (x, z, s, µ,R) remains bounded, then the trajectory is complete, i.e. E =

⋃
i⩾−1[τi, τi+1] × {i}

and Te = ∞.
In order to shorten the notations and enhance the readibility, we write (xt, zt, st, µt,Rt) := (x, z, s, µ,R)(t, i)

for all (t, i) ∈ E such that τi < t ⩽ τi+1 and (x+
τi , z

+
τi , s

+
τi , µ

+
τi ,R

+
τi) := (x, z, s, µ,R)(τi, i).

3.2. Convergence of the estimation error

Before we start, let us give K. According to the converse Lyapunov function theorem [20, Théorème
2.348 and Remarque 2.350], there exists a proper function V ∈ C∞(X ,R+) such that for any compact set
L ⊂ X , three positive constants (ci)1⩽i⩽3 exist, satisfying

∂V

∂x
(ξ)f

(
ξ, λ(ξ)

)
⩽ −c1|ξ|2,

|ξ|2 ⩽ V (ξ) ⩽ c2|ξ|2,
∣∣∣∣∂V∂x (ξ)

∣∣∣∣ ⩽ c3|ξ|.
(5)

for all ξ ∈ L. For any R ⩾ 0, D(R) := {x ∈ Rn : V (x) ⩽ R} is compact because V is proper, and
D(R) ⊂ D̊(R′) as soon as R′ > R. Now, let R2 > R1 > R0 > 0 be such that K0 ⊂ D(R0), and choose
L = K = D(R2), which fixes the ci’s in (5) as well as λ̄, ϕ and Lϕ from Section 2.2.
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Let us introduce once and for all the different constants that appear in the subsequent proofs. Recall
that for a given maximal solution, Te denotes its time of existence. Let t∗ = inf

{
t ∈ [0, Te) : xt /∈ D(R2)

}
.

Finally, fix ∆0 such that the solution to (3) satisfies xt ∈ D(R1) for all (x0, z0, s0, µ0,R0) ∈ K0 × (Rm)q+1 ×
[0, 3∆0] × [0, λ̄] × O(p). Such a ∆0 always exists since the distance between K0 and ∂D(R1) is strictly
positive, and f with inputs smaller than λ̄ is bounded on D(R2).

We can now investigate the exponential stability of the estimation error defined, for all t < Te, by

εt = zt −Hq(xt, st, µtRtv). (6)

In view of the definition of control templates in combination with Lemma 4, the following lemma follows
directly from the usual results on high-gain observers.

Lemma 7. Suppose assumptions of Theorem 5 hold. Let ∆ ∈ (0,∆0] Then, according to [5, Theorem 4.1]
(or [13, Chapter 6.2]), there exist θ∗1 , γ1 ⩾ 1 and ω1 > 0 such that for all θ > θ∗1, the solution of (3) satisfies
for any i ⩾ 0, t ∈ (τi, τi+1] ∩ [0, t∗),

|εt| ⩽ γ1θ
q e−θω1(t−τi) |ε+τi |. (7)

The above lemma gives an estimate of the error over a single window [τi, τi+1). Now we give the result
over [0, t∗). Let LHq

denote the Lipschitz constant of (x, s, µ,R) 7→ Hq(x, s, µRv(s)) over D(R2)× [0,∆] ×
[0, λ̄]×O(p), Lf the Lipschitz constant of f over D(R2)×BRp(0, λ̄∥v∥∞), and Lλ the Lipschitz constant of
λ over D(R2).

Lemma 8. Let ∆ ∈ [0,∆0]. Under the assumptions of Theorem 5, there exists θ∗2 ⩾ 1 such that for any
θ ⩾ θ∗2, there exist γE(θ,∆) ⩾ 1 and ωE(θ) > 0 satisfying

|εt| ⩽
√

γE(θ,∆) e−
ωE (θ)

2 t |(x0, z0, µ0)|, (8)

for all t ∈ [0, t∗). Moreover, for any t > ∆,

lim
θ→+∞

ωE(θ) = +∞ and lim
θ→+∞

γE(θ,∆) e−ωE(θ)t = 0. (9)

Proof. For any i ⩾ 0 such that τi < t∗, we have s+τi = 0. Consequently, according system (3) and Defini-
tion (6) ∣∣ε+τi∣∣ = ∣∣z+τi −Hq(x

+
τi , s

+
τi , µ

+
τiR

+
τiv)

∣∣
=

∣∣z+τi −Hq(xτi , 0, µ
+
τiR

+
τiv)

∣∣
=

∣∣Hq

(
ϕ(zτi ,∆, µτi ,Rτi), 0, µ

+
τiR

+
τiv

)
−Hq(xτi , 0, µ

+
τiR

+
τiv)

∣∣
⩽ LHq

∣∣ϕ(zτi ,∆, µτi ,Rτi)− xτi

∣∣.
Moreover, since xτi = ϕ ◦ Hq(xτi ,∆, µτiRτiv), setting L = max{LHq

Lϕ, 1}, we get

|ε+τi | ⩽ LHqLϕ|zτi −Hq(xτi ,∆, µτiRτiv)| ⩽ L|ετi |. (10)

On the other hand, if θ ⩾ θ∗1 (with θ1 as in Lemma 7), according to (7), for any i ∈ {−1, . . . , I − 1}, we get

|εt| ⩽ γ1θ
q e−θω1(t−τi) |ε+τi |, ∀t ∈ (τi, τi+1] ∩ (0, t∗). (11)

In particular, (10) and (11) yield for all i ⩾ 1,

|ετi | ⩽ γ1Lθ
q e−θω1∆ |ετi−1

|. (12)

Let t ∈ (0, t∗). There exists i ⩾ −1 such that τi < t ⩽ τi+1. With (11) and (12), an immediate induction
yields

|εt| ⩽ γ1Lθ
q e−θω1(t−τi)

(
γ1Lθ

q e−θω1∆
)i |ετ0 | (13)
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Now let θ∗2(∆) ⩾ θ∗1 be such e
θ
2ω1∆ ⩾ γ1Lθ

q for all θ ⩾ θ∗2 . Then, having in mind that τi = τ0 + i∆,
inequality (13) yields for all t ∈ (0, t∗) and all θ ⩾ θ∗2

|εt| ⩽ e
θ
2ω1∆ e−

θ
2ω1(t−τ0) |ετ0 |.

If τ0 = 0, we are done. Otherwise, since ε+τ−1
= ε0 and L ⩾ 1, (11) yields |ετ0 | ⩽ γ1Lθ

q e−θω1τ0 |ε0|. In any
case,

|εt| ⩽ γ1Lθ
q e

θ
2ω1∆ e−

θ
2ω1t |ε0|

⩽ eθω1∆ e−
θ
2ω1t |ε0|. (14)

Finally, using Hq(0, s0, 0) = 0, we get by triangular inequality

|ε0| ⩽ |z0|+ |Hq(x0, s0, µ0R0v)−Hq(0, s0, 0)|
⩽ |z0|+ LHq (|x0|+ ∥v∥∞|µ0|),

which, together with (14) proves that ε remains bounded over [0, t∗), that (8) is satisfied for a suitable choice
of (γE(θ,∆), ωE(θ)), and that (9) holds. ■

3.3. Stabilization of the system at the target

Before investigating the exponential stability of the system’s state, we provide a natural intermediary
result on templated output feedback. Namely, after time τ0, we can bound the gap between the state
feedback and templated output feedback at for all time in the window [τi, τi+1) by reducing ∆. We also
wish to relate this bound to the size of the state, in order to relate it to the Lyapunov function V . What is
crucial here is that rather than keeping memory of |xτi |, we can actually recover |xt|. Some elements of the
proof being reminiscent (or similar) of the proof of Lemma (8), so they may be exposed more succinctly.

Lemma 9. Suppose assumptions of Theorem 5 hold. Then there exist ∆∗
gap ∈ (0,∆0], β ∈ R+ and a class

K function α such that for any ∆ ∈ (0,∆∗
gap) and any i ⩾ 0, t ∈ (τi, τi+1] ∩ [0, t∗),

|µtRtv(st)− λ(xt)| ⩽ α(∆)|xt|+ β|ετi |. (15)

Proof. We only sketch the main ideas which we divide in the four following steps.

Step 1: We show that there exist β1 ∈ R+ and a class K function α1 such that∣∣µtRtv(st)− λ(xt)
∣∣ ⩽ β1|ετi |+ β1 sup

σ∈[τi,t]

|xt − xσ|+ α1(∆)|xt|. (16)

Indeed, for any R̃t ∈ R
(
λ(xt)

)
, 1 and any R̃i ∈ O(p), we have (since µt = µτi = |λ(x̂τi)|, with x̂ defined

by (4)) ∣∣µtRtv(st)− λ(xt)
∣∣ = ∣∣µtRtv(st)− |λ(xt)|R̃tv(0)

∣∣
⩽

∣∣|λ(x̂τi)|Rtv(st)− |λ(xτi)|R̃iv(st)
∣∣

+
∣∣|λ(xτi)|R̃iv(st)− |λ(xt)|R̃tv(st)

∣∣
+

∣∣|λ(xt)|R̃tv(st)− |λ(xt)|R̃tv(0)
∣∣. (17)

Using Lemma 23, we choose R̃i ∈ R(λ(xτi)) such that∥∥µtRt − |λ(xτi)|R̃i

∥∥ ⩽
∣∣λ(x̂τi)− λ(xτi)

∣∣
1Recall that R̃t ∈ R

(
λ(xt)

)
⇐⇒ λ(xt) =

∣∣λ(xt)
∣∣R̃tv(0).
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and, R̃t ∈ R(λ(xt)), so that ∥∥|λ(xτi)|R̃i − |λ(xt)|R̃t

∥∥ ⩽
∣∣λ(xτi)− λ(xt)

∣∣.
Inequality (16) is then obtained bounding from above each member of the right handside of (17).

Step 2: Using (16) and Grönwall’s inequality (performing computations similar to those in [16, Appendix
D]) there exists a class K function α2 such that

sup
σ∈[τi,t]

|xt − xσ| ⩽ α2(∆)

(
|ετi |+ sup

σ∈[τi,t]

|xσ|
)
. (18)

Step 3: Inequalities |xσ| ⩽ |xt| + |xt − xσ| and (18) yield supσ∈[τi,t] |xσ| ⩽ |xt| + α2(∆)
(
|ετi | +

supσ∈[τi,t] |xσ|
)
, implying that, there exists β2 ∈ R+ such that for all ∆ ⩽ ∆∗

gap (with ∆∗
gap satisfying

α2(∆
∗
gap) ⩽ 1)

sup
σ∈[τi,t]

|xσ| ⩽ β2 (|xt|+ |ετi |) . (19)

Step 4: Finally, inequality (15) follows after substitutying supσ∈[τi,t] |xt − xσ| in (16) with its bound
obtained in (18) and supσ∈[τi,t] |xσ| with its bound obtained in (19). ■

Now that the gap in control is bounded, we can prove exponential stability of the state.

Lemma 10. Suppose assumptions of Theorem 5 hold. Then there exists ∆∗ ∈ (0,∆0] such that for any
∆ ∈ (0,∆∗), there exists θ∗ ⩾ 1, such that for any θ > θ∗, there exist γX (θ,∆) ⩾ 1 and ωX (θ,∆) > 0 such
that

∀t ∈ [0, t∗), |xt| ⩽ γX e−ωX t |(x0, z0, µ0)|. (20)

Proof. For any i ⩾ 0 and any t ∈ (τi, τi+1] ∩ [0, t∗), we get with (5), Lemma 9 and Young’s inequality

dV (xt)

dt
+ c1|xt|2 ⩽

∂V

∂x
(xt)

∣∣f(xt, µRv(st)
)
− f

(
xt, λ(xt)

)∣∣
⩽ c3Lf |xt|

∣∣µtRtv(st)− λ(xt)
∣∣

⩽ c3Lf

(
α(∆)|xt|2 + β|xt||ετi |

)
⩽ c3Lf

[
α(∆)|xt|2 + β

(
δ|xt|2

2
+

|ετi |2

2δ

)]
. (21)

Pick δ > 0 and ∆∗ ∈ [0,∆∗
gap] (with ∆∗

gap as in Lemma 9) such that c3Lf

(
α(∆∗) + δβ

)
⩽ c1. Then, with

inequalities (8) and (5), inequality (21) yields for all ∆ < ∆∗

dV (xt)

dt
⩽ −ωV (∆)V (xt) + β′γE e

−ωEt |(x0, z0, µ0)|2, (22)

where ωV (∆) =
[
c1 − c3Lf

(
α(∆) + δβ

)
/2
]
/c2 and β′ = c3Lfβ/δ. Let θ∗3 ⩾ θ∗2 (with θ∗2 as in Lemma 8)

be such that ωE(θ
∗
3 ,∆) ⩾ ωV (∆). Then, applying Grönwall inequality to (22) yields, for all θ > θ∗3 and all

t ⩾ 2∆,

V (xt) ⩽ e−ωV (t−2∆) V (x2∆)

+
β′

2
γE e

−ωE2∆
e−ωV (t−2∆) − e−ωE(t−2∆)

ωE − ωV
|(x0, z0, µ0)|2 (23)

⩽ R1 + β′ γE e
−2∆ωE

ωE − ωV
|(x0, z0, µ0)|2,

the latter following from our choice of ∆0. Using (9), we pick θ∗ ⩾ θ∗3 so that for all θ > θ∗,

R1 + β′ γE(θ,∆) e−2∆ωE(θ)

ωE(θ)− ωV
sup

K0×Z0×[0,λ̄]

|(x0, z0, µ0)|2 ⩽ R2,

which, together with (23), implies t∗ = Te and (20) for a suitable choice of γX and ωX . ■
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With Lemmas 8 and 10, we are now able to conclude the proof of Theorem 5.

Proof of Theorem 5. Suppose ∆ ∈ (0,∆∗) and θ > θ∗ (with ∆∗ and θ∗ as in Lemma 10). Clearly, (st, µt,Rt)
remains bounded in [0,∆]× [0, λ̄]×O(p). Because, according to Lemmas 8 and 10, εt and xt were, so is zt.
Thus Te = +∞. Moreover,

µt ⩽
∣∣λ(ϕ(zt,∆, µt,Rt)

)
− λ(xt)

∣∣+ ∣∣λ(xt)
∣∣

⩽ LλLϕ|zt −Hq(xt,∆, µtRtv)|+ Lλ|xt|
= LλLϕ|εt|+ Lλ|xt|,

showing that µt is exponentially stable at 0 since εt and xt are. The exponential stability of zt toward 0
follows from

|zt| ⩽ |εt|+ |Hq(xt, st, µtRtv)|
⩽ |εt|+ |Hq(xt,∆, µtRtv)−Hq(0,∆, 0)|
⩽ |εt|+ LHq (|xt|+ ∥v∥∞|µt|),

which concludes the proof of Theorem 5. ■

4. Universality theorem

Introduced by Sussmann in [26], universal inputs are inputs for which the resulting output of a system
such as (1) allows to distinguish between any two states that may be distinguished. In other words, v is
a universal input if, for any two points xa, xb ∈ Rn and some input u for which t 7→ h(X(xa, t, u)) and
t 7→ h(X(xb, t, u)) do not coincide, then t 7→ h(X(xa, t, v)) and t 7→ h(X(xb, t, v)) do not coincide either. In
[26], it is proved that for analytic systems there always exist universal analytic inputs, and that universality
is a generic property. In this section, we lift arguments from [26] to provide a proof of our own universality
theorem, Theorem 6. It is a stronger result that follows from stronger assumptions (especially Assump-
tion 2.ii, that the system is strongly differentially observable for the null-input). Naturally, assumptions
from [26] hold under ours.

We assume in the rest of the section that T̄ > 0 is a fixed time frame for which we discuss the properties
of inputs in C∞([0, T̄ ],Rp) endowed with the compact-open topology.

Definition 11. Let k be a positive integer. We say that a (k−1)-jet σ ∈ (Rp)
k
distinguishes a pair (xa, xb)

in Rn × Rn, if there exists an integer 0 ⩽ j ⩽ k such that Hj(xa, σ) ̸= Hj(xb, σ). By extension, an input
u ∈ C∞([0, T̄ ],Rp) is said to distinguish (xa, xb), if there exist a positive integer k and a time t ∈ [0, T̄ ]
such that Hk(xa, t, u) ̸= Hk(xb, t, u). That is, the (k − 1)-jet of u at t distinguishes (xa, xb). Finally, a pair
(xa, xb) is said to be distinguishable if there exists a jet that distinguishes it.

Let D = {(x, x) : x ∈ Rn} denote the diagonal of the state space. No (x, x) pair can be distinguished,
but under Assumption 2.i, any pair in (Rn × Rn) \ D is distinguishable. We also define for any η > 0, a
neighborhood of the diagonal

Dη = {(xa, xb) ∈ Rn × Rn : |xa − xb| ⩽ η}. (24)

Over the whole section, K denotes a subset of Rn × Rn. For such a K, we denote by K its projection onto
Rn with respect to both factors, that is:

K = {x ∈ Rn : ({x} × Rn ∪ Rn × {x}) ∩ K ̸= ∅} . (25)

Naturally, if K is compact, K is also compact.
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Definition 12. The input u ∈ C∞([0, T̄ ],Rp) is said to be universal over K ⊂ Rn × Rn if it distinguishes
any distinguishable pair in K. Following Sussmann, we call Z(T̄ ,K) the set of inputs that are universal over
K.

In addition, we call Z ′(T̄ ,K) the subset of inputs v ∈ C∞([0, T̄ ],Rp) for which there exists (T, q) ∈
(0, T̄ ]×N such that for all (t, µ,R) ∈ [0, T ]× [0, 1]×O(p), the map (xa, xb) 7→ Hq(xa, t, µRv)−Hq(xb, t, µRv)
never vanishes over K \ D and x 7→ Hq(x, t, µRv) is an immersion on K.

Remark 13. For any u ∈ C∞([0, T̄ ],Rp), k ∈ N, ε0, . . . , εk positive constants, we define

V (u, ε0, . . . , εk) =
{
v : ∥v(j) − u(j)∥∞ < εj ,∀j ⩽ k

}
. (26)

The family of these sets is a fundamental system of neighborhoods of u in the compact-open topology.

Lemma 14. Z ′(T̄ ,K) is open if K ⊂ Rn × Rn is compact.

Proof. Fix any v ∈ Z ′(T̄ ,K), T > 0 and q integer as in Definition 12. By construction (see Section 2.1), Hq

is an analytic function of the (q − 1)-jets of v, and therefore is continuous with respect to (x, t, µ,R, u) ⊂
Rn × [0, T ] × [0, 1] × O(p) × C∞([0, T̄ ],Rp). Applying Lemma 22, items (i)-(ii), with Π = [0, T ] × [0, 1] ×
O(p)× C∞([0, T̄ ],Rp) and Fπ(x) = Hq(x, t, µRu) for π = (t, µ,R, u) yields the existence of

ρ(u) = min
π∈[0,T ]×[0,1]×O(p)×{u}

min
{
ρ2(π), ρ1(π, η2(π))

}
continuous with respect to u and such that

|Hq(xa, t, µRu)−Hq(xb, t, µRu)| ⩾ ρ(u)|xa − xb|.

Since v ∈ Z ′(T̄ ,K), ρ(v) > 0 and there exist k ∈ N, k ⩾ q− 1, ε0, . . . , εk > 0 such that if u ∈ V (v, ε0, . . . , εk)
(as in (26)), then ρ(u) > 0. Consequently, for any u ∈ V (v, ε0, . . . , εk), t ∈ [0, T ], µ ∈ [0, 1], R ∈ O(p),
(xa, xb) 7→ Hq(xb, t, µRv) − Hq(xa, t, µRu) never vanishes over K \ D. Up to reducing ε0, . . . , εk, we also
recover the injectivity of the Jacobian over K, which concludes the openness argument. ■

Remark 15. In [26, Theorem 2.2], the set Z(T̄ ,K) of universal inputs over K could not be proved to be open
because of the issue at the diagonal. Even if, for a given v, the map Gv : (xa, xb) 7→ Hq(xb, 0, v)−Hq(xa, 0, v)
vanishes only when xa = xb in K, there may exists arbitrarily small perturbations δv such that Gv+δv has
nontrivial vanishing points off the diagonal (as with the Whitney pleat for instance [4]). The injectivity
requirement on the Jacobian of Hq is crucial to avoid that difficulty.

Following a similar reasoning to the proof of [26, Theorem 2.2], which states that, under analicity
assumption, the set of inputs that distinguish any distinguishable pair is dense in C∞([0, T̄ ],Rp), we are
able, mutatis mutandis (but not without efforts), to prove Theorem 6.

To the universality of inputs provided by [26, Theorem 2.2], we add the strong differential observability
(see Definition 1-(ii)) as well as uniformity with respect to parameters µ and R. To do so, we amend the
intermediary lemmas and theorems leading to [26, Theorem 2.2] (namely [26, Lemma 3.1 to Theorem 3.9]).
While the parameters’ side will be achieved by a refinement on the proof of [26, Theorem 3.9], the immersion
property will require a finer approach. For shortness of presentation, some elements remain black boxes.

Let us introduce some notation. Set Γ0 = Rn × Rn and Γk = Rn × Rn × (Rp)k. If j ⩽ k, we set
µkj : Γk → Γj to be the trivial projection, and since the map Hj can be extended to (Rp)k, we can slightly
abuse notation and write Hj(x, σ) even when σ ∈ (Rp)k. For each nonnegative integer k, consider the sets

Ak = {(xa, xb, σ) ∈ Γk : ∀j ⩽ k, Hj(xa, σ) = Hj(xb, σ)} ,

Ãk =

{
(x, σ) ∈ Rn × (Rp)k : rk

(
∂Hj

∂x
(x, σ)

)
0⩽j⩽k

< n

}
,

A′
k =

{
(xa, xb, σ) ∈ Γk : ∃ c ∈ {a, b}, (xc, σ) ∈ Ãk

}
.

The set Ak ∪ A′
k denotes the sets of jets of bad inputs, observability-wise, as seen in the next statement,

which is an immediate counterpart of [26, Lemmas 3.6 and 3.7].
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Lemma 16 (Bad jets lemma). Let k ∈ N. Then,

1. Ak ∪A′
k is an analytic subset of Γk.

2. If j ⩽ k, µkj(Ak ∪A′
k) ⊂ Aj ∪A′

j.

3. (xa, xb, σ) ∈ Ak if and only if σ fails to distinguih the pair (xa, xb).

4. (xa, xb, σ) ∈ A′
k if and only if at xa or xb the map x 7→ (H0(x, σ), . . . ,Hk(x, σ)) fails to be an immer-

sion.

The technical heart of the proof is probably the following result, showing that the amount of space that
the sets Ak ∪ A′

k occupy within Γk becomes smaller as k grows. (Meaning that it is more difficult for a
jet of high order to not distinguish between two points). In a later proof, this will allow to invoke Sard’s
lemma type arguments to show that jets having sufficiently high order should be universal (at least over a
compact). Let us recall the notions of dimension and codimension used in [26]. If A is a subset of a smooth
manifold E, its dimension is the maximal dimension of any smooth submanifold of E included in A, and is
denoted by dimA. The codimension of A is codimE A = dimE − dimA.

Lemma 17. Let E = (Ek)k⩾0 ⊂ Γk be a family such that:

1. E0 is contained in the set of distinguishable pairs,

2. Ek is an open subset of Γk,

3. µjk(Ej) ⊂ Ek when j ⩾ k,

4. (Ak ∪A′
k) ∩ Ek is a union of a finite number of connected analytic submanifolds of Γk.

Set c′E(k) = codimEk
((Ak ∪A′

k) ∩ Ek). Then, under assumption 2.ii, limk→∞ c′E(k) = +∞.

In order for Lemma 17 to hold (employing exactly the same proof as Sussmann’s), we need to ensure
that if (xa, xb, σ) ∈ Ak ∪ A′

k, then there exists j ⩾ k and τ such that µjk(xa, xb, τ) = (xa, xb, σ) and
(xa, xb, τ) /∈ Aj ∪ A′

j . For the sets Ak, this requirement is established in [26, Lemma 3.5]. Regarding the
sets A′

k, employing the same proof technique as in [26, Lemma 3.5], we are able to establish the following.

Lemma 18 (Jet extension lemma). Suppose Assumption 2.ii holds. Let x ∈ Rn, let k be a nonnegative
integer, and let σ ∈ (Rp)k such that (x, σ) ∈ Ãk. Then there exist j ⩾ k and a (j − 1)-jet τ which coincides
with σ up to order k − 1 and such that (x, τ) /∈ Ãj.

Proof. We need to prove that there exist j ⩾ k and w ∈ C∞(R+,Rp), with w[j−1](0) = τ and w[k−1](0) = σ,
that satisfy: for all ξ ∈ Sn−1, there exists 0 ⩽ i ⩽ j such that〈

di

dti

∣∣∣∣
t=0

∂h

∂x
(X(x, t, w)), ξ

〉
̸= 0. (27)

That is, the map x̃ 7→ (H0(x̃, τ), . . . ,Hj(x̃, τ)) is an immersion at x, thus implying that (x, τ) /∈ Ãj by
Lemma 16. Let u ∈ C∞(R+,Rp) be such that u[k−1](0) = σ. Let T ∈ (0, Te(x, u)). Set x′ = X(x, T, u),
v̄ = 2|u(T )|, and let r be a positive constant. For any v ∈ C0

(
R+, BRp(0, v̄)

)
, set t∗ = inf{t > 0: |X(x′, t, v)−

x′| > r}. If t∗ < ∞, then

r = |X(x′, t∗, v)− x′| ⩽
∫ t∗

0

|f(X(x′, s, v), v(s))|ds

⩽ t∗κ, where κ = supBRn (x′,r)×BRp (0,v̄)
|f |.

Thus, η := r/κ ⩽ t∗ and by construction, we have X (x′, [0, η], v) ⊂ BRn(x′, r), for all v ∈ C0
(
R+, BRp(0, v̄)

)
.
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Fix T ′ positive such that T ′ < infBRn (x′,r) Te(·, 0) (such a T ′ exists since Te(·, 0) is lower semi-continuous).
Let now K ⊂ Rn be a compact subset containing X (x, [0, T ], u) ∪ X (BRn(x′, r), [0, T ′], 0) in its interior.
By Assumption 2.ii, since K is compact, there exists k0 ⩾ k such that Hk0

(·, 0, 0) is an immersion over K.
Indeed one such k0 exists for all element of K by assumption. This property being open and Hk0

(·, 0, 0)
continuously differentiable, we get a uniform k0 over K by a finite open cover argument.

Let uη ∈ Ck0−1([0, η], BRp(0, v̄)) be such that u
[k0−1]
η (0) = u[k0−1](T ) and u

[k0−1]
η (η) = 0. Now we

consider v ∈ Ck0−1([0, T + η + T ′],Rp), a (k0 − 1)-continuously differentiable extension of the input u:

v(t) =


u(t) if t ∈ [0, T )

uη(t− T ) if t ∈ [T, T + η)

0 if t ∈ [T + η, T + η + T ′]

By construction, X(x, t, v) is well defined for all t ∈ [0, T + η + T ′] and belong to K̊.
We then write v(t) = P (t) + tk0Q(t), where P (t) is the Taylor polynomial of degree k0 − 1 of v at 0. In

fact, P [k−1](0) = σ. Using Weierstrass approximation theorem of order k0 − 1, we can find a sequence of

polynomials Qℓ such that for all 0 ⩽ i ⩽ k0 − 1, Q
(i)
ℓ converges uniformly towards Q(i) as ℓ → ∞. As such,

vℓ = P (t) + tk0Qℓ(t) is a sequence of polynomials with v
(i)
ℓ converging uniformly towards v(i) (i ⩽ k0 − 1)

while vℓ
[k−1](0) = σ.

Since v
(i)
ℓ tends uniformly to 0 on [T + η, T + η + T ′], we have, for ℓ large enough, that X(x, t, vℓ) ∈ K̊,

for all t ∈ [0, T + η + T ′]. Also, because being an immersion is an open property, and Hk0
is continuous,

Hk0(·, t, vℓ) is an immersion at x for all t ∈ [T + η, T + η + T ′] and all ℓ large enough. Fix one such ℓ. This
allows to conclude that for all ξ ∈ Sn−1, there exists 0 ⩽ i ⩽ k0 such that〈

di

dti

∣∣∣∣
t=T+η

∂h

∂x
(X(x, t, vℓ)), ξ

〉
̸= 0,

implying that the analytic (recall vℓ is actually a polynomial) map t 7→
〈
∂h
∂x (X(x, t, vℓ)), ξ

〉
is non-zero.

Hence for any ξ ∈ Sn−1, there exists i(ξ) ⩾ 0 such that (27) holds with i = i(ξ). By continuity of the scalar
product, we again get an open property, and are able to use compactness of Sn−1 to conclude that there
exists j ⩾ k0 such that i(ξ) < j for all ξ ∈ Sn−1. In conclusion, τ = vℓ

[j−1](0) satisfies (x, τ) /∈ Ãj . ■

We now have the necessary elements to prove Lemma 17.

Proof of Lemma 17. The proof goes exactly the same as the proof of [26, Lemma 3.8]. We just need to
substitute [26, Lemmas 3.7, 3.6] with Lemma 16, and [26, Lemmas 3.5] with [26, Lemma 3.5] plus Lemma 18.

■

Now we propose an original refinement of [26, Theorem 3.9] Sussmann’s proof that includes the contrac-
tion coefficient µ and the action of the orthogonal group O(p) defined by: R · σ = (Rσ1, . . . ,Rσk) for any
(R, σ) ∈ O(p)× (Rp)k and any k ⩾ 1.

Proposition 19. Let Assumptions 2.i and 2.ii hold. Let K be a compact subset of Rn×Rn \D. Let (Bℓ)ℓ⩾0

be a sequence of open balls of positive radii and centered at 0 ∈ Rp. Then there exist k > 0 and an open and
dense subset W of B0 ×B1 × · · · ×Bk−1 such that, whenever (xa, xb, σ, µ,R) ∈ K×W × [0, 1]×O(p), then
(xa, xb, µR · σ) /∈ Ak ∪A′

k.

Proof. We follow the reasoning of Sussmann’s Theorem 3.9. The first step is to restrict the search by
stipulating that the result only needs to hold true for some neighborhood in Rn×Rn \D of any pair (xa, xb)
such that xa ̸= xb. Then the statement holds on any compact subset K.

On the one hand, by Assumptions 2.i and 2.ii, there exists k′ ⩾ 0 such that, (xa, xb, 0, . . . , 0) /∈ Ak ∪A′
k

for all k ⩾ k′. Because Ak ∪A′
k is closed, it follows that for any k > k′, there exists εk > 0 such that, taking

E0 = BRn(xa, εk)×BRn(xb, εk), (Ak ∪A′
k) ∩

[
E0 ×BRpk(0, εk)

]
= ∅ and Ē0 ⊂ Rn × Rn \ D.

14



For k ⩾ 1, set Ek = E0 × B0 × · · · × Bk−1. Then the induced family E = (Eℓ)ℓ⩾0 satisfies conditions
of Lemma 17 (condition 1 follows from Assumption 2.i, conditions 2 and 3 are immediate, and condition 4
also holds since the sets E0, (Bℓ)ℓ⩾0 were picked analytic).

On the other hand, by Lemma 17, there exists k′′ ⩾ k′ such that c′E(k) > 2n + 1 + p(p − 1)/2 for all
k ⩾ k′′. Fix k > k′′ and let ς : Γk × [0,+∞) × O(p) → Rpk be the surjective analytic map given by
ς(xa, xb, σ, µ,R) = µR ·σ. The cone L = ς

(
(Ak ∪A′

k) ∩ Ek× [0,+∞)×O(p)
)
is a semianalytic set of positive

codimension. By Sard’s Lemma, L has zero measure, thus Rpk \ L is dense.

W =
[
BRpk(0, εk) ∪ (Rpk \ L)

]
∩ [B0 × · · · ×Bk−1] .

Then W is clearly open and dense in B0×· · ·×Bk−1. Now let (x′
a, x

′
b, µ,R) ∈ E0× [0, 1]×O(p) and σ ∈ W .

Let us prove that (x′
a, x

′
b, µR · σ) /∈ (Ak ∪ A′

k) ∩ Ek. If σ ∈ BRpk(0, εk), then µR · σ ∈ BRpk(0, εk) also, and
(x′

a, x
′
b, µR · σ) /∈ (Ak ∪A′

k) ∩Ek. If σ /∈ BRpk(0, εk), either µ = 0, and (x′
a, x

′
b, 0) /∈ Ak ∪A′

k by assumption,
or µ ̸= 0, which we now assume. Clearly, µR · σ ∈ B0 × · · · ×Bk−1. By construction of L, if µR · σ ∈ L then
σ ∈ µ−1R−1 · L = L. Since, σ ∈ Rpk \ L, this means that µRσ ∈ W also, and thus (x′

a, x
′
b, 0) /∈ Ak ∪ A′

k

again. ■

Like Sussmann’s [26], the last step of the proof is to move from spaces of jets to spaces of functions. Let
us first show that we can safely move from a good jet (one that avoids a critical set Ak ∪A′

k, see Lemma 16)
to a good input (one that belongs to a Z ′(T̄ ,K), see Definition 12).

Lemma 20. Let K be a compact subset of Rn × Rn \ D. Let k ∈ N and let σ ∈ (Rp)k be a (k − 1)-jet such
that for all (xa, xb, µ,R) ∈ K × [0, 1] × O(p), (xa, xb, µR · σ) /∈ Ak ∪A′

k. Then any u ∈ C∞([0, T ],Rp) with
u[k−1](0) = σ having its (k − 1)-jet at 0 given by σ belongs to Z ′(T̄ ,K).

Proof. Let σ(t) = u[k−1](t). It describes a smooth trajectory in the space (Rp)k such that σ(0) = σ. Assume
by contradiction that u /∈ Z ′(T̄ ,K). By points 3-4 of Lemma 16, it follows that for any N ∈ N, there exist
tN ∈ (0, T̄ /N ], (xN

a , xN
b , µN ,RN ) ∈ K × [0, 1] × O(p) such that (xN

a , xN
b , µNRN · σ(tN )) ∈ Ak ∪A′

k. The
sequence (xN

a , xN
b , µN ,RN ) converges up to extraction as N → ∞, since it belongs to a compact set. We

denote the limit with (x∞
a , x∞

b , µ∞,R∞) ∈ K × [0, 1] × O(p). Also, σ(tN ) → σ. The set Ak ∪A′
k is closed,

hence (x∞
a , x∞

b , µ∞R∞ · σ) ∈ Ak ∪A′
k, a contradiction. ■

We now combine Proposition 19 and Lemma 20 to prove the density of good inputs if we avoid the
diagonal.

Lemma 21. Let Assumptions 2.i and 2.ii hold. Let K ⊂ (Rn ×Rn) \D be a compact set. The set Z ′(T̄ ,K)
is dense in C∞([0, T ],Rp).

Proof. We use the fundamental system of neighborhoods for the topology of C∞([0, T̄ ],Rp) recalled in
Remark 13. Let u ∈ C∞([0, T̄ ],Rp), k ∈ N, and ε0, . . . , εk > 0. Let us show that Z ′(T̄ ,K)∩V (u, ε0, . . . , εk) ̸=
∅.

We complete the sequence (εj)j∈N into an arbitrary sequence (such as εj = 1 for all j > k for instance).
For j ⩾ 0, we set Bj to be the open ball of center 0 and radius |u(j)(0)| + εj . Since Assumptions 2.i, 2.ii
hold, we apply Proposition 19 to find k′ > 0 and W an open and dense subset of B0 × B1 × · · · × Bk′−1,
such that if σ ∈ W , for any µ ∈ [0, 1], R ∈ O(p), (xa, xb, µR · σ) /∈ Ak ∪A′

k. We can assume that k′ ⩾ k + 1,
up to replacing W with W ×Bk′+1 × · · · ×Bk.

Write (σu
0 , . . . , σ

u
k′−1) = u[k′−1](0), (σ0, . . . , σk′−1) = σ, and define the input

vσ(t) = u(t) +

k′−1∑
j=0

σj − σu
j

j!
tj .

It is clear that ω : σ 7→ vσ is continuous and allows to define Q = ω−1(V (u, ε0, . . . , εk)), an open neighbor-
hood of σu. Furthermore, Q ⊂ B0 × B1 × · · · × Bk × (Rp)k

′−k−1. Since W is an open and dense subset of
B0 × B1 × · · · × Bk′−1, there exists σ ∈ W ∩ Q, which by construction satisfies vσ ∈ V (u, ε0, . . . , εk). By
Lemma 20, we then also have that vσ ∈ Z ′(T̄ ,K), hence the density of Z ′(T̄ ,K). ■
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We are finally in position to prove Theorem 6. Theorem 6-(i) will follow from Lemmas 14, 21 and 22.
The argument we use to prove Theorem 6-(ii) is similar to the proof of [26, Theorem 2.1]. The cited theorem
only proves existence of analytic universal inputs but a few elements from Theorem 6-(i) extend Sussmann’s
argument to also provides density.

Proof of Theorem 6. Recall that C∞([0, T̄ ],Rp) endowed with the compact-open topology is a Baire space,
i.e., a topological space in which every countable intersection of open and dense sets is dense.

To prove item (i), let us consider the non-decreasing sequence (KN )N∈N defined by

KN =

{
(xa, xb) ∈ K2 : |xa − xb| ⩾

maxK2 |xa − xb|
N + 3

}
.

According to Lemmas 14 and 21,
⋂

N∈N Z ′(T̄ ,KN ) is a countable intersection of open and dense subsets
of C∞([0, T̄ ],Rp). It is therefore dense since C∞([0, T̄ ],Rp) is a Baire space. Let v ∈

⋂
N∈N Z ′(T̄ ,KN ), let

us check that v ∈ UK. Let x̄a, x̄b be such that (x̄a, x̄b) realizes maxK2 |xa−xb|. If x ∈ K is such that |x−x̄a| <
|x̄a − x̄b|/3, we automatically get by triangular inequality that |x− x̄b| ⩾ 2|x̄a − x̄b|/3. Hence the projected
set K0 (see (25)) is equal to K. As a consequence, having v ∈ Z ′(T̄ ,K0) implies that there exist T0 ∈ (0, T̄ ]
and q0 ∈ N for which x 7→ Hq0(x, t, µRv) is an immersion over K for all (t, µ,R) ∈ [0, T0] × [0, 1] × O(p).
Applying Lemma 22, item (ii), thanks of the compactness of [0, T0] × [0, 1] × O(p), there exist ρ0, η0 > 0
such that for all (t, µ,R) ∈ [0, T0]× [0, 1]×O(p) and all (xa, xb) ∈ K2 such that |xa − xb| < η0 we have

|Hq0(xa, t, µRv)−Hq0(xb, t, µRv)| ⩾ ρ0|xa − xb|.

Let N∗ ∈ N be such that (N∗ + 3)η0 > maxK2 |xa − xb|. From v ∈ Z ′(T̄ ,KN∗), there exist T ∗ ∈ (0, T̄ ],
q∗ ∈ N for which (xa, xb) 7→ Hq∗(xa, t, µRv) − Hq∗(xb, t, µRv) never vanishes over KN∗ (for any (t, µ,R) ∈
[0, T ∗]× [0, 1]×O(p)). Applying Lemma 22, item (i), again from the compactness of [0, T ∗]× [0, 1]×O(p),
there exists ρ∗ > 0 such that for all (t, µ,R) ∈ [0, T ∗] × [0, 1] × O(p) and all (xa, xb) ∈ K2 such that
|xa − xb| ⩾ η0 we have

|Hq∗(xa, t, µRv)−Hq∗(xb, t, µRv)| ⩾ ρ∗|xa − xb|.
Taking T = min(T0, T

∗) > 0, q = max(q0, q
∗) and ρ = min(ρ0, ρ

∗) > 0, we get for all (t, µ,R) ∈ [0, T ] ×
[0, 1]×O(p) and all (xa, xb) ∈ K2:

|Hq(xa, t, µRv)−Hq(xb, t, µRv)| ⩾ ρ|xa − xb|.

Since we also have the immersion property on K (again thanks to K0 = K), we have proved that v ∈ UK,
and point (i) stands.

We now prove point (ii). Let u ∈ C∞([0, T̄ ],Rp), k ∈ N, and ε0, . . . , εk > 0. Let us prove that
UK ∩ Cω([0, T̄ ],Rp) ∩ V (u, ε0, . . . , εk) ̸= ∅.

We first apply Weierstrass density theorem to find a polynomial P belonging to V (u, ε0/2, . . . , εk/2).
Then we define (B′

i)i∈N a sequence of open balls centered at P (i)(0) and of radii r = min(ε0, . . . , εk) e
−T /2.

That way for any input w ∈ Cω([0, T ],Rp) such that w(i)(0) ∈ B′
i, we have

P (t)− w(t) =

∞∑
i=0

P (i)(0)− w(i)(0)

i!
ti,

which implies w ∈ V (P, ε0/2, . . . , εk/2) ⊂ V (u, ε0, . . . , εk).
Let (Bi)i∈N be a sequence of open balls centered at 0 and of radii

∣∣P (i)(0)
∣∣+r. For every N ∈ N, we apply

Proposition 19 on the compact set KN to find qN , an open and dense WN ⊂ B0 × · · · ×BqN−1 such that for
all (xa, xb) ∈ KN , σ ∈ WN , µ ∈ [0, 1], R ∈ O(p), (xa, xb, µR · σ) /∈ AqN ∪A′

qN . Naturally, this implies that if

w[qN−1](0) ∈ WN , then w ∈ Z ′(T̄ ,KN ) from Lemma 20. We complete each WN into W ′
N = WN ×

∏∞
i=qN

Bi.

EachW ′
N is an open and dense subset of

∏∞
i=0 Bi endowed with the product topology. Then, because

∏∞
i=0 Bi

is a Baire space for the product topology,
⋂∞

N=0 W
′
N is dense. Thus, the intersection

⋂∞
N=0 W

′
N ∩

∏∞
i=0 B

′
i

is nonempty since
∏∞

i=0 B
′
i is open in

∏∞
i=0 Bi. For any σ in that intersection, set v(t) =

∑∞
i=0 σit

i/i!. We
have v ∈ V (u, ε0, . . . , εk)∩

⋂∞
N=0 Z

′(T̄ ,KN ) ⊂ V (u, ε0, . . . , εk)∩UK, which proves the density and concludes
the argument. ■
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5. Conclusion and perspective

We introduced control templates to extend sample-and-hold control while maintaining observability.
Using this idea, we first established a separation principle under the assumptions of existence of control
templates and a locally exponentially stabilizing state feedback. Second, we proved that control templates
are generic among smooth inputs. These combine into the first generic semiglobal dynamic output feedback
stabilization result for locally exponentially stabilizable nonlinear control systems. That is, without any
uniform observability assumption [27, 15], nor any passivity or dissipativity properties [21, 23].

It remains an open question whether a similar result could be achieved by using a two-modes strategy
assuming exponential stabilizability and observability of the null-input as in [24] (the potential difficulty
lies in passing from practical to exact stabilization), or as in [11] (it lies in passing from local to semiglobal
stabilization). The template control method has the advantage of simultaneous estimation and observation
without relying on two-mode separation, making it closer to observer-based methods. The observability
assumption we make is still stronger than the ones imposed by Coron in [11] that are almost necessary (see
[8]). We believe template control methods could be developed further to address other observability issues,
including stabilization at an unobservable target.

Appendix. Additional technical lemmas

Lemma 22. Let n and m be two positive integers, K be a compact subset of Rn × Rn, Π be a topological
space, and F : Rn ×Π → Rm be a continuous map. Define Fπ := x 7→ F (x, π), for all π ∈ Π.

Let Dη and K be as in (24) and (25), respectively.

(i) There exists a continuous function ρ1 : Π× R+ → R+ such that for all (xa, xb, π) ∈ (K \ D̊η)×Π,

|Fπ(xa)− Fπ(xb)| ⩾ ρ1(π, η)|xa − xb|,

and if (xa, xb) 7→ Fπ(xa)− Fπ(xb) never vanishes over K \ D̊η for any π ∈ Π, then ρ1 is positive.

(ii) Assume Fπ is C1 over K and that (x, π) 7→ ∂Fπ

∂x (x) is continuous. There exist η2, ρ2 : Π → R+

continuous such that for all (π, xa, xb) ∈ Π× K ∩ Dη2(π),

|Fπ(xa)− Fπ(xb)| ⩾ ρ2(π)|xa − xb|,

and if ∂Fπ

∂x (x) is injective for all (x, π) ∈ K×Π, then η2 and ρ2 are positive.

(iii) If Π is compact and Fπ is an injective immersion over a compact K ⊂ Rn for all π ∈ Π, then there
exists ρ > 0 such that

|Fπ(xa)− Fπ(xb)| ⩾ ρ|xa − xb|, (28)

for all (xa, xb, π) ∈ K2 × Π, and there exists a continuous map F inv : Rm × Π → Rn that is globally
Lipschitz with respect to its first variable, and Lipschitz constant uniform with respect to the second,
and such that F inv(F (x, π), π) = x for all (x, π) ∈ K ×Π.

Proof. This lemma is an adaptation of [2, Lemma 3.2], where we investigate the dependency of ρ1 and ρ2
with respect to the parameter π. The last item is a direct consequence of [5, Lemma A.12], but we give a
proof for the sake of completeness. Suppose K and K contain at least two elements, for otherwise the result
is obvious.

Proof of (i). For all π ∈ Π and all η ∈ [0, d] with d := max(xa,xb)∈K |xa − xb|, define

ρ1(π, η) = min
(xa,xb)∈K\D̊η

|Fπ(xa)− Fπ(xb)|
|xa − xb|

.
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Note that ρ1 is well-defined and continuous since F is continuous and K \ D̊η is a nonempty compact set

since η ⩽ d. Moreover, ρ1 is positive if (xa, xb, π) 7→ Fπ(xa) − Fπ(xb) does not vanish on (K \ D̊η) × Π. If
η > d, define ρ1(π, η) = ρ1(π, d).

Proof of (ii). Since (x, π) 7→ ∂Fπ

∂x (x) is continuous, there exists a continuous E : (Rn)2 ×Π → Rn such
that E(0, 0, π) = 0 for all π ∈ Π, and

Fπ(xa)− Fπ(xb) =
∂Fπ

∂x
(xb)(xa − xb) + |xa − xb|E(xa, xb, π),

for all (xa, xb, π) ∈ (Rn)2 ×Π. Define

ρ2(π) = min
(x,ξ)∈K×Sn−1

1

2

∣∣∣∣∂Fπ

∂x
(x)ξ

∣∣∣∣ .
Note that ρ2 is well-defined and continuous since (x, π) 7→ ∂Fπ

∂x (x) is continuous and K is a nonempty compact
set. If Fπ is an immersion for all (x, π) ∈ K×Π, then ρ2 is positive. Define

η2(π) = min
(xa,xb)∈K

|E(xa,xb,π)|⩾ρ2(π)

|xa − xb|.

Note that η2 is well-defined and continuous since E is continuous, E(0, 0, π) = 0, and K is a nonempty
compact set. Moreover, η2(π) > 0 if ρ2(π) > 0. If (xa, xb) ∈ K ∩ Dη2(π), then |E(xa, xb, π)| ⩽ ρ2(v), which
yields

|Fπ(xa)− Fπ(xb)| ⩾ ρ2(v)|xa − xb|.

Proof of (iii). Apply (i) and (ii) with K = K2, and define ρ = minΠ{ρ1(·,minΠ η2), ρ2}, which is
positive since Π is compact. Then (28) holds for all (xa, xb, π) ∈ K2 ×Π. For each π ∈ Π, the injective map
Fπ admits a left inverse Gπ : Fπ(K) → K which is, because of (28), (1/ρ)-Lipschitz continuous. Moreover,
according to [18, Theorem 1], the mapping F inv : Rm ×Π → Rn given by

F inv(z, π) =

(
min

z̃∈Fπ(K)
{Gπ,j(z̃) + |z̃ − z|/ρ}

)
1⩽j⩽n

,

Gπ,j being the jth-coordinate of Gπ, is such that for each π ∈ Π, F inv(·, π) is a (
√
n/ρ)-Lipschitz extention

of Gπ. Defined as such, F inv is also continuous. ■

Lemma 23. For any u, ũ ∈ Rp and any R ∈ R(u), there exists R̃ ∈ R(ũ) such that
∥∥|u|R− |ũ|R̃

∥∥ ⩽ |u− ũ|.

Proof. If u = 0 or ũ = 0, the result is obvious. Otherwise, pick S ∈ O(p) such that Su/|u| = ũ/|ũ|
and S|span{u,ũ}⊥ = Id. Thus, SR ∈ R(ũ) and ⟨v,Sv⟩ = |v|2 cos(u, ũ) for any v ∈ span{u, ũ}. Now, let

w ∈ Sp−1 be such that
∥∥|u|R − |ũ|SR

∥∥ =
∣∣|u|w − |ũ|Sw

∣∣ and decompose w = v + v⊥, with v ∈ span{u, ũ}
and v⊥ ∈ span{u, ũ}⊥. Developing yields∥∥|u|R− |ũ|SR

∥∥2 =
∣∣|u|w − |ũ|Sw

∣∣2
=

∣∣|u|v − |ũ|Sv
∣∣2 + ∣∣|u|v⊥ − |ũ|Sv⊥

∣∣2
=

(
|u|2 − 2|u||ũ| cos(u, ũ) + |ũ|2

)
|v|2 +

∣∣|u|v⊥ − |ũ|v⊥
∣∣2

=
∣∣u− ũ

∣∣2 ∣∣v∣∣2 + ∣∣|u| − |ũ|
∣∣2 ∣∣v⊥∣∣2

⩽
∣∣u− ũ

∣∣2,
which proves the result for R̃ = SR. ■
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Proof of Lemma 2. For all i ∈ N, define Ei := {(xa, xb) ∈ Rn × Rn : Hi(xa, 0, u) = Hi(xb, 0, u)}. Then
(Ei)i∈N is a non-increasing sequence of analytic sets. According to [19, Chapter 5, Corollary 1], the sequence

(Ẽi)i∈N given by Ẽi = Ei ∩ (K×K) is stationary since K is compact. Hence,
⋂

i∈N Ẽi = Ẽk for some k ∈ N.
Under the analyticity assumptions, if, for xa, xb ∈ K, h ◦ X(xa, ·, u) ̸= h ◦ X(xb, ·, u) then the derivatives
at t = 0 of these two functions differ at some rank, i.e., Hi(xa, 0, u) ̸= Hi(xb, 0, u) for some i. Since u is

analytic, the observability assumption yields
⋂

i∈N Ẽi = {(x, x), x ∈ K}. Thus Ẽk = {(x, x), x ∈ K}, i.e. (1)
is differentially observable of order k over K. ■
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