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Evolution of semi-Kantian preferences in two-player assortative

interactions with complete and incomplete

information and plasticity

Ingela Alger∗ and Laurent Lehmann†

Abstract

We model the evolution of preferences guiding behavior in pairwise interactions in group-structured popu-

lations. The model uses long-term evolution theory to examine different interaction scenarios, including con-

ditional preference expression upon recognition of the partner’s type. We apply the model to the evolution of

semi-Kantian preferences at the fitness level, which combine self-interest and a Kantian interest evaluating own

behavior in terms of consequences for own fitness if the partner also adopted this behavior. We seek the conver-

gence stable and uninvadable value of the Kantian coefficient, i.e., the weight attached to the Kantian interest,

a quantitative trait varying between zero and one. We consider three scenarios: (a) incomplete information; (b)

complete information and incomplete plasticity; and (c) complete information and complete plasticity, where

individuals not only recognize the type of their interaction partner (complete information), but also conditionally

express the Kantian coefficient upon it (complete plasticity). For (a), the Kantian coefficient generally evolves

to equal the coefficient of neutral relatedness between interacting individuals; for (b), it evolves to a value that

depends on demographic and interaction assumptions, while for (c) there are generally multiple uninvadable

types, including the type whereby an individual is a pure Kantian when interacting with individuals of the same

type and applies the Kantian coefficient that is uninvadable under complete information with zero relatedness

when interacting with a different typed individual. Overall, our model connects several concepts for analysing

the evolution of behavior rules for strategic interactions that have been emphasized in different and sometimes

isolated literatures.
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1 Introduction

This paper is about formalizing natural selection on rules guiding individual behavior in strategic interactions, a

central question in evolutionary game theory (Maynard Smith and Price, 1973; Dawkins, 1980; Maynard Smith,

1982). By behavior we mean a “strategy”, i.e., “a specification of what an individual will do in any situation in

which it may find itself” (Maynard Smith, 1982). In the original evolutionary game theory models, each individual is

programmed to play a certain strategy regardless of the strategies used by others in the population. One way to think

about this is that the strategy is innate, thus a genetically determined trait. This view led to a vast theoretical

literature analysing the genetic evolution of strategies under all sorts of biological scenarios as is illustrated by

the literatures on the evolution of fighting, cooperation, and life-histories in plants and animals (e.g., the books

by Maynard Smith, 1982; Bulmer, 1994; Giraldeau and Caraco, 2000; Vincent and Brown, 2005; McNamara and

Leimar, 2020). Here, it is the population genetic process alone that determines the “evolutionarily stable strategy”

since strategies are inherited from parent to offspring and selected among alternatives by way of differential survival

and reproduction.

The view that strategies are innate is restrictive, however, as it rules out situations where individuals have

capacities to change their own strategy when interacting with their environment. Such processes have been in-

corporated into evolutionary game theory through several alternative notions, such as the concepts of “culturally

stable” and “developmentally stable” strategies (Dawkins, 1980; Maynard Smith, 1982). Here, the behavior of an

individual is the outcome of some updating rule(s), typically imitative or experiential, for strategy selection during

the individual’s lifespan. In the memorable example detailed by Dawkins (1980), pigs in skinner boxes equilibrate

on developmentally stable strategies by action reinforcement in producer-scrounger games, and a large literature has

evaluated culturally stable strategies under different sorts of transmission rules (e.g., Cavalli-Sforza and Feldman,

1981; Boyd and Richerson, 1985). This in turn raises the question of what should be the evolutionarily stable rule

for individual strategy selection in strategic interactions? While this question was raised early in the history of

evolutionary game theory (Harley, 1981; Maynard Smith, 1982), perhaps more controversy than conclusions where

initially reached (e.g., Selten and Hammerstein, 1984), and it is only more recently that this question has gained

some renewed theoretical attention in evolutionary biology (e.g., Arbilly et al., 2010; Dridi and Lehmann, 2015;

Dridi and Akçay, 2018; McNamara and Leimar, 2020).

In the meantime, however, economists and mathematical game theorists also produced insights about how various

individual choice and transmission rules induce change in strategies in populations (e.g., the books by Sugden, 1986;

Weibull, 1997; Fudenberg and Levine, 1998; Hofbauer and Sigmund, 1998; Samuelson, 1998; Young, 1998; Sandholm,

2011). One obstinate result in this literature is that updating rules of strategies–whether imitative or experiential–

relying on payoff tend to converge to Nash equilibria (Hofbauer and Sigmund, 1998; Fudenberg and Levine, 1998;

Cressman and Tao, 2004). Hence, in behavioral equilibrium, at the culturally stable or developmentally stable

state, it is as if individuals strive to maximize the payoff function at hand and thus as if they are rational decision

makers, in the sense that among a set of options they choose the one they prefer, given the others’ strategies (Mas-

Colell et al., 1995). The question of what should be the evolutionarily stable rule for individual strategy selection

can thus here be phrased as: if the evolving trait is the payoff function to be maximized, which payoff function
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is evolutionarily stable? This is the question that the literature on preference evolution for strategic interactions

addresses addresses (e.g., Güth, 1995; Ok and Vega-Redondo, 2001; Dekel et al., 2007; Heifetz et al., 2007b,a; Akçay

and Van Cleve, 2009; Alger and Weibull, 2010; Akçay and Van Cleve, 2012; Alger and Weibull, 2012, 2013; Wang

and Wu, 2023). Because information plays a central role in strategic interactions (Fudenberg and Tirole, 1991), the

formalizations of preference evolution have covered a variety of informational scenarios (e.g., Ok and Vega-Redondo,

2001; Dekel et al., 2007; Wang and Wu, 2023; see Alger and Weibull, 2019; Alger, 2023 for surveys). Focusing on the

evolution of preferences gives hope to improve predictions about equilibrium behavior because payoff-based choice

rules can otherwise come in endless mechanistic forms – some more biologically and cognitively inspired than others

(Sutton and Barto, 1998; Russell and Norvig, 2016) but none empirically fully elucidated (e.g., Jeong et al., 2022).

The goal of this paper is to contribute to the literature on the evolution of rules guiding individual behavior

in two ways and is thus divided in two parts. In the first part, we connect a number of concepts and results to

analyze the long-term evolution (sensu Eshel, 1996; Eshel et al., 1998) of behavioral mechanisms for equilibrium

action in group-structured populations. This part can thus be read as a methodological review. In the second part,

we push forward within this framework the evolutionary analysis of the class of preferences involving a mix between

self-interest and an interest in evaluating own behavior in the light of the consequences for own payoff if others

adopted this behavior. This is the class of semi-Kantian preferences, which, in the words of Binmore (1998, p. 191),

can be seen as hybrid preferences combining the categorical imperative of Nash with that of Kant. Bergstrom (1995)

shows that the evolutionarily stable strategy in interactions between siblings could be interpreted as if individuals

had such preferences, an interpretation that should hold more generally when interactions occur between related

individuals. Semi-Kantian preferences have then indeed been shown to be evolutionarily stable and uninvadable

under various transmission rules when population structure results from limited genetic or cultural mixing among

interacting individuals, when interacting individuals cannot observe each other’s preferences (Alger and Weibull,

2013, 2016; Alger et al., 2020). However, so far the evolutionary convergence towards semi-Kantian preferences has

not been ascertained, and their evolution has not been analyzed under different informational assumptions. Our goal

is to analyse convergence stability and uninvadability of semi-Kantian preferences in three different informational

scenarios: (a) incomplete information; (b) complete information and incomplete plasticity (interacting individuals

can observe each other’s preferences, but an individual’s preferences do not depend on the other’s preferences); and

(c) complete information and complete plasticity (interacting individuals can observe each other’s preferences, and

an individual’s preferences can depend on the other’s preferences). It will be seen that the different informational

and plasticity assumptions lead to quite different evolutionary outcomes, and that we are not always able to reach

general conclusions about convergence stability.

Our aim is not to obtain the most general conclusions about the open questions we address, but rather to illustrate

how demographic and informational features jointly contribute to the understanding of the long-term evolution of

preferences in structured populations. As such, we consider only pairwise interactions and restrict attention to

the parametric class of semi-Kantian preferences and the evolution of the Kantian coefficient, a quantitative trait

varying between zero and one, which represents the weight attached to the Kantian interest.
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2 Evolutionary invasion analysis of behavioral mechanisms

2.1 Biological assumptions for pairwise interactions

We consider a population of asexually reproducing individuals that are demographically homogeneous (no effective

age, stage or sex structure). The population occupies a habitat with an infinite and constant number of groups (or

demes, or spatial subdivisions), each of which is occupied by exactly two individuals and so the population is of

constant size. Each individual is characterized by a type belonging to a type space Θ that affects its phenotype—

the collection of any relevant morphological, physiological or behavioral measurable feature of the individual. We

consider a demographic process where the population is censused at discrete time steps, between which the following

events occur in cyclic order. (a) In each group, the pair of individuals engage in an interaction. Some process

(learning, exchange of information, etc) leads to a pair of equilibrium strategies being expressed. The equilibrium

strategy pair, which may depend on the individuals’ types as well as the types present in the population at large,

determines some outcome (for example, the material payoff of each individual). (b) Each individual in each group

produces a large number of juveniles according to the outcome of the pairwise interaction and eventually dies subject

to some death process,1 which may also depend on the outcome of the pairwise interaction. (c) Juveniles remain

in the natal group with some fixed probability. With complementary probability, assumed to be non-zero, they

migrate out of their natal group and survive dispersal with a certain probability that may depend on the outcome

of the interaction between the juvenile’s parent and its neighbor. (d) In each group, the open reproductive spots

vacated by deceased adults are randomly filled up by competing juveniles, who then become adults.

2.2 Invasion and individual fitness

We adopt a standard invasion analysis framework and consider a population that is monomorphic for some resident

type θ ∈ Θ in which a mutant type τ ∈ Θ arises (e.g., Fisher, 1930; Eshel and Feldman, 1984; Parker and

Maynard Smith, 1990; Metz et al., 1992; Charlesworth, 1994; Ferrière and Gatto, 1995; Avila and Mullon, 2023;

Van Cleve, 2023). It then follows from applications of invasion analysis to our demographic process assumptions

of section 2.1 (see Box 1) that any mutation τ ∈ Θ, which is introduced in a single individual in a monomorphic

population with the resident type θ ∈ Θ, eventually goes extinct with probability one if and only if the invasion

fitness (the geometric growth ratio) of the mutant type, denoted W (τ, θ), satisfies

W (τ, θ) ≤ 1. (1)

Here, the “1” can be interpreted as the growth ratio of a resident type in a monomorphic resident population, which,

owing to the fact that the population is of constant size can, on average, only replace itself (i.e., W (θ, θ) = 1 for all

θ ∈ Θ).

Invasion fitness can be represented as the individual fitness of a randomly sampled mutant τ descending from

the individual in which the mutation initially appeared, averaged over the cases where the mutant interacts with

another member of the same lineage and those where it interacts with an individual from a different lineage (who
1While we allow for individuals surviving from one demographic time point to the next, the survival probability is assumed indepen-

dent of age, so that there is no effective age structure in the population.
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is thus of the resident type θ):

W (τ, θ) = [1− r(τ, θ)] w̃1(τ, θ) + r(τ, θ) w̃2(τ, θ). (2)

Here, w̃i(τ, θ) is the individual fitness of a mutant when there are i ∈ {1, 2} mutants in its group and the population

is otherwise monomorphic for θ, and r(τ, θ) is the pairwise relatedness between a τ mutant and its group neighbor

(see Box 1 for a derivation of eq. (2)). Pairwise relatedness is the probability that, conditional on an individual

being of type τ , the group neighbor belongs to the same ancestral lineage and is thus also of type τ , whereby

both individuals are identical-by-descent (Malécot, 1969); note that since migration is assumed non-zero, we have

r(τ, θ) < 1. Whether relatedness r(τ, θ) depends on both the mutant and the resident type, only on the resident

type, or neither, depends on demographic and interaction assumptions. For instance, relatedness is independent of

the types for family-structured populations, in which case it is determined only by the pedigree relatedness, e.g.

r = 1/2 for full-siblings [as implied by the model of Michod, 1980, which also entails that eq. (2) applies to sexual

reproduction in family-structured populations in the absence of inbreeding].

When W (τ, θ) is differentiable (which is not always the case), a resident type θ∗ is locally convergence stable if

and only if the first two following conditions hold, while it is locally uninvadable if the first and the third conditions

hold (Eshel, 1983; Taylor, 1989; Christiansen, 1991; Geritz et al., 1998):

S(θ∗) =
∂W (τ, θ)

∂τ

∣∣∣∣
τ=θ=θ∗

= 0 (3)

J(θ∗) =
dS(τ)

dτ

∣∣∣∣
τ=θ=θ∗

< 0 (4)

H(θ∗) =
∂2W (τ, θ)

∂τ2

∣∣∣∣
τ=θ=θ∗

< 0. (5)

Here, S(θ), J(θ) , and H(θ), stand respectively for the selection gradient, the selection Jacobian, and the selection

Hessian, evaluated at the resident type θ. A type satisfying S(θ∗) = 0 will be called a singular type (or a singularity).2

There is a non-trivial relationship between the static conditions (3)-(5) obtained from invasion fitness and dynamic

stability. Namely, for mutants with small effects on the phenotype, i.e. the difference |θ − τ | is small, a singular

type θ∗ satisfying conditions (4)-(5) is a (i) local attractor of the evolutionary dynamics under gradual evolution

and (ii) resistant to invasion by small deviations.3

2When invasion fitness is differentiable, the quantities S(θ), H(θ), and J(θ) in fact allow for a complete classification of the singularities

of the evolutionary dynamics (Geritz et al., 1998). Thus, when H(θ∗) > 0 and J(θ∗) < 0, a singular type θ∗ is an evolutionary branching

point; namely, an attractor of the evolutionary dynamics that subsequently splits the population into distinct morphs leading to the

coexistence of different types in a protected polymorphism. When H(θ∗) < 0 and J(θ∗) > 0 we have a so-called garden of eden state of

the evolutionary dynamics, an uninvadable trait value that is unattainable by gradual evolution. Finally, if H(θ∗) > 0 and J(θ∗) > 0

then the singular type θ∗ is a an uninvadable repellor.
3This follows from the fact that under the full evolutionary dynamic process of quantitative traits, the selection gradient S(θ)

describes the direction of selection on small trait deviations regardless of population genetic states and demographic structures (Rousset

and Billiard, 2000, Rousset, 2004, p. 206, Priklopil and Lehmann, 2021). This entails that any mutant invading the population when

rare will eventually substitute the resident and recurrent mutations will drive the trait towards the singularity within its neighborhood

when condition (3) is satisfied. This “invasion implies substitution” result was first noted in a special case by Hamilton (1964a) and

called “a gift from god” (Hamilton, 1988). See also Eshel et al. (1997) for a different line of argument reaching the same conclusions.
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2.3 Behavioral equilibrium

In applications of evolutionary game theory, an individual’s type is often taken to be its strategy to be applied in

the interaction at hand. Yet many applications require to decouple types from strategies. In order to do this and

obtain a full description of how individual fitness depends on own type and neighbor’s type — a dependence that

in eq. (2) was captured through the mappings w̃1 : Θ2 → R+ and w̃2 : Θ2 → R+, without reference to the strategies

used by the individuals — we begin by defining individual fitness as a function of the strategies used, and then we

introduce notation and assumptions for how the equilibrium strategies depend on the types.

Letting X denote the set of strategies that each individual has access to when interacting with its neighbor, the

individual fitness function w : X 3 → R+ is defined such that w(xi, xj , y) gives the expected number of descendants

(including the surviving self) produced over one demographic time period by an adult individual i expressing

strategy xi when matched to a group neighbour j expressing strategy xj , when individuals in the population at

large all use strategy y. Note that any individual fitness function is subject to the demographic consistency relation

w(y, y, y) = 1 for all y ∈ X and an example thereof is provided in Box 2.

Turning now to the equilibrium strategies, in a population with a mutant type τ and a resident type θ ̸= τ ,

each group either has zero, one, or two mutants. For groups with two residents (resp. two mutants), we denote by

y∗s (θ) (resp. x∗
s (τ, θ)) an equilibrium strategy for each individual, where the subscript “s” refers to same type (note

that we rule out equilibria in which two identical individuals use different strategies). For mixed groups, with one

resident and one mutant, let x∗
d(τ, θ) denote the mutant’s equilibrium strategy and y∗d(θ, τ) the resident’s equilibrium

strategy, where the subscript “d” stands for different types. Importantly, throughout we assume that for any type

pair (θ, τ) ∈ Θ2 with θ ̸= τ , there exist unique equilibrium strategies y∗s (θ), x∗
s (τ, θ), and (x∗

d(τ, θ), y
∗
d(θ, τ)). In a

population with a mutant τ = θ interactions can occur between same and different lineage members having the

same type. For this case, we assume that all individuals in all pairs use the same strategy y∗s (θ) = x∗
s (θ, θ) since

they have the same type. This implies that the mappings w̃1 and w̃2 used in eq. (2) are well defined4, as follows:

w̃1(τ, θ) =

 w(x∗
d(τ, θ), y

∗
d(θ, τ), y

∗
s (θ)) if τ ̸= θ

w(x∗
s (θ, θ), x

∗
s (θ, θ), y

∗
s (θ)) if τ = θ,

(6)

and

w̃2(τ, θ) = w(x∗
s (τ, θ), x

∗
s (τ, θ), y

∗
s (θ)). (7)

How do the equilibrium strategies arise? In the evolutionary game theory literature, a variety of processes,

or mechanisms, of interdependent strategy expression have been examined, including reactive strategies, behavior

response rules, learning rules, or developmental rules (e.g., Maynard Smith, 1982; McNamara et al., 1999; Akçay

and Van Cleve, 2009; Killingback and Doebeli, 2002; Taylor and Day, 2004; André and Day, 2007; Dridi and Akçay,

2018; McNamara and Leimar, 2020). In each case, a dynamical system drives strategy expression over time, and

under some conditions these behavioral dynamics reach an equilibrium. One way to formalize these mechanisms

is to posit that the equilibrium strategies solve a fixed-point problem. Thus, for mixed groups, let there be two
4Invasion fitness eq. (2) must be defined for all τ ∈ Θ including τ = θ. In such a monomorphic population, all individuals use

strategy y∗s (θ) = x∗
s (θ, θ) and thus the demographic consistency relation W (θ, θ) = 1 will be verified since w(x∗

s (θ, θ), x
∗
s (θ, θ), y

∗
s (θ)) =

w(y∗s (θ), y
∗
s (θ), y

∗
s (θ)) = 1 for all θ ∈ Θ.
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mappings, Md : Θ2 × X 2 → R for the mutant type and Rd : Θ × X 2 → R for the resident type, which capture

the process at hand, and which are such that an equilibrium pair of strategies satisfies the fixed-point system of

equations:  Rd(θ, y
∗
d, x

∗
d) = 0

Md(τ, θ, x
∗
d, y

∗
d) = 0.

(8)

The mechanism Md is parametrized by both the mutant and the resident type, while Rd is parametrized only by

the resident type. This is so because when individuals interact their strategy may depend on (i) their own type

and strategy, (ii) the strategy of their interaction partner, and (iii) on strategies in the population at large, which

depends only on the resident type when the mutant is rare (see also eq. 10 below). Solving for x∗
d and y∗d produces

the dependence of each strategy on both types, i.e., x∗
d = x∗

d(τ, θ) and y∗d = y∗d(θ, τ).

For the equilibrium strategy used in mutant-mutant interactions, let there be a mapping Ms : Θ2 × X → R

which describes the process whereby a mutant interacts with another mutant as a function of the partner’s strategy.

The strategy in equilibrium is then assumed to satisfy the fixed-point equation

Ms(τ, θ, x
∗
s ) = 0. (9)

The behavioral mechanism Ms is parametrized by both the mutant and the resident type, because the strategy used

in the population at large (which depends on the resident type) may affect the strategy used in a mutant-mutant

pair. Hence, the solution of eq. (9) implicitly defines the equilibrium strategy as a function of both τ and θ, so

that we can write x∗
s (τ, θ). Finally, for the equilibrium strategy in resident-resident interactions, the equilibrium

strategy y∗s (θ) is assumed to solve the fixed-point equation

Rs(θ, y
∗
s ) = Ms(θ, θ, y

∗
s ) = 0, (10)

where Rs : Θ×X → R is the behavioral mechanism characterizing the (same) equilibrium strategy of each individual

in a resident pair. By contrast to the equilibrium strategy between two mutants, which depends both on the mutant

and the resident type, the equilibrium strategy between two residents depends only on the resident type.

2.4 Nash equilibrium and utility function

Many formalizations of the behavioral fixed points (8)–(10) consist in assuming that strategies equilibrate by

being guided by some payoff function and adopting assumptions such that the dynamics lead to a Nash equilibrium

according to this payoff function. In such models, the mappings Rs, Rd, Ms, and Md can be thought of as describing

the best response functions according to the payoff function. In equilibrium, it is thus as if individuals maximize

this payoff function, given the strategy used by the opponent. One class of such models takes the payoff function

to be a utility function, which represents an individual’s preferences.5 In our setting, given some resident utility

function determined by θ and some mutant utility function determined by τ , the strategy y∗s (θ) (resp. x∗
s (τ, θ))

5An individual’s utility function is indeed simply a representation of its preferences. For any pair of strategies x and y, an individual’s

preferences over available strategies tell whether the individual prefers x, y, or is indifferent between the two. Under certain conditions,

such a preference ordering can be fully described by a function that associates a real number to each strategy, namely the utility function

(see, e.g., Mas-Colell et al., 1995; Binmore, 2011). An individual is assumed to choose a strategy with the highest possible value of the
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would be the strategy in X that maximizes the utility of a resident (resp. that of a mutant), given that the resident

(resp. mutant) with whom it interacts also uses strategy y∗s (θ) (resp. x∗
s (τ, θ)). Likewise, the strategy y∗d(θ, τ)

would be the strategy in X that maximizes the utility of the resident, given that the mutant with whom it interacts

uses strategy x∗
d(τ, θ), while the strategy x∗

d(τ, θ) would be the strategy in X maximizing the mutant’s utility, given

that the resident with whom it interacts uses strategy y∗d(θ, τ).

We endorse this approach and rely on results showing that among the set of all continuous utility functions,

a utility function representing semi-Kantian preferences emerges as being particularly viable from an evolutionary

perspective (Alger and Weibull, 2013; Alger et al., 2020). For some individual who uses strategy x when it neighbour

uses strategy y, and given that strategy y∗ is played at large in the population, this utility function is defined as

uκ(x, y | y∗) = (1− κ)w(x, y, y∗) + κw(x, x, y∗), (11)

where w is the individual fitness function defined above and κ ∈ [0, 1]. The first is the individual’s realized fitness,

given the strategies used. The second term is the fitness that the individual would realize if – hypothetically –

the opponent used the same strategy (x) instead of strategy y; since the individual thereby evaluates what would

happen if others were to follow the same course of action as itself, the second term can be interpreted as capturing

a form of the first formulation of Kant’s categorical imperative: “act as if the maxims of your action were to become

through your will a universal law of nature” (Kant, 1785). These preferences were dubbed Homo moralis (Alger

and Weibull, 2013), yet they apply regardless of the organism under consideration in our life-cycle assumptions of

section 2.1. We will call the parameter κ the Kantian coefficient and our goal is to investigate its evolution under

three different scenarios: (a) incomplete information, (b) complete information with incomplete plasticity, and (c)

complete information with complete plasticity. Each of these scenarios, together with the utility function (11),

defines a specific set of behavioral mechanisms (8)–(10), detailed in the next section.

3 Evolution of the Kantian coefficient

For simplicity, we restrict attention to settings where w is twice continuously differentiable and the utility func-

tion (11) is strictly concave in its first argument for any θ ∈ [0, 1]. We further take the strategy space X to be

an open and convex subset of R. These assumptions together imply that any equilibrium strategy must satisfy

first-order conditions, and this facilitates the analysis. To rule out trivial settings in which an individual’s strategy

has no impact on the opponent’s fitness, we also assume that ∂w(x, y, z)/∂y ̸= 0 for all (x, y, z) ∈ X3. We further

assume that the sign of this effect is independent of the strategies used, and by convention, we let ∂w(x, y, z)/∂y > 0

for all (x, y, z) ∈ X3, meaning that an increase in the strategy of an individual’s partner enhances the individual’s

fitness.6. Finally, we assume that ∂2w(x, y, z)/∂y∂x has the same sign for all (x, y, z) ∈ X3, and we will say that

function, since this is the strategy it prefers. Utility maximization is not to be taken literally: it is simply a mathematical tool used

to describe behavior that amounts to choosing the preferred item from the strategy set. A pair of strategies then constitutes a Nash

equilibrium if each individual uses a strategy which, given the other individual’s strategy, is the one it prefers.
6This entails no loss of generality, and simply depends on how one defines the strategy set. For example, if the interaction at hand

is a public goods game, then let x and y denote the contributions to the public good. If the interaction at hand is a common pool

resource game, then let x and y denote the inverse of contributions to extracting resources.
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the strategies are strategic complements if ∂2w(x, y, z)/∂y∂x > 0, strategic substitutes if ∂2w(x, y, z)/∂y∂x < 0, and

strategically neutral if ∂2w(x, y, z)/∂y∂x = 0.

3.1 Incomplete information

3.1.1 Behavioral equilibrium

Under incomplete information, an individual’s type is the value of their Kantian coefficient taking a value in the

interval [0, 1], and an individual cannot observe the type of its interaction partner. Still, the individual can have

information about the matching distribution in the pairwise interaction, i.e., the probability that the partner belongs

to the same lineage. One-shot interactions between perfect strangers are examples of this kind of interaction, as

are interactions between family members when the only available information is their degree of kinship. We assume

that individuals hold the belief that the probability of being matched with an individual from the same lineage is

given by r(τ, θ), which is a correct belief in the sense that a randomly drawn mutant in the lineage started by the

initial mutant, faces the probability r(τ, θ) of being matched with another mutant. Given these assumptions, an

individual can condition its strategy only on the strategy that it expects its partner to use, given the belief on the

matching distribution. Since any individual uses the same strategy whether the neighbor has the same or a different

type, we simplify the notation by setting x∗
s = x∗

d = x∗ and y∗s = y∗d = y∗, where x∗ is the equilibrium strategy of

mutants and y∗ that of residents. A strategy pair (x∗, y∗) is a (Bayesian) Nash equilibrium if (a) y∗ is a preferred

strategy for a resident, given that other residents use strategy y∗; and (b) x∗ is a preferred strategy for a mutant,

given that residents use y∗ and the other mutants use x∗, and given that the mutant applies the belief that the

probability of being matched with another mutant is

r(τ, θ) = r̃(x∗(τ, θ), y∗(θ)), (12)

where on the right-hand side relatedness is expressed in terms of the equilibrium strategies of mutant and resident

individuals. Formally r̃ : X 2 → [0, 1] so that r̃(x, y) is the relatedness of a mutant towards a random group member

when mutants play strategy x and residents play strategy y [a concrete example thereof is obtained by setting

x∗
s = x∗

d = x∗ and y∗s = y∗d = y∗ into the right-hand side of eq. (B-k) of Box 2]. Thus, (x∗, y∗) solves the fixed point

system  y∗ ∈ argmaxy∈X uθ (y, y
∗ | y∗)

x∗ ∈ argmaxx∈X [1− r̃(x∗, y∗)]uτ (x, y
∗ | y∗) + r̃(x∗, y∗)uτ (x, x

∗ | y∗) ,
(13)

which is fully in line with the model in Alger et al. (2020, eq. 1 and eq. 5) and where the utility functions uθ and

uτ are defined in eq. (11).7 The behavioral fixed point (13) defines the behavioral mechanisms (8)–(10), which here
7Note that our model is different from the one in Alger and Weibull (2013), where a resident faces a positive probability of being

matched with a mutant. In our model, the mutant trait appears initially in one single individual, and uninvadability obtains if the

lineage created by this initial mutant goes extinct in the population (while invadability obtains if the lineage size created by this initial

mutant becomes infinite and thus reaches positive frequency in the infinitely large population). During the time the mutant lineage

is around in the population there can thus only be a finite number of mutants, and hence residents face a zero probability of being

matched with a mutant in this infinitely large population. See Box 1 or Alger et al. (2020) for a formal explanation.
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satisfy Md(τ, θ, x
∗, y∗) = Ms(τ, θ, x

∗) = 0 and Rd(θ, y
∗, x∗) = Rs(θ, y

∗) = 0, since an individual’s strategy choice

cannot be conditioned on the interactant’s type.

Under our mathematical assumptions, the (assumed unique) equilibrium pair of strategies satisfies the necessary

first-order conditions for the maximization problems in eq. (13):
∂uθ(y,y

∗|y∗)
∂y

∣∣∣
y=y∗

= 0

[1− r̃(x∗, y∗)]∂uτ (x,y
∗|y∗)

∂x

∣∣∣
x=x∗

+ r̃(x∗, y∗) ∂uτ (x,x
∗|y∗)

∂x

∣∣∣
x=x∗

= 0.
(14)

Using eq. (11), these equations become
[
(1− θ)∂w(y,y∗,y∗)

∂y + θ ∂w(y,y,y∗)
∂y

]
y=y∗

=
[
∂w(y,y∗,y∗)

∂y + θ ∂w(y∗,y,y∗)
∂y

]
y=y∗

= 0[
(1− τ)

(
[1− r̃(x∗, y∗)]∂w(x,y∗,y∗)

∂x + r̃(x∗, y∗)∂w(x,x∗,y∗)
∂x

)
+ τ ∂w(x,x,y∗)

∂x

]
x=x∗

= 0,
(15)

where the second equality of the first line shows that the marginal change in utility can be expressed as the sum of

the effect of own behavior on own fitness and the fitness of the partner weighted by the Kantian coefficient θ. The

necessary second-order conditions for (x∗(τ, θ), y∗(θ)) defined by (14) to be maxima rather than minima are:
∂2uθ(y,y

∗|y∗)2

∂y2

∣∣∣
y=y∗

≤ 0

[1− r̃(x∗, y∗)]∂
2uτ (x,y

∗|y∗)
∂x2

∣∣∣
x=x∗

+ r̃(x∗, y∗) ∂2uτ (x,x
∗|y∗)

∂x2

∣∣∣
x=x∗

≤ 0.
(16)

These inequalities hold strictly by virtue of the assumption that uθ is strictly concave in its first argument. Hence:

K(θ) =
∂2uθ (y, y

∗ | y∗)
∂y2

∣∣∣∣
y=y∗

= (1− θ)
∂2w(y, y∗, y∗)

∂y2
+ θ

∂2w(y, y, y∗)

∂y2

∣∣∣∣
y=y∗

< 0. (17)

This inequality can in turn be used to evaluate how the mutant’s equilibrium strategy would change if the mutant

trait value changed. To see this, by applying the implicit function theorem, one obtains by totally differentiating

the second line of eq. (15) with respect to τ and solving the resulting linear equation for ∂x∗(τ, θ)/∂τ :

∂x∗(τ, θ)

∂τ

∣∣∣∣
τ=θ

= −
∂w(x∗,y,y∗)

∂y

K(θ) + r(θ, θ)(1− θ)∂
2w(x,y,y∗)

∂x∂y

∣∣∣∣∣
x=y=y∗

x∗=y∗

. (18)

This (local) mutant behavioral perturbation, which will be seen to play a central role in the evolutionary analysis,

is always positive, i.e., ∂x∗(τ, θ)/∂τ |τ=θ > 0 (see Appendix A for a proof). The intuition is that by making the

individual attach a greater value to the effect that the strategy would have on self if it was also adopted by the

other individual, an increase in τ makes the individual internalize the positive externality (∂w(x, y, y∗)(∂y) > 0)

that the other’s strategy has on self.

3.1.2 Evolutionary equilibrium

Turning now to the analysis of selection on the Kantian coefficient, invasion fitness writes

W (τ, θ) = [1− r(τ, θ)]w(x∗(τ, θ), y∗(θ), y∗(θ)) + r(τ, θ)w(x∗(τ, θ), x∗(τ, θ), y∗(θ)), (19)

which is differentiable (since individual fitness is differentiable so will be r(τ, θ), see Box 1). Then, substituting

eq. (19) into S(θ) = ∂W (τ, θ)/∂τ |τ=θ, the selection gradient is

S(θ) =
∂x∗(τ, θ)

∂τ

[
∂w(x, y∗, y∗)

∂x
+ r(θ, θ)

∂w(x∗, x, y∗)

∂x

]∣∣∣∣ τ=θ
x=x∗=y∗=y∗(θ)

, (20)
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because the term multiplying ∂r(τ, θ)/∂τ is w(x∗(τ, θ), x∗(τ, θ), y∗(θ))|τ=θ − w(x∗(τ, θ), y∗(θ), y∗(θ))|τ=θ = 0. Se-

lection on the Kantian coefficient thus depends on the (local) mutant behavioral perturbation weighted by the

inclusive fitness effect at the strategy level, i.e. the sum of the direct effect, ∂w(x, y∗, y∗)/∂x, and the indirect effect,

∂w(x∗, x, y∗)/∂x, on fitness weighted by neutral relatedness. Moreover, since ∂w(x, y∗, y∗)/∂x = −θ∂w(y∗, y, y∗)/∂y

at τ = θ and x∗ = y∗ (see eq. (15)), we obtain that

S(θ) = [r(θ, θ)− θ]
∂x∗(τ, θ)

∂τ

∂w(x∗, y, y∗)

∂y

∣∣∣∣ τ=θ
y=x∗=y∗=y∗(θ)

. (21)

Since (by assumption) ∂w(x, y, y∗)/∂y ̸= 0 for all (x, y, y∗) ∈ X3, which also implies that ∂x∗(τ, θ)/∂τ ̸= 0 (see

eq. (18)), this selection gradient shows that the unique singular trait value is

θ∗ = r(θ∗, θ∗). (22)

But is θ∗ convergence stable and uninvadable?

Let us first consider convergence stability, by determining whether the Jacobian

J(θ∗) =
dS(θ)

dθ

∣∣∣∣
θ=r(θ∗,θ∗)

= −
(
1− dr(θ, θ)

dθ

)[
∂x∗(τ, θ)

∂τ

∂w(x∗, y, y∗)

∂y

]
τ=θ=θ∗

x∗=y=y∗=y∗(θ)

(23)

is strictly negative. Since the term in the square brackets is strictly positive, we immediately obtain that θ∗ =

r(θ∗, θ∗) is convergence stable if and only if dr(θ, θ)/ dθ < 1.

What about local uninvadability? To ascertain this, we examine whether the Hessian is strictly negative. Given

that ∂w(x, y∗, y∗)/∂x = −θ∂w(y∗, x, y∗)/∂x when τ = θ (as noted already above), we obtain:

H(θ∗) =
∂2W (τ, θ)

∂τ2

∣∣∣∣
τ=θ

=

[(
∂x∗(τ, θ)

∂τ

)2

K (r(θ∗, θ∗)) + 2
∂r(τ, θ)

∂τ

∂x∗(τ, θ)

∂τ

∂w(x∗, y, y∗)

∂y

]
τ=θ=θ∗

x∗=y=y∗=y∗(θ)

. (24)

Since K (r(θ∗, θ∗)) < 0, the first term is strictly negative. Hence, a sufficient condition for θ∗ = r(θ∗, θ∗) to be

(locally) uninvadable is that the local perturbation of relatedness, ∂r(τ, θ)/∂τ , be nil. The relatedness perturbation

can be different from zero, however (for example, see eq. (B-j) for the expression of r(θ, τ) for a Moran process), and

its sign typically depends on demographic and interaction assumptions in non-trivial ways. Moreover, it does not

involve second-order derivatives of individual fitness (Mullon et al., 2016), and thus does not vary systematically

according to the strategic substitutability or complementarity of the strategies. Hence, in settings where behavior

affects relatedness ∂r(τ, θ)/∂τ ̸= 0, it is challenging to identify general conditions that would guarantee that

J(θ∗) < 0 and H(θ∗) < 0. Yet, it is known that in certain settings (summarized below) both dr(θ, θ)/ dθ and

∂r(τ, θ)/∂τ are negligible. We refer to this as weak trait effects on relatedness. We can then summarize sufficient

conditions for the Kantian coefficient to be evolutionarily stable as follows, where

T = −
∂x∗(τ,θ)

∂τ K (r(θ∗, θ∗))

2∂w(x∗,y,y∗)
∂y

. (25)

Result 1. When interactions take place under incomplete information, the Kantian coefficient equal to the neutral

relatedness, θ∗ = r(θ∗, θ∗), is the unique singular trait value. It is both an evolutionary attractor (convergence

stable) and locally uninvadable if trait effects on relatedness are sufficiently weak. More precisely, θ∗ = r(θ∗, θ∗) is

convergence stable if and only if dr(θ, θ)/ dθ < 1 and it is locally uninvadable if and only if ∂r(τ, θ)/∂τ < T .
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While the condition for uninvadability is consistent with the results of Alger et al. (2020),8 our analysis reinforces

those results by identifying a sufficient condition for the partly Kantian coefficient equal to neutral relatedness to

be also convergence stable. When these conditions are satisfied, individuals in a population at the evolutionary

equilibrium will thus behave according to Hamilton’s (marginal) rule at the strategy level, i.e., their behavioral

equilibrium y∗ satisfies [
∂w(y, y∗, y∗)

∂y
+ r̃(y∗, y∗)

∂w(y∗, y, y∗)

∂y

]
y=y∗

= 0, (26)

where the value of relatedness may depend endogenously on the strategy.

Interestingly, many biological scenarios do exhibit weak, or even nil, trait effects on relatedness whereby

r̃(y∗, y∗) = r̃ is independent of y∗ in eq. (26).9 First, in family-structured populations, which cover a large class

of interactions (e.g., parent-offspring interactions, interactions between sibling or cousins, etc...), relatedness is in-

dependent of the types (dr(θ, θ)/dθ = ∂r(τ, θ)/∂τ = 0). Second, relatedness is also independent of the types in

spatially-structured populations when selection is weak in the sense that the strategies in the interaction affect

fitness only marginally (see, e.g., Alger et al., 2020). Such independence can extend to cases where effects are not so

marginal because when the migration probability is exogenous, both dr(θ, θ)/dθ and ∂r(τ, θ)/∂τ tend to be negligi-

ble for several games (Wakano and Lehmann, 2014; Mullon et al., 2016). Finally, for certain demographic processes,

like the Moran process when behavior affects only reproduction, one has dr(θ, θ)/ dθ = 0 and ∂r(τ, θ)/∂τ = 0

(Mullon et al., 2016), but, as implied by eq. (B-k) of Box 2, the relatedness perturbation is non-zero in the Moran

process when behavior affects survival.

3.2 Complete information with incomplete plasticity

3.2.1 Behavioral equilibrium

Under complete information individuals have information about the type of their interaction partner, which is here

again taken to be the partner’s Kantian coefficient taking values in the interval [0, 1]. However, an individual’s

own utility function cannot be conditioned on that information: this is what we mean by incomplete plasticity.

Because individuals can observe the type composition of their group, whenever the mutant type differs from the

resident type, the distinction between a mutant’s equilibrium strategies x∗
d and x∗

s , as well as between a resident’s

equilibrium strategies y∗d and y∗s , is relevant, as per the behavioral mechanisms (8)–(10). Hence, the equilibrium
8This may not be immediately apparent, for the results in Alger et al. (2020) (see Propositions 1 and 2) state as a necessary

and sufficient condition for a utility function to be uninvadable, that the equilibrium strategy in a population where all individuals

have this utility function be an uninvadable strategy (i.e., uninvadable in a setting where the set of traits is the set of strategies, a

setting that Alger et al. (2020) call strategy evolution). One can check that the condition for θ∗ = r(θ∗, θ∗) to be uninvadable in our

setting, i.e., H(θ∗) < 0 (see eq. (24)), coincides with the condition for the equilibrium strategy y∗(θ∗) to be an uninvadable strategy

under strategy evolution. This is so because owing to eq. (12), ∂r(τ, θ)/∂τ = (∂r̃(x, y∗)/∂x)(∂x∗(τ, θ)/∂τ), whereby eq. (24) becomes

H(θ∗) = (∂x∗(τ, θ)/∂τ)2 [K (r(θ∗, θ∗)) + 2(∂r̃(x, y∗)/∂x)(∂w(x∗, y, y∗)/∂y)] at τ = θ; and under strategy evolution the invasion fitness

of mutant type x in a monomorphic resident population y is W (x, y) = [1− r̃(x, y)]w(x, y, y)+ r̃(x, y)w(x, x, y) and ∂2W (x, y)/∂x2
∣∣
x=y

corresponds to the term in square brackets in H(θ∗).
9Such independence was originally assumed in evolutionary game theory models with assortative interactions (Hines and May-

nard Smith, 1978; Maynard Smith, 1982) and later used in preference evolution models (Alger and Weibull, 2013).
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strategy y∗s used by each resident in an interaction with another resident satisfies

y∗s ∈ argmax
y∈X

uθ (y, y
∗
s | y∗s ) , (27)

the equilibrium strategy x∗
s used by each mutant in an interaction with another mutant satisfies

x∗
s ∈ argmax

x∈X
uτ (x, x

∗
s | y∗s ) , (28)

and the equilibrium pair of strategies (x∗
d, y

∗
d) used by a mutant and a resident, respectively, in a mutant-resident

interaction solves the fixed point system y∗d ∈ argmaxy∈X uθ (y, x
∗
d | y∗s )

x∗
d ∈ argmaxx∈X uτ (x, y

∗
d | y∗s ) .

(29)

The fixed point equations (27)–(29) define the behavioral mechanisms (8)–(10) under complete information with

incomplete plasticity. Note that if τ = θ in eq. (29), then x∗
d(θ, θ) = y∗d(θ, θ) owing to the strict concavity of u in

its first argument, which implies that to each strategy played by the opponent there exists a unique best response.

Hence, if τ = θ,

x∗
d(θ, θ) = y∗d(θ, θ) = x∗

s (θ) = y∗s (θ). (30)

As in the incomplete information scenario, in the evolutionary analysis we use the expressions that capture

how the equilibrium strategies are modified by marginal changes in the mutant trait and the resident trait. To

obtain these behavioral perturbations, we first write the necessary first-order conditions for (x∗
d, y

∗
d) to be a Nash

equilibrium: 
∂uθ(y,x

∗
d|y

∗
s )

∂y

∣∣∣
y=y∗

d

=
[
(1− θ)

∂w(y,x∗
d,y

∗
s )

∂y + θ
∂w(y,y,y∗

s )
∂y

]
y=y∗

d

= 0

∂uτ (x,y
∗
d|y

∗
s )

∂x

∣∣∣
x=x∗

d

=
[
(1− τ)

∂w(x,y∗
d,y

∗
s )

∂x + τ
∂w(x,x,y∗

s )
∂x

]
x=x∗

d

= 0.
(31)

Therein, the monomorphic resident behavioral equilibrium y∗s solves

∂uθ (y, y
∗
s | y∗s )

∂y

∣∣∣∣
y=y∗

s

=

[
(1− θ)

∂w(y, y∗s , y
∗
s )

∂y
+ θ

∂w(y, y, y∗s )

∂y

]
y=y∗

s

=

[
∂w(y, y∗s , y

∗
s )

∂y
+ θ

∂w(y∗s , y, y
∗
s )

∂y

]
y=y∗

s

= 0,

(32)

where the second equality shows that the marginal change in utility in the resident population can, as under

incomplete information, be expressed as the sum of the effect of own behavior on own fitness and the fitness of the

partner weighted by the Kantian coefficient θ. Since uθ is strictly concave in its first argument, the second-order

partial derivative of uθ, evaluated at y∗s (θ) = y∗d(θ, θ), is strictly negative:

K̃(θ) =
∂2uθ (y, y

∗
s | y∗s )

∂y2

∣∣∣∣
y=y∗

s

=

[
(1− θ)

∂2w(y, y∗s , y
∗
s )

∂y2
+ θ

∂2w(y, y, y∗s )

∂y2

]
y=y∗

s =y∗
d(θ,θ)

< 0. (33)

The system of equations in eq. (31) together implicitly define x∗
d and y∗d as functions of τ and θ. Applying the

implicit function theorem, we obtain the following expressions for the behavioral perturbation of the equilibrium

strategy of a mutant and of a resident with respect to the mutant trait value, evaluated locally at τ = θ:

∂x∗
d(τ, θ)

∂τ

∣∣∣∣
τ=θ

= −
∂w(y∗

d,y,y
∗
d)

∂y K̃(θ)(
K̃(θ) + (1− θ)

∂2w(x,y,y∗
d)

∂x∂y

)(
K̃(θ)− (1− θ)

∂2w(x,y,y∗
d)

∂x∂y

)
∣∣∣∣∣∣
x=y=y∗

d=y∗
d(θ,θ)

(34)
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∂y∗d(θ, τ)

∂τ

∣∣∣∣
τ=θ

=
(1− θ)

∂w(y∗
d,y,y

∗
d)

∂y
∂2w(x,y,y∗

d)
∂x∂y(

K̃(θ) + (1− θ)
∂2w(x,y,y∗

d)

∂x∂y

)(
K̃(θ)− (1− θ)

∂2w(x,y,y∗
d)

∂x∂y

)
∣∣∣∣∣∣
x=y=y∗

d=y∗
d(θ,θ)

. (35)

In the evolutionary analysis, it is the ratio of the resident’s to the mutant’s behavioral perturbation that will matter:

ρ(θ) =
∂y∗

d(θ,τ)
∂τ

∂x∗
d(τ,θ)

∂τ

∣∣∣∣∣
τ=θ

. (36)

This is well defined, since the assumption ∂w(y∗d, y, y
∗
d)/∂y ̸= 0 implies ∂x∗

d(τ, θ)/∂τ ̸= 0, which means that the

equilibrium strategy of mutants always changes as a result of a marginal change in the mutant trait value. Because

ρ(θ) measures the extent to which an individual’s neighbour’s strategy varies with own strategy variation, we follow

previous terminology and refer to ρ(θ) as the response coefficient (Akçay and Van Cleve, 2012). Inserting eq. (34)

and eq. (35) into eq. (36), we obtain

ρ(θ) = −
(1− θ)

∂2w(x,y,y∗
d)

∂x∂y

K̃(θ)

∣∣∣∣∣∣
x=y=y∗

d(θ,θ)

, (37)

implying that the response coefficient has the same sign as ∂2w(x, y, y∗d)/∂x∂y, and this will play a role in the

analysis of selection on the Kantian coefficient, to which we now turn.

3.2.2 Evolutionary equilibrium

To begin, note that eq. (30) implies that we can write invasion fitness (2) as follows:

W (τ, θ) = [1− r(τ, θ)]w(x∗
d(τ, θ), y

∗
d(θ, τ), y

∗
d(θ, θ)) + r(τ, θ)w(x∗

d(τ, τ), x
∗
d(τ, τ), y

∗
d(θ, θ)), (38)

which is differentiable. Substituting this into the selection gradient S(θ) = ∂W (τ, θ)/∂τ |τ=θ, and simplifying yields

(since the term multiplying ∂r(τ, θ)/∂τ is w(x∗
d(τ, τ), x

∗
d(τ, τ), y

∗
d(θ, θ))|τ=θ− w(x∗

d(τ, θ), y
∗
d(θ, τ), y

∗
d(θ, θ))|τ=θ = 0):

S(θ) =

[(
∂x∗

d(τ, θ)

∂τ
+ r(θ, θ)

∂y∗d(θ, τ)

∂τ

)
∂w(x, y∗d, y

∗
d)

∂x
+

(
r(θ, θ)

∂x∗
d(τ, θ)

∂τ
+

∂y∗d(θ, τ)

∂τ

)
∂w(x∗

d, y, y
∗
d)

∂y

]
τ=θ

x=y=x∗
d=y∗

d

y∗
d=y∗

d(θ,θ)

.

(39)

From eq. (32), we can write (1 − θ)∂w(y, x∗
d, y

∗
d)/∂y + θ∂w(y, x∗

d, y
∗
d)/∂y + θ∂w(x∗

d, y, y
∗
d)/∂y = 0 at τ = θ where

x = y = y∗s = x∗
d = y∗d. Therefore, we can replace ∂w(x, y∗d, y

∗
d)/∂x = ∂w(y, y∗d, y

∗
d)/∂y by −θ∂w(x∗

d, y, y
∗
d)/∂y in

eq. (39), to obtain

S(θ) =
∂x∗

d(τ, θ)

∂τ

∂w(y∗d, y, y
∗
d)

∂y

(
[r(θ, θ)− θ] + [1− θr(θ, θ)] ρ(θ)

)∣∣∣∣∣ τ=θ
y=y∗

d=y∗
d(θ,θ)

. (40)

Comparing eq. (40) to the selection gradient under incomplete information (see eq. (21)), we see that if the response

coefficient is nil, i.e., if ρ(θ) = 0, the two selection gradients are identical, and θ = r(θ, θ) is then the unique

singularity. This is not surprising since under incomplete information changes in the mutant trait value has no

effect on the resident’s equilibrium strategy. We further observe that when θ = 1, then ρ(θ) = 0; using eq. (34) in

eq. (40), the selection gradient at θ = 1 is thus

S(1) =
(1− r(1, 1))

K̃(1)

(
∂2w(y∗d, y, y

∗
d)

∂y2

)2
∣∣∣∣∣
y=y∗

d=y∗
d(θ,θ)

. (41)

14



Since K̃(1) < 0 and r(θ, θ) < 1 for all θ ∈ [0, 1], we obtain S(1) < 0, which implies that θ = 1 is always counter-

selected, and can neither be convergence stable nor uninvadable. By contrast, nothing allows to rule out that

θ = 0 could be convergence stable and/or uninvadable. More generally, since ∂w(x∗
d, y, y

∗
d)/∂y ̸= 0 (by assumption),

eq. (40) implies that S(θ) = 0 if and only if

θ = r(θ, θ) + [1− θr(θ, θ)]ρ(θ). (42)

Let θ̃ denote a solution to this equation. Since r(θ, θ) < 1 for all θ ∈ [0, 1], so that 1− θr(θ, θ) > 0 for any θ ∈ [0, 1],

it follows immediately from eq. (42) that θ̃ = r(θ̃) if ρ(θ̃) = 0, θ̃ > r(θ̃) if ρ(θ̃) > 0, and θ̃ < r(θ̃) if ρ(θ̃) < 0.

Recalling that the sign of ρ(θ) depends on the sign of ∂2w(x, y, y∗d)/∂x∂y (see eq. (37)), and that we restrict the

Kantian coefficient to take values between 0 and 1, the following result obtains.

Result 2. Let θ∗ denote a singularity for the Kantian coefficient under complete information and incomplete

plasticity, and θ̃ denote a solution to eq. (42). Then:

(i) θ∗ = 0 if θ̃ ≤ 0, which requires w to be such that strategies are strategic substitutes or strategically neutral;

(ii) θ∗ = θ̃ if θ̃ ∈ (0, 1), in which case θ∗ = [r(θ∗, θ∗) + ρ(θ∗)]/[1 + ρ(θ∗)r(θ∗, θ∗)]. In particular, θ∗ = r(θ∗, θ∗) if

w is such that strategies are strategically neutral, while θ∗ < r(θ∗, θ∗) (resp. θ∗ > r(θ∗, θ∗)) if w is such that

strategies are strategic substitutes (resp. complements), and θ∗ = ρ(θ∗) if r(θ∗, θ∗) = 0.

By contrast to the incomplete information setting where the Kantian coefficient must coincide with the coefficient

of relatedness, here it can be either larger or smaller and the behavioral equilibrium y∗ in a population at an

evolutionary equilibrium θ∗ now satisfies[
∂w(y, y∗, y∗)

∂y
+

(
r̃(y∗, y∗) + ρ(θ∗)

1 + ρ(θ∗)r̃(y∗, y∗)

)
∂w(y∗, y, y∗)

∂y

]
y=y∗

= 0, (43)

where relatedness will be independent of the strategies (and types) under weak trait effects on relatedness. Whether

the Kantian coefficient exceeds or falls short of relatedness depends on whether the fitness function exhibits, respec-

tively, strategic complementarity or substitutability. The reason that strategic complementarity raises the Kantian

coefficient above the value of relatedness stems from the fact that a mutation consisting in an increase in the Kantian

coefficient then induces a positive correlated response in the strategy expression by its neighbor, implying that the

marginal benefit of the Kantian coefficient is larger than under strategic neutrality (compare eq. (21)–eq. (40)).

By contrast, under strategic substitutability, a mutation consisting in an increase in the Kantian coefficient has a

negative impact on its neighbor’s equilibrium strategy, implying that the marginal benefit marginal benefit of the

Kantian coefficient is smaller than under strategic neutrality.

Result 2 further shows that a singular Kantian coefficient can in principle take any value in the range [0, 1)

depending on demographic and behavioral parameters. Interestingly, eq. (42) along with eq. (36) is identical to the

corresponding equation in the model of Alger and Weibull (2012) (see their eq. (29)), wherein they examine the

class of other-regarding utility functions whereby an individual may attach some evolving weight α ∈ (−1, 1) to

the interactant’s individual fitness. Hence, Theorem 1 of this previous work also establishes that whether the exact
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Figure 1: Each curve shows, for the Moran process analyzed in Box 2 with individual fitness (B-i), the singular Kantian

coefficient θ∗ under complete information and incomplete plasticity, for the linear quadratric fecundity function (44), as a

function of parameter b in that function for a = 0.1 and c = 1. Each of the four lines corresponds to a different value

of the “backward migration probability”, which depends on the exogenously given migration probability m (see eq. (B-l)

and the description following it). Starting from the top, the first line, where the Kantian coefficient remains essentially

constant at θ∗ = 0.98 is for mb = 0.01 whereby r = (1 − mb)/(1 + mb) ≈ 0.98; the second line is for mb = 0.2 whereby

r = (1−mb)/(1+mb) ≈ 0.66; the third line for mb = 0.4 whereby r = (1−mb)/(1+mb) ≈ 0.42; and the last line, where the

Kantian coefficient varies over the range [0, 0.6], is for mb = 0.6 whereby r = (1−mb)/(1 +mb) = 0.25. By computing the

Jacobian (A-10) and the Hessian (A-12) coefficients at these values we checked that all these singular Kantian coefficients

are indeed both convergence stable and uninvadable.

value of the evolving weight α exceeds or falls short of relatedness depends on whether the fitness function exhibits

strategic substitutability, complementarity, or neutrality.10

We now examine whether a Kantian coefficient θ∗ of Result 2 is convergence stable and uninvadable. Due to

the complexity of the expressions for the Jacobian J(θ∗) and the Hessian H(θ∗) coefficients at θ∗ solving S(θ∗) = 0,

presented in Appendix B, we were unable to reach generic answers to these questions, and further assumptions

may be needed to reach more definite results. However, we verify that convergence stability and uninvadability

can obtain, by resorting to an illustrating example. Consider a Moran demographic process (i.e. individual fitness

takes the form of eq. (B-i)) with constant death rate µ and juvenile survival probability s, and that individual face

a pairwise interaction such that their expected fecundity (number of offspring produced at stage (b) of the life cycle

of section 2.1) is linear-quadratic in the two players’ actions:

f(x, y) = 1 + ax− bxy − cx2 (44)

for parameters a, b, c ∈ R. Then, substituting eq. (44) into individual fitness (B-i), we can evaluate the selection

gradient (40), the Jacobian (A-10) and the Hessian (A-12) coefficients. Even for this simple example, eq. (42) is

a quartic function that cannot be solved explicitly and so we analyse the selection gradient numerically. Fig. (1)

displays how for fixed but different values of the backward migration rate mb (eq. B-l), θ∗ varies when b is varied.

Fig. (1) shows that by depending on b, the Kantian coefficient takes a value above or below that of relatedness.

10Because the behavioral perturbations of other-regarding utility functions, and thus ρ(θ), typically differ from the ones with the

partially Kantian utility function, a singular α will typically differ from the singular Kantian coefficient, however.
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3.3 Complete information and plasticity

3.3.1 Behavioral equilibrium

The defining assumption of our complete information with complete plasticity scenario is that individuals can not

only observe the type of the interaction partner but also condition their preferences on it. Hence, the preferences

applied in the interaction become state-specific on the interaction. Specifically, we assume that the type θ = (θd, θs)

of an individual is a two-dimensional quantitative trait (θ ∈ [0, 1]2) such that θs parametrizes an individual’s

preference (still given by eq. (11)) when individuals in a pair have the same type and θd parametrizes an individual’s

preference when individuals in a pair have different types.

In terms of the equilibrium strategies, consider some resident type θ = (θd, θs) and some mutant type τ = (τd, τs)

that is different from θ (either because θd ̸= τd, or because θs ̸= τs, or because both θd ̸= τd and θs ̸= τs). Then,

a resident individual applies the Kantian coefficient θs when interacting with another resident, in which case they

both play the equilibrium strategy y∗s , satisfying

y∗s ∈ argmax
y∈X

uθs (y, y
∗
s | y∗s ) . (45)

The solution thereof defines the equilibrium strategy as a function of only θs and we write y∗s (θs) when this depen-

dence needs to be made explicit. In mutant-mutant interactions both individuals apply the Kantian coefficient τs

and they both use the equilibrium strategy x∗
s , satisfying

x∗
s ∈ argmax

x∈X
uτs (x, x

∗
s | y∗s ) . (46)

This defines the equilibrium strategy as a function of both τs and θs (since y∗s depends on θs), which we write

x∗
s (τs, θs). Finally, in mutant-resident pairs where τ ̸= θ, the mutant applies the Kantian coefficient τd while the

resident applies the Kantian coefficient θd, and the Nash equilibrium strategies x∗
d and y∗d are best responses to each

other according to these preferences:  y∗d ∈ argmaxy∈X uθd(y, x
∗
d | y∗s )

x∗
d ∈ argmaxx∈X uτd(x, y

∗
d | y∗s ) ,

(47)

which leads to the dependence of both equilibrium strategies on τd, θd, and θs and we write x∗
d(τd, θd, θs) and

y∗d(θd, τd, θs). In mutant-resident pairs with the same type, which occurs if individuals from different lineage interact

but are of the same type τ = θ, then each individual in the pair applies the Kantian coefficient θs and therefore

expresses strategy y∗s (θs).

3.3.2 Evolutionary equilibrium

The fixed point eqs (45)–(47) define the behavioral mechanisms (8)–(10) under complete information with complete

plasticity and it follows that the invasion fitness can be written as

W (τ, θ) = [1− r(τ, θ)]Wd(τd, θd, θs) + r(τ, θ)Ws(τs, θs), (48)

where

Wd(τd, θd, θs) =

 w(x∗
d(τd, θd, θs), y

∗
d(θd, τd, θs), y

∗
s (θs)) if (τd, τs) ̸= (θd, θs)

w(y∗s (θs), y
∗
s (θs), y

∗
s (θs)) = 1 if (τd, τs) = (θd, θs),

(49)
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and

Ws(τs, θs) = w(x∗
s (τs, θs), x

∗
s (τs, θs), y

∗
s (θs)). (50)

Each component of the mutant trait τ = (τd, τs) thus affects invasion fitness differently. The first trait component,

τd, only affects the part of invasion fitness Wd emanating from the interaction of a mutant with a resident. Invasion

fitness is not differentiable in trait component τd because, as emphasized by eq. (49), there is generally a discrete

jump in the equilibrium strategies at τd = θd, from (x∗
d, y

∗
d) to (y∗s , y

∗
s ) since as long as τ ̸= θ, individuals in

mutant-resident pairs play the equilibrium (x∗
d, y

∗
d), while at τ = θ the pair plays (y∗s , y

∗
s ) [see the example below

for an illustration]. The second trait component, τs, not only affects the part of invasion fitness Ws emanating from

the interaction of a mutant with another mutant, but also Wd, since if τd = θd the resident applies the value θd

when interacting with a mutant if τs ̸= θs but instead the value θs if τs = θs. The invasion fitness (48) is thus not

differentiable in the mutant type (τd, τs). Moreover, as will be shown and explained in detail in an example below,

there is typically an infinite number of uninvadable types θ ∈ [0, 1]2. In spite of these challenges, we have identified

two simple sufficient conditions for a type to be uninvadable (but we were unable to conclude on convergence

stability).

To state our result, for any θd, τd, θs ∈ [0, 1] define ỹ(θd, τd, θs) ∈ argmaxy∈X uθd (y, x̃(τd, θd, θs) | y∗s (θs))

x̃(τd, θd, θs) ∈ argmaxx∈X uτd (x, ỹ(θd, τd, θs) | y∗s (θs))
(51)

and

W̃ (τd, θd, θs) = w(x̃(τd, θd, θs), ỹ(θd, τd, θs), y
∗
s (θs)). (52)

Result 3. A sufficient condition for Wd(τd, θd, θs) ≤ 1 for all τd ∈ [0, 1] and Ws(τs, θs) ≤ 1 for all τs ∈ [0, 1]

(and thus W (τ, θ) ≤ 1 for all τ = (τd, τs) ∈ [0, 1]2) is that θ = (θd, θs) = (θ∗d, 1), where θ∗d ∈ [0, 1] is such that

W̃ (θ∗d, θ
∗
d, 1) ≥ W̃ (τd, θ

∗
d, 1) for all τd ∈ [0, 1].

For a formal proof of this result, see Appendix C. To understand this result, note first that θs = 1 guarantees

that a mutant cannot achieve a higher fitness when interacting with another mutant, than a resident does when

interacting with another resident. This value of the Kantian coefficient indeed implies that both individuals in the

interaction act as “social planners”: they choose that strategy which, when chosen by both individuals, maximizes

their fitness. Second, note that for τd ̸= θd, the system of equations (51) is mathematically equivalent to the

system of equations that characterizes the equilibrium strategies between a resident and a mutant (see (47)), and

W̃ (τd, θd, θs) is equivalent to Wd(τd, θd, θs).11 Hence, the value θ∗d defined in the result is such that if residents apply

θd = θ∗d when interacting with mutants, the residents get a higher fitness than the mutants do in mutant-resident

interactions, for any value of τd ̸= θd. Thus, (θs, θd) = (θ∗d, 1) is a “safe bet” as an uninvadable point.

However, and as mentioned before, there are typically many other uninvadable types. To see why, it is useful

to draw a parallel between the function W̃ , defined in eq. (52), and the fitness of a mutant under the complete

11Note that the definition of the function W̃ allows us to evaluate Wd under the hypothesis that the resident would apply the Kantian

coefficient θd even when interacting with another individual with the same type. This is useful for the proof of the result, and for the

argument developed in the next paragraph.
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information and incomplete plasticity scenario when relatedness is equal to zero, defined in (38). These are math-

ematically equivalent, except that in eq. (52) individuals in the resident population play strategy y∗s (θs), where θs

may differ from θd. This parallel allows us to realize that the same arguments as for the derivation of Result 2 can

be applied here, to conclude that a relevant candidate value for θ∗d is the one satisfying θ∗d = max{0, ρ̃(θ∗d)} where

ρ̃(θd) =

∂ỹ(θd,τd,1)
∂τd

∂x̃(τd,θd,1)
∂τd

∣∣∣∣∣
τd=θd

. (53)

From (differentiable) fitness W̃ (τd, θd, θs) and following the same arguments as those leading up to Result 2, we

know that an uninvadable type satisfying θ∗d = ρ̃(θ∗d) cannot be equal to one, i.e., θ∗d < 1. Based on the same

argument as used in the previous paragraph, we have Wd(τd, θ
∗
d, 1) ≤ W̃ (θ∗d, θ

∗
d, 1) < W̃ (1, 1, 1) = 1. The inequality

W̃ (θ∗d, θ
∗
d, 1) < W̃ (1, 1, 1) follows from the fact that θs = 1 implies that both individuals in the interaction act as

“social planners” and thus maximize their fitness, and hence interaction partners with θ∗d < 1 do not act as social

planners, thereby choosing a strategy that does not maximise their fitness (see also Appendix C).

We can thus conclude that θd = θ∗d implies that Wd(τ, θ) < 1 for any τd ̸= θ∗d. Hence, we can further conclude

that θ = (θd, θs) = (θ∗d, 1) implies that W (τ, θ) < 1 for any τ ̸= θ. It is this discrete jump between the invasion

fitness of any mutant τ ̸= θ and the residents’ fitness that opens the door for the multiplicity of uninvadable types.

For example, (θd, θs) = (θ∗d − ε, 1) for some sufficiently small ε > 0 would also be uninvadable: with this resident

type, a mutant can achieve a higher fitness than a resident in a mutant-resident interaction, but one can always find

ε small enough so that this advantage would be too small to overcome the difference 1−Wd(τd, θ
∗
d− ε, 1). Likewise,

(θs, θd) = (1 − ε, θ∗d) for some sufficiently small ε > 0 would also be uninvadable: with this resident type, mutants

can achieve a higher fitness when interacting with each other than when two residents interact, but one can always

find ε small enough so that this advantage would be too small to overcome the difference 1−Wd(τd, θ
∗
d, 1−ε). Note

that this example further shows that θs = 1 is not necessary for θ to be uninvadable.

In order to illustrate Result 3, we work out an example assuming a constant relatedness of 1/2 and an individual

fitness function of the form w(xi, x−i, y) = f(xi, x−i)/f(y, y), with fecundity f(xi, x−i) = 1 + axi − bxix−i − cx2
i

given by the linear-quadratic function (44). This model could be thought of as interactions between siblings in a

family-structured semelparous population. Given these assumptions, the invasion fitness (48) is

W (τ, θ) =
1

2
Wd(τd, θd, θs) +

1

2
Ws(τs, θs), (54)

with

Wd(τd, θd, θs) =


f(x∗

d(τd,θd),y
∗
d(θd,τd))

f(y∗
s (θs),y

∗
s (θs))

if (τd, τs) ̸= (θd, θs)

1 if (τd, τs) = (θd, θs),
(55)

and

Ws(τs, θs) =
f(x∗

s (τs), x
∗
s (τs))

f(y∗s (θs), y
∗
s (θs))

. (56)

In force of eq. (45), the (Nash) equilibrium strategy for a resident pair is

y∗s (θs) =
a

2c+ b+ bθs
, (57)
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while in force of eq. (47), the strategies for a mutant-resident pair are

x∗
d(τd, θd) =

a[2c−b(1−2θd−τd)]
4c2+4bc(θd+τd)−b2(1−θd−τd+3θdτd)

(58)

y∗d(θd, τd) =
a[2c−b(1−2θd−τd)]

4c2+4bc(θd+τd)−b2(1−θd−τd+3θdτd)
,

and in force of eq. (46), the equilibrium strategy for a mutant pair is

x∗
s (τs) =

a

2c+ b+ bτs
. (59)

For this model, we can also write for any τd, θd ∈ [0, 1] that

W̃ (τd, θd, 1) =
f(x∗

d(τd, θd), y
∗
d(θd, τd))

f(y∗s (1), y
∗
s (1))

, (60)

and the candidate uninvadable Kantian coefficient thus satisfies

θ∗d = ρ̃(θ∗d) =

∂y∗
d(θd,τd))
∂τd

∂x∗
d(τd,θd)

∂τd

∣∣∣∣∣∣
τd=θ∗

d

= − b(1− θ∗d)

2(c+ bθ∗d)
, (61)

which has a relevant root in the interval [0, 1] when b < 0 (which implies that the strategies are strategic comple-

ments), given by

θ∗d =
b− 2c+

√
4c2 − 4bc− 7b2

4b
. (62)

It is straightforward to check, for instance by computing ∂2W̃ (τd, θd, 1)/∂τ
2
d at τd = θd = θ∗d, that there is a range

of parameter values where this Kantian coefficient is uninvadable and this is illustrated in panel A of Fig. 2.

This example illustrates the two features of Result 3 discussed in general terms above. First, as long as τ ̸= θ,

individuals in mutant-resident pairs play the equilibrium (58), while at τ = θ, they play eq. (57). This makes the

strategies discontinuous at τd = θd, which in turn implies that invasion fitness is not differentiable. Despite this

discontinuity embedded in fitness Wd(τd, θd, θs) (eq. (55)), Result 3 shows that we can use the function W̃ (τd, θd, 1)

to straightforwardly calculate θd = θ∗d = max{0, ρ̃(θ∗d)}, and then use the Hessian to check that (θs, θd) = (1, θ∗d) is

indeed uninvadable. This is illustrated in panel A of Fig. 2. Second, there are multiple uninvadable types; this is

illustrated in panels B and C of Fig. 2.

Our formalization of preference evolution under complete information and plasticity makes it difficult to reach

any specific conclusion about long term evolution for two reasons. First, because invasion fitness is not differen-

tiable, a different toolkit than the usual multidimensional convergence stability criterion is needed to characterize

the attractor points of the evolutionary dynamic (Leimar, 2009). Second, the multiplicity of uninvadable equilibria

compounded with the non differentiability makes the focus on monomorphic population questionable and a treat-

ment with polymorphic populations appears required. It would thus be relevant to analyze a full dynamics model of

preference evolution with mutation and selection under complete information and plasticity to reach more definite

results and also to determine whether the equilibrium θ = (θ∗d, 1) identified in Result 3 plays a special role, for

instance whether it is a stochastically stable trait value (sensu Foster and Young, 1990).
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Figure 2: Pairwise invasibility plots. Panel A displays the difference W̃ (τd, θd, 1)− W̃ (θd, θd, 1) for all combinations of θd

(x-axis) and τd (y-axis) values (and thus holding θs = 1 fixed), for the parameter values a = 0.1, b = −0.5 and c = 1 of

the linear quadratic game (44) (W̃ (τd, θd, 1) is thus defined by (60). The difference is zero on the diagonal, since τd = θd.

The black region depicts all the combinations (θd, τd) such that the difference is negative, while the white region outside the

diagonal depicts all the combinations (θd, τd) such that the difference is strictly positive. The candidate given by eq. (62)

is θ∗d ≈ 0.22, which the graph shows is uninvadable. Panel B displays the difference W (τ, θ) − W (θ, θ) determined by

eqs. (54)–(59)of a mutant τ = (τd, 1) in a resident θ = (θd, 1) population for all combinations of resident θd (x-axis) and

mutant τd (y-axis) trait values (and thus holding θs = 1 and τs = 1 fixed) for the parameter values a = 0.1 b = −0.5 and

c = 1 of the linear quadratic game (44). On the diagonal, the difference equals zero (and invasion fitness equals one) since

τd = θd. The black region depicts all combinations (θd, τd) such that the difference is negative, i.e., W (τ, θ) < 1, so that

the mutant τd cannot invade, while the white region outside the diagonal depicts all combinations (θd, τd) such that the

difference is positive, W (τ, θ) > 1, so that the mutant can invade. The graph thus shows that all values of (θd, 1) with θd

below approximately 0.6 are uninvadable. There is thus a multiplicity of uninvadable types, which necessarily contains that

of Panel A. Note that resident values above approximately θd ≈ 0.9 are invadable by any mutation τd < θd, while resident

values between approximatively 0.6 and 0.9 are invadable by mutants with τd = θd − δ for δ > 0 large enough. Panel C

displays W (τ, θ)−W (θ, θ) determined by eqs. (54)–(59) for a mutant τ = (τd, τs) in a resident θ = (θd, θs) population for all

combinations of resident θs (x-axis) and mutant τs (y-axis) trait values holding τd = θd = ρ̃(θd) fixed and given by eq. (61)

under the parameter values a = 0.1 b = −0.5 and c = 1 of the linear quadratic game (44). As for Panel B, the black region

depicts all combinations (θs, τs) such that the difference is negative, i.e., W (τ, θ) < 1, so that the mutant τs cannot invade,

while the white region outside the diagonal depicts all combinations (θs, τs) such that the difference is positive, W (τ, θ) > 1,

so that the mutant can invade. The graph thus shows that all values of (θs, ρ̃(θ
∗
d)) with θs above approximately 0.5 are

uninvadable.
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4 Discussion

By investigating the evolution of semi-Kantian preferences under different informational and behavioral plasticity

assumptions in group-structured populations, we have extended the evolutionary viability analysis of this class of

preferences. While we restricted attention to pairwise interactions, and preferences characterized by a single evolving

quantitative trait, the Kantian coefficient, our model weaves together different threads of the literature and shows

how long-term evolution concepts can be used to analyze preferences under gradual evolution. We obtained three

main results on the convergence stability and uninvadability of the value of the Kantian coefficient.

First, when interacting individuals have no information about each other’s Kantian coefficient and mutants hold

beliefs about the probability of being matched with another randomly sampled mutant from the same lineage, we

confirm that an uninvadable Kantian coefficient must equal the coefficient of relatedness (Alger and Weibull, 2013;

Alger et al., 2020). But instead of considering the set of possible utility functions to be the set of all continuous

functions as done in this previous work, we focused on the more restricted setting where utility functions are

parametrized by a single quantitative trait. This allowed us to cover not only uninvadability in a complementary

and less abstract way, but also to cover convergence stability. In Result 1, we show that the Kantian coefficient equal

to the coefficient of relatedness is both convergence stable and uninvadable when trait effects on relatedness are

sufficiently weak. Thus, we characterize conditions where gradual evolution drives preferences to induce individuals

to behave according to Hamilton’s (marginal) rule at the strategy level. One relevant avenue for future research

for preference evolution under incomplete information is to consider more realistic demographic scenarios of class

structured population (e.g., by sex, age, or stage).

Second, when interacting individuals can observe each other’s type, but each individual has the same preferences

regardless of the other’s type, we showed that an uninvadable value of the Kantian coefficient can exceed, fall short

of, or equal the coefficient of relatedness. Moreover, we showed that the sign of the discrepancy is determined by

whether an individual’s equilibrium strategy is correlated positively, negatively, or not at all with the opponent’s

equilibrium strategy. This response coefficient in turn depends on the specifics of the individual fitness function

so that the Kantian coefficient will depend on life-history parameters such as survival, migration, etc. [recall the

example of the fitness function (B-i)]. Gradual evolution thus now drives preferences to induce individuals to behave

according to a context-specific Kantian coefficient, which combines both the relatedness and the response coefficients.

This result is fully in line with previous models under complete information and incomplete plasticity, which have all

considered other parametric classes of preferences than the one we examined (e.g. Bester and Güth, 1998; Bolle, 2000;

Possajennikov, 2000; Heifetz et al., 2007b,a; Akçay and Van Cleve, 2009 for models without relatedness, and Alger,

2010; Alger and Weibull, 2010, 2012; Akçay and Van Cleve, 2012 for models with relatedness). The dependence of an

uninvadable value of the Kantian coefficient on the response coefficient stems from the commitment to a particular

behavioral response that an individual’s preferences induces. By being observable, a mutant’s preference type can

thus induce a resident to adopt a different strategy than the one adopted in an interaction with another resident,

an effect that is absent under incomplete information. Although we established necessary conditions for a Kantian

coefficient value to be uninvadable and illustrated uninvadablility and convergence stability under a linear quadratic

game (Fig. (1)), we did not succeed in identifying simple general sufficient conditions, neither for uninvadability
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nor for convergence stability. In particular, we cannot rule out evolutionary branching points, which obtain when a

singular Kantian coefficient value is convergence stable but not uninvadable (recall footnote 3, and see Geritz et al.,

1998 for a general discussion and McNamara and Leimar, 2020 for typical evolutionary game theory applications).

An avenue for future research on preference evolution under complete information is thus to analyze conditions

leading to polymorphism in preferences.12

Finally, we considered the case of complete information with complete plasticity where individuals can both

observe the opponent’s type and also condition its preferences on it. This is akin to a green-beard or secret

handshake mechanism (Hamilton, 1964b; Grafen, 1990; Robson, 1990), but at the preference level rather than at

the strategy level as in most previous work. Since an individual’s Kantian coefficient may depend on the type of

the interaction partner, a type is now a two-dimensional quantitative trait. Compared to the complete information

incomplete plasticity scenario, individuals are thus no longer committed to respond according to one and the

same Kantian coefficient. Residents are therefore less exploitable by mutants and individuals can be regarded as

implementing multiple selves (Lester, 2015) since their preferences and motivations are context-dependent. As we

showed, this implies that residents can be pure Kantians when interacting with each other, and still be uninvadable:

they can prevent entry by mutants by using the Kantian coefficient equal to the response coefficient when interacting

with individuals with a different type than theirs. In such a population, when interacting with each other residents

then use the strategy which yields the highest possible individual fitness. In other words, they use the strategy

that yields an efficient outcome. This is reminiscent of a result by Dekel et al. (2007), who showed that a class of

“coordination” preferences, which results in efficient strategy profiles, are stable. It is also reminiscent of results

obtained by Wang and Wu (2023) in a model where the search and matching of interacting partners is endogenous

but costless: the authors demonstrate the evolutionary stability of a preference for interacting with an individual

with the same type as self combined with play of an efficient strategy profiles. We were, however, were not able

to characterize convergence stability nor the Kantian coefficient when individuals interact with others with a type

different from their own type. Ascertaining this in the non-differentiable setting of complete information with

complete plasticity is thus left for future work.

We derived these three results assuming existence of a unique behavioral equilibrium in the resident population

and when mutant-resident (or mutant-mutant) interactions occur. Given that it is common that interactions produce

a multiplicity of (Nash) equilibria, an important avenue for future research will be to examine the robustness of our

results in settings with multiple equilibria. Several questions will need to be addressed. First, one can imagine several

alternative formalizations of the interaction between individuals when multiple equilibria are possible. For instance,

one could assume that different pairs of individuals in the resident population play different equilibria; such a model
12To see that polymorphism is likely under preference evolution consider Proposition 1 of Heifetz et al. (2007a), which establishes

conditions for the evolutionary viability of pessimism or optimism for a particular individual fitness function. Using our notation, these

preferences entail the utility function uθi (xi, x−i | y∗) = w(xi, x−i, y
∗) + θixi, where θi is the evolving quantitative trait that can be

taken to describe optimism when θi > 0 and pessimism when θi < 0. It is straightforward to check that the singularity in Proposition 1 of

Heifetz et al. (2007a) is both convergence stable and uninvadable, as it should under the measure dynamics they consider (e.g.,Cressman

and Hofbauer, 2005). However, it is also straightforward to find parameter values of the fitness function they use Heifetz et al., 2007a,

eq. 8 such that the singularity is convergence stable and invadable, and thus conducive to an adaptive polymorphism in dispositions,

e.g., the coexistence of optimists and pessimists.
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would likely require tools from the literature on class-structured populations (since an average individual may then

play different equilibria and thus be in different contexts or states, the defining feature of class structured populations

e.g., Avila and Mullon, 2023). An alternative would be to assume that the same equilibrium is played in all resident-

resident interactions; our formalization should then apply to each equilibrium separately (with implications for

possibly different relatedness coefficients depending on the equilibrium being played). The same modeling choices

will arise when there exist multiple equilibria in mutant-resident pairs. Second, the definitions of uninvadability

and convergence stability may need to be adapted. In particular, for uninvadability, would a preference type

be deemed uninvadable only if it is uninvadable for all possible formalizations of interactions in the presence of

multiple equilibria? A similar question arises for convergence stability. For existing attempts to address some of

these questions, see Ok and Vega-Redondo (2001); Dekel et al. (2007); Alger and Weibull (2013, 2016); Alger et al.

(2020); Alger and Weibull (2023); Wang and Wu (2023).

Our three results show within the same model how different information and behavioral flexibility assumptions

lead to different values of the Kantian coefficient, and thus to different equilibrium strategies. By contrast to strategy

evolution models, which predict behavioral patterns for stationary environments, preference evolution models allow

to make predictions about behavioral change in a new environment, and can be tested, using either field data or

experimental data. A key prediction of our model is that equilibrium behavior at evolutionary equilibrium should be

in accordance with Hamilton’s marginal rule expressed at the strategy level only if evolution operated on interactions

under incomplete information (recall equation (26)), and that if observed deviations from this rule resulted from

interactions taking place under complete information, the deviation from Hamilton’s marginal rule should depend

on the specifics of the interaction at hand (recall equation (43)). In some experiments under incomplete information,

humans do appear to conform to behave according to Hamilton’s (marginal) rule at the strategy level (Levy and

Lo, 2022).

Economic games can further be used to discriminate between different preferences in controlled laboratory

experiments. For example, Fisman et al. (2007) and Bruhin et al. (2019) use dictator games to estimate individuals’

preference parameters assuming other-regarding preferences. More recent studies in this literature have been inspired

by results in the evolutionary theory of preferences to design economic games that further allow the researchers

to discriminate between other-regarding and semi-Kantian preferences (Miettinen et al., 2020), and to estimate

the importance of Kantian concerns relative to other-regarding concerns (Van Leeuwen and Alger, 2022). The

latter study indicates that many individuals appear to be driven by a combination of self-interest, semi-Kantian

concerns, and other-regard. This finding is in line with evolutionary arguments showing that it is important to

distinguish between preferences expressed in terms of fitness consequences and preferences expressed in terms of

payoff consequences (Lehmann et al., 2015; Alger et al., 2020). The qualitative nature of evolved preferences at

the material payoff level indeed differ from that at the fitness level, and this difference depends on demographic

properties under genetic evolution and transmission rules under cultural evolution (Alger et al., 2020). Payoff and

fitness incentives tend to agree in panmictic and family-structured populations, but tend to disagree in spatially

structured populations owing to the presence of local competition between individuals. Future research could adopt

a similar approach to the one we develop here, by analyzing evolution of preferences expressed at the level of

material payoffs under a variety of informational assumptions.
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In this paper we have sought to bring together modeling tools from evolutionary biology and from economics

in order to investigate the evolution of preferences that guide behavior in strategic interactions. We hope that

our formalization has illustrated some of the nuances, intricacies, and richness of research endeavours that seek to

analyse more completely the evolutionary dynamics of behavioral mechanisms, and that it will inspire future studies

into the many open theoretical and empirical research questions.
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Box 1. Invasion fitness as eigenvalue. The invasion fitness of a type is its geometric growth ratio when rare in a resident population

(Fisher, 1930; Eshel and Feldman, 1984; Metz et al., 1992; Ferrière and Gatto, 1995). When the resident population is monomorphic

for θ, the invasion fitness W (τ, θ) of mutant τ under our demographic assumptions (section (2.1)) is obtained as the leading eigenvalue

of the matrix

A(τ, θ) =

a11(τ, θ) a12(τ, θ)

a21(τ, θ) a22(τ, θ)

 , (B-a)

where aij stands for the expected number of groups with i ∈ {1, 2} mutants that over one demographic time period descend (either

through local change or through migration) from a focal group with i ∈ {1, 2} mutants, when the population is otherwise monomorphic

for θ. Matrix A(τ, θ) is assumed to be regular (irreducible and aperiodic, Iosifescu, 2007, p. 123). It then follows from standard results

on multitype branching processes that the lineage of a single τ mutant goes extinct with probability one if, and only if, W (τ, θ) ≤ 1,

otherwise the lineage spreads into the population when rare and becomes infinitely large (Harris, 1963; Karlin and Taylor, 1975).

By definition of invasion fitness, W (τ, θ)u(τ, θ) = A(τ, θ)u(τ, θ), where u(τ, θ) = (u1(τ, θ), u2(τ, θ)) is the only non-negative right

eigenvector of A(τ, θ), where, by normalization, u1(τ, θ) + u2(τ, θ) = 1. The eigenvector u(τ, θ) can be interpreted as the quasi-

stationary distribution of mutant group types as it is invariant to multiplication by A(τ, θ), whereby ui(τ, θ) is the frequency of groups

with i ∈ {1, 2} mutants among groups with at least one mutant. Following previous developments (Mullon et al., 2016), we can left

multiply W (τ, θ)u(τ, θ) = A(τ, θ)u(τ, θ) by the vector (1, 2). Rearranging terms, this produces

W (τ, θ) = [1− r(τ, θ)] w̃1(τ, θ) + r(τ, θ)w̃2(τ, θ), (B-b)

where

w̃1(τ, θ) = a11(τ, θ) + 2a21(τ, θ) (B-c)

w̃2(τ, θ) = a12(τ, θ)/2 + a22(τ, θ) (B-d)

r(τ, θ) =
2u2(τ, θ)

u1(τ, θ) + 2u2(τ, θ)
. (B-e)

Here, w̃i(τ, θ) is the expected total number of individuals produced (including the surviving self) by a single τ individual over one

demographic time step when there are j ∈ {1, 2} τ individuals in its group and the population is otherwise monomorphic for θ; and

r(τ, θ) is the probability that, for any given descendant of the initial mutant, the neighbor of that mutant is also a mutant. An explicit

example of these invasion fitness components is given in Box 2.

Eq (B-b) is a recipient-centered representation of the mutant’s geometric growth ratio since it is expressed as the average of the expected

fitness of a type τ individual, who is necessarily the recipient of the traits of others. An actor-centered representation of the growth

ratio, which focuses on the consequence on others of an individual expressing the mutant instead of the resident trait value can also be

obtained (Hamilton, 1970; Rousset, 2015). Such an actor-centered representation of invasion fitness can be reached by rearranging the

components of eq. (B-b) (Lehmann and Rousset, 2020). Indeed, owing to the fact that w̃2(θ, θ) = 1, we have the equality

W (τ, θ) = 1− c(τ, θ) + r(τ, θ)b(τ, θ), (B-f)

where

−c(τ, θ) =
1

1 + r(τ, θ)
(w̃1(τ, θ)− w̃2(θ, θ)) +

r(τ, θ)

1 + r(τ, θ)
(w̃2(τ, θ)− w̃1(θ, τ))

b(τ, θ) =
1

1 + r(τ, θ)
(w̃1(θ, τ)− w̃2(θ, θ)) +

r(τ, θ)

1 + r(τ, θ)
(w̃2(τ, θ)− w̃1(τ, θ)) .

Here, −c(τ, θ) is the average effect (sensu Fisher, 1941) on the number of mutant gene copies produced by a single individual when

expressing a copy of the mutant instead of the resident allele. The average thus being over the two possible contexts in which an

individual expressing τ instead of θ can be: interacting with a neighbor that carries or not the mutant. The actor-centered perspective

of eq. (B-f) is then born out from the fact that b(τ, θ) is the average effect on the expected number of offspring produced by an individual’s

neighbour, which stemming from the actor switching to expressing a copy of the mutant instead of the resident allele.

26



Box 2. Moran process example. We illustrate the invasion fitness components described in Box 1 by considering a process where

exactly one individual dies in each group during a demographic time step (i.e., an instance of a Moran process, Moran, 1962). For this

case, the entries of matrix (B-a) are

a11 = 1− b1 − d1 + e1, a21 = b1, a12 = d2 + e2, a22 = 1− b2 − d2, (B-g)

with bi and di standing, respectively, for the probability that there is a mutant descendant and mutant death, and ei is the expected

number of succesful emigrant mutants, in a group with i mutants. These variables are given by

bk(τ, θ) =
(2− k)µk(θ)

kµk(τ) + (2− k)µk(θ)

[
(1−m)kfk(τ)

(1−m) [kfk(τ) + (2− k)fk(θ)] +m2f0(θ)s0(θ)

]
(B-h)

dk(τ, θ) =

[
1−

(2− k)µk(θ)

kµk(τ) + (2− k)µk(θ)

] [
1−

(1−m)kfk(τ)

(1−m) [kfk(τ) + (2− k)fk(θ)] +m2f0(θ)s0(θ)

]
ek(τ, θ) =

1

2

mkfk(τ)sk(τ)

(1−m)f0(θ) +mf0(θ)s0(θ)

where fk(θ
′), µk(θ

′), sk(θ′) are, respectively, the fecundity, death-factor, juveniles’ survival probability during migration, of a single type

θ′ ∈ {τ, θ} adult individual when there are exactly k mutants in its group (see Lehmann et al., 2015; Mullon et al., 2016 for more details

on the derivation and the case where there are more than 2 individuals per group). On setting f1(τ) = f(x∗
d, y

∗
d), f2(τ) = f(x∗

s , x
∗
s ),

f0(θ) = f(y∗s , y
∗
s ), f1(θ) = f(y∗d, x

∗
d), µ1(τ) = µ(x∗

d, y
∗
d), µ2(τ) = µ(x∗

s , x
∗
s ), µ0(θ) = µ(y∗s , y

∗
s ), µ1(θ) = µ(y∗d, x

∗
d), s1(τ) = s(x∗

d, y
∗
d),

s2(τ) = s(x∗
s , x

∗
s ), and s0(θ) = s(y∗s , y

∗
s ), where x refers to mutant and y to resident strategies [recall eqs. (6)–(7)] and f : X 2 → R+,

µ : X 2 → R+, and µ : X 2 → R+, then algebraic rearrangements show that the fitness function w : X 3 → R+ in eqs. (6)–(7) for the

Moran process is defined as

w(xi, x−i, y) = 1−
µ(xi, x−i)

µ(xi, x−i) + µ(x−i, xi)

+
1

2

[
(1−m)f(xi, x−i)

(1−m) [f(xi, x−i, y) + f(x−i, xi)] +mf(y, y)s(y, y)
+

mf(xi, x−i)s(xi, x−i)

(1−m)f(y, y) +mf(y, y)s(y, y)

]
(B-i)

(see Box 1 of Lehmann et al., 2015 for a biological interpretation of each term).

Even for this Moran process, the expression for relatedness eq. (B-e) is complicated, but its computation can be alleviated by using

an invasion fitness proxy. An invasion fitness proxy is by definition any fitness measure P (τ, θ) that is sign equivalent to W (τ, θ) such

that the evolutionary invasion analysis can be carried out from this measure (i.e. P (τ, θ) ≤ 1 ⇐⇒ W (τ, θ) ≤ 1). An invasion fitness

proxy for W (τ, θ) can be obtained by keeping the functional form eq. (B-b), but relatedness, instead of being given by the complicated

expression eq. (B-e), is given by

r(τ, θ) =
2b1(τ, θ)

2b1(τ, θ) + d2(τ, θ)
, (B-j)

which can be readily evaluated using eq. (B-h). Conceptually, this simplification obtains by substituting ui → ti in eq. (B-e), where ti

is the sojourn time with i ∈ {1, 2} mutants of the mutant lineage in a single group where t1 = 1/d1 and t2 = b1/(d1d2) (see Lehmann

et al., 2015; Mullon et al., 2016 for more details). Substituting eq. (B-h) into eq. (B-j) and using the expression for the vital rates in

terms of strategies and assuming, for simplicity that fecundity f is independent of the types, one can then check that relatedness can

be written as

r(τ, θ) =
(1−m)µ(y∗d(θ, τ), x

∗
d(τ, θ))

(1−m)µ(y∗d(θ, τ), x
∗
d(τ, θ)) +m

[
µ(x∗

d(τ, θ), y
∗
d(θ, τ)) + µ(y∗d(θ, τ), x

∗
d(τ, θ))

]
s(y∗s (θ), y

∗
s (θ))

, (B-k)

where we made explicit all functional dependencies. Further, in a monomorphic population relatedness boils down to

r(θ, θ) =
1−mb(θ)

1 +mb(θ)
=

1−m

1−m [1− 2s(y∗s (θ), y
∗
s (θ))]

, (B-l)

where mb(θ) = (1 − m)/[1 − m + ms(y∗s (θ), y
∗
s (θ)] is the backward migration probability, i.e., the probability that an individual

randomly sampled in a patch is of philopatric origin. Eq. (B-l) displays two generic features about relatedness. First, it is a monotonic

decreasing function of dispersal and of juvenile survival. Second, relatedness can depend endogeneously on the interactions, because

the spatial structure is an outcome of survival and reproduction, which are themselves functions of interactions between individuals.

If survival s(y∗s (θ), y
∗
s (θ)) were independent of strategies, then neutral relatedness would be independent of the types and reduce to

r = (1−m)/(1−m(1− 2s), as it should (Mullon et al., 2016), for parameters m ∈ (0, 1] and s ∈ [0, 1].
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Appendix A Behavioral perturbation under incomplete information

We here show that the behavioral perturbation (18) is always positive, i.e., ∂x∗(τ, θ)/∂τ |τ=θ > 0. We proceed

in two steps. First, we evaluate the perturbation of a mutant’s reaction function and show that this is positive.

Second, we show that this latter perturbation is sign equivalent to ∂x∗(τ, θ)/∂τ |τ=θ.

For the first step recall from eq. (13) that a specific mutant’s expected utility is

U(x | x∗, y∗) = [1− r̃(x∗, y∗)]uτ (x, y
∗ | y∗) + r̃(x∗, y∗)uτ (x, x

∗ | y∗) , (A-1)

where the notation | x∗, y∗ emphasises that we are here holding the strategies of the other mutant and resident

individuals as given. A mutant’s best response to (x∗, y∗) is implicitly defined by the necessary first-order condition:

∂U(x | x∗, y∗)

∂x
= [1− r̃(x∗, y∗)]

∂uτ (x, y
∗ | y∗)

∂x
+ r̃(x∗, y∗)

∂uτ (x, x
∗ | y∗)

∂x
= 0, (A-2)

which, using eq. (11), is written

[1− r̃(x∗, y∗)](1− τ)
∂w (x, y∗, y∗)

∂x
+ [1− r̃(x∗, y∗)]τ

∂w (x, x, y∗)

∂x

+ r̃(x∗, y∗)(1− τ)
∂w (x, x∗, y∗)

∂x
+ r̃(x∗, y∗)τ

∂w (x, x, y∗)

∂x
= 0. (A-3)

This equation implicitly defines the specific mutant’s optimal strategy x(τ, x∗, y∗) as a function of τ , x∗, and

y∗ (which depends on θ). In other words, it defines this mutant’s reaction function, which specifies its utility-

maximizing strategy for each (x∗, y∗) (e.g., Fudenberg and Tirole, 1991, p. 14). We use an index i to denote the

partial derivative with respect to the i-th argument of the individual fitness function to rewrite eq. (A-3) as follows:

[1− r̃(x∗, y∗)](1− τ)w1 (x, y
∗, y∗) + [1− r̃(x∗, y∗)]τ [w1 (x, x, y

∗) + w2 (x, x, y
∗)]

+ r̃(x∗, y∗)(1− τ)w1 (x, x
∗, y∗) + r̃(x∗, y∗)τ [w1 (x, x, y

∗) + w2 (x, x, y
∗)] = 0, (A-4)

which simplifies to

(1− τ) [[1− r̃(x∗, y∗)]w1 (x, y
∗, y∗) + r̃(x∗, y∗)w1 (x, x

∗, y∗)] + τ [w1 (x, x, y
∗) + w2 (x, x, y

∗)] = 0. (A-5)

Applying the implicit function theorem holding (x∗, y∗) fixed, we obtain:

∂x(τ, x∗, y∗)

∂τ
= −−[1− r̃(x∗, y∗)]w1 (x, y

∗, y∗)− r̃(x∗, y∗)w1 (x, x
∗, y∗) + w1 (x, x, y

∗) + w2 (x, x, y
∗)

(1− τ)A+ τB
, (A-6)

where

A = [1− r̃(x∗, y∗)]w11 (x, y
∗, y∗) + r̃(x∗, y∗)w11 (x, x

∗, y∗)

B = w11 (x, x, y
∗) + 2w12 (x, x, y

∗) + w22 (x, x, y
∗) . (A-7)

Strict concavity of uτ for all τ ∈ [0, 1] implies that A < 0 and B < 0 and so the denominator of eq. (A-6) is

strictly negative. At equilibrium, and locally at τ = θ, we have x = x∗ = y∗, implying that the numerator

reduces to w2(x, x, y
∗), which is strictly positive. Hence, the perturbation ∂x(τ, x∗, y∗)/∂τ |τ=θ, which measures

this mutant’s (infinitesimal) change in its reaction function x(τ, x∗, y∗(θ)) when the value of its Kantian coefficient

is infinitesimally increased at τ = θ, is strictly positive.
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We turn now to the second step to show why the result derived in the first step implies that the mutant

equilibrium strategy x∗ must increase as a result of an (infinitesimal) increase in the value of τ for all mutants.

First, note that such an increase in τ has no effect on the resident strategy (see eq. (13)), implying that we

can indeed hold y∗ fixed, as we did above. Hence, for a given τ and y∗, the equilibrium strategy x∗(τ, θ) is a

fixed point of the mutant’s best-response function (see the second line of eq. (13)) and this is a point on the

curve described by the reaction function x(τ, x∗, y∗) for any given (τ, y∗).. Because ∂x(τ, x∗, y∗)/∂τ |τ=θ describes

how the response function of one mutant is slightly displaced by the introduction of a small mutant deviation

at τ = θ, and because we proved above that any such deviation is positive for any strategy x∗ played by other

mutants, the equilibrium strategy x∗(τ, θ) must locally vary with the same sign as the reaction function varies, i.e,

∂x∗(τ, θ)/∂τ |τ=θ ∝ ∂x(τ, x∗, y∗)/∂τ |τ=θ.

Appendix B Jacobian and Hessian under complete information with

incomplete plasticity

Differentiating eq. (40) with respect to θ and evaluating at θ∗ satisfying S(θ∗) = 0 yields

J(θ∗) =
∂w(y∗d, y, y

∗
d)

∂y

[
(r(θ∗, θ∗)− θ∗)

∂2x∗
d(τ, θ)

∂τ2
+ (1− θ∗)(1 + r(θ∗, θ∗))

∂x∗
d(τ, θ)

∂τ∂θ
+ (1− θ∗r(θ∗, θ∗))

∂2x∗
d(τ, θ)

∂θ2

+

[
1− r(θ∗, θ∗)2 − (1− θ∗2)dr(θ,θ)dθ

]
r(θ∗, θ∗)− θ∗

∂x∗
d(τ, θ)

∂θ


τ=θ=θ∗

. (A-8)

Using eq. (40) at S(θ∗) = 0 and using eq. (36) we can express the singular trait value implicitly as

θ∗ =
r(θ∗) + ρ(θ∗)

1 + r(θ∗, θ∗)ρ(θ)∗
, (A-9)

which, on substituting into eq. (A-8), using ρ(θ) = (∂x∗
d(τ, θ)/∂θ) / (∂x

∗
d(τ, θ)/∂τ) and simplifying produces

J(θ∗) = −∂w(x∗
d, y, y

∗
d)

∂y

[ (
1− r(θ∗, θ∗)2

)
1 + r(θ∗, θ∗)ρ(θ∗)

(
ρ(θ∗)

∂2x∗
d(τ, θ)

∂τ2
− (1− ρ(θ∗))

∂2x∗
d(τ, θ)

∂τ∂θ
− ∂2x∗

d(τ, θ)

∂θ2

)

+

(
(1 + r(θ∗, θ∗)ρ(θ∗))2 − dr(θ)

dθ (1− ρ(θ∗)2)
)

1 + r(θ∗, θ∗)ρ(θ∗)

∂x∗
d(τ, θ)

∂τ


τ=θ=θ∗

. (A-10)

The second order behavioral perturbations ∂2x∗
d(τ, θ)/∂τ

2, ∂2x∗
d(τ, θ)/(∂τ∂θ), ∂

2x∗
d(τ, θ)/∂θ

2 appearing in this Ja-

cobian can be computed by using implicit differentiation in eq. (31). The resulting expressions are complicated and

lengthy and we were unable to infer some general information from these expressions, although they can be han-

dled easily with a symbolic manipulation system such as Mathematica (Wolfram Research, 2016). A Mathematica

notebook with all algebraic computations of the paper is available on request.
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Now using invasion fitness (38) to evaluate H(θ) = ∂2W (τ, θ)/∂τ2
∣∣
τ=θ

, we find that

H(θ) =
∂2x∗

d(τ, θ)

∂τ2

(
∂w(y, y∗d, y

∗
d)

∂y
+ r(θ, θ)

∂w(y∗d, y, y
∗
d)

∂y

)
+ 2r(θθ)

∂2x∗
d(τ, θ)

∂τ∂θ

(
∂w(y, y∗d, y

∗
d)

∂y
+

∂w(y∗d, y, y
∗
d)

∂y

)
+
∂2x∗

d(τ, θ)

∂θ2

(
r(θ, θ)

∂w(y, y∗d, y
∗
d)

∂y
+

∂w(y∗d, y, y
∗
d)

∂y

)
+
∂2w(x, y∗d, y

∗
d)

∂x2

[
r(θ, θ)

(
∂x∗

d(τ, θ)

∂τ

)2

+ 2r(θ, θ)
∂x∗

d(τ, θ)

∂θ

∂x∗
d(τ, θ)

∂τ

+

(
∂x∗

d(τ, θ)

∂θ

)2
]
+ 2

∂2w(x, y, y∗d)

∂x∂y

[
r(θ, θ)

(
∂x∗

d(τ, θ)

∂τ

)2

+ [1 + r(θ, θ)]
∂x∗

d(τ, θ)

∂θ

∂x∗
d(τ, θ)

∂τ
+ r(θ, θ)

(
∂x∗

d(τ, θ)

∂θ

)2
]

+
∂2w(x∗

d, y, y
∗
d)

∂y2

[(
∂x∗

d(τ, θ)

∂τ

)2

+ 2r(θ, θ)
∂x∗

d(τ, θ)

∂θ

∂x∗
d(τ, θ)

∂τ
+ r(θ, θ)

(
∂x∗

d(τ, θ)

∂θ

)2
]

+ 2
∂r(τ, θ)

∂τ

(
∂x∗

d(τ, θ)

∂τ

∂w(y∗d, y, y
∗
d)

∂y
+

∂x∗
d(τ, θ)

∂θ

∂w(x, y∗d, y
∗
d)

∂x

)
. (A-11)

Substituting into this expression ∂w(x, y∗s , y
∗
s )/∂x = −θ∂w(x, y, y∗s )/∂y and eq. (A-9) yields

H(θ∗) = −∂w(x∗
d, y, y

∗
d)

∂y

 (1− r(θ∗, θ∗)) (1 + r(θ∗, θ∗))
(
ρ(θ∗)

∂2x∗
d(τ,θ)
∂τ2 − r(θ∗,θ∗)(1−ρ(θ∗))

1+r(θ∗,θ∗)
∂2x∗

d(τ,θ)
∂τ∂θ − ∂2x∗

d(τ,θ)
∂θ2

)
1 + r(θ∗, θ∗)ρ(θ∗)

−
2∂r(τ,θ)

∂τ (1− ρ(θ∗)2)
∂x∗

d(τ,θ)
∂τ

1 + r(θ∗, θ∗)ρ

]
τ=θ=θ∗

+

(
∂2w(x, y∗d, y

∗
d)

∂x2
[1 + ρ(θ∗)r(θ∗, θ∗)(ρ(θ∗) + 2)]

2
∂2w(x, y, y∗d)

∂x∂y

[
ρ+ r(θ∗, θ∗)

(
1 + ρ(θ∗) + ρ(θ∗)2

)]
+

∂2w(x∗
d, y, y

∗
d)

∂y2
[
ρ(θ∗)2 + 2r(θ∗, θ∗)(1 + ρ(θ∗))

])(∂x∗
d(τ, θ)

∂τ

)2

.

(A-12)

A key distinction between the Jacobian J(θ∗) and the Hessian H(θ∗) is that the sign of the Jacobian does not

depend directly on fitness derivatives, while the Hessian does. Both expressions remain complicated and we did not

manage to obtain general information from them. Hence, they need to be evaluated on a case by case basis.

Appendix C Proof of Result 3

We first examine mutant-mutant interactions (the term in eq. (50)) and then turn to mutant-resident interactions

(the term in eq. (49)).

Consider some resident type θ = (θd, θs) ∈ [0, 1]2. For any such type, residents obtain individual fitness

w(y∗s , y
∗
s , y

∗
s ) = 1. Visual inspection of the expression in (50) suffices to conclude that, for any value of the resident

θs, the most threatening value τs of any mutant type τ = (τd, τs) against the resident is the one that maxi-

mizes Ws(τs, θs), i.e., such that the equilibrium strategy used in a mutant-mutant interaction, x∗
s (τs, θs), solves

maxx∈X w(x, x, y∗s ). Given differentiability of w and X = R, the strategy x∗
s (τs, θs) of the most threatening mutant

must thus satisfy the following first-order condition:[
∂w(x, x, y∗s )

∂x

]
x=x∗

s (τs,θs)

= 0. (A-13)

Since from eq. (46), x∗
s (τs, θs) must satisfy the following first-order condition for utility maximization by a mutant,[

(1− τs)
∂w(x, x∗

s (τs, θs), y
∗
s )

∂x
+ τs

∂w(x, x, y∗s )

∂x

]
x=x∗

s (τs,θs)

= 0, (A-14)
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our assumption that ∂w(x,y,z)
∂y ̸= 0 for all (x, y, z) ∈ X 3 implies that τs = 1 is the unique value of τs ∈ [0, 1] which

induces mutants to use the strategy that maximizes w(x, x, y∗s ). Hence, we can conclude that for any resident type

θ, the most threatening mutant type has τs = 1. Note further that the argument developed above implies that

θs = 1 implies Ws(τs, θs) = 1 if τs = 1 and Ws(τs, θs) < 1 if τs < 1. Hence, θs = 1 is sufficient for Ws(τs, θs) ≤ 1 for

any τs ∈ [0, 1].

We turn now to the term in eq. (49), which measures the individual fitness of a mutant in an interaction

with a resident. Suppose that the resident type is θ = (θd, θs) = (θ∗d, 1), where θ∗d is defined in the statement of

the result. By definition of θ∗d, W̃ (θ∗d, θ
∗
d, 1) = w(ỹ(θ∗d, θ

∗
d, 1), ỹ(θ

∗
d, θ

∗
d, 1), y

∗
s (1)) ≥ w(x̃(τd, θ

∗
d, 1), ỹ(θ

∗
d, τd, 1), y

∗
s (1))

for all τd ̸= θ∗d. Since w(y, y, y∗s (1)) is strictly concave in y (owing to our assumption that the utility function

is strictly concave in its first argument), which achieves its maximum for y satisfying (A-13), it follows that the

value of κ ∈ [0, 1] that would maximize the function w(ỹ(κ, κ, 1), ỹ(κ, κ, 1), y∗s (1)) is κ = 1. Together with the pre-

ceding inequality, we can thus conclude that w(x̃(τd, θ
∗
d, 1), ỹ(θ

∗
d, τd, 1), y

∗
s (1)) ≤ w(x̃(θ∗d, θ

∗
d, 1), ỹ(θ

∗
d, θ

∗
d, 1), y

∗
s (1)) ≤

w(x̃(1, 1, 1), ỹ(1, 1, 1), y∗s (1)) = 1. In other words, for any τd ̸= θ∗d, Wd(τd, θ
∗
d, 1) ≤ 1.

The preceding conclusions, namely that Ws(τs, 1) ≤ 1 and Wd(τd, θ
∗
d, 1) ≤ 1, imply that whatever is the value

of relatedness r(τ, θ), if the resident type is (θd, θs) = (θ∗d, 1), then W (τ, θ) ≤ 1 for any τ ̸= θ. Q.E.D.

31



References

Akçay, E. and J. Van Cleve. 2009. A theory for the evolution of other-regarding motivations integrating proximate

and ultimate perspectives. Proceedings of the National Academy of Sciences of the United States of America

106:19061–19066.

Akçay, E. and J. Van Cleve. 2012. Behavioral responses in structured populations pave the way to group optimality.

American Naturalist 179:257–269.

Alger, I. 2010. Public Goods Games, Altruism, and Evolution. Journal of Public Economic Theory 12:789–813.

Alger, I. 2023. Evolutionarily stable preferences. Philosophical Transactions of the Royal Society B 378:20210505.

Alger, I. and J. W. Weibull. 2010. Kinship, Incentives, and Evolution. American Economic Review 100:1725–1758.

Alger, I. and J. W. Weibull. 2012. A generalization of Hamilton’s rule—love others how much? Journal of

Theoretical Biology 299:42–54.

Alger, I. and J. W. Weibull. 2013. Homo Moralis: preference evolution under incomplete information and assortative

matching. Econometrica 6.

Alger, I. and J. W. Weibull. 2016. Evolution and Kantian morality. Games and Economic Behavior 98:56–67.

Alger, I. and J. W. Weibull. 2019. Evolutionary models of preference formation. Annual Review of Economics

11:329–354.

Alger, I. and J. W. Weibull. 2023. Evolution and Kantian morality: A correction and addendum. Games and

Economic Behavior .

Alger, I., J. W. Weibull, and L. Lehmann. 2020. Evolution of preferences in structured populations: Genes, guns,

and culture. Journal of Economic Theory 185:1–45.

André, J. B. and T. Day. 2007. Perfect reciprocity is the only evolutionarily stable strategy in the continuous

iterated prisoner’s dilemma. Journal of Theoretical Biology 247:11–22.

Arbilly, M., U. Motro, M. W. Feldman, and A. Lotem. 2010. Co-evolution of learning complexity and social foraging

strategies. J Theor Biol 267:573–81.

Avila, P. and C. Mullon. 2023. Evolutionary game theory and the adaptive dynamics approach: adaptation where

individuals interact. Philosophical Transactions of the Royal Society B 378:615255.

Bergstrom, T. 1995. On the evolution of altruistic ethical rules for siblings. American Economic Review 85:58–81.

Bester, H. and W. Güth. 1998. Is altruism evolutionarily stable? Journal of Economic Behavior and Organization

34:193–209.

Binmore, K. 1998. Just Playing: Game Theory and the Social Contract 2. MIT Press, Cambridge, MA.

Binmore, K. 2011. Rational decisions. Princeton University Press, Princeton, NJ.

Bolle, F. 2000. Is altruism evolutionarily stable? And envy and malevolence? Remarks on Bester and Güth. Journal

of Economic Behavior and Organization 42:131–133.

Boyd, R. and P. J. Richerson. 1985. Culture and the Evolutionary Process. University of Chicago Press, Chicago.

Bruhin, A., E. Fehr, and D. Schunk. 2019. The many faces of human sociality: Uncovering the distribution and

stability of social preferences. Journal of the European Economic Association 17:1025–1069.

Bulmer, M. G. 1994. Theoretical Evolutionary Ecology. Sinauer Associates, Massachusetts.

32



Cavalli-Sforza, L. and M. W. Feldman. 1981. Cultural Transmission and Evolution. Princeton University Press,

NJ.

Charlesworth, B. 1994. Evolution in Age-Structured Populations. Cambridge University Press, Cambridge, 2th

edn.

Christiansen, F. B. 1991. On conditions for evolutionary stability for a continuously varying character. American

Naturalist 138:37–50.

Cressman, R. and J. Hofbauer. 2005. Measure dynamics on a one-dimensional continuous trait space: theoretical

foundations for adaptive dynamics. Theoretical Population Biology 67:47–59.

Cressman, R. and Y. Tao. 2004. The replicator equation and other game dynamics. Proceedings of the National

Academy of Sciences of the United States of America 11:10810–10817.

Dawkins, R. 1980. Good strategy or evolutionarily stable strategy? In Barlow, G. W. (ed.), Sociobiology: Beyond

Nature/Nurture? Westview Press, Boulder, Colorado.

Dekel, E., J. Ely, and O. Yilankaya. 2007. Evolution of preferences. Review of Economic Studies 74:685–704.

Dridi, S. and E. Akçay. 2018. Learning to cooperate: The evolution of social rewards in repeated interactions.

American Naturalist 191:58–73.

Dridi, S. and L. Lehmann. 2015. A model for the evolution of reinforcement learning in fluctuating games. Animal

Behaviour 104:1–28.

Eshel, I. 1983. Evolutionary and continuous stability. Journal ot Theoretical Biology 103:99–111.

Eshel, I. 1996. On the changing concept of evolutionary population stability as a reflection of a changing point of

view in the quantitative theory of evolution. Journal of Mathematical Biology 34:485–510.

Eshel, I., M. Feldman, and A. Bergman. 1998. Long-term evolution, short-term evolution, and population genetic

theory. Journal of Theoretical Biology 191:391–396.

Eshel, I. and M. W. Feldman. 1984. Initial increase of new mutants and some continuity properties of ESS in

two-locus systems. The American Naturalist 124:631–640.

Eshel, I., U. Motro, and E. Sansone. 1997. Continuous stability and evolutionary convergence. Journal of Theoretical

Biology 074:222–232.

Ferrière, R. and M. Gatto. 1995. Lyapunov exponents and the mathematics of invasion in oscillatory or chaotic

populations. Theoretical Population Biology 48:126–171.

Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Clarendon Press, Oxford.

Fisher, R. A. 1941. Average excess and average effect of a gene substitution. Annals of Human Genetics 11:53–63.

Fisman, R., S. Kariv, and D. Markovits. 2007. Individual preferences for giving. American Economic Review

97:1858–1876.

Foster, D. and H. P. Young. 1990. Stochastic evolutionary game dynamics. Theoretical Population Biology 38:219–

232.

Fudenberg, D. and D. K. Levine. 1998. Theory of Learning in Games. MIT Press, Cambridge, MA.

Fudenberg, D. and J. Tirole. 1991. Game Theory. MIT Press, Massachusetts.

Geritz, S. A. H., E. Kisdi, G. Meszéna, and J. A. J. Metz. 1998. Evolutionarily singular strategies and the adaptive

growth and branching of the evolutionary tree. Evolutionary Ecology 12:35–57.

33



Giraldeau, L. and T. Caraco. 2000. Social Foraging Theory. Princeton University Press, Princeton, NJ.

Grafen, A. 1990. Do animals really recognize kin? Animal Behaviour 39:42–54.

Güth, W. 1995. An evolutionary approach to explaining cooperative behavior by reciprocal incentives. International

Journal of Game Theory 24:323–344.

Hamilton, W. D. 1964a. The genetical evolution of social behaviour, 1. Journal of Theoretical Biology 7:1–16.

Hamilton, W. D. 1964b. The genetical evolution of social behaviour, II. Journal of Theoretical Biology 7:17–52.

Hamilton, W. D. 1970. Selfish and spiteful behavior in an evolutionary model. Nature 228:1218–1220.

Hamilton, W. D. 1988. This week’s citation classic. Current Contents 40:16.

Harley, C. B. 1981. Learning the evolutionary stable strategy. Journal of Theoretical Biology 89:611–633.

Harris, T. E. 1963. The Theory of Branching Processes. Springer, Berlin.

Heifetz, A., C. Shannon, and Y. Spiegel. 2007a. The dynamic evolution of preferences. Economic Theory 32:251–286.

Heifetz, A., C. Shannon, and Y. Spiegel. 2007b. What to maximize if you must. Journal of Economic Theory 133:31

– 57.

Hines, W. G. S. and J. Maynard Smith. 1978. Games between relatives. Journal of Theoretical Biology 79:19–30.

Hofbauer, J. and K. Sigmund. 1998. Evolutionary Games and Population Dynamics. Cambridge University Press,

Cambridge.

Iosifescu, M. 2007. Finite Markov Processes and Their Applications. Dover, New York.

Jeong, H., A. Taylor, J. R. Floeder, M. Lohmann, S. Mihalas, B. Wu, M. Zhou, D. A. Burke, and V. M. K.

Namboodiri. 2022. Mesolimbic dopamine release conveys causal associations. Science 378:eabq6740.

Kant, I. 1785. Grundlegung zur Metaphysik der Sitten. Hartknoch, Riga.

Karlin, S. and H. M. Taylor. 1975. A First Course in Stochastic Processes. Academic Press, San Diego.

Killingback, T. and M. Doebeli. 2002. The continuous prisoner’s dilemma and the evolution of cooperation through

reciprocal altruism with variable investment. American Naturalist 160:421–438.

Lehmann, L., I. Alger, and J. W. Weibull. 2015. Does evolution lead to maximizing behavior? Evolution 69:1858–

1873.

Lehmann, L. and F. Rousset. 2020. When do individuals maximize their inclusive fitness? The American Naturalist

195:717–732.

Leimar, O. 2009. Multidimensional convergence stability. Evolutionary Ecology Research 11:191–208.

Lester, D. 2015. On Multiple Selves. Routledge, London, UK.

Levy, M. and A. W. Lo. 2022. Hamilton’s rule in economic decision-making. Proceedings of the National Academy

of Sciences of the United States of America 119:1–5.

Malécot, G. 1969. The Mathematics of Heredity. W. H. Freeman and Company, San Francisco.

Mas-Colell, A., M. D. Whinston, and J. R. Green. 1995. Microeconomic Theory. Oxford Unversity Press, Oxford.

Maynard Smith, J. 1982. Evolution and the Theory of Games. Cambridge University Press, Cambridge.

Maynard Smith, J. and G. R. Price. 1973. The logic of animal conflict. Nature 246:15–18.

McNamara, J. M., C. E. Gasson, and A. I. Houston. 1999. Incorporating rules for responding into evolutionary

games. Nature 401:368–71.

McNamara, J. M. and O. Leimar. 2020. Game Theory in Biology. Oxford University Press.

34



Metz, J. A. J., R. M. Nisbet, and S. A. H. Geritz. 1992. How should we define fitness for general ecological scenarios?

Trends in Ecology and Evolution 7:198–202.

Michod, R. 1980. Evolution of interactions in family-structured populations: mixed mating models. Genetics

96:275–96.

Miettinen, T., M. Kosfeld, E. Fehr, and J. W. Weibull. 2020. Revealed preferences in a sequential prisoners’ dilemma:

a horse-race between six utility functions. Journal of Economic Behavior and Organization 173:1–25.

Moran, P. A. P. 1962. The Statistical Processes of Evolutionary Theory. Clarendon Press, Oxford.

Mullon, C., L. Keller, and L. Lehmann. 2016. Evolutionary stability of jointly evolving traits in subdivided popu-

lations. American Naturalist 188:175–195.

Ok, E. A. and F. Vega-Redondo. 2001. On the evolution of individualistic preferences: an incomplete information

scenario. Journal of Economic Theory 97:231–254.

Parker, G. A. and J. Maynard Smith. 1990. Optimality theory in evolutionary biology. Science 349:27–33.

Possajennikov, A. 2000. On the evolutionary stability of altruistic and spiteful preferences. Journal of Economic

Behavior and Organization 42:125–129.

Priklopil, T. and L. Lehmann. 2021. Metacommunities, fitness and gradual evolution. Theoretical Population

Biology 142:12–35.

Robson, A. J. 1990. Efficiency in evolutionary games: Darwin, Nash and the secret handshake. Journal of Evolu-

tionary Biology 144:379–396.

Rousset, F. 2004. Genetic Structure and Selection in Subdivided Populations. Princeton University Press, Princeton,

NJ.

Rousset, F. 2015. Regression, least squares, and the general version of inclusive fitness. Evolution 69:2963–2970.

Rousset, F. and S. Billiard. 2000. A theoretical basis for measures of kin selection in subdivided populations: finite

populations and localized dispersal. Journal of Evolutionary Biology 13:814–825.

Russell, S. and P. Norvig. 2016. Artificial Intelligence: a Modern Approach. Pearson, Edinburgh, UK.

Samuelson, L. 1998. Evolutionary Games and Equilibrium Selection. MIT Press, Cambridge, MA.

Sandholm, W. H. 2011. Population Games and Evolutionary Dynamics. MIT Press, Cambridge, MA.

Selten, R. and P. Hammerstein. 1984. Gaps in Harley’s argument on evolutionarily stable learning rules and in the

logic of “tit for tat”. Behavioral and Brain Sciences 7:115–116.

Sugden, R. 1986. The Economics of Rights, Cooperation and Welfare. Palgrave Macmillan, New York.

Sutton, R. S. and A. G. Barto. 1998. Reinforcement Learning. MIT Press, Cambridge, MA.

Taylor, P. D. 1989. Evolutionary stability in one-parameter models under weak selection. Theoretical Population

Biology 36:125–143.

Taylor, P. D. and T. Day. 2004. Stability in negotiation games and the emergence of cooperation. Proceedings of

the Royal Society of London Series B-Biological Sciences 271:669–674.

Van Cleve, J. 2023. Evolutionarily stable strategy analysis and its links to demography and genetics through

invasion fitness. Philosophical transactions of the Royal Society B 378:20210496.

Van Leeuwen, B. and I. Alger. 2022. Estimating social preferences and Kantian morality in strategic interactions.

TSE Working Paper 19-1056.

35



Vincent, T. L. and J. S. Brown. 2005. Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics.

Cambridge University Press, Cambridge.

Wakano, J. Y. and L. Lehmann. 2014. Evolutionary branching in deme-structured populations. Journal of Theo-

retical Biology 351:83–95.

Wang, Z. and J. Wu. 2023. Preference evolution under stable matching. SSRN Working Paper 4426394.

Weibull, J. W. 1997. Evolutionary Game Theory. MIT Press, Cambridge, MA.

Wolfram Research, I. 2016. Mathematica. Wolfram Research, Inc., Champaign, Illinois.

Young, H. P. 1998. Individual Strategy and Social Structure: An Evolutionary Theory of Institutions. Princeton

University Press, Princeton, NJ.

36


	Introduction
	Evolutionary invasion analysis of behavioral mechanisms
	Biological assumptions for pairwise interactions
	Invasion and individual fitness
	Behavioral equilibrium
	Nash equilibrium and utility function

	Evolution of the Kantian coefficient
	Incomplete information
	Behavioral equilibrium
	Evolutionary equilibrium

	Complete information with incomplete plasticity
	Behavioral equilibrium
	Evolutionary equilibrium

	Complete information and plasticity
	Behavioral equilibrium
	Evolutionary equilibrium


	Discussion
	Behavioral perturbation under incomplete information
	Jacobian and Hessian under complete information with incomplete plasticity
	Proof of Result 3

