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Abstract

Modelling transient combined heat transfer in complex urban geometry is a key step to pre-
dict human exposure or energy consumption and to quantify the effect of climate change
mitigation and adaptation measures. A difficulty lies in the possibility for a model to
scale up and integrate large and complex urban morphology. We develop a probabilis-
tic approach to solve heat transfers with the Monte Carlo method that is insensitive to
the complexity of both the urban geometry and the boundary conditions. The integral
formulation that includes random walks for each heat transfer mode is presented and the
computation of absorbed solar irradiations at walls with the double randomization tech-
nique is detailed. Numerical validations are given through comparisons with deterministic
method results for single and two-layer slabs, but also a three-dimensional thermal bridge
geometry. The developed probabilistic heat transfer model is then used in a demonstration
heat wave scenario where are computed: the outdoor mean radiant temperature showing
the influence of trees; and the indoor average wall temperature showing the influence of
solar gains through windows.
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1. Introduction

Human health [1] and energy consumption [2] are affected by the city microclimate,
specifically during heat waves where their impacts are enhanced by the local climate
change associated to a growing urbanization and population density [3]. Adaptation mea-
sures should be found to avoid vulnerability to extreme heat by limiting urban temperature
rise and improving resilience of the city fabric. Numerical evaluations of such adaptation
measures represent a difficult task requiring to consider the atmospheric boundary layer
and the city complexity where heat and mass transfers are strongly coupled between a
large diversity of materials and spatio-temporal scales [4, 5].

To tackle this challenge, physical deterministic (mesh-based) models have been de-
veloped that may be classified in three complementary families covering different spatio-
temporal scales: (1) Urban canopy models [6] simulate the urban surface energy balance
assuming a simplified urban geometry (e.g., an infinitely-long street canyon [7]) in numer-
ical weather prediction, regional and global climate models [8]; (2) Urban microclimate
models associated with building energy models are used to predict building performances
[9] and outdoor pedestrian thermal comfort [10]; (3) Heat transfer models (e.g., finite
volume or finite element methods) are used to evaluate or optimize building envelopes
[11] and component thermal performances [12]. Characteristic space and time increments
decrease from first to third family and the most refined results are used to develop and
validate coarser approximate models. This upscaling methodology is subjected to approx-
imations or parametrizations hypothesis which may be validated by experimental mea-
surements presenting increasing uncertainties with the spatio-temporal scales. Thus, there
is a lack of numerical methods that support accurately the scaling up and can be applied on
this range of scales (i.e., from mm to m and km) to numerically validate the assumptions
and parametrizations.

Although it is well-known that the Monte Carlo method (MCM) [13] can solve linear
integrals whatever the domain size and number of dimensions, it has only recently been
foreseen to solve for the temperature with a single MCM algorithm where conduction-
radiation-convection [14] are coupled. Early studies at steady-state [15, 16] and tran-
sient [17] regimes have demonstrated the ability of MCM algorithms to solve for conduc-
tive, advective and radiative heat transfers in three-dimensional porous media with opaque
solid surfaces and transparent fluid subdomains. Indeed, the heat transfer equation in a
solid, with Robin’s boundary condition (RBC), has been coupled to the radiative trans-
fer equation (RTE) trough the double randomization technique (DRT) [18] allowing one
to build conduction-advection-radiation random paths represented as broken lines linking
the sources to a probe calculation point. Although, the physical concepts are well estab-
lished, it is very recently that the theoretical framework was exposed by Tregan et al. [19]
in case of transient heat transfer in adjacent semi-transparent fluid and solid subdomains.
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Tregan et al. [19] established the probabilistic thermal model in linear situations when
the Green’s functions are known, that includes a recursive coupling of each heat transfer
mode. This approach was also generalized to unknown propagators by translating each
heat transfer mode into stochastic processes and using Feynman-Kac’s formula. The same
recursive structure was found for the probabilistic heat transfer mode couplings. More-
over, using the same framework in steady-state regime, Ibarrart et al. [20, 16] added the
resolution of advective heat transfer in fluid subdomains enclosed by opaque solids. They
also demonstrated that the MCM approach was insensitive to the geometry size. Indeed,
this new approach has benefited practically from the computer graphics advances in im-
age synthesis with MCM techniques [21] by the public release of efficient free software
which guaranty independence between the MCM algorithm and the complex data repre-
sentation while insuring fast access to data and the ability to manage large and complex
three-dimensional (3D) geometry [22]. In addition, Penazzi et al. [23] showed that the
MCM algorithms developed to solve coupled heat transfers may be used to estimate and
store propagators when heterogeneous and transient sources are known. This enables re-
using propagators to evaluate their corresponding probe temperatures when the sources are
different leading to a drastic reduction of computation time. However, in the specific ap-
plication of urban physics, the outdoor and indoor absorbed solar irradiations are unknown
sources that originate from direct and diffuse solar irradiations but also from multiple re-
flections within the complex geometry. Thus, to solve coupled heat transfers in urban
environments with a single MCM algorithm that is insensitive to geometrical refinements,
the existing theoretical framework [19, 20, 23] should be enriched with a model for solar
sources and their coupling to thermal heat transfers.

The purpose of this article is to present a new probabilistic model based on the theo-
retical framework of Tregan et al. [19] to solve linearized transient conduction-radiation
problems with RBC in complex 3D urban geometry including Lambertian and specular
surfaces where solar irradiations are unknown and need to be calculated with MCM. Only
sensible heat transfer through solids is considered and not the one originating from mois-
ture heat and mass transfer [24]. Nevertheless, the proposed model will allow one to
consider new scientific questions by unlocking the feasibility of new simulations in com-
plex and large urban geometry. To illustrate the model capabilities, a heat wave scenario is
chosen as a demonstration case where key variables of the outdoor human thermal comfort
and building energy consumptions are computed accounting for detailed tree geometry or
indoor solar gains.

In Sect. 2, the MCM algorithm involving the mixed random walks is presented with a
detailed description of the solar flux density management at urban geometry walls. Section
3 gathers the 1D and 3D numerical validations and Sect. 4 demonstrates the ability of the
proposed model to compute temperatures involved in the evaluation of outdoor comfort
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and energy consumption during a heat wave scenario.

2. Probabilizing coupled heat-transfer and solving with a Monte Carlo algorithm

The goal of the present heat transfer model (HTM) is to compute:

• either a probe temperature for a solid material in an urban environment, where the
probe temperature may be defined as the solid temperature at a specific location or
as a surface or volume average temperature;

• or an infrared radiance temperature, i.e. the intensity of radiation at a given location
in a given direction, spectrally integrated over the whole infrared.

In this model, transient conductive heat transfer (Eq. 1a) is considered inside each of the
solid parts of the system (e.g., walls, windows, ground). They are divided into subparts
where the solid properties are uniform and isotropic. As far as radiation is concerned, solid
media are either transparent or opaque (no semi-transparent media). Each solid sub-part S
is defined as occupying a domain DS . At the initial time τI the solid is isothermal within
each sub-part at a temperature noted TI (Eq. 1b). The boundary ofDS is noted ∂DS and is
potentially split into three parts: solid-solid (∂DS ,S ) or solid-fluid (∂DS ,F) interfaces, and
parts with a Dirichlet boundary condition (∂DS ,D). For the Dirichlet boundary conditions,
the boundary temperature is known and is noted TD (Eq. 1c). On ∂DS ,S , the model for the
interface is flux continuity, i.e. equalling the conductive fluxes in the two adjacent solids
(Eq. 1d). On ∂DS ,F , the model for the interface is also a flux continuity, this time equalling
the conductive flux inside the solid with the sum of the convective and radiative fluxes on
the fluid part, leading to a Robin boundary condition (RBC, Eq. 1e).

∂

∂t
Ts(x⃗, t) = α∆Ts(x⃗, t), x⃗ ∈ DS , t > τI , (1a)

Ts(x⃗, t) = TI , x⃗ ∈ DS ∪ ∂DS , t ⩽ τI , (1b)
Ts(⃗y, t) = TD(⃗y, t), y⃗ ∈ ∂DS ,D, t > τI , (1c)
ks,1 ∇Ts(⃗y, t) · n⃗1 = ks,2 ∇Ts(⃗y, t) · n⃗2, y⃗ ∈ ∂DS ,S , t > τI , (1d)
ks ∇Ts(⃗y, t) · n⃗ = q̇F (⃗y, t) + q̇R(⃗y, t) + q̇o(⃗y, t), y⃗ ∈ ∂DS ,F , t > τI , (1e)

where α =
ks

ρsCp,s
is the solid thermal diffusivity; ks, the thermal conductivity; ρs, the

density; Cp,s, the specific heat capacity; n⃗, the local outward normal (subscripts 1 and 2
stand for two adjacent solids in perfect contact). The RBC (Eq. 1e) includes q̇F , the rate of
heat transfer by convection, q̇R, the net exchange rate of heat transfer by thermal radiation
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(linearized), and q̇o, the absorbed solar irradiation that is the sum of the direct (q̇o,d) and
diffuse (q̇o,r) solar irradiations.

q̇F (⃗y, t) = hF (⃗y, t)
[
TF (⃗y, t) − Ts(⃗y, t)

]
, (2)

q̇R(⃗y, t) = hR(⃗y)
[
θR(⃗y, t) − Ts(⃗y, t)

]
, (3)

q̇o(⃗y, t) =
∫ +∞

0
dλ
∫

2π
dΩ(ω⃗)

∣∣∣ω⃗ · n⃗∣∣∣ ε(⃗y, λ) Io(⃗y, t,−ω⃗, λ). (4)

The expression of q̇F (Eq. 2) is given by the Newton’s Law of Cooling involving the heat
transfer coefficient by convection hF and a homogeneous fluid (air) temperature TF . Two
types of fluid temperature will be considered. The first one corresponds to the atmospheric
air temperature surrounding the buildings and provided by meteorological data, TF ≡ TF,e.
The second one is the temperature of the fluid inside an enclosure (closed habitation room)
assumed perfectly stirred, TF ≡ TF,i. Although an additional model may be formulated to
compute TF,i, such as a function of a given heating system inside each room, these room air
temperatures are assumed known in this study. q̇R (Eq. 3) is formulated with an expression
similar to Eq. 2 but the radiative temperature, θR, is unknown. Indeed, after a linearization
of the net exchange rate of thermal radiation between the surface and its environment,
Eq. 3 is obtained that includes the radiative temperature, θR, which is the integral of the
radiance temperature over the hemisphere solid angles. For conciseness, the derivation of
Eq. 3 and the integral formulation of θR is not replicated but may be found in the work of
Penazzi et al. [23] and Bati et al. [25] (and also in Tregan et al. [19] for semi-transparent
media). The absorbed solar irradiation is also unknown and its expression is given in Eq. 4
involving the unknown incident solar radiative intensity Io. To compute q̇R and q̇o the RTE,
Eq. 5a, and its boundary condition, Eq. 5b, should be solved in transparent media (DF)
between opaque surfaces:

ω⃗i · ∇I(x⃗, ω⃗i, λ) = 0 , x⃗ ∈ DF , (5a)
I (⃗yi,−ω⃗i, λ) = ε(⃗yi+1,−ω⃗i, λ) Ib(⃗yi+1, λ) +∫

2π
dΩ(ω⃗i+1) ρ′′(⃗yi+1,−ω⃗i| − ω⃗i+1, λ)×

|ω⃗i+1 · n⃗i+1| I (⃗yi+1,−ω⃗i+1, λ) , y⃗ ∈ ∂DS ,F . (5b)

with ρ′′ the reciprocal bidirectional reflection distribution function (BRDF), ε the mate-
rial directional emissivity, and Ib the Planck’s law of blackbody radiative intensity. The
numbering of the positions and directions follows a reverse radiative path as depicted in
Fig. 1b. Most of the surfaces are considered Lambertian (DL

S ,F , Eq. 7) and some are as-
sumed specular (DF

S ,F , Eq. 8) to represent window glasses. In addition, the BRDF may be
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expressed as the product of an angular function ( fρ) and a reflection probability (Pρ):

ρ′′(⃗yi+1,−ω⃗i| − ω⃗i+1, λ) = fρ(⃗yi+1,−ω⃗i| − ω⃗i+1, λ) Pρ(⃗yi+1,−ω⃗i+1, λ), (6)

ρ′′L (⃗yi+1, λ) =
1
π
ρ∩∩(⃗yi+1, λ), (7)

ρ′′F (⃗yi+1,−ω⃗i| − ω⃗i+1, λ) =
δ
(
ω⃗i+1 − R⃗

(
−⃗ωi, n⃗i+1

) )∣∣∣ω⃗i+1 · n⃗i+1

∣∣∣ F (⃗yi+1,−ω⃗i+1, λ), (8)

Pρ(⃗yi+1,−ω⃗i+1, λ) =

 ρ∩∩(⃗yi+1, λ), for Lambertian surfaces,
F (⃗yi+1,−ω⃗i+1, λ), for specular surfaces,

(9)

where ρ∩∩ is the hemispherical-hemispherical reflectivity, δ is the Dirac’s delta function,
R⃗ is the specular direction, and F is the Fresnel reflectivity dependent on the incident
direction. The resolution of the presented HTM requires to solve for the HTE (Eqs. 1a-1e)
coupled to resolutions of RTE (Eqs. 5a-5b) for thermal and solar radiative heat transfer.
Tregan et al [19] have shown that a probe computation of the solid temperature by MCM
may be done through the sampling of heat paths that explores the domain backward in time
until reaching a known source. If Ts(⃗y0, t0) is the quantity to estimate (with y⃗0 ∈ ∂DS ,F and
t0 > τI), the MCM algorithm will draw N realizations of the MCM weight Wk to build an
estimate T̃s of Ts and its associated standard error:

Ts(⃗y0, t0) ≈ T̃s(⃗y0, t0) =
1
N

N∑
k=1

Wk,

σ̃T̃s
=

1
√

N

√√
1
N

N∑
k=1

W2
k − T̃ 2

s (⃗y0, t0).

The approach adopted by Tregan et al [19] and Penazzi et al [23] leads to follow mixed
random walks including conductive and radiative sub-paths until a known temperature
is reached and accounting for known surface or volume flux densities along the paths.
Indeed, conductive sub-paths were followed with a δ-sphere technique and the radiative
sub-paths were tracked with standard ray-tracing. An important step of the approach is the
probabilization of RBC, Eq. 1e, that makes possible the connection of sub-paths:

Ts(⃗y, t) = PC Ts(⃗y − δbn⃗, t) + PF TF (⃗y, t)

+ PR θR(⃗y, t) +
q̇o(⃗y, t)

hT
,

y⃗ ∈ ∂DS ,F , t > τI , (10)
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where δb is the reinjection length ([19, 23]), PC, PF and PR are probabilities associated
respectively to the contribution of conduction, convection and radiation:

PC (⃗yi, t) =
ks(⃗yi, t)
δb hT (⃗yi, t)

, PF (⃗yi, t) =
hF (⃗yi, t)
hT (⃗yi, t)

, PR(⃗yi, t) =
hR(⃗yi, t)
hT (⃗yi, t)

,

hT (⃗y, t) =
ks(⃗y, t)
δb

+ hF (⃗y, t) + hR(⃗y, t).

The last term of Eq. 10 is unknown and involves the absorption of solar radiation by the
solid surface. For a known local flux density on solid surfaces, Penazzi et al [23] accounted
for it by increasing the MCM weight with its values, each time the interface is visited
by the random walk. In this study, we use DRT to account for the unknown solar flux
absorption at RBC surfaces. Thus, each time a RBC is visited by the random walk, only

one realization of
q̇o(⃗y, t)

hT
is accounted for and increases the MCM weight by a quantity

Wo,k. Thus, the MCM weight may be formulated as:

Wk (⃗y0, t0) = H(tn ⩽ τI) TI + H(tn > τI)
{
H(⃗yn ∈ ∂DS ,D) TD(⃗yn, tn) +

H(⃗yn ∈ ∂DS ,F) TF (⃗yn, tn) + H(⃗yn ∈ ∂Dsky) Tsky(⃗yn, ω⃗n, tn)
}
+Wo,k,

(11)

with n the index at path end after n jumps of the random walk (conductive and radiative),
and H(·) is a test function. Its value is unity if the condition is fulfilled and zero otherwise.
In Eq. 11, the first test is used to manage the initial condition. Indeed, at the end of the
kth path, a known temperature has been reached. If the conductive path, that goes back in
time, reaches τI , the first test function is unity, and zero otherwise. If the initial time is not
reached, then additional tests are involved in Eq. 11 to identify where the path ends: at a
solid boundary (Eq. 1c), in the fluid or in the sky. The full algorithm flowchart associated
with each MCM realization is depicted in Fig. 2 and includes possible starting points
(inside the solid, at an interface, or from a camera), the conditional steps with the recorded
solar flux densities along the conduction-radiation random path and the temperatures at
path ends. At an interface having a RBC (∂DS ,F), the MCM algorithm will sample a
realization of the interface temperature (Eq. 10) based on the probabilities, i.e., TC, TF ,
or θR. This sampling is done by comparing the probabilities PC, PF and PR to a random
number R, uniformly distributed between 0 and 1, and generated by the pseudo-random
number generator ThreeFry [26]. If TF is sampled, the MCM algorithm stops because
the fluid temperature is assumed known. In the other cases, DRT allows us to evaluate
the unknown temperature by starting a conductive or radiative path. If Ts(⃗yi − δbn⃗i, t)
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is sampled, a conductive sub-path is started at y⃗i − δbn⃗i (see Fig. 1a). In the developed
model, the floating random walk-on-sphere (WOS) technique is used for the conductive
random walk with an absorbing thickness parameter ϵb [27, 28]. Alternatively, if θR(⃗yi, t)
is required, the random walk is followed with a multiple reflection path (ray-tracing) in
the urban geometry. As previously stated, the absorbed solar flux is evaluated with DRT
leading to start a sub-path for q̇o,d and another one for q̇o,r. Figure 1a presents the paths
belonging to different heat transfer modes and starting at a wall boundary with a RBC.
The next paragraphs present the integral formulation for the solar fluxes leading to the
expression of Wo,k.

2.1. Absorbed solar irradiation
The integral formulation of q̇o is best solved with a MCM algorithm [13] that accounts

for multiple reflections as well as spectral and directional optical properties [29, 30]. In
the presence of Lambertian surfaces, an improvement of the MCM algorithm convergence
may be reached by adopting a splitting of the solar radiative intensity:

Io(⃗y0,−ω⃗0, λ) = Io,d (⃗y0,−ω⃗0, λ) + Io,r (⃗y0,−ω⃗0, λ), (12)

with Io,d the radiative intensity coming directly from the Sun without any change of direc-
tion and Io,r the radiative intensity of the solar radiation being scattered or reflected at least
once. The solar irradiation absorbed is then split into two components, direct (q̇o,d) and
diffuse (q̇o,r):

q̇o,d (⃗y0, t) =
∫

dλ
∫
∆Ωd

dΩ(ω⃗d)
∣∣∣ω⃗d · n⃗0

∣∣∣ ε(⃗y0, λ) H(⃗yd ∈ ∂Dd) Io,d (⃗y0,−ω⃗d, λ), (13)

q̇o,r (⃗y0, t) =
∫

dλ
∫

2π
dΩ(ω⃗0)

∣∣∣ω⃗0 · n⃗0

∣∣∣ ε(⃗y0, λ)
(
H(⃗y1 ∈ ∂Dsky) Io,sky(⃗y1,−ω⃗0, λ)

+ H(⃗y1 ∈ ∂DS ,F) Io,r (⃗y1,−ω⃗0, λ)
)
,

(14)

where ∆Ωd is the Sun’s solid angle and with the following recursive expression of the
diffuse solar intensity,

Io,r (⃗yi+1,−ω⃗i, λ) =
∫

2π
dΩ(ω⃗i+1)

∣∣∣ω⃗i+1 · n⃗i+1

∣∣∣ ρ′′(⃗yi+1,−ω⃗i| − ω⃗i+1, λ) Io(⃗yi+1,−ω⃗i+1). (15)

Figure 1b shows, at point y⃗0, a direct contribution from the Sun (∂Dd) in direction ω⃗d inside
the Sun’s solid angle∆Ωd. The expression of q̇o,r includes the solar radiation resulting from
multiple scatterings in the atmosphere and from multiple reflections by the urban opaque
surfaces (see Fig. 1b).
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2.2. Absorbed direct solar irradiation
The direct normal irradiation, Do, is the direct solar radiative flux density incident on

a surface oriented perpendicularly to the Sun’s centre direction (n⃗ ≡ ω⃗S un):

Do(⃗y) =
∫

dλ
∫
∆Ωd

dΩ(ω⃗d)
∣∣∣ω⃗d · n⃗

∣∣∣ Io,d (⃗y,−ω⃗d, λ).

The Sun’s solid angle being small, Io,d is assumed constant in ∆Ωd. Thus, an integral
formulation of q̇o,d, that can be solved with a reverse MCM algorithm, may be given by:

q̇o,d (⃗y0, t) =
∫

pNo(λ) dλ
∫
∆Ωd

pΩd (ω⃗d) dΩ(ω⃗d) Wo,d (⃗y0), (16)

Wo,d (⃗y0) = H(⃗yd ∈ ∂Dd) ε(⃗y0)
∣∣∣ω⃗d · n⃗0

∣∣∣ Do(⃗y0). (17)

The MCM weight Wo,d (Eq. 17) includes a test that determines the shadowing from direct
solar radiation. Equation 16 is formulated with probability density functions (PDF) that
are used for the spectral and directional samplings:

pΩd (ω⃗d) =
1
∆Ωd
, pNo(λ) =

ε(⃗y0, λ)
ε(⃗y0)

pΛo(λ), pΛo(λ) =
Io,d (⃗y0, λ)
Io,d (⃗y0)

.

2.3. Absorbed diffuse solar irradiation
The diffuse solar irradiation includes the multiple reflections of the direct Sun’s radi-

ation and the sky solar radiation (see Fig. 1b). The multiple scattered solar radiation in
the atmosphere is assumed known and given by a solar sky model (e.g., the all-weather
sky model from Perez et al. [31]) defining spectral and directional solar intensities Io,sky

coming from the sky (∂Dsky). To simplify the formulation, the sky diffuse solar radia-
tive intensity is assumed to have the same spectral behaviour as the solar direct radiative
intensity. This leads to separate its spectral and directional dependency: Io,sky(ω⃗, λ) ≡
fsky(ω⃗) Io,d(λ). Then, Eq. 14 may be reformulated,

q̇o,r (⃗y0, t) =
∫

pNo(λ) dλ
∫

2π
pΩ(ω⃗0) dΩ(ω⃗0)

(
Wo,sky +

H(⃗y1 ∈ ∂DS ,F) Wo,r (⃗y1,−ω⃗0, λ)
) (18)

Expressing the BRDF with Eq. 6 and using the solar intensity splitting (Eq. 12) for Lam-
bertian surfaces only, the recursive term accounting for the multiple reflections of solar
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radiation (Eq. 15) may be reformulated as:

Wo,r (⃗yi+1,−ω⃗i, λ) = Pρ
[

H(⃗yi+1 ∈ ∂D
L
S ,F)
∫
∆Ωd

pΩd dΩ(ω⃗d) WL
o,r,d (⃗yi+1) +∫

2π
pρ dΩ(ω⃗i+1)

(
Wo,sky(⃗yi+1) + WF

o,r,d (⃗yi+1) +

+ H(⃗yi+2 ∈ ∂DS ,F) Wo,r (⃗yi+2,−ω⃗i+1, λ)
) ]
,

(19)

with the following quantities corresponding to the contributions of the diffuse solar radia-
tion from the sky (Eq. 20) and from the reflection of direct solar radiation on Lambertian
(Eq. 21) or specular surfaces (Eq. 22):

Wo,sky(⃗yi) = ε(⃗y0) π H(⃗yi+1 ∈ ∂Dsky) fsky(−ω⃗i) Io,d (⃗yi), (20)
WL

o,r,d (⃗yi) = ε(⃗y0) H(⃗yd ∈ ∂Dd)
∣∣∣ω⃗d · n⃗i

∣∣∣ Do(⃗yi), (21)

WF
o,r,d (⃗yi) = ε(⃗y0) π H(⃗yi ∈ ∂D

F
S ,F) H(⃗yi+1 ∈ ∂Dd) Io,d (⃗yi), (22)

and directional PDFs:

pρ(⃗yi+1,−ω⃗i,−ω⃗i+1, λ) = fρ(⃗yi+1,−ω⃗i| − ω⃗i+1, λ) |ω⃗i+1 · n⃗i+1|, pΩ(ω⃗0) =
|ω⃗0 · n⃗0|

π
.

The diffuse solar intensity (Eq. 15) includes a recursivity through Io,r, which highlights
the reversed multiple reflection path. The other terms represent the sources of diffuse
solar radiation that occur at each reflection and at the end of the sub-path. WL

o,r,d stands
for the additive contribution of direct solar radiation reflection on Lambertian surfaces
along the diffuse solar radiative sub-path. At path end, Wo,sky represents the diffuse sky
solar radiation. When the last reflection occurs on a specular surface and the ray ends in
∆Ωd, the term WF

o,r,d represents the Sun’s specular reflection. It is worth mentioning that
the numerical value of WF

o,r,d (Eq. 22) may be several orders of magnitude higher than the
other quantities (i.e., Eqs. 17, 21 and 20). This can lead to convergence issues of the MCM
algorithm in the presence of specular reflections of direct solar irradiation ([30]).

2.4. Monte Carlo weight for the absorbed solar irradiation
The previous paragraphs have detailed the integral formulations for the direct and dif-

fuse solar irradiations that can be computed with a reverse MCM ray-tracing algorithm.
The expression of Wo,k (Eq. 11) that is used to estimate the absorbed solar irradiations
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along the conductive-radiative random walk, can now be obtained:

Wo,k =
1
hT

no∑
j=1

{
Wo,d (⃗y j) +

( nr, j∑
m=1

H(⃗ym ∈ ∂D
L
S ,F) WL

o,r,d (⃗ym)
)
+

Wo,sky(⃗ynr, j+1) +WF
o,r,d (⃗ynr, j+1)

}
.

(23)

no is the number of RBC reached where a realization of the absorbed solar irradiation
should be computed. nr, j is the number of reflections along a diffuse solar radiation sub-
path. Thus, the MCM algorithm for the kth realization consists in recording the no direct
and diffuse solar contributions. The diffuse contribution is obtained by adding nr, j potential
reflections of the direct solar radiation, and if the sub-path ends either in the sky or as a
specular reflection of the Sun, their contributions are added.

As for the computation time, it is determined by the number of realizations, which
can be large for image generation. However, the independence between MCM realizations
allows efficient parallelization of the algorithm. The observed computation time of the
MCM algorithm (programmed with the star-engine libraries [32]) is between 100 and 1000
microseconds per realization on a single thread of a CPU (Intel® Core™ i9-9900K CPU
@ 3.60GHz × 16). This time depends on the type and the number of sub-paths computed
during each realization. It also depends on the distance (in space or time) between the
probe point and the boundary conditions or the initial condition where the paths end. After
the HTM model presentation and the description of the probability method and MCM
algorithms, the next sections are devoted to numerical validation of the developed model
and its implementation for a heat wave scenario in a complex urban geometry.

3. Numerical validation

The conductive and radiative parts of the probabilistic model will be numerically val-
idated in this section. Conduction is solved with the backward MCM algorithm in three
cases of increasing geometrical complexity: 1) Case 1 considers a one-dimensional slab
with a single homogeneous layer; 2) Case 2 considers a one-dimensional slab with two
homogeneous layers in thermal contact; 3) Case 3 considers a three-dimensional thermal-
bridge imitating a thermal bridge at a building edge. In all cases, the physical properties of
each material are assumed constant, homogeneous and isotropic. To validate numerically
the model, materials close to the urban context are chosen. Concrete represents the build-
ing structure and the expanded polystyrene (EPS) is chosen as a representative material for
thermal insulation (Tab. 1). In addition, the solar and thermal radiation heat transfers are
not accounted for in these first three cases. To quantify the accuracy of MCM, determin-
istic methods are used to compute temperatures (Ts,re f ) that are considered as reference
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results. For this purpose, the finite difference method (FDM) is used to compute the ref-
erence results in the one-dimensional cases 1, 2 and 3, while the finite volume method is
used in the three-dimensional case 4. Thus, a scaled difference, ∆EMC (%), between the
temperatures computed with the deterministic methods and MCM are defined:

∆EMCM = 100
Ts,re f − T̃s

Tmax − Tmin
, (24)

where the scaling of the temperature difference is made with the maximum temperature
difference occurring in the thermal problem (Tmax is the maximum temperature and Tmin is
the minimum temperature).

In Case 1, the thermal quenching of the slab is studied numerically by confronting the
reference results of FDM and the presented backward MCM algorithm based on the prob-
abilized heat transfer model. The transient thermal problem of Case 1 includes Eqs. 1a,
1b and 1e. Table 2 gathers the initial, boundary and simulation parameters. Both slab
boundaries have the same fluid temperature: TF(x = 0) = TF,i = TF(x = L) = TF,e (with L
the thickness of the slab). The temperature profiles at several times are plotted for a con-
crete slab of thickness 0.2 m in Fig. 3a and for an EPS slab of thickness 0.1 m in Fig. 3b.
A uniform discretization of space and time was adopted in the FDM computation with a
spatial step ∆x and a time step ∆t given in Tab. 2. The number of MCM realizations N
with the boundary reinjection length δb and the absorbing thickness ϵb are also given in
Tab. 2. Temperature profiles of Figs 3a and 3b with their scaled differences, Figs. 3c and
3d, show very good agreement between the FDM and MCM results for all locations and
times considered. The FDM results are within the MCM confidence interval of ± 3 σ̃T̃s

(corresponding to a confidence interval of 99.73 %). As expected, EPS is cooling faster
than the concrete due to its lower thermal inertia (see Tab. 1).

In Case 2, a slab with two layers is considered: The first layer is constituted of EPS
with thickness 0.1 m, and the second layer is constituted of concrete with thickness 0.2 m.
At τI , both layers are at TI (see Tab. 2) and then they are considered to exchange heat
with two fluids at different temperatures: TF(x = 0) = TF,i and TF(x = L) = TF,e (with
L the overall thickness of the slab, i.e., 0.3 m). Both sides have identical convective heat
transfer coefficients. The thermal problem of Case 2 includes Eqs. 1a, 1b, 1e and 1d. Re-
sulting temperature profiles inside the two-layer slab are shown at four different times in
Figs. 3e-3f and the simulation parameters for the FDM and MCM simulations are gathered
in Tab. 2. Figures 3e-3f show very good agreement between the FDM and MCM results.
In addition, the FDM results are within the MCM confidence interval. Soon after the ini-
tial time, EPS exhibits the largest temperature difference due to its low conductivity and
low thermal inertia. Concrete is heating up slowly but more uniformly than EPS due to its
higher thermal inertia and conductivity. The thermal problem of Case 3 is identical to case

13



2 but its geometry and temperature field are more complex. Geometry of Case 3 is depicted
in Fig. 4 with two views, along +Y and −Z axis, showing the location of concrete and EPS
in a typical building thermal bridge configuration. Considering the symmetry of this do-
main, Case 3 represents stacked cubic rooms with an edge of 2.4 m where the floors and
the lateral envelope are in concrete (0.2 m thickness). In each room, an internal insulation
is considered with a vertical EPS layer of 0.1 m thickness. The thermal simulation consists
in heating the solids by convection from the external concrete envelope, while the room
internal fluid is set at the initial temperature. To produce the reference solution, a finite-
volume method (FVM) was chosen. The application chtMultiRegionFoam of OpenFoam
v9 was used to solve Case 3 with a preconditioned bi-conjugate gradient solver and a Gauss
linear corrected scheme (second order) for the Laplacian discretization. The unstructured
three-dimensional hexahedra mesh was generated with the snappyHexMesh utility from
triangulated surface geometry. A characteristic spatial step of the mesh is given in Tab. 2
but a refined zone was set to halve this characteristic step that is defined as a box with two
points: [0.2; 0.2; 0] and [0.6; 0.6; 0.3]. This refined zone is best seen in Fig. 4c where the
temperature field is drawn in plane X = 0.25 at time t = 8 × 104 in the thermal bridge
zone. The exterior fluid temperature being higher than the interior one, heat is conducted
preferentially in the concrete floor. A numerical comparison is plotted in Fig. 5a where the
whole transient temperature field is computed with OpenFoam (e.g., Fig. 4c) whereas the
MCM was used to compute solid temperatures at three locations and several times: Two
computation points are located inside the solids in the thermal bridge corner, one in EPS
with coordinates [0.35; 0.35; 0.15] and one in concrete with coordinates [0.5; 0.5; 0.05]; A
third point is located on the external concrete wall with coordinates [0.6; 0.5; 0.05]. The
lower transient temperatures are computed at the point inside the insulation, while the
higher transient temperatures in Fig. 5a are computed for the point on the external wall.
The plot of the scaled differences between FVM and MCM in Fig. 5b highlights a weak
trend associated to the temperatures computed by MCM to be slightly higher than the one
computed by FVM. The values of ∆EMCM being lower than 1.5 % of the observed discrep-
ancies may be considered acceptable and potentially attributed to the numerical diffusion
associated to FVM and/or the numerical implementation of WOS with the parameters δb

and ϵb.
The three cases have demonstrated the ability of the proposed probabilistic model and

algorithm to solve conductive heat transfer with probabilized RBC in complex geometry.
Thus, the accuracy of the radiative part of the proposed model will be studied numerically
in the following Case 4. This will be done through a comparison with reference results
obtained by a MCM model validated in [30] and implemented in the HTRDR-Urban code
[33]. A urban scene is selected for the validation and the objective is to compare the
(instantaneous) infrared thermal renderings that involve only the radiative exchanges be-
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cause all the temperatures are set. A CIE tristimulus [34] rendering of the urban geometry
is shown in Fig. 5c. The geometry includes a flat ground and two parallel rows, separated
by 15 m, of five buildings with 5 m spacings. The building heights are set to 16.7 m (5
floors), their lengths to 11.5 m and their widths to 7 m. All surfaces are assumed opaque.
The ground and the building walls are Lambertian, but the windows are specular. Their
temperatures and gray optical properties are gathered in Tab. 2. The 300x300 pixels image
of the infrared rendering computed by HTRDR-Urban is plotted in Fig. 5d. The temper-
ature of each pixel is a radiance temperature (or equivalent black body temperature) with
N = 103 sample per pixel. Its value takes into account the multiple reflections driven by
the surface optical properties (Tab. 2) that are all at the same temperature, except the sky.
The low radiance temperatures of the ground are due to its low emissivity and the low
temperature of the sky. Between the buildings, pixel radiance temperatures present high
values due to the multiple reflections. In addition, specular surfaces present high radiance
temperatures because their normal emissivity is high. The proposed model gives similar
results which are not shown for the sake of conciseness. Instead, the pixel-based scaled
differences are plotted in Fig. 5e. Absolute values of ∆EMCM are lower than 3%, and their
repartition in the image (Fig. 5e) highlights its origin comes from the statistical noise as-
sociated with each MCM computation (HTRDR-Urban and the present model). In this
section, the random walks used to solve radiative and conductive heat transfers along with
the probabilization at the interfaces (Robin’s and solid-solid boundary conditions) were
validated. In the next section, the proposed model is applied to a complex urban geometry
for heat wave meteorological conditions.

4. Results for a heat wave conditions

The ability of the probabilistic model to solve for coupled conduction and radiation
(linearized thermal and solar) in complex geometry will be used to obtain key quantities
needed to study urban environments.

4.1. Geometry and simulation settings
Heat wave meteorological conditions are investigated with a geometry of aligned build-

ings (mimicking a street oriented East-West, Fig. 6) and trees. This choice is purely arbi-
trary and more advanced city geometry or higher frequency weather data could be consid-
ered. The aligned buildings are identical to those used for the validation of the radiative
model (i.e., Figs. 5c-5d), but their number is doubled to reach two rows of ten aligned
buildings (Fig. 6a). The concrete building walls, the glass windows and the ground have
homogeneous and isotropic thermal properties gathered in Tab. 1. The buildings and a
surface body (Fig. 6a) were created for the scenario. The tree geometry was obtained from
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a study conducted with DART (Discrete Anisotropic Radiative Transfer model) in project
RAMI-V (RAdiation transfer Model Intercomparison V) [35]. Trees are aligned along the
street centre, and the trunks are separated by 8.5 m. Each 12 m high tree is made of a
trunk (4 m high) topped with a spherical foliage of 8 m in diameter, centred at 8 m above
the ground. The foliage is made of numerous small triangular surfaces representing an
average specific surface of 0.021 m−1. The time evolution of solar irradiations (direct and
diffuse) are plotted in Fig. 6b for the five days heat wave scenario with the external air
temperatures given by the formula:

TF,e(t) = 308.15 + 5 sin(2 π [t − 0.4]), (25)

where the units of time t is days. Each MCM simulation is computed at an observation
time relatively to the initial time τI = 0 (see Fig. 6b) which is considered to be the 21st of
June 2016 at midnight. This date, the latitude (43.479) and longitude (−1.509) are used to
compute the Sun’s direction. The transient sky model for solar radiation assumes a clear
sky with an isotropic diffuse irradiation. Ho,sky (Fig. 6b) is the diffuse solar irradiation on
an horizontal surface. The direct solar radiation (Do in Fig. 6b) is emitted by the Sun’s disk
with half angle θd. Its value and MCM simulation parameters are gathered in Tab. 2. The
transient sky model for thermal radiation considers the sky as a black body with uniform
temperature Tsky (see Tab. 2). In this scenario, at the initial time, all the solids are at
TI . During the transient simulation, two Dirichlet’s boundary conditions (Eq. 1c) are set:
Tg, for the ground at its thickness depth; and Tb, the body surface (Fig. 6a) temperature.
RBC are applied to the surfaces adjacent to external or internal air such as the ground, the
building walls and the window glasses. The room air temperatures in each building are set
identical and equal to TF,i. Temperatures involved in the heat wave scenario simulations
are gathered in Tab. 2.

4.2. Mean radiant temperature and energy consumption
The key quantities to compute are the mean radiant temperature (MRT) and energy

consumption. MRT is related to the outdoor comfort by various indicators. It defines an
equivalent temperature for the environment of a body surface (S b), and its expression is:

T R,b(t) =
[ 1
σS B S b

∫
S b

dA(⃗y0) Hb(⃗y0, t)
] 1

4

, (26)
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where the body surface considered is depicted in Fig. 6a and the total irradiation (from
thermal and solar radiation) is given by:

Hb(⃗y0, t) =
∫ +∞

0
dλ
∫

2π
dΩ(ω⃗0) |ω⃗0 · n⃗0| I (⃗y0, t,−ω⃗0, λ).

Figure 6 shows Mollweide projections onto a disc of the thermal environment around the
body surface with and without the trees. This rendering is obtained by computing θR with
MCM for each pixel (image with resolution 300x300) with N = 103, at 1 pm the first day
of the heat wave scenario. This small number of realizations leads to σT̃ R

⩽ 0.4 K for
the pixels of buildings, and σT̃ R

⩽ 0.8 K for the pixels of the ground. The south being
in the middle of the right part of the disc, one can observe the effects of solar shading on
the ground temperatures caused by the buildings and the trees (Fig. 6c). In addition, south
facing building facades present higher radiance temperatures than north facing walls due
to solar irradiation. It is worth recalling the computed temperatures (θR) are not the actual
material temperatures but the radiance temperatures. Figure 7a presents the time evolution
of MRT averaged on the body surface, i.e. T̃ R,b, in the street configuration during the heat
wave scenario and computed by MCM for each hour. The results are given with their error
bars (± 3σT̃ R,b

) corresponding to confidence intervals greater than 99.7 %. It is shown that
the trees produce a reduction of the MRT maximum values during the hottest hours, but
also limit nighttime radiative cooling. Indeed, the trees lead to a lower rate of daytime
ground temperature increase by blocking solar radiation, but also reduce radiative cooling
towards the sky at night.

To obtain the energy consumption in this heat wave scenario, the air conditioning sys-
tem should be simulated. But, in this demonstration study, only the average internal wall
temperature (T s,i) is computed. Indeed, considering an air conditioning system that main-
tains constant the internal air temperature (TF,i, see Tab. 2), the energy consumption may
be computed by an expression similar to Eq. 2 that requires,

T s,i(t) =
1
S i

∫
S i

dA(⃗y0) Ts(⃗y0, t), (27)

and the convective heat transfer coefficient (Tab. 2) which is set constant. The compu-
tation of T s,i accounts for the solar irradiation coming through the windows. It is worth
mentioning this quantity could also be of interest for indoor thermal comfort studies. Fig-
ure 7b presents hourly MCM computations of T̃ s,i accounting for the solar gains through
the windows or neglecting them (as if the shades were shut). When the solar gains are
computed, some error bars are very large. This is due to some realizations of the MCM
weight (Eq. 11) that are several orders of magnitude greater than the expected result. This
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could be avoided by increasing the number of realizations ([30]). Indeed, in this case, it is
due to rare events corresponding to a reflection of the direct Sun’s radiation by a specular
material (glass) during the computation of the diffuse solar irradiation (Eq. 22). Thus, it in-
volves a MCM weight proportional to the direct radiative solar intensity which is about five
orders of magnitude greater than Do. During the first day, the buildings are cooling down
because the initial temperature was set to a high value (Tab. 2). After this period driven by
the thermal inertia of the buildings, a periodic behaviour of T̃ s,i may be recognized. When
the solar gains are considered, the temporal variations of internal wall temperature are
driven by the temporal variations of the solar heat gains. Without the internal solar gains,
a small periodicity is observed corresponding to the daily weather variation smoothed and
shifted by the building thermal inertia.

5. Conclusion and future work

A probabilistic thermal model is presented that solves with MCM linear and transient
heat transfers by conduction and thermal radiation with RBC accounting for convection
and absorption of solar radiation in urban geometry. DRT is demonstrated suitable to
compute unknown direct and diffuse solar irradiations in complex urban geometry with
Lambertian and specular walls. Indeed, the methodology is validated for conduction and
radiation heat transfers separately in three-dimensional urban morphologies. In addition,
the developed probabilistic method is applied to compute the influence of trees on MRT
in a street lined by buildings for heat wave meteorological conditions. The impact of solar
gains on the indoor wall temperatures is also quantified. Trees decrease MRT during day-
time with solar shadowing, but increase MRT during nighttime with their leaves limiting
the radiative cooling with the clear sky. Indoor solar gains increase the average wall tem-
peratures and the cooling effort during daytime. The influence of rare specular reflections
of direct solar radiation on MCM results has been documented.

Future work includes improvements to the current model and applications to real cities.
Some improvements to this model could include the development of a model for the air
temperatures inside the building, the addition of radiation in semi-transparent media and
conduction with volumetric heat sources, and the consideration of non-linear radiative
exchange between surfaces. Application to real cities may also involve sensitivity studies
to parameters and the development of fast and accurate methods to efficiently couple this
probabilistic heat transfer model with urban microclimate fluid flow simulations.

Acknowledgments

Funding: This work was partly supported by the French National Research Agency
(MC2 ANR-21-CE46-0013) and the E2S UPPA initiatives.

18



References

[1] K. G. Burkart, M. Brauer, A. Y. Aravkin, W. W. Godwin, S. I. Hay, J. He, V. C.
Iannucci, S. L. Larson, S. S. Lim, J. Liu, C. J. L. Murray, P. Zheng, M. Zhou, J. D.
Stanaway, Estimating the cause-specific relative risks of non-optimal temperature
on daily mortality: a two-part modelling approach applied to the Global Burden of
Disease Study, The Lancet 398 (10301) (2021) 685–697, publisher: Elsevier. doi:
10.1016/S0140-6736(21)01700-1.

[2] C. Li, J. Zhou, Y. Cao, J. Zhong, Y. Liu, C. Kang, Y. Tan, Interaction between urban
microclimate and electric air-conditioning energy consumption during high temper-
ature season, Applied Energy 117 (2014) 149–156. doi:https://doi.org/10.
1016/j.apenergy.2013.11.057.

[3] B. Blocken, Computational fluid dynamics for urban physics: Importance, scales,
possibilities, limitations and ten tips and tricks towards accurate and reliable simula-
tions, Building and Environment 91 (2015) 219–245. doi:10.1016/j.buildenv.
2015.02.015.

[4] A. J. Arnfield, Two decades of urban climate research: a review of turbulence, ex-
changes of energy and water, and the urban heat island, International Journal of Cli-
matology 23 (1) (2003) 1–26. doi:https://doi.org/10.1002/joc.859.

[5] N. Villefranque, F. Hourdin, L. d’Alençon, S. Blanco, O. Boucher, C. Caliot,
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Nomenclature

Latin symbols

Cp specific heat capacity

D domain

D direct normal irradiation

d thickness

F Fresnel’s reflectivity

f function

h heat transfer coefficient

H(·) Heaviside’s test function

H irradiation

I radiative intensity

Ib blackbody radiative intensity

k thermal conductivity

n⃗ outward normal vector

N number of samples

(n, k) complex refractive index

P probability

p PDF

q̇ heat flux

R⃗ specular direction

S surface area

T temperature

t time

W MCM weight

x⃗, y⃗ coordinate vectors

Greek symbols

α thermal diffusivity

δ Dirac’s delta function

δb boundary reinjection length

∆E scaled difference

ε emissivity

ϵb absorbing thickness

λ wavelength

Ω solid angle

ω⃗ direction vector

ρ density or reflectivity

σ standard error

τ time

θd Sun’s half angle

θR radiative temperature

Superscripts

∩ hemispherical

F specular surface

L Lambertian surface
′ directional

Subscripts

1, 2 indexes for solids

b body

C conduction

D Dirichlet’s condition

d direct

e external

F fluid domain or specular surface

g ground

I initial condition

i internal, or index

j, k indexes

L Lambertian surface

n number of jumps

o solar

R radiation

r diffuse radiation or reference radiative
temperature

S , s solid domain

T total
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(a) Representation of random paths starting at an outdoor wall with RBC to compute Ts (⃗yi)

(b) Examples of solar direct and diffuse sub-paths

Figure 1: Schematic representation of conductive, thermal and solar radiative sub-paths: (a) Sub-path real-
izations for direct and diffuse solar irradiations, absorbed at y⃗i, are drawn. A path starting at y⃗i is chosen
randomly among conductive, convective and radiative heat transfer modes (Eq. 10). A floating WOS is de-
picted. When crossing the interface between solid 1 and 2, a position in the solid 2 is randomly chosen and
the path terminates at an indoor RBC where the room air temperature is retained (TF,i); (b) The sky (Dsky)
and the urban geometry (DS ,F) form an enclosure filled with a transparent medium where radiation is multi-
ply reflected. The Sun’s surface (Dd), Lambertian and specular reflecting materials are also represented. A
realization of q̇o,d (⃗y0) is drawn with a realization of q̇o,r (⃗y0) that includes a shadowed direct contribution at
y⃗1, a specular reflection at y⃗2 and a path ending in the sky25
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Figure 2: Flowchart of the backward MCM algorithm used to compute one realization of a MCM temper-
ature estimate in an urban geometry. Three starting locations are given in blue rounded squares: inside
the solid, or inside the fluid (camera), or at an interface. Four temperatures at path ends are given in red
rounded squares: initial, sky, fluid or Dirichlet’s boundary temperatures. Green diamonds specify a condi-
tion with two outcomes (Yes/No). Orange rectangles stand for specific algorithms, which generate radiative
or conductive paths, or identify the reached interfaces where the double randomization may occur. The red
rectangle represents the evaluation of solar contributions

Table 1: Thermal properties of materials with their thickness (d) and their reflectivity (solar and thermal) or
their refractive index (with real and imaginary parts) used in the numerical validation cases (1-3) and for the
heat wave scenario

Material
λs ρs Cp,s d Pρo PρR

(W m−1 K−1) (kg m−3) (J kg−1 K−1) (m) or (n, k) or (n, k)

concrete 1.8 2400 1000 0.4 0.8 0.2
EPS 0.035 20 1300 − − −

ground 1 1300 1900 10 0.5 0.2
glass 1 2500 900 0.005 (1.52, 0) (1.7, 0.636)
body − − − − 0 0
tree − − − − 0.2 0
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Table 2: Temperatures and numerical parameters for the four validation cases and the heat wave scenario

TI TF,i TF,e hF ∆x ∆t N δb ϵb
(K) (K) (K) (W m−2 K−1) (mm) (s) (-) (mm) (mm)

Case 1 293.15 273.15 273.15 10 1 0.72 105 ∆x δb/4
Case 2 283.15 273.15 293.15 10 1 0.72 105 ∆x δb/4
Case 3 293.15 293.15 313.15 10 10 2 105 ∆x/7 δb/4

T (K) Pρ (n, k)

Case 4

ground 283.15 0.5 −

walls 283.15 0.5 −

windows 283.15 − (1.7, 0.636)
sky 273.15 0 −

TI Tr TF,i Tg Tb TF,e Tsky

heat 305.211 298.15 298.15 283.15 300.15 Eq. 25 TF,e − 20

wave S i S b hF θd N δb ϵb
scenario (m2) (m2) (W m−2 K−1) (rd) (-) (mm) (mm)

33168 1.77 10 4.65 × 10−3 105 2 0.5
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(a) Temperature profiles in concrete slab (Case 1) (b) Temperature profiles in EPS slab (Case 1)

(c) Scaled differences with MCM confidence intervals
for concrete (Case 1)

(d) Scaled differences with MCM confidence intervals
for EPS (Case 1)

(e) Temperature profiles for Case 2
(f) Scaled differences with MCM confidence intervals

for Case 2

Figure 3: Comparison of temperature profiles at several times (with units s) for single-layer slabs of Case 1
(a)-(d) and the two-layer slab of Case 2 (e)-(f) obtained with the deterministic FDM (lines) and the proba-
bilistic MCM (markers). The scaled numerical error (Eq. 24) and the MCM confidence intervals (3 σ̃T̃s

) are
also given
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(a) View in +Y axis direction (b) View in −Z axis direction

(c) Temperature field computed with OpenFoam
(−X axis view)

Figure 4: Geometry and computation results for Case 3: (a) View of the geometry and its mesh in the +Y
axis direction, while in (b) the view is in the −Z direction. The geometry is composed of internal insulation
(EPS, in black) and a structure (concrete, in blue) representing a thermal bridge in a building. The internal
surfaces are the boundaries at Z = 0.1 m, X = 0.3 m, and Y = 0.3 m. The external surfaces are at X = 0.6 m,
and Y = 0.6 m, while the symmetry boundaries are at X = −0.6 m, Y = −0.6 m, Z = 0 and 1.2 m. (c) The
temperature field, in the plane X = 0.25, computed at t = 8 × 104 s with OpenFoam is given. The external
vertical boundary is located on the right while the internal vertical boundary is located on the left. The mesh
is superimposed showing the refined zone inside the thermal bridge corner
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(a) Transient temperatures for three locations
in Case 3

(b) Scaled differences with MCM confidence intervals
for three locations in Case 3

(c) HTRDR-Urban rendering (Case
4)

(d) Reference radiance temperature
computed with HTRDR-Urban (Case 4)

(e) Scaled differences between our code and
HTRDR-Urban software (Case 4)

Figure 5: Numerical validation results of cases 3 and 4: Comparison of transient temperatures (a) for the
thermal bridge Case 3 for three locations: Point [0.35; 0.35; 0.15] is located in the lower part of the insu-
lation (EPS) corner; Point [0.5; 0.5; 0.05] is located inside the concrete part of the thermal bridge; Point
[0.6; 0.5; 0.05] is located on the external (concrete) surface. Temperatures computed with OpenFoam are
plotted with lines and the results of MCM are given with markers. The scaled numerical error (Eq. 24) with
the MCM confidence intervals are given in (b); Rendering (c) in the visible spectrum (0.38-0.78 µm, CIE
XYZ [34]) with HTRDR-Urban [33, 30] of the complex geometry: two parallel rows of five aligned build-
ings; The walls are Lambertian and the windows are specular; Solar elevation is 45◦ and azimuth is 120◦

from north (clockwise). An infrared geometry rendering is shown in (d) with reference radiance tempera-
tures computed with HTRDR-Urban. In (e) the pixel-based scaled differences between the present model
and the reference are given (each image has a resolution of 300x300 pixels)
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(a) Building lines with trees and centred body surface (S b) (b) Temporal evolution of air temperature and solar irradiations

(c) Thermal environment accounting for trees (d) Thermal environment without trees

Figure 6: Heat wave scenario geometry, five days weather data and radiative temperature mappings: (a)
Representation of the building rows and of the centred body geometry; (b) Time evolution of the external
air temperatures (TF,e, Eq. 25) and solar direct (Do) and diffuse (Ho,sky) irradiations; Mollweide projection
of θR onto a disc computed with MCM giving the thermal environment around the body surface with (c) or
without (d) trees for the heat wave scenario at 1 pm the first day (corresponding to t ≈ 0.54 days). For each
pixel N = 103 leading to σ

T̃ R
⩽ 0.4 K for the buildings and σ

T̃ R
⩽ 0.8 K for the ground
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(a) Temporal MRT on the body surface during the heat wave scenario

(b) Temporal average internal wall temperature during the heat wave scenario

Figure 7: Temporal evolutions obtained with MCM during the heat wave scenario: (a) for the body surface
MRT (Eq. 26) when trees are considered or not (N = 105, error bars are computed with ± 3σ

T̃ R,b
); (b) for

the surface average internal wall temperature (Eq. 27) with or without the solar gains coming through the
window glasses, (N = 105; error bars are computed with ± 3σ

T̃ s,i
, and the constant room air temperature,

TF,i, is also plotted)
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