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A B S T R A C T

The Finite Element Method (FEM) suffers from important drawbacks in problems involving excessive deforma-
tion of elements despite being universally applied to a wide range of engineering applications. While dynamic
remeshing is often offered as the ideal solution, its computational cost, numerical noise and mathematical
limitations in complex geometries are impeding its widespread use. Meshless methods (MM), however, by
not relying on mesh connectivity, circumvent some of these limitations, while remaining computationally
more expensive than the classic FEM. These problems in MM can be improved by coupling with FEM in
a FEM-MM scheme, in which MM is used within sensitive regions that undergo large deformations while
retaining the more efficient FEM for other less distorted regions. Here, we present a numerical framework
combining the benefits of FEM and MM to study large deformation scenarios without heavily compromising on
computational efficiency. In particular, the latter is maintained through two mechanisms: (1) coupling of FEM
and MM discretisation schemes within one problem, which limits MM discretisation to domains that cannot be
accurately modelled in FEM, and (2) a simplified MM parallelisation approach which allows for highly efficient
speed-up. The proposed approach treats the problem as a quadrature point driven problem, thus making the
treatment of the constitutive models, and thus the matrix and vector assembly fully method-agnostic. The MM
scheme considers the maximum entropy (max-ent) approximation, in which its weak Kronecker delta property
is leveraged in parallel calculations by convexifying the subdomains, and by refining meshes at the boundary
in such a way that the higher density of nodes is mainly concentrated within the bulk of the domain. The latter
ensures obtaining the Kronecker delta property at the boundary of the MM domain. The results, demonstrated
by means of a few applications, show an excellent scalability and a good balance between accuracy and
computational cost.
1. Introduction

The field of computational mechanics, fuelled by the widespread
use of the Finite Element Method (FEM) and derivatives, has allowed
for the treatment of complex problems in mechanics of materials and
structures such as contact, impact/friction or blast [1–3], while also
steadily gaining traction in biological sciences [4]. However, these
particular problems often pose a significant challenge to computational
modelling approaches: they are often non-linear and/or heterogeneous
in terms of material composition, and can typically undergo large
deformations. In such contexts, FEM with a Lagrangian description
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(often favoured for its computational efficiency) is non-ideal. Since the
reference configuration is discretised by a finite element mesh, which
is maintained during simulations, large deformations may result in
excessive distortion of elements, in turn leading to simulation failure
or unphysical results. These numerical problems can be overcome in
different ways: by dissociating material and mesh motions, by making
use of a remeshing technique, or by abandoning the mesh scheme.

In the first solution, FEM with a Eulerian description can be used. In
a Eulerian formulation, the mesh is spatially fixed, thus naturally avoid-
ing mesh distortion [5–7]. However, this approach suffers from difficul-
ties in handling moving boundaries and in tracing history dependent
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behaviour. In order to avoid the disadvantages of both the Lagrangian
and Eulerian formulations, FEM with an Arbitrary Lagrangian–Eulerian
description (known as ‘‘ALE’’) has been proposed [8,9] to combine the
best features of pure Lagrangian and Eulerian analyses.

The second possibility to avoid mesh distortion is to consider re-
meshing strategies. When a Lagrangian finite element mesh becomes
too distorted, a new mesh is created to improve local accuracy where
required [10–12]. However, the results need to be transferred from
the old mesh to the new mesh. Hence refinement schemes are often
computationally expensive.

In the last option, abandoning the mesh scheme leads to a so-called
Meshless Method (MM). MMs construct the approximation of unknowns
from a cloud or neighbourhood of nodes without mesh connectivity,
thus relaxing the strong tie between mesh topology and approximation
quality in FEM [13]. These methods thus appear ideal for modelling
problems in which the domain suffers from large deformations, moving
boundaries or material growth. A wide variety of MMs employing
different approximation and solution schemes has already been pro-
posed in the literature, including the Smoothed Particle Hydrodynamics
(SPH) [14], the least-square collocation meshless method [15], the
Optimal Transport Method (OTM) [16], the Natural Element Method
(NEM) [17,18], the Reproducing Kernel Particle Method (RKPM) [19],
the MeshLess local Petrov–Galerkin method (MLPG) [20], the Parti-
tion of Unity Finite Element Method (PUFEM) [21], the Hp-clouds
[22], the Element-Free Galerkin (EFG) [23,24], among many others.
A comprehensive review about the MMs can be found in Ref. [13].

Among a wide variety of MMs employing different approximation
and solution schemes, the so-called Galerkin MMs based on the weak
form of the problem’s partial differential equation, and in particular,
the Element-Free Galerkin method (EFG) using moving least square
(MLS) approximations [23,24], have been extensively and success-
fully adopted [23,25–27]. The FEM and EFG schemes share the same
Galerkin weak form, allowing either FEM, MM, or a coupled FEM-MM
to be performed within the same code. However, while the FEM shape
functions are constructed using the Lagrange interpolation within each
particular element and satisfy the Kronecker delta property, the MM
shape functions are usually built by fitting methods with a group of
nodes located in the influence domain and generally do not satisfy
the Kronecker delta property. A comprehensive review about the in-
terpolation scheme can be found in Ref. [28]. Here, we employ EFG
with maximum entropy (max-ent) approximation scheme [29,30], in
which the weak Kronecker delta property is obtained on convex parts
on the boundary of a MM domain, i.e., shape functions of internal nodes
vanish on convex parts of the boundary. In particular, we focus on the
direct coupling not only between the FEM and EFG domains but also in-
between EFG domains by leveraging the weak Kronecker delta property
of the max-ent shape functions. The FEM-EFG coupling avoids mesh
distortions by employing MM domains in high deformation regions and
FEM domains in the remaining (less distorted) regions, while the EFG-
EFG coupling facilitates the parallel implementation of the MM scheme,
in which the interpolation scheme can be found independently in each
processor.

Despite its superiority in terms of accuracy and convergence
[23,31], EFG and other MMs are still computationally more expensive
than FEM due to complex interpolations and numerical integrations.
Two strategies have been used to ameliorate the computational costs
associated with MM schemes.

Firstly, costs can be reduced by coupling FEM and MM discretisation
schemes to use MM within sensitive regions (i.e., those that undergo
large deformations), while retaining more efficient FEM for other less
distorted regions. The major difficulty is to satisfy the continuity of
the displacement field on the interface between the domains of two
methods. There exist different approaches for a coupled FEM-MM
scheme. Interface elements have been considered between the FEM
region and the EFG region using MLS shape functions, and hybrid shape
2

functions combining both MLS and FEM shape functions are used for
these transition elements [32]. The continuous blending method was
proposed in Ref. [33,34] using a mixed hierarchical approximation.
Lagrange multipliers were used in Ref. [35–37] to constrain the conti-
nuity of the displacement at interfaces between FEM and MM regions.
The collocation approach was introduced in Ref. [38] to couple FEM
and EFG regions by constraining the continuity of the unknown field
at each node at FEM-MM interfaces. A review of the FEM and MM
coupling can be found in Ref. [39]. Direct coupling without transition
or interface elements between a FEM region and a MM region using
the max-ent shape functions was also proposed in Ref. [40–42] by
exploiting their weak Kronecker delta property. However, the direct
coupling between the displacement field satisfying the Kronecker delta
property in the FEM region with the displacement field only satisfying
the weak Kronecker delta property in the MM region a priori leads
to a discrepancy of the displacement field at the FEM-MM interface.
Note that FEM-MM coupling can also be performed weakly by using a
range of different techniques, e.g., Lagrange multipliers [43,44], mortar
contact [45,46], and Nitche’s method [47,48].

Secondly, computational efficiency in FEM simulations of large
domains is often increased by implementing parallelisation strategies
that allow simulations to be run on multiple processors rather than
sequentially. Such strategies have also been implemented for EFG meth-
ods [49–51], however parallelisation is a non-trivial problem due to the
treatment of adjacent nodes from neighbouring regions that fall within
the domain of influence or neighbourhood of a given quadrature point
or node. In previous frameworks, such nodes have been duplicated
to maintain computational accuracy at intra-domain boundaries [49]
by preserving domains of influence equivalent to those in comparable
sequential simulations. While effective, this strategy is also suffering
from additional computational costs in comparison to parallelisation
schemes for FEM, that only require to share nodes directly at the
domain boundaries. Ideally, one would want a ‘‘ghosting’’ parallel
coupling strategy somehow leveraging the weak Kronecker property
to link MM subdomains (between each other or with FEM domains)
similarly to what is achieved between FEM subdomains.

The main problem in coupling FEM and MM (within a coupled
FEM-MM scheme) and coupling MM and MM (within a MM scheme
in parallel) occurs at the boundary between these domains, where the
Kronecker delta property is not satisfied for the MM domains. In this
work, we propose a direct FEM-MM and MM-MM coupling avoiding
any discrepancy in the real displacement of the shared boundary nodes
at the FEM-MM and MM-MM interfaces, respectively. A key ingredient
to guarantee the accuracy in this coupling strategy is the locality of
the shape functions of the MM domains at the FEM-MM or MM-MM
interfaces. For this purpose, the MM domains consider max-ent shape
functions, and two different strategies are proposed by leveraging the
weak Kronecker delta property of the max-ent shape functions in the
MM domains:

• The MM domain needs to be convex at the interfaces with other
domains to obtain the weak Kronecker delta property at those
parts of its boundary. Indeed, in a convex MM domain using max-
ent shape functions, the internal nodal shape functions do not
contribute to a point that lies on the boundary of this convex
domain, and the approximation at each boundary node of this
domain thus only receive contributions from neighbouring bound-
ary nodes [30]. It will be shown that although this simplification
leads to a discrepancy in the real displacement of the shared
boundary nodes at the interfaces with other domains, simulations
are still accurate and stable.

• To isolate the contributions of the boundary nodes, we propose a
simple and effective strategy based on a structured mesh refine-
ment on the interior nodes, i.e., each boundary node of the MM
domain corresponds to a vertex node of a convex polytope. It is
noted that at a vertex node of a convex polytope, the Kronecker

delta property is satisfied [30]. Consequently, a true Kronecker
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delta property at the boundary of a MM domain is obtained,
leading to a seamless transition at the interfaces with the MM
domains. When this structured mesh refinement is employed, the
convexity of the MM domains is no longer required. It is noted
that this strategy leads to a larger system to be solved since the
mesh is refined in the MM domains.

The proposed coupled scheme does not limit the class of domains
hat can be studied. Regarding the decomposition into FEM and MM
omains in a coupled FEM-MM scheme, identifying MM regions un-
ergoing large deformation for a given problem in a couple FEM-MM
cheme is not a trivial task. This procedure often relies on a prepro-
essing stage, and these regions are fixed during simulation. Since
uch a region is generally not known a priori, deciding on appropriate
EM and MM regions in a given problem relies either on the user
xperience or on a simulation with coarse mesh in which the regions
ith high deformations can be identified. To overcome these problems,
n automatic adaptive FE-MM coupled method was proposed [42,52].
n this work, we manually choose MM domains. An automatic FEM-MM
omain decomposition will be considered in future work.

Here, we present a numerical framework that combines the benefits
f FEM and MM to study large deformation problems without heavily
ompromising on computational efficiency. The programme is modular
ffering a variety of different solvers and constitutive models [53],
hich can be further adapted and developed depending on user needs.
herefore, the proposed solution is an ideal environment to tackle large
eformation problems with bespoke computational approaches. In this
ork, we primarily focus on the different discretisation schemes avail-
ble, namely FEM, MM (EFG method), and coupled FEM-MM. Similar
o other recent work [49], we employ a maximum entropy (max-
nt) approximation scheme for the EFG regions within the domain.
n addition to assessing the computational efficiency and enhanced
ccuracy of coupled FEM-MM simulations in our framework, we also
mplement parallelisation for large domain simulations. In contrast
o previous approaches [49], we employ a simplified strategy that
oes not consider the influence of nodes outside the partition assigned
o each processor, but convexifies the subdomains to leverage the
cheme’s weak Kronecker delta property. We demonstrate that despite
his simplification, simulations are still accurate and stable, and paral-
elisation leads to highly efficient speed-up within our MM framework.
urthermore, we provide evidence that small computational inaccura-
ies at the boundary between two processors can be eliminated simply
hrough a structured remeshing strategy concentrating the higher nodal
ensity to the bulk of the subdomain.

. General framework

We consider a general boundary value problem under large strains.
body 𝛺0 ⊂ R𝑑 , where 𝑑 is the dimension of the problem, undergoes
deformation characterised by the mapping 𝝋 (𝑿) ∶ 𝑿 ∈ 𝛺0 → 𝒙 ∈ 𝛺,

where 𝛺 denotes the deformed configuration. The displacement field is
defined as

𝒖 (𝑿) = 𝒙 −𝑿 = 𝝋 (𝑿) −𝑿 . (1)

The body 𝛺0 is subjected to a force per unit mass 𝒃 and to boundary
conditions at its boundary 𝜕𝛺0, which includes two non-overlapping
parts: a Dirichlet part 𝜕𝐷𝛺0 where the displacement field 𝒖 is prescribed
by �̄�, and a Neumann part 𝜕𝑁𝛺0 where the traction is prescribed by
𝒕. The equilibrium equations stated in the material form are given as
follows:

𝛁0 ⋅ 𝑷 + 𝜌𝒃 − 𝜌�̈� = 𝟎 in 𝛺0 , (2)
𝒖 − �̄� = 𝟎 on 𝜕𝐷𝛺0 , and (3)

𝑷 ⋅𝑵 − 𝒕 = 𝟎 on 𝜕𝑁𝛺0 , (4)

where 𝛁0 is the gradient operator with respect to the reference config-
uration, 𝑷 is the first Piola–Kirchhoff stress tensor, 𝜌 is the material
3

v

density, and 𝑵 is the outward unit normal on 𝜕𝑁𝛺0. In order to
solve for the displacement field 𝒖, the constitutive relationship must
be introduced to complete the problem statement2:

𝑷 (𝑡) =  (𝑭 (𝜏) with 𝜏 ∈ [0 , 𝑡]) , (5)

where 𝑭 = 𝐈 + 𝛁0 ⊗ 𝒖 is the deformation gradient with 𝐈 being the
second-order identity tensor and  is the material operator. It is noted
that the modelling framework proposed in the remaining of the paper
does not require any assumptions on the constitutive relationships.

To solve the boundary value problem stated by Eqs. (2)–(5), the
proposed approach provides maximum flexibility in spatial discreti-
sation, allowing either FEM, MM, or a coupled FEM-MM within the
same problem. To maximise efficiency, parts of domain where local
deformation is not significant are modelled with FEM, while the regions
with important distortion are making use of MM. Independently of the
numerical approximants used (i.e., FEM or MM), the conservation of
linear momentum (2) is rewritten under the following weak form:

∫𝛺0

𝑷 ∶ 𝛁0 ⊗ 𝛿𝒖 d𝑉 + ∫𝛺0

𝜌�̈� ⋅ 𝛿𝒖 d𝑉 = ∫𝛺0

𝜌𝒃 ⋅ 𝛿𝒖 d𝑉 + ∫𝜕𝑁𝛺0

𝒕 ⋅ 𝛿𝒖d𝑆,

(6)

or all admissible virtual displacements 𝛿𝒖. Either by FEM or by MM,
he domain 𝛺0 is discretised into a set of 𝑁 discrete nodes. At an
rbitrary material point 𝑿 ∈ 𝛺0, 𝒖 and 𝛿𝒖 are approximated through
he usual discretisation as:

(𝑿) =
𝑛
∑

𝑎=1
𝛷𝑎(𝑿)𝒖𝑎 and 𝛿𝒖 (𝑿) =

𝑛
∑

𝑎=1
𝛷𝑎(𝑿)𝛿𝒖𝑎 , (7)

which are typically evaluated at quadrature points during integration
and assembly. In Eq. (7), 𝑛 is the number of nodes participating to the
approximation, 𝑎 refers to the nodes in the FEM or MM neighbourhood
of 𝑿, 𝛷𝑎 is the corresponding shape function, and 𝒖𝑎 (and 𝛿𝒖𝑎) is the
vector of unknowns (and virtual counterpart) at node 𝑎. In the case of
FEM, the ‘‘neighbourhood’’ of a node is the list of nodes sharing an
element with it, while the ‘‘neighbourhood’’ of a quadrature point (or
Gauss point in the case of FEM) is the list of nodes forming the element
containing said quadrature point (as explained later, a background
mesh is used to identify those points in MM domains). In the proposed
approach, the weak form (6) is solved in a unified manner as a quadra-
ture point driven problem, thus making the FEM, MM, and couple
FEM-MM schemes only different at the preprocessing stage, where the
‘‘neighbourhoods’’ of each quadrature point are formed. Using Eq. (7),
the weak form (6) leads to a system of non-linear equations of the nodal
unknowns, which is solved using the conventional Newton–Raphson
iterative process [54].

For first-order consistency, the shape functions 𝛷1,… , 𝛷𝑛 need to
satisfy at every point 𝑿 ∈ 𝛺0:

𝑿 =
𝑛
∑

𝑎=1
𝛷𝑎 (𝑿)𝑿𝑎 and

𝑛
∑

𝑎=1
𝛷𝑎 (𝑿) = 1 , (8)

in which any affine function is exactly reproduced by the approxima-
tion scheme. A comprehensive review about the interpolation scheme
can be found in Ref. [28]. One important aspect of an interpola-
tion scheme expressed by Eq. (7) is the Kronecker delta property,
i.e., 𝛷𝑎(𝑿𝑏) = 𝛿𝑎𝑏. In the FEM context, the Kronecker delta property is
always satisfied, leading to 𝒖

(

𝑿𝑎
)

= 𝒖𝑎, while in the MM context, the
ronecker delta property is not satisfied in general, leading to 𝒖

(

𝑿𝑎
)

≠
𝑎. As a result, the imposition of the Dirichlet boundary conditions in
M is not as straightforward as in FEM and requires further treatments

2 For elastic materials, Eq. (5) becomes 𝑷 (𝑡) =  (𝑭 (𝑡)). For history-
dependent materials, Eq. (5) is generally rewritten as 𝑷 (𝑡) =  (𝑭 (𝑡) ;𝒁 (𝑡))
nd evolution laws for 𝒁, where 𝒁 is a vector including all history-dependent

ariables.
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[23,24,55,56]. When the MM scheme employs max-ent shape functions,
the weak Kronecker delta property is observed, i.e., the approximation
at each boundary node of the boundary of a convex MM domain
receives only contributions from neighbouring boundary nodes [30]. As
a result, the issue of applying Dirichlet boundary conditions vanishes
when the prescribed value is uniform.

2.1. FEM

The shape functions of FEM interpolate the solution between dis-
crete values obtained at mesh nodes, which are determined by the
mesh types and function orders. In general, the coordinates 𝑿 of the

esh element are mapped into isoparametric coordinate system (𝜉, 𝜂,
) for simplified calculation of shape functions 𝛷 (see, e.g., Ref. [57]
or details):

=
𝑛
∑

𝑎=1
𝛷𝑎 (𝜉, 𝜂, 𝜁 )𝑿𝑎 and

𝑛
∑

𝑎=1
𝛷𝑎(𝜉, 𝜂, 𝜁 ) = 1, (9)

here 𝑛 is the number of nodes of the element containing 𝑿 and the
efinition of shape function 𝛷𝑎 is determined by the order of polynomi-
ls used for the functions. Note that the classical Lagrangian FEM shape
unctions only satisfies 𝐶0-continuity, though higher order continuity
hape functions have been proposed [58]. In the MM scheme, the
igher continuity can be naturally obtained by defining the suitable
hape functions.

.2. MM

The difference between FEM and MM arises from the way the
pproximation of the unknown field is made using the weak form (6). In
his work, instead of the MLS approximation scheme [24], we employ
ax-ent shape functions [29,30,59]. In contrast to MLS, the max-ent

pproximation can produce a weak Kronecker delta property on the
oundary of a convex MM domain, i.e., the shape functions of the inte-
ior nodes do not contribute to the approximation of the displacement
ield at those boundary nodes, while the Kronecker delta property is
atisfied at the vertices of the domain. A recent study [60] has shown
hat the max-ent was more accurate by a factor of two compared to
he MLS for irregular node distributions in problems undergoing high
eformations. The weak form (6) is integrated in MM domains by using
he background mesh obtained by triangulation of the cloud of nodes,
n turn facilitating the choice of quadrature points as Gauss points of
his resulting mesh. In the numerical examples, 6 integration points
or the triangles and 4 integration point for tetrahedra of the MM
ackground mesh are used. Note that other quadrature techniques can
educe the computational cost of numerical integration in MMs, see,
.g., Ref. [61].

The theory of the max-ent shape functions is briefly introduced.
ach shape function 𝛷𝑎(𝑿) is defined as the probability of influence
f a node 𝑎 at space 𝑿. The max-ent formulation is: find the set of
he shape functions 𝜱 as the solution of the constrained optimisation
roblem:

ax
[

𝐻(𝜱,𝒎) = −
𝑛
∑

𝑎=1
𝛷𝑎(𝑿)ln

(

𝛷𝑎(𝑿)
𝑚𝑎(𝑿)

)

]

,

𝛷𝑎(𝑿) ≥ 0,
𝑛
∑

𝑎=1
𝛷𝑎(𝑿) = 1,

𝑛
∑

𝑎=1
𝛷𝑎(𝑿)𝑿𝑎 = 𝑿,

(10)

here the shape functions 𝛷𝑎(𝑿) depend on the prior function 𝑚𝑎(𝑿)
sed. The main advantage of this approach is that the internal nodal
hape functions do not contribute at a point that lies on the bound-
ry of the domain, thus simplifying the imposition of the essential
4

𝛾

oundary conditions; in particular, at the vertices of a convex domain,
he Kronecker delta property is thus naturally verified, and essential
oundary conditions can be applied directly on the node. The prior
𝑎(𝑿) can be uniform (the contributions of influences are treated
qually among nodes in the neighbourhood) or non-uniform (nodes are
ssigned with different influential weights such as Gaussian weight,
ubic or quadratic weights), which gives greater flexibility in the
onstruction of new approximants [59]. Here, we choose a cubic spline
eight function 𝑚𝑎(𝑿) ≡ 𝑚

(

𝑞𝑎
)

with 𝑚 defined as

(𝑞) =

⎧

⎪

⎨

⎪

⎩

2
3 − 4𝑞2 + 4𝑞3 if 0 ⩽ 𝑞 ⩽ 1

2 ,
4
3 − 4𝑞 + 4𝑞2 − 4𝑞3

3 if 1
2 ⩽ 𝑞 ⩽ 1,

0 otherwise,
(11)

where 𝑞𝑎 = ‖

‖

𝑿 −𝑿𝑎
‖

‖

∕𝑟max
𝑎 , ‖ ⋅ ‖ is the 𝐿2-norm, and 𝑟max

𝑎 is nodal
eight function support radius. This support domain size is defined as

max
𝑎 = 𝛼ℎ𝑎, where 𝛼 is a dimensionless parameter, and ℎ𝑎 is the ‘‘nodal
pacing’’ chosen here as the 𝐿2-norm average of the three Euclidean
istances to the three closest nodes to node 𝑎 (see Ref. [59]). Therefore,
he shape functions become sharper and more local as the nodal spacing
𝑎 decreases.

The set of the nodal weight function support radius
=
[

𝑟max
1 ,… , 𝑟max

𝑁node

]

= 𝛼
[

ℎ1 ,… , ℎ𝑁node

]

, where 𝑁node is the number

f nodes, characterises the degree of locality of the basis functions and
as a strong effect on the accuracy of the numerical solutions. As the
alue of 𝛼 increases, the shape functions become less local. The effect
f 𝛼 on the numerical solutions is considered in the next section.

Defining 𝝀 as the vector of Lagrange multipliers 𝜆𝑠(𝑠 = 0, 1, 2,… , 𝑑)
ssociated with 𝑑 + 1 constraints, where 𝑑 is the dimension of the
roblem, the shape functions can be written as follows:

𝑎(𝑿) =
𝑍𝑎(𝑿)
𝑍(𝑿)

,

𝑍(𝑿) =
𝑛
∑

𝑎=1
𝑍𝑎(𝑿),

𝑎(𝑿) = 𝑚𝑎(𝑿) exp
(

−𝑿𝑇
𝑎 𝝀(𝑿)

)

,

(12)

here 𝑍𝑎(𝑿) depends on the type of compact support used.
Finally, the dual problem consists in finding 𝝀 such that:

= arg min ln(𝑍(𝑿,𝝀)). (13)

uch unconstrained optimisation problems can be solved with differ-
nt numerical algorithms such as steepest descent, Newton’s method,
uasi-Newton methods and interior-point methods. The F90 libraries
f MAXENT-F90 (version 1.4) were interfaced with the programme to
rovide the corresponding shape functions (http://dilbert.engr.ucdavis.
du/~suku/maxent/). Choosing a ‘‘good’’ value of 𝛼 is not a trivial
ask. A too small value of 𝛼 leads to a limited number of nodes inside
he support radius and makes the optimisation problem ill-posed and
nable to converge. A too large value results in a large linear system to
e solved as the band of the stiffness matrix depends on the support
adius. In this work we propose a simple adaptive strategy of 𝛼 as
ollows:

(i) Start with an initial value 𝛼0 of 𝛼, e.g., 𝛼0 = 1;
(ii) Perform the optimisation procedure to compute the shape func-

tions (and their gradients) at each integration point. If the opti-
misation solution at one quadrature point cannot be achieved, go
to (iii); otherwise, go to (iv);

(iii) Assign 𝛼 = 𝛾𝛼 where 𝛾 > 1 is constant; go to (ii);
(iv) End.

fter several iterations, a suitable value of 𝛼 can be obtained. In this
ork, when this adaptive strategy is applied, the values 𝛼0 = 1 and
= 1.1 are used.

http://dilbert.engr.ucdavis.edu/~suku/maxent/
http://dilbert.engr.ucdavis.edu/~suku/maxent/
http://dilbert.engr.ucdavis.edu/~suku/maxent/
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Fig. 1. Schematic of two adjacent partitions where (left) both partitions are assigned to FEM with arbitrary element distributions of nodes 𝑏 and 𝑐, (middle) the left partition is
assigned to FEM with an arbitrary element based distribution of nodes 𝑐 and the right partition is assigned to MM with an arbitrary distribution of nodes 𝑏, (right) both partitions
are assigned to MM with arbitrary distributions of nodes 𝑏 and 𝑐. In all cases, the black nodes 𝑎 represent the shared nodes over the boundary (line) between the two partitions.
The elements with bold continuous lines indicate the elements which contain the middle shared node. The semicircle dashed line represents the neighbourhood of the middle
shared node in MM.
Fig. 2. Mesh refinement strategy to minimise the discrepancy in the real displacement of the shared boundary nodes. A support domain at a node at the MM boundary (shaded
in green) is represented. In the original mesh (left), the support domain includes multiple boundary nodes, whereas in the refined mesh (right), a smaller support radius can be
obtained, leading to less boundary nodes inside the support domain.
2.3. Parallel implementation

The partition of the model mesh (or nodes) is implemented through
two mechanisms: domains can either be manually assigned to each
processor (in either FEM, MM, or coupled FEM-MM), or partitioning is
performed automatically through external libraries such as METIS, an
open source software package for partitioning large meshes [62]. The
former case allows for the possibility to enforce the topological convex-
ity of each MM partition (METIS being graph-based does not necessarily
verify convexity), leading to a weak Kronecker delta property of the
MM shape functions. This means that the internal nodal shape func-
tions do not contribute to a point that lies on the boundary of the
partition and that boundary nodes thus only receive contributions from
neighbouring boundary nodes, while vertex nodes, however, verify the
Kronecker delta property [59]. As discussed later, this key property
will be leveraged to couple FEM and MM schemes assigned to different
partitions. When a mesh partitioning is automatically performed by
METIS, only the FEM mesh is partitioned, and all the MM nodes are
assigned to one processor by default (as METIS does not guarantee
convexity). This approach can lead to a deterioration of parallel scaling
if the MM processor tasks dominate the FEM tasks. One alternative is
to manually assign to each processor convex MM domains as shown in
Section 3.4.

The main problem in coupling FEM and MM (or two MM domains)
occurs at the boundary between partitions where only weak delta
property is observed for the MM subdomains. Indeed, as one does
not necessarily have 𝛷𝑎(𝜉𝑎, 𝜂𝑎, 𝜁𝑎) = 1 for boundary node 𝑎, the MM
interpolation scheme can lead to the following inequality: 𝒖(𝑿𝑎) ≠ 𝒖𝑎,
i.e., the stored nodal unknown 𝒖𝑎 of the discretisation scheme is not
the ‘‘real’’ displacement of the node at 𝑿 = 𝑿𝑎, but what we term
here a ‘‘fictitious nodal displacement’’. The true displacement needs to
5

be interpolated along with the other nodes in the neighbourhood of
the node of interest to obtain its real displacement. This is obviously
not the case in FEM, where the stored value is also the real nodal
displacement. Fig. 1 shows the schematic of two adjacent partitions
with a common node 𝑎 on the boundary for three cases: FEM and FEM,
FEM and MM, and MM and MM. Here, we make the choice (i) to not
allow the neighbourhood of a node in a MM partition to reach into an
adjacent partition, and (ii) to carry on the parallelisation scheme by
solving the discretised nodal unknown displacement the same way as
it is done in FEM, i.e., taking 𝒖𝑓 (1)𝑎 = 𝒖𝑓 (2)𝑎 , where the superscript 𝑓 (𝑖)
refers to the fictitious value in partition 𝑖. In the following, we explore
the implications of this choice.

When considering both partitions, the real values of displacement
𝒖𝑟𝑎 at the shared node 𝑎 is obtained as a function of their respective
neighbourhood nodal values of 𝒖𝑓 in the first and second partitions
following:

𝒖𝑟(1)𝑎 =
𝑛1
∑

𝑏=1
𝛷(1)

𝑏 (𝑿𝑏)𝒖
𝑓 (1)
𝑏 and 𝒖𝑟(2)𝑎 =

𝑛2
∑

𝑏=1
𝛷(2)

𝑏 (𝑿𝑏)𝒖
𝑓 (2)
𝑏 , (14)

respectively, where 𝑛1 and 𝑛2 are the numbers of nodes in the neigh-
bourhood of node 𝑎 for each partition. For the simulation to be sound,
the continuity of real displacement is a priori required, i.e., 𝒖𝑟(1)𝑎 = 𝒖𝑟(2)𝑎 .
Here, for computational efficiency, we make the choice to enforce the
fictitious displacements instead, i.e., 𝒖𝑓 (1)𝑎 = 𝒖𝑓 (2)𝑎 . In the case of as-
signing FEM to both partitions (Fig. 1-left), as the FEM shape functions
satisfy the Kronecker delta property, i.e., 𝛷(1)

𝑎 (𝑿𝑎) = 𝛷(2)
𝑎 (𝑿𝑎) = 1,

Eq. (14) naturally leads to 𝒖𝑟(1)𝑎 = 𝒖𝑓 (1)𝑎 = 𝒖𝑓 (2)𝑎 = 𝒖𝑟(2)𝑎 (and the two
neighbourhoods reduce to the set of nodes of the elements containing
node 𝑎 in each partition). However, this continuity and the equality
between fictitious and real displacements do not hold when at least one

of the partitions is assigned to MM (Fig. 1-middle and -right) since the
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Fig. 3. Linear elastic cantilever beam loaded by a parabolic distribution of tractions at the end. (A) Geometry and boundary conditions. (B) Different meshes used in the error
analysis with mesh size. The red region in the middle of the specimen corresponds to the MM region in the cases the coupled FEM-MM is considered. When MM is used, these
meshes are used as background meshes.
Fig. 4. Convergence of the 𝐿2 error (left) and of 𝐻1 error (right) with respect to the number of elements (𝑁el) for different values of the scaling factor 𝛼. Note that for low values
(e.g., close to 1), the solution for the preprocessing optimisation required to establish the shape functions cannot be achieved, and only the results with the values of 𝛼 starting

rom 1.25 are reported.
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M shape functions do not satisfy the Kronecker delta property, except
t the vertices of a convex domain [59]. Previously, this problem has
een addressed by creating a broadened zone of shared nodes at the
oundary [49], which in turn diminishes the scalability of the parallel
cheme. The following section details a simple yet effective strategy to
void this issue.

The computation under parallel implementation is supported by
ETSc [63–65], a suite of data structures and routines for the scalable
olution for partial differential equations. PETSc governs the commu-
ication, assembly, and disassembly of the local implementation from
ach processors.

.4. Mesh refinement

Up to this point, the framework has ignored the discrepancy in real
isplacement of the shared boundary nodes at the FEM-MM or MM-MM
nterfaces (e.g., in parallel simulations). A key ingredient to guaran-
ee the simulation accuracy is the locality (controlled by the support
6

c

adius) of the shape functions of the nodes at the boundaries of MM
arts. A large support size generally produces unreliable results due
o the influence of neighbouring boundary nodes for each node of the
nterfaces (in particular in non-convex domains) while a small support
ize is constrained by the MM domain under consideration to form a
ell-defined problem. Pragmatically, one can expect the existence of an
ptimal support domain size. Here, we propose a simple and effective
trategy based on a structured mesh refinement on the interior nodes
o isolate the contributions of the boundary nodes, i.e., each boundary
ode of the MM domain corresponds to a vertex node of a convex
olytope, at which the Kronecker delta property is satisfied [30,59], see
ig. 2. Consequently, a true Kronecker delta property at the boundary
f a MM domain can be obtained, leading to a seamless transition at
he FEM-MM and MM-MM interfaces.

This approach results in a higher interior nodal density around the
oundary nodes under consideration. Support domains for the refined
loud of nodes using this strategy were slightly smaller than in the
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Fig. 5. Computational time when using FEM, MM, and coupled FEM-MM with respect to the number of elements in the (background) meshes for the cases 𝛼 = 1.5 and 𝛼 = 2
eported in Fig. 4. The preprocessing time refers to the time needed for reading the input file and establishing the shape functions at each integration point.
Fig. 6. Mesh refinement performed in all elements of the MM domain (A) and at boundaries of the MM domain (B). Only the case ‘‘Mesh 3’’ reported in Fig. 3 is shown for
illustration purposes.
w
a

original mesh while including comparable numbers of nodes. Thanks to
the reduction of the support domain size, support domains of boundary
nodes avoid including neighbouring boundary nodes, shifting the rela-
tive contribution from the boundary to the bulk. The mesh refinement
strategy can be performed at all elements inside each MM domain or
only at the elements sharing nodes with the MM boundaries. However,
the former increases significantly the number of nodes (and thus the
size of the finite element system) while the latter allows for a better
accuracy at very little additional computational cost, see Section 3.3.

3. Numerical examples and discussion

3.1. Mesh convergence in a coupled FEM-MM scheme

In order to evaluate the efficiency of the coupled FEM-MM simu-
lations, an error analysis is carried out by considering the standard
benchmark problem of a linear elastic cantilever beam loaded by a
parabolic distribution of tractions at the end, see Fig. 3A. The exact
solution for this problem is known (see, e.g., Ref. [66]) as follows

⎧

⎪

⎨

⎪

⎩

𝑢𝑥 =
𝑃𝑦
6𝐸𝐼

[

(6𝐿 − 3𝑥) 𝑥 + (2 + 𝜈)
(

𝑦2 − 𝑐2
)]

, and

𝑢𝑦 = −
𝑃

6𝐸𝐼
[

3𝜈𝑦2 (𝐿 − 𝑥) + (4 + 5𝜈) 𝑐2𝑥 + (3𝐿 − 𝑥)𝑥2
]

, (15)

where 𝐿 and 𝑐 are respectively the length and the half width of the

specimen, see Fig. 3A, 𝐼 =
2𝑐3

3
, 𝑃 is the total applied force, and 𝐸

nd 𝜈 are, respectively, the Young’s modulus and the Poisson’s ratio.
n order to characterise the error of the simulation in comparison with
7

i

the exact solution, the relative 𝐿2 and 𝐻1 norms of the displacement
field are considered to evalute the error; with

𝜀𝐿2
=

|

|

𝐮 − 𝐮exact
|

|𝐿2

|𝐮exact
|𝐿2

and 𝜀𝐻1
=

|

|

𝐮 − 𝐮exact
|

|𝐻1

|𝐮exact
|𝐻1

, (16)

here 𝐮 and 𝐮exact are, respectively, the simulated and exact solutions,
nd the 𝐿2 and 𝐻1 norms are defined by

|𝐚|𝐿2
=

√

∫𝛺0

𝐚 ⋅ 𝐚 𝑑𝑉 and

|𝐚|𝐻1
=

√

∫𝛺0

(

𝐚 ⋅ 𝐚 + 𝐿2
(

𝐚⊗ 𝛁0
)

∶
(

𝐚⊗ 𝛁0
))

𝑑𝑉 , (17)

for a vector field 𝐚 and where 𝛺0 is the domain under investigation. The
problem is discretised with linear triangular elements. Four different
meshes are considered, see Fig. 3B. When MM is employed, these
meshes are used as the background meshes (to define the quadrature
points and for visualisation purposes), while the mesh nodes are the
MM nodes. Doing so allows us to keep, for a given mesh, the same
number of degree of freedom independently of the resolution scheme
under consideration (FEM, MM, and coupled FEM-MM). When FEM-
MM is employed, MM is considered in the middle region, while FEM
is considered in the remaining regions. The values 𝐿 = 3 m, 𝑐 = 1 m,
𝐸 = 2 × 103 Pa, 𝜈 = 0.3 and 𝑃 = 150 N are arbitrarily used in this
analysis.

The convergences of the relative 𝐿2 error (𝜀𝐿2
) and of the relative

𝐻1 error (𝜀𝐻1
) with respect to the number of elements 𝑁𝑒𝑙 are shown
n Fig. 4 with different values of the scaling factor 𝛼. When MM is
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Fig. 7. Convergence of the 𝐿2 error (left) and of 𝐻1 error (right) with respect to the number of elements (𝑁el) for different values of the scaling factor 𝛼 when using mesh
refinement strategies. The results without mesh refinement are also reported for comparison purposes. Note that for low values 𝛼, the solutions for the preprocessing optimisation
required to establish the shape function cannot be achieved; those results are not reported.
Fig. 8. Extension of a hyperelastic cube. (A) Deformed shape at 100% extension in the case of FEM, MM and FEM-MM. (B) Dependence of the total deformation energy with
respect to the number of degrees of freedom. (C) Preprocessing and computational time with respect to the number of degrees of freedom. The preprocessing time refers to the
time consumed for reading the input file and establishing the shape functions at each integration point.
employed, it can be seen that the accuracy of the numerical solution
measured in the 𝐻1 norm can significantly change depending on the
locality of the shape functions, as controlled by 𝛼. The less local the
function, the more accurate the solution up to a limit, as generally
8

observed in MM. For high values of 𝛼, the accuracy in 𝐿2 error is
degraded, which could be corrected by using a more accurate, though
more computationally expensive, quadrature [67]. Generally, MM pro-
vides more accurate results than FEM with a large enough value of
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Fig. 9. Parallelisation of the MM scheme. (A) 2D Stanford bunny partitioned into 9 convex regions using V-HACD. (B, C, D) Nodal distribution and mesh geometry in Original
(B), Refined (C), and (D) Boundary-Refined cases. (E, F) Violin plots of support domain radius (E) and number of nodes within each support domain (F) for the Original, Refined,
and Boundary-Refined Standford bunny shown in B, C and D, respectively.
𝛼. When the coupled FEM-MM scheme is employed, the solution is
less accurate than a sole MM scheme for the same discretisation, but
is more accurate than FEM with small values of 𝛼 (1.25, 1.5, 1.75
and 2). For larger values of 𝛼 (2.25 and 2.5), as a larger number
of neighbouring nodes are obtained as a result of a larger support
radius, the difference between the true displacement field and the
fictitious one as mentioned in Section 2.3 is more important in the
FEM/MM interfaces, which degrades the accuracy of the FEM-MM
scheme. However, this mismatch can be minimised using the mesh
refinement strategy detailed in Section 3.3.

The comparison of the computation time between FEM, MM, and
the coupled FEM-MM schemes are reported in Fig. 5 with two typical
values of 𝛼: 1.5 and 2. The preprocessing time refers to the time needed
for reading the input file and establishing the shape functions at each
integration point. The preprocessing time is very small compared to the
total one in the case of FEM but considerable in the cases of MM and
FEM-MM. However, the FEM-MM requires less preprocessing time than
MM as the optimisation step needed to establish the shape functions can
ignore the FEM domains. The total time for MM increases quickly with
the number of elements and with 𝛼. A larger value of 𝛼 results in a
larger non-zero band in the stiffness matrix, making the solution more
computationally expensive. However, the coupled FEM-MM scheme is
more computationally efficient than the MM alone.

The efficiency of the mesh refinement strategy described in Sec-
tion 2.4 is investigated. Two different scenarios are considered as
shown in Fig. 6: (i) ‘‘Refined’’ when the remeshing is performed on the
whole MM domain and (ii) ‘‘Boundary-Refined’’ when the remeshing is
performed only on the element having shared nodes with the FEM-MM
interfaces. The convergences of the relative 𝐿2 error (𝜀𝐿2

) and of the
relative 𝐻1 error (𝜀𝐻1

) with respect to the number of elements 𝑁𝑒𝑙 are
shown in Fig. 7 with different values of the scaling factor 𝛼. Results
for values of 𝛼 in which the optimisation procedure to compute the
9

shape function does not converge are not shown. It can be seen that
mesh refinement allows for an improvement of the accuracy. Although
the number of nodes significantly increases when the mesh refinement
strategy is applied to the whole mesh, the accuracy of the numerical
solution is almost similar to the case with the mesh refinement strategy
performed at the elements sharing nodes at the FEM-MM interfaces.

3.2. Extension of a hyperelastic block

In this section, we demonstrate the performance of the coupled
FEM-MM in a strongly nonlinear problem. A hyperelastic block is
stretched vertically with the top and bottom faces prescribed in all
directions. As a result of the symmetry, it is sufficient to model one
eighth of the block, in which the top face is fixed, two adjacent side
faces traction-free and symmetry boundary conditions applied on the
rest of the faces, see Fig. 8A. A similar test was performed in Ref. [30].
The material is a compressive neo-Hookean with an energy density
defined as

𝛹 (𝑭 ) = 1
2
𝜆 ln2 𝐽 − 𝜇 ln 𝐽 +

𝜇
2

tr
(

𝑭 𝑇 ⋅ 𝑭
)

, (18)

where 𝑭 is the deformation gradient tensor, 𝐽 = det 𝑭 is the Jacobian,

and 𝜆 =
𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
and 𝜇 =

𝐸
2(1 + 𝜈)

are the Lamé constants with
𝐸 and 𝜈 being, respectively, the Young’s modulus and the Poisson’s
ratio. In this test, 𝐸 = 106 Pa and 𝜈 = 0.485 are used. A value close to
the incompressibility limit is considered as the finite element solution
in this case converges very slowly and coarse meshes result in very
large errors [30] while MM shows a much better accuracy for the same
node discretisation. The cube is deformed up to 100% extension in 100
loading increments.

For the purpose of showing the efficiency of the FEM-MM scheme,
the adaptive strategy to find the value of 𝛼 described in Section 2.2



Finite Elements in Analysis & Design 219 (2023) 103927V.D. Nguyen et al.
Fig. 10. Effect of remeshing strategy in the parallel MM scheme. (A) Stanford bunny dimensions and loading. (B) FEM simulation of original mesh, (C, D, E) MM simulations of
Original, Refined, and Boundary-Refined cases. (F) Average von Mises stress of the five elements sharing the vertex node at the boundary between the bunny front leg and belly in
the Original mesh, or the equivalent area in the refined simulation, see Fig. 9. (G) Ratio between the magnitude of the fictitious-real displacement discrepancy to real displacement
magnitude at shared nodes between processors in the compressed region behind the foreleg (see dash box in A). ‘‘Left’’ and ‘‘right’’ of lines refer to the two subdomains on both
sides of the boundary.
is used here. Five different meshes are considered consisting of 444,
823, 1946, 5028 and 72 550 linear tetrahedral elements. The first four
meshes are considered in the cases of FEM, MM and FEM-MM while
the finest mesh is only considered with FEM. When the coupled FEM-
MM scheme is employed, the cube is divided into two parts: the lower
part as FEM and the upper part as MM, see Fig. 8A, since the mesh
distortion is more important in the latter. Fig. 8A shows the deformed
configurations of the block at 100% tensile deformation when using
the finest mesh. Fig. 8B shows the dependence of the total elastic
energy with respect to the number of degrees of freedom in the cases
of FEM, MM and FEM-MM schemes. Fig. 8C shows the increasing
computational time for each simulation upon mesh refinement. It can
be seen that the total deformation energy decreases monotonically
with mesh refinement. The total deformation energies in the MM and
coupled FEM-MM simulations remain close and are always smaller than
the one of FEM for a given nodal discretisation, implying improved
accuracy as observed in Ref. [30]. To achieve a total elastic energy
comparable to the best MM case, a very fine element mesh needs to
be considered for a much higher computational time, see Fig. 8C. The
computational time of the FEM-MM scheme is found in-between the
ones of MM and of FEM schemes. Clearly, the use of the coupled FEM-
MM scheme allows for an improvement of the solution accuracy at a
lower computational cost compared to the MM scheme.

3.3. Parallelisation of the MM scheme

While combining FEM and MM schemes can accomplish a signifi-
cant saving in simulation run time compared to a MM scheme alone,
combined schemes may not be practical in cases where significant
parts of the structure in question undergo large deformations. An
10
alternative strategy to optimise simulation time is the parallelisation of
the simulation, in which the model is partitioned into distinct regions
which are run in parallel on multiple processors.

In this section, a 2D version of the Stanford bunny was ‘‘con-
vexified’’ and partitioned using Volumetric Hierarchical Approximate
Convex Decomposition (V-HACD) [68]. This scheme allows to create
a number of convex subdomains from any geometry, by modifying it
slightly to facilitate the process, as a full convex partitioning of the
Bunny would lead to a much larger and unworkable number of subdo-
mains, see Ref. [68] for more details. Flaws in the mesh were repaired
using ICEM-CFD from the Ansys suite (https://www.ansys.com). The
final mesh was decomposed into 9 convex domains (Fig. 9A), and
contained 2607 nodes and 4979 linear triangular elements (Fig. 9B).
The Refined and Boundary-Refined strategies are shown in Fig. 9C and
D, respectively. The adaptive strategy to find the value of 𝛼 described in
Section 2.2 is used. Support domain sizes were modified in the refined
and boundary-refined cases as compared to the ones of the original
mesh (Fig. 9E) while including comparable numbers of neighbouring
nodes (Fig. 9F).

In the simulation, the bunny’s height was (arbitrarily) taken to
be 522 m, the front leg of the Bunny was fixed in the 𝑥- and 𝑦-
directions, and the hindleg pulled forward 50 m over an arbitrary time
of 100 s (the problem being rate-independent, the time is of no specific
relevance) to create a region with highly compressive forces between
both legs (Fig. 10A). The material was taken as a quasi-incompressible
hyperelastic St-Venant-Kirchhoff model following:

𝑷 = 𝑭 ⋅ C ∶
1
2
(

𝑭 𝑇 ⋅ 𝑭 − 𝐈
)

, (19)

with C𝑖𝑗𝑘𝑙 =
𝐸𝜈

𝛿𝑖𝑗𝛿𝑘𝑙 +
𝐸

(

𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘
)

,

(1 + 𝜈) (1 − 2𝜈) 2 (1 + 𝜈)

https://www.ansys.com
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Fig. 11. Strong scaling study. (A) Simulation design with the finite element mesh consisting of 549 794 linear tetrahedral elements and boundary conditions. Whenever MM
scheme is employed in any subdomain, the mesh corresponds to its MM background one. (B) Scaling performance in terms of total simulation time versus number of cores in a
log–log plot. (C) Preprocessing time. (D) Time for solving the linear system with the conjugate gradient iterative solver provided by PETSc [64] in combination with the geometric
algebraic multigrid preconditioner. Each simulation is repeated three times and the average value is reported.
where C is the fourth order Hooke tensor, and 𝐸 and 𝜈 are respectively
the Young’s modulus and Poisson’s ratio; 𝑷 is the first Piola–Kirchhoff
stress tensor. The values 𝐸 = 109 Pa, 𝜈 = 0.3 are considered under
a plane stress state. The simulations were run in the implicit static
scheme with 20 increments. We compared standard FEM and MM
simulations in parallel (with one processor per subdomain for all cases),
and found that results were overall comparable (see Fig. 10B,C,D,E for
the distribution of the von Mises stress at the final time and Fig. 10F
for the prescribed displacement-reaction force curves). Fig. 10G shows
the ratio between the magnitude of the fictitious-real displacement
discrepancy to real displacement magnitude at shared nodes between
processors in the compressed region behind the foreleg (see the dash
box in 10A). It is found that the displacement discrepancy is very small
even without the mesh refinement. The displacement discrepancy at
the extremities vanishes to a computational rounding error as expected
since the Kronecker delta property is satisfied at the vertices of the
MM domains. Once the mesh refinement is applied, both the Re-
fined and Boundary-Refined cases successfully eliminate the boundary
discrepancies. This significant finding demonstrates that the compu-
tational inaccuracies caused by the proposed approach of truncating
nodal neighbourhood at the partitions’ boundaries can be successfully
eliminated by shifting the relative contribution of boundary and bulk
nodes within the support domain. Note that the results also show that,
even without additional refinement, the proposed parallel MM scheme
produces remarkably quantitatively accurate results when compared to
FEM simulations.
11
3.4. Performance analysis in parallel simulations

The numerical simulations can run in parallel, in which a number
of processors compute simultaneously to increase the computational
power and/or reduce significantly the computational time. To evaluate
the ability of a parallel programme to do so, scaling (or scalability)
analyses are widely used. In this section, the scaling of our FEM, MM,
and coupled FEM-MM schemes in parallel is investigated. The Oxford
Advanced Research Computing (ARC) facility was used for this work.

3.4.1. Strong scaling
Strong scaling refers to the performance of an application when the

problem size is kept fixed while the number of cores increases [69].
The parallel performance was examined using a benchmark simulation
of a compressive block. Unlike FEM, the domain decomposition into
multiple processors currently cannot be automatically performed since
the MM subdomains are required to be convex in order to exploit the
weak Kronecker delta property.

The strong scaling performance is investigated using a compres-
sion tests of the linear elastic block consisting of 100 unit blocks,
see Fig. 11A. The elastic properties 𝐸 = 109 Pa and 𝜈 = 0.3 are
used. The linear elastic block is decomposed into 5, 10, 20, 50, or
100 subdomains, which allows performing the parallel simulations in
5, 10, 20, 50, or 100 processors. To facilitate the coupled FEM-MM
simulation for comparison purposes, a MM box is considered in the
centre of each unit block, see green regions in Fig. 11A. This scenario
allows for proper load balancing between processors. In a practical
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Fig. 12. Weak scaling study. (A) Simulation design consisting of 𝑛 × 𝑛 unit blocks where 𝑛 corresponds to the number of cores. Each block containing 5494 linear tetrahedral
elements belongs to a processor. (B) Scaling performance in terms of the total simulation time versus number of processors. (C) Preprocessing time. (D) Time for solving the linear
system with the conjugate gradient iterative solver provided by PETSc [64] in combination with the geometric algebraic multigrid preconditioner. Each simulation is repeated
three times and the average value is reported.
application, a FEM-MM simulation is more advantageous than a MM
simulation alone if MM sub-domains are controlled adequately, as the
computationally expensive MM partitions decide the computation time
of the simulation.

The scaling performance is shown in Fig. 11B in terms of the
total computation time versus the number of cores. It is found that
the ideal linear scaling can be achieved at low number of processors
for all cases. The MM simulations are shown to be computationally
expensive because of larger stiffness matrix bandwidth in comparison
with the FEM and FEM-MM cases, but the linear scalability can be
obtained for a wider range. Fig. 11C shows the preprocessing time.
FEM requires much less computational time than MM as expected from
the computation of the shape functions, trivial in the case of FEM but
expensive for MM. The total time to solve the linear system using PETSc
is reported in Fig. 11D where a linear scaling is achieved in the range
of number of processors under consideration. Overall, the use of the
coupled FEM-MM scheme is less computationally expensive than MM
but can leverage the accuracy of the MM scheme in critical regions.

3.4.2. Weak scaling
In a weak scaling test, instead of keeping the problem size fixed,

we increase the number of cores and the problem size proportionally
[70]. The compressive test described in Fig. 11 is considered but with
𝑛 × 𝑛 unit blocks, see Fig. 12A. Each block belongs to one processor,
so the problem of 𝑛 × 𝑛 unit blocks can be performed in 𝑛2 processors
while the same problem size in each processor is retained. The weak
scaling performance in terms of the total computation time versus the
number of processors is shown in Fig. 12B when varying 𝑛 from 2 to 10.
12
In an ideal scenario, the computation time remains constant. However,
Fig. 12B shows an increasing computation time with increasing number
of processors. This can be explained by (i) the increasing preprocessing
time as reported in Fig. 12C arising from loading a larger input file
when the problem size increases and (ii) the increase of the computa-
tional time required to solve the finite element linear system as reported
in Fig. 12D. Clearly, the use of the iterative solver in PETSc in combina-
tion with geometric algebraic multigrid preconditioner does not allow
for an ideal scaling. However, it can be seen that the coupled FEM-
MM scheme is less computationally expensive than the MM alone, thus
providing a good balance between MM accuracy and FEM scalability.

3.5. Compression test with finite strain elastoplastic behaviour

In this section, a compression test under plane strain conditions on
an elastoplastic block is considered. In this test, a portion of the upper
face is pushed downward with a rigid plate, thus creating a localised
region of shearing. The geometry and boundary conditions are shown
in Fig. 13A. The numerical results for FEM, MM, and coupled FEM-
MM schemes are compared. When using the coupled FEM-MM scheme,
MM is used for the highly deformed region while FEM is used for the
remaining region. The rigid part is modelled by FEM with a linear
elastic behaviour and an arbitrary high Young’s modulus. The adaptive
strategy to find the value of 𝛼 described in Section 2.2 is used. The finite
strain elastoplastic model reported in Appendix is considered using a
Young’s modulus of 𝐸 = 20 GPa, Poisson’s ratio of 𝜈 = 0.3, initial yield
stress 𝜎0𝑦 = 100 MPa, reference equivalent plastic strain 𝛾0 = 0.005 and

𝑛 = 0.1.
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Fig. 13. Compression test on an elastoplastic block. (A) Geometry and boundary conditions. (B) Three meshes used in the analysis (576, 2200 and 6195 triangles). (C) Mechanical
response in terms of the reaction force versus the prescribed displacement.

Fig. 14. Compression test on an elastoplastic block. Distribution of the equivalent plastic deformation at the end time. Mesh-0, Mesh-1, and Mesh-2 are shown in Fig. 13B.
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Table 1
Computation time (in seconds) in the compression test with FEM, MM, and coupled
FEM-MM schemes.

Mesh-0 Mesh-1 Mesh-2

FEM 363 1740 4826
FEM-MM 1689 8573 21,398
MM 2349 10,411 25,011

Three different meshes noted Mesh-0, Mesh-1 and Mesh-2 consisting
f 576, 2200 and 6195 linear triangles, respectively, are considered,
ee Fig. 13B. When MM is used, the background meshes used for
uadrature points identification are used for visualisation purposes. The
echanical responses in terms of the vertical reaction force 𝐹𝑦 versus

the prescribed displacement �̄�𝑦 are shown in Fig. 13C. It can be seen
that FEM results are mesh dependent results while the MM and coupled
FEM-MM schemes are converged already with the coarsest mesh Mesh-
0. FEM requires a much finer mesh to achieve similar results to MM
and FEM-MM. The use of MM domains in high deformation regions
improves significantly the numerical accuracy.

Fig. 14 shows the distribution of the plastic deformation for the
different meshes and simulation schemes. It is found that FEM provides
poor solutions with Mesh-0 while the FEM-MM and MM schemes
provide better results at equivalent level of discretisation. The computa-
tional time is reported in Table 1 for a sequential calculation on an Intel
i9 10th Generation core. The numerical simulations only considering
MM are computationally expensive while the use of FEM in non-critical
regions allows for a reduction of the cost with the benefit of a much
better accuracy.

4. Conclusion

In this paper, we presented a bespoke numerical programme com-
bining FEM and MM in sequential and parallel simulations. We demon-
strated that coupling of FEM and MM regions can significantly improve
solutions for structures undergoing large deformations while mitigating
computational costs. Furthermore, we demonstrated that MM simu-
lations can be significantly sped up using a simple parallelisation
strategy: rather than considering the influence of nodes inbetween
neighbouring regions on separate processors, we implemented a frame-
work considering only the influence of shared nodes at the boundary,
analogous to parallelisation strategies in FEM. Although we observed
minor inaccuracies at shared boundary nodes, this approach produced
simulation outcomes that were similar to FEM simulations, suggesting
that this strategy can be viable without further modifications in certain
simulations. We furthermore demonstrated that boundary inaccuracies
could be completely eliminated by selective remeshing avoiding the
addition of further nodes on the boundary of two regions assigned
to different processors, thus providing a simple strategy to improve
computational accuracy when necessary. Our parallelisation approach
enabled us to achieve significant speed-ups of both simulation and
preprocessing times. Taken together, the approach provides a robust
and versatile computational resource to tackle challenging problems in
mechanics and biomechanics, especially in problems including growth
and rapid large deformations [71]. On a final note, as our MM is
considered in a Lagrangian framework, the cloud of influence of any
point depends on the current configuration. While it has the advantage
to depend solely on the convexity of the reference configuration, the
radius of influence of each point needs to be defined in the current
configuration, leading to the need to regularly ‘‘refresh’’ the cloud of
influence, similarly to FEM remeshing requirements.
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Appendix. Finite strain 𝑱𝟐 plasticity model

The finite strain 𝐽2 elastoplastic constitutive model used here was
proposed in Ref. [72] and is briefly summarised here. The deformation
gradient 𝑭 can be decomposed into an elastic part 𝑭 𝑒 and a plastic part
𝑭 𝑝 as follows

𝑭 = 𝑭 𝑒 ⋅ 𝑭 𝑝 . (20)

Incompressible plastic deformation is assumed, i.e., det 𝑭 𝑝 = 1. The
following bi-logarithmic elastic potential is considered here:

𝛹 (𝑪𝑒) = 𝐾
2
ln2 𝐽 +

𝜇
4

dev (ln𝑪𝑒) ∶ dev (ln𝑪𝑒) , (21)

here 𝐽 = det 𝑭 , 𝑪𝑒 = 𝑭 𝑒𝑇 ⋅ 𝑭 𝑒, 𝐾 = 𝐸
3(1−2𝜈) and 𝜇 = 𝐸

2(1+𝜈) with 𝐸
and 𝜈 being, respectively, the Young’s modulus and Poisson’s ratio, and
dev (∙) is the deviatoric operator. The first Piola–Kirchhoff stress can be
derived as

𝑷 = 𝐾𝑭 −𝑇 ln 𝐽 + 𝜇𝑭 𝑒 ⋅
[

𝑪𝑒−1 ⋅ dev (ln𝑪𝑒)
]

⋅ 𝑭 𝑝−𝑇 . (22)

he Kirchhoff stress is computed by 𝝉 = 𝑷 ⋅ 𝑭 𝑇 , leading to

= 𝐾 ln 𝐽𝑰 + 𝜇𝑭 𝑒 ⋅
[

𝑪𝑒−1 ⋅ dev (ln𝑪𝑒)
]

⋅ 𝑭 𝑒𝑇 . (23)

he plasticity criterion follows the 𝐽2 plasticity theory as

= 𝜏𝑒𝑞 − 𝜎0𝑦 − 𝑅(𝛾) ≤ 0 , (24)

here 𝜏𝑒𝑞 =
√

3
2dev (𝝉) ∶ dev (𝝉) is the von Mises equivalent stress, 𝜎0𝑦

s the initial yield stress, and 𝑅 ≥ 0 is the isotropic hardening stress,

https://github.com/muphisim
http://dx.doi.org/10.5281/zenodo.22558
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function of the equivalent plastic strain 𝛾. In this work, an isotropic
ardening law is considered:

= 𝜎0𝑦

(

1 +
𝛾
𝛾0

)𝑛
− 𝜎0𝑦 . (25)

here 𝛾0 is the reference equivalent plastic strain and 𝑛 is a material
arameter. The evolution law for 𝑭 𝑝 follows the normality rule

̇ 𝑝 = �̇�𝑵 ⋅ 𝑭 𝑝 , (26)

here 𝑵 is the normal to the yield surface. The resolution of the system
f Eqs. (20)–(26) follows a predictor–corrector scheme as detailed in
ef. [72].
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