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Inducing interactions between individual photons is essential for applications in photonic quan-
tum information processing and fundamental research on many-body photon states. A field that is
well suited to combine strong interactions and low losses is microwave quantum optics with super-
conducting circuits. Photons are typically stored in an LC circuit, and interactions appear when
the circuit is shunted by a Josephson tunnel junction. Importantly, the zero-point fluctuations of
the superconducting phase across the junction control the strength and order of the induced in-
teractions. Superconducting circuits have almost exclusively operated in the regime where phase
fluctuations are smaller than unity, and two-photon interactions, known as the Kerr effect, dom-
inate. In this experiment, we shunt a high-impedance LC oscillator by a dipole that only allows
pairs of Cooper pairs to tunnel. Phase fluctuations, which are effectively doubled by this pairing,
reach the value of 3.4. In this regime of extreme fluctuations, we observe transition frequencies that
shift non-monotonically as we climb the anharmonic ladder. From this spectroscopic measurement,
we extract two-, three- and four-photon interaction energies of comparable amplitude, and all ex-
ceeding the photon loss rate. This work explores a new regime of high-order photon interactions
in microwave quantum optics, with applications ranging from multi-photon quantum logic to the
study of highly correlated microwave radiation.

Photons do not interact with each other in free space.
In the quantum optical domain, they are typically
brought into interaction by coupling them to atoms [1].
Recent advances have realized two- and three-photon in-
teractions mediated by a dense gas of Rydberg atoms,
demonstrating photon dimers and trimers [2], and pho-
tonic vortices [3]. Reaching processes of higher order
would find applications in multi-photon quantum logic
[4] and the study of many-body photon states [5–7], but
has remained out of reach since it requires inducing even
stronger interactions between photons.

In the field of microwave quantum optics with super-
conducting circuits [8–10], the nonlinearity of the Joseph-
son junction is employed to mediate interactions between
photons. These photons are typically stored in an LC
circuit [11] of angular frequency Ω = 1/

√
LC (L and C

are the circuit inductance and capacitance, respectively).
Superconductivity endows these circuits with low photon
loss, and quality factors exceeding one million are rou-
tinely observed [12–14]. When such a circuit is shunted
by a Josephson junction, interactions between photons
appear (Fig. 1). The Hamiltonian takes the form

Ĥideal = ℏΩâ†â− EJ cos(ϕ̂− ϕext)

ϕ̂ = η(â+ â†) , (1)

where ℏ is the reduced Planck constant and â is the pho-
ton annihilation operator. The interaction energy stems
from the Josephson cosine potential with Josephson en-
ergy EJ , and ϕ̂ is the phase drop across the junction with
η its zero-point fluctuations. The loop formed by the

oscillator inductance and the junction is threaded by ex-
ternal magnetic flux denoted ϕext. Expanding the co-
sine into its Taylor series reveals the various interaction

processes. For example, the
[
η(â+ â†)

]4
term yields a

two-photon interaction term â†
2

â2 corresponding to the
Kerr effect. A celebrated success of microwave quantum
optics was the first realization of a Kerr interaction that
exceeded the photon loss rate, demonstrating the collapse
of a coherent state into multi-component Schrödinger cat
states [15]. In this letter, we address the problem of in-
ducing higher-order processes of the form â†

n

ân where
n = 3, 4, and beyond.

The relative strength of multi-photon processes is gov-
erned by the dimensionless quantity η. It can be ex-
pressed as η =

√
πZ/RQ, where Z =

√
L/C is the LC

circuit impedance, and RQ ≈ 6.4 kΩ is the superconduct-
ing resistance quantum [16]. The n-photon process â†

n

ân

has a strength that scales as (ηn/n!)
2
, and therefore, its

activation for large n requires entering the regime η > 1,
or equivalently Z ≫ RQ. However, fabricating an LC
oscillator with a characteristic impedance exceeding the
superconducting resistance quantum is challenging, al-
though progress is being made with the development of
superinductances [17–20]. Recently, η ≈ 1 was achieved
in a planar coil resonator, and emissions of k-photon
bunches (k = 1 to 6) were observed by activating the

process âk + â†
k

with a voltage-biased junction [21].

Another route towards large phase fluctuations is to
replace the Josephson junction, that allows Cooper-
pair tunneling, by a dipole that only allows pairs of
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FIG. 1. Principle of high-order photon processes. (a) Electri-
cal circuit depicting a superconducting LC oscillator (black)
shunted by a generalized Josephson junction (grey) that
only permits Cooper-pair tunneling in pairs. The circuit is
threaded by an external flux denoted ϕext. (b) Potential and
energy levels (solid lines) of this nonlinear oscillator [Eq. (1)
with parameters in Tab. I] and its linear equivalent (dashed
lines) as a function of the superconducting phase difference at
ϕext = π. Crucially, the adjacent transition frequency shift δn
from the bare frequency ω0 alternates in sign when ascending
the ladder. (c) Photon process diagrams for the first four in-
teraction orders and corresponding interaction energies Jn.

Cooper pairs to tunnel [Fig. 1(a)]. In the basis of tun-
neled Cooper-pair number N , the tunneling operator
is transformed as 1

2

∑
N (|N⟩ ⟨N + 1|+ |N + 1⟩ ⟨N |) →

1
2

∑
N (|N⟩ ⟨N + 2|+ |N + 2⟩ ⟨N |). Equivalently, in the

conjugate phase representation φ, cos φ̂ → cos 2φ̂ [22,

23]. Denoting ϕ̂ = 2 × φ̂, we see that phase fluctua-
tions are effectively doubled: η = 2 ×

√
πZ/RQ [24]. In

the extreme regime of η > 1, we further require that
EJ ≪ ℏΩ [Fig. 1(b)], so that the Josephson cosine po-
tential primarily induces n-photon interaction processes
â†

n

ân [Fig. 1(c)].

In this experiment, we implement a superconducting
LC oscillator shunted by a two-Cooper-pair tunnel el-
ement. We place ourselves in the unexplored regime
where the tunneling energy is smaller than the oscillator
transition energies, and the zero-point phase fluctuations
exceed one: EJ/ℏΩ = 0.28 and η = 3.4. We measure
the first four transition energies of our device, and find
that unlike a Kerr resonator, they do not follow a mono-
tonic trend. Instead, we observe an alternation of the
sign of the oscillator frequency shift for each added pho-
ton. From this spectroscopic signature, we extract two-,
three-, and four-photon interaction processes of ampli-
tudes greater than 70MHz, that alternate in sign, and
far exceed the transition linewidths of 200 kHz. The re-
alization of these unprecedentedly high-order photon pro-

FIG. 2. Signatures of higher-order photon processes. (a)–
(b) Simulated Wigner quasiprobability distribution represent-
ing the initial time evolution of the coherent state |α⟩ with
α = 1.7 for small and large quantum phase fluctuations.
This value of α was chosen to match η/2 for η = 3.4 (see
text). As quantum phase fluctuations increase, the evolution
remarkably transitions from diffusive to nondiffusive. Simu-
lated transition frequency shifts δn = ωn − ω0, where ωn is
the transition frequency between energy levels n and n + 1,
are represented versus photon number at the starred exter-
nal flux value (c)–(d), and versus external flux (e)–(f). We
observe the transition from an ordered to an alternating ar-
rangement that asymptotically approaches a Bessel function
(dashed lines). Simulations correspond to numerical diago-
nalization and time propagation of Eq. (1) with parameters
in Tab. I.

cesses opens avenues in microwave quantum optics, such
as multi-photon quantum logic [4], the study of many-
body photon states [6], or the processing of protected
qubits [25].

We proceed to the analysis of the ideal Hamiltonian
in Eq. (1) in the unexplored regime EJ ≪ ℏΩ and η > 1
(Fig. 1), and for simplicity, we set ϕext = 0. Note that the
cosine in Eq. (1) may be decomposed as cos

[
η(â+ â†)

]
=

1
2

(
D̂η + D̂−η

)
, where D̂η = exp

[
iη(â+ â†)

]
is the dis-

placement evolution operator. Remarkably, this evolu-
tion operator that usually results from the integration
of a linear Hamiltonian ∝ â + â† over time enters the
Hamiltonian directly. As a consequence, even at short
times, a quantum state evolving under this Hamiltonian
in Eq. (1) will be displaced across phase-space by ±η.
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FIG. 3. Experimental implementation. (a) Electrical circuit for the KITE (green) shunted by a superinductance (blue) and
coupled through a shared inductance (purple) to an LC oscillator used for dispersive readout. The two small junctions have
slightly different Josephson energies E±

J = (1 ± ε)EJ and charging energies E±
C = EC/(1 ± ε), with ε ≪ 1, due to junction

fabrication variation. (b) Optical micrograph of the physical device, with false color indicating the constituent Josephson
junctions. Aluminum and niobium electrodes appear in white and grey, respectively. (c)–(f) Two-tone reflection spectroscopy
(background subtracted) of the four lowest transitions from the ground state along the four edges of the primitive cell in
the two-dimensional external flux landscape (inset diagrams), and (g)–(j) accompanying readout spectroscopy. Theoretical
transition frequencies (dashed lines) are obtained from numerical diagonalization of the three-mode circuit model with six
fitted Hamiltonian parameters. The dominance of two-Cooper-pair tunneling along the θext = π edge strikingly suppresses the
residual flux dispersion of the first four transition frequencies.

The effect is particularly striking when initializing the
system in a coherent state of amplitude α = η/2 [25],
so that |±α⟩, that are distant by 2α is phase-space, are
directly coupled through cos

[
η(â+ â†)

]
[Fig. 2(b)]. This

is qualitatively different from the familiar diffusive-like
evolutions resulting from low-order photon interactions
[15] [Fig. 2(a)].

We now express Ĥideal in Eq. (1) in terms of n-photon
interaction processes [Fig. 1(c)]. We start by expanding
the cosine into a normal ordered Taylor expansion. Then,
by virtue of the rotating wave approximation (RWA), we
neglect non-particle number conserving terms. We arrive
at [26] :

Ĥideal ≈ ℏω0â
†â+

∑
n≥2

Jnâ
†n ân , (2)

where the n-photon interaction energy takes the form
Jn = −EJe−η2/2(−1)n (ηn/n!)

2
, and the renormalized

frequency is ω0 = Ω + J1/ℏ. Note that Jn/Jn−1 =
−(η/n)2, and hence the interaction strength is maximal
for the integer order closest to η. The eigenenergies of Eq.
(2) are En = nℏω0+

∑n
k=2

n!
(n−k)!Jk, and the experimen-

tally accessible quantities are the transition frequencies

ωn = (En+1 − En)/ℏ. We introduce the transition fre-
quency shift in the presence of n photons as δn = ωn−ω0

[Fig. 1(b)] and we find :

δn =

n+1∑
k=2

k
n!

(n+ 1− k)!
Jk/ℏ . (3)

In the familiar situation of the Kerr oscillator where
η ≪ 1, J2 ≈ −EJη4/4 is half the Kerr shift per pho-
ton and Jn≥3 can be neglected. Hence ωn ≈ ω0+2nJ2/ℏ
and the transition frequency monotonically shifts for each
added photon [Figs. 2(c) and 2(e)]. This is in stark con-
trast with the regime of extreme phase fluctuations ex-
plored in this work where the transition frequency shift
may alternate in sign for each added photon [Figs. 2(d)
and 2(f)]. This resembles the oscillatory nonlinearity pre-
dicted in a resonator containing a phase-slip element [27].

Our circuit implementation of Ĥideal in Eq. (1) is de-
picted in Figs. 3(a) and 3(b). It consists of a high
impedance LC oscillator. The inductance, which we aim
to maximize, is formed by a chain of 90 Josephson junc-
tions, resulting in an inductive energy EL/h = 0.53GHz.
The capacitance, which we aim to minimize, originates
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EJ/h EC/h EL/h ϵL/h ϵC/h ε

3.92 6.23 0.53 6.73 5.65 0.032

Ω/2π EJ/h δEJ/h η

2.86 0.79 0.27 3.40

TABLE I. Extracted model parameters. The first line of pa-
rameters are found by fitting the spectral lines in Fig. 3(c)–
(f) to the three-mode circuit Hamiltonian of Fig. 3(a) in the
absence of the readout mode [26]. The second line of param-
eters are found by fitting the measured transition frequencies
at θext = π [Fig. 4(a)] to the effective one-mode Hamiltonian
in Eq. (4). All energy scales are given in gigahertz.

from the capacitance between the two wires linking the
oscillator to the tunneling element, resulting in charging
energy ϵC/h = 5.65GHz. Tunneling occurs through a so-
called Kinetic Interference coTunneling Element (KITE)
[24, 28]. It consists of two parallel arms that form a loop
threaded by an external flux θext. Each arm contains
a small junction of Josephson energy E±

J = EJ(1 ± ϵ)
and charging energy E±

C = EC/(1 ± ϵ), with EJ/h =
3.92GHz, EC/h = 6.23GHz and fabrication uncertainty
results in a small asymmetry factor ϵ = 0.032. Each
small junction is placed in series with 6 large junctions
of a total inductive energy ϵL/h = 6.73GHz. This non-
vanishing series inductance induces the tunneling of pairs
of Cooper-pairs. Finally, this circuit is inductively cou-
pled to a resonator for readout [29].

The circuit parameters quoted above are extracted by
fitting a three-mode circuit model [26] (discarding the
readout mode) to two-tone spectroscopy data at various
flux biases (θext, φext) [Figs. 3(c)–(f)]. This three-mode
Hamiltonian is 2π periodic in (θext, φext) and its spec-
trum possesses inversion symmetry about (θext, φext) =
(0, 0), (0, π), (π, 0), and (π, π) [30]. Therefore, these
four points are the vertices of a plaquette that consti-
tutes the primitive cell of the circuit spectrum as a func-
tion of external flux. We acquire the circuit spectrum
along the edges of this plaquette [diagrams in Figs. 3(c)–
(f)]. At each bias point, we start by acquiring the re-
flection spectrum of the readout resonator [Figs. 3(g)–
(j)]. We then set the readout tone on resonance, and
sweep a probe tone over a broad spectral range [Figs.
3(c)–(f)]. When the probe hits a circuit transition from
the ground state to the n-th excited state, the reflected
readout signal is affected. We identify several transitions
that are captured by a three-mode circuit model [26]
(dashed lines). The feature near 4.4GHz corresponds
to a parasitic mode visible in electromagnetic simula-
tions, and the one near 5.1GHz corresponds to the read-
out resonator. Other non-captured features could arise
from multi-photon transitions to higher excited states or
junction array modes. The circuit parameters we extract
from this fit are summarized in Tab. I.

Importantly—at sufficiently low frequencies (here be-

low about 20GHz)—our circuit is well described by a
single-mode Hamiltonian that emulates the one in Eq.
(1) [26]. Discarding the readout mode and the two KITE
self-resonant high-frequency modes, we focus on the LC
oscillator of inductive energy EL and charging energy
ϵC . This oscillator is shunted by a KITE that renor-
malizes its frequency Ω and provides nonlinearity. In
the regime ϵL ≫ EJ , the potential energy of one arm
of the KITE traversed by a phase drop of φ takes the

form U±(φ) ≈ −E±
J cosφ +

E±
J

2

4ϵL
cos 2φ and higher har-

monics have been neglected [26]. Biasing the circuit at
θext = π, Cooper-pair tunneling across both arms in-
terferes destructively, while cotunneling interferes con-
structively. Indeed, the potential energy of the KITE
is U+(φ) + U−(φ + π) ≈ −δEJ cosφ + EJ cos 2φ, with
δEJ = 2ϵEJ and EJ ≈ E2

J/2ϵL. Conveniently, EJ can
be made smaller than the oscillator frequency Ω by ade-
quately choosing EJ and ϵL. In summary, this yields an
effective Hamiltonian for our circuit at θext = π of the
form [26]:

Ĥcircuit = ℏΩâ†â+ EJ cos[2(φ̂− φext)]

− δEJ cos(φ̂− φext) , (4)

where φext is the flux threading the loop formed by the
KITE and the oscillator inductance. Note that Ĥcircuit

corresponds to Ĥideal up to the perturbative term in δEJ ,
with the correspondence ϕ̂ = 2φ̂ and ϕext = 2φext + π.
Additionally, the Jn obtained from Eq. (4) depend on
external flux and contain an added contribution from the
term in δEJ .

We extract the parameters of the one-mode Hamilto-
nian in Eq. (4) by fitting this model to the measured
transition energies at θext = π [Fig. 4(a)]. The resulting
parameters are displayed in Tab. I. Two notable features
are visible in the data. First, these transition frequencies
vary in a ±500MHz window—a ±17% fraction of the
central frequency Ω/2π = 2.86GHz. This confirms that
the flux dependent tunneling amplitude is a perturbation
to the LC oscillator frequency, i.e. EJ , δEJ < ℏΩ. In par-
ticular, we find EJ/h = 0.79GHz and the perturbation
δEJ/h = 0.27GHz. Second, the transition frequencies
ωn between levels n and n+ 1 are not ordered in n. In-
stead, they interlace as a function of φext, indicating that
we have entered the regime of large phase fluctuations.
For example, at φext = 0.2, ω0 > ω1, ω1 < ω2, and
ω2 > ω3 [Fig. 4(b)]. From this measured spectrum, we
compute the n-photon interaction strengths Jn for n = 2,
3, and 4 [Fig. 4(c)] by inverting Eq. (3) [31]. Notably, we
find that |J2| ≈ |J3|, which is consistent with the ex-
tracted η = 3.4.
In conclusion, this experiment explores a new regime

of nonlinear microwave quantum optics where interac-
tions between photons are so strong that second-, third-,
and fourth-order processes are of comparable amplitude
and largely exceed the photon decay rate. We access
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FIG. 4. Spectral interlacing. (a) Adjacent transition frequen-
cies obtained from two-tone measurements (open circles) and
numerical diagonalization of the one-mode Hamiltonian (solid
curves) along θext = π. (b) Transition frequency shifts δn
and (c) interaction strengths Jn extracted from measurements
(open circles) and analytic expressions depending on the fit-
ted circuit parameters (fitted circles) at the starred external
flux value. The transition frequency shifts alternate in sign
while remaining much smaller than the transition frequency
itself, directly corresponding to similarly-sized Hamiltonian
coefficients for four-wave, six-wave, and eight-wave mixing.

this regime with photons stored in a high impedance LC
oscillator that is shunted by a two-Cooper-pair tunnel-
ing element, effectively boosting phase fluctuations. Two
technical challenges must be met: the tunneling energy
EJ must be weaker than the oscillator energy ℏΩ, and the
phase fluctuations η across the tunneling element must
exceed one. We measure the first four transition fre-
quencies of our circuit, and observe their interlacing ver-
sus flux. From these spectra, we extract EJ/ℏΩ = 0.28
and η = 3.4. The observation of high-order photon pro-
cesses could be extended in multiple directions. One is
the study of the quantum dynamics and scattered radia-
tion correlations of this system under the action of drives
and dissipation [27]. Moreover, coupling our two-Cooper-
pair tunneling element to an array of resonators could
induce high-order interactions between multiple modes,
useful for the study of many-body photon states [5, 6].
Finally, applications are envisioned to process quantum
information that is encoded non-locally over the phase
space of an oscillator [25].
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[22] B. Douçot and J. Vidal, Pairing of Cooper pairs in a fully
frustrated Josephson-junction chain, Phys. Rev. Lett. 88,
227005 (2002).

[23] L. B. Ioffe and M. V. Feigel’man, Possible realization of
an ideal quantum computer in Josephson junction array,
Phys. Rev. B 66, 224503 (2002).

[24] W. C. Smith, A. Kou, X. Xiao, U. Vool, and M. H. De-
voret, Superconducting circuit protected by two-Cooper-
pair tunneling, npj Quantum Inf. 6, 8 (2020).

[25] J. Cohen, W. C. Smith, M. H. Devoret, and M. Mir-
rahimi, Degeneracy-preserving quantum nondemolition
measurement of parity-type observables for cat qubits,
Phys. Rev. Lett. 119, 060503 (2017).

[26] Supplementary material.
[27] A. M. Hriscu and Y. V. Nazarov, Model of a proposed

superconducting phase slip oscillator: A method for ob-
taining few-photon nonlinearities, Phys. Rev. Lett. 106,
077004 (2011).

[28] M. T. Bell, J. Paramanandam, L. B. Ioffe, and M. E.
Gershenson, Protected Josephson rhombus chains, Phys.
Rev. Lett. 112, 167001 (2014).

[29] W. C. Smith, A. Kou, U. Vool, I. M. Pop, L. Frunzio,
R. J. Schoelkopf, and M. H. Devoret, Quantization of
inductively shunted superconducting circuits, Phys. Rev.
B 94, 144507 (2016).

[30] W. C. Smith, M. Villiers, A. Marquet, J. Palomo, M. R.
Delbecq, T. Kontos, P. Campagne-Ibarcq, B. Douçot,
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Supplementary Material

DEVICE FABRICATION

This section details the fabrication process we follow
to produce the sample of this experiment.

Wafer preparation: The circuit is fabricated on a
430 µm-thick wafer of 0001-oriented, double-side epi-
polished Sapphire C. The sapphire wafer is initially
cleaned through a stripping process in a reactive ion etch-
ing (RIE) machine, after which it is loaded into a sput-
tering system. After one night of pumping, we initiate an
argon milling cleaning step, followed by the sputtering of
120 nm of niobium. Subsequently, we apply a protective
layer of poly(methyl methacrylate) (PMMA A6), dice the
wafer and clean the small chips in solvents. This is fol-
lowed by a 2min oxygen-stripping process and approxi-
mately 30 s of exposure to sulphur hexafluoride (SF6) in
order to remove the oxide layer formed on the niobium
during the stripping process.

Circuit patterning: We spin optical resist (S1805) and
pattern the large features (control lines and readout res-
onator capacitor pads) using a laser writer. After devel-
opment (MF319), we rinse in de-ionized water for 1min,
and etch the sample in SF6 with a 20 s over-etch. Finally,
the sample is cleaned for 10min in acetone at 50 ◦C.
Junction patterning: Next, we apply a bilayer of

methacrylic acid/methyl methacrylate [MMA (8.5) MAA
EL10] and poly(methyl methacrylate) (PMMA A6). The
entire circuit (KITE, inductive shunt, and readout res-
onator) is patterned in a single e-beam lithography step.
The development takes place in a 3:1 isopropyl alcohol
(IPA)/water solution at 6 ◦C for 90 s, followed by 10 s in
IPA. The undercut regions of the bilayer are cleaned by
oxygen-stripping for 30 s.

Junction deposition: The chip is then loaded in an
e-beam evaporator. We start with a thorough argon ion
milling for 2min at ±30◦ angles. We then evaporate
35 nm and 100 nm of aluminum, at ±30◦ angles, sepa-
rated by an oxidation step in 200mbar of pure oxygen
for 10min.

Junction characteristics: The Josephson junctions
are all fabricated from Al/AlOx/Al in a single evapora-
tion step, utilizing the Dolan bridge method. The e-beam
base dose is set to 283µCcm−2, with an acceleration volt-
age of 20 kV and a lens aperture of 7.5 µm. Three types
of junctions are fabricated. (i) Two small junctions are
located in the KITE, with an area of 0.076 µm2. They
are patterned with a dose factor of 0.9 and an undercut
dose of 0.2, resulting in an inductance per junction of
42 nH. (ii) A total of 12 large array junctions are found
within the KITE loop, along with a further 90 unshared
shunting array junctions. These junctions have an area
of 0.62 µm2, and are patterned with a dose factor of 0.9
and an undercut dose of 0.1, resulting in an inductance

FIG. S5. Optical micrograph of the device and scanning elec-
tron microscope images of the three Josephson junction types
from a nominally identical sample. (Green) one of the two
small KITE junctions. (Blue) 14 of the array junctions that
form both the internal KITE inductance and the inductive
shunt. (Purple) 12 of the array junctions that form the shared
inductance between the circuit and the readout resonator, as
well as the self-inductance of the readout. All junctions are
fabricated in one step using Dolan bridges.

per junction of 4 nH. (iii) There are 29 larger array junc-
tions that constitute the readout resonator inductance,
19 of which are shared. These junctions have an area of
3µm2, and are patterned with a dose factor of 0.8 and
an undercut dose of 0.1, resulting in an inductance per
junction of 0.7 nH.
Sample mounting: The chip was subsequently glued

with PMMA onto a PCB, wire-bonded and mounted into
a sample holder. The device was then thermally anchored
to the base plate of a Bluefors dilution refrigerator, sur-
rounded by three concentric cans for magnetic and in-
frared shielding (outer: cryoperm, middle: aluminum,
inner: copper). An optical micrograph of the circuit and
SEM images of some junctions are shown in Fig. S5.

MATHEMATICAL DERIVATIONS

In this section we derive the expression of the n-photon
interaction strength Jn that enters Eq. (2), as well as Eq.
(3) that relates Jn to the transition frequency shift δn.
We start from Hamiltonian (1) with

ϕext = 0 for simplicity. Note that the co-
sine may be decomposed as cos

[
η(â+ â†)

]
=

1
2

(
exp

[
iη(â+ â†)

]
+ exp

[
−iη(â+ â†)

])
. Since

the commutator [â†, â] commutes with both â
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and â†, we may use Glauber’s formula as follows

exp
[
iη(â+ â†)

]
= e−η2/2eiηâ

†
eiηâ. We then expand

each exponential into its Taylor series. Since we place
ourselves in the regime ℏΩ ≫ EJ , we perform the
rotating wave approximation (RWA) by neglecting terms
that do not conserve particle number, yielding

cos ϕ̂

∣∣∣∣
RWA

= e−η2/2
+∞∑
n=0

(−1)n
(
ηn

n!

)2

â†
n

ân .

Inserting this last equation in Eq. (1) yields Hamilto-
nian (2) with :

Jn = −EJe−η2/2(−1)n (ηn/n!)
2
.

We now turn to the derivation of Eq. (3). The eigen-
vectors of Hamiltonian (2) are Fock states |n⟩ where n
is an integer. Using the formula: for n ≥ 0, â† |n⟩ =√
n+ 1 |n+ 1⟩ and for n ≥ 1, â |n⟩ =

√
n |n− 1⟩ and

â |0⟩ = 0, their associated eigenvalue En take the form

En = nℏω0 +

n∑
k=2

n!

(n− k)!
Jk .

We define the transition frequency ωn = (En+1 −En)/ℏ,
and δn = ωn − ω0. Note that

En+1 = (n+1)ℏω0 + (n+1)!Jn+1 +

n∑
k=2

(n+ 1)!

(n+ 1− k)!
Jk ,

so that

ℏδn = (n+ 1)!Jn+1 +

n∑
k=2

(
(n+ 1)!

(n+ 1− k)!
− n!

(n− k)!

)
Jk

= (n+ 1)!Jn+1 + n!

n∑
k=2

k
n!

(n+ 1− k)!
Jk

=
n+1∑
k=2

k
n!

(n+ 1− k)!
Jk .

HARMONICS FROM SINGLE ARM KITE

In this section we demonstrate that a Josephson
junction in series with a small inductance generates
Josephson harmonics [32]. We carry out this simple
derivation at zero frequency where capacitors may
be disregarded. We consider the circuit depicted in
Fig. S6, in the regime where the inductive energy ϵL
largely exceeds the Josephson energy EJ . We denote
ν = EJ/ϵL (here ν ≪ 1), φ the phase drop across
the entire circuit, and φJ the phase drop across the
junction alone. The potential energy U of this circuit
is the sum of the inductive energy UL = 1

2ϵL(φ − φJ)
2

and the Josephson energy UJ = −EJ cosφJ . This

FIG. S6. Electrical circuit diagrams depicting the emergence
of Josephson harmonics when a linear inductance is con-
nected in series with a Josephson junction without its self-
capacitance (left). Imposing Kirchhoff’s current law on the
central node yields an effective potential containing both one-
and two-Cooper-pair tunneling terms (right).

yields U = ϵL
[
1
2 (φ− φJ)

2 − ν cosφJ

]
. Also,

φJ is tied to φ though Kirchhoff’s current law
EJ sinφJ = ϵL(φ− φJ). This equation may be recast as
φJ = φ − ν sinφJ , and to first order in ν, simplified to
φJ = φ − ν sinφ + O(ν2). Injecting this expression in
the inductive energy yields UL = 1

2ϵL
[
ν2 sin2 φ+O(ν3)

]
and UJ = −ϵL

[
ν cosφ+ ν2 sin2 φ+O(ν3)

]
.

Summing these two energies results in U =
−ϵL

[
ν cosφ+ 1

2ν
2 sin2 φ+O(ν3)

]
. Finally, disre-

garding an irrelevant constant, we recover

U(φ) = −EJ cosφ+
1

2

E2
J

2ϵL
cos 2φ+ ϵLO

[
(EJ/ϵL)

3
]
.

(S5)
The first term in this expression is the usual Josephson
energy that allows Cooper-pair tunneling. The second
term is the second Josephson harmonic, and is responsi-
ble for the tunneling of pairs of Cooper pairs (Fig. S6).
The remaining perturbative term encompasses higher or-
der harmonics.

MODEL REDUCTION

Outline of analysis

In this section, we describe the mathematical proce-
dure for reducing the three-mode Hamiltonian of an LC
oscillator shunted by a KITE to an effective one-mode
Hamiltonian. The procedure that we use is not mathe-
matically rigorous, yet it provides a reduced model that
agrees both qualitatively and, to a lesser extent, quan-
titatively with the full circuit model (see Fig. S8). Im-
proving the agreement and establishing a firm mathe-
matical foundation will be the subject of future work
[33]. We neglect the readout resonator and consider the
circuit in Fig. S7. To realize the Hamiltonian in Eq.
(4) at θext = π, we first place ourselves in the param-
eter regime EL ≪ ϵC ∼ EC , which guarantees large
phase fluctuations in the oscillator. Second, we require
EJ ≲ ϵL ≪ EJ/ε to lower the two-Cooper-pair tunneling
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energy below the bare Josephson energy EJ while keep-
ing single-Cooper-pair tunneling a perturbation. Finally,
making the oscillator frequency the largest energy scale
in the effective Hamiltonian (but still much smaller than
the junction plasma frequency), we arrive at the param-
eter regime EL ≪ ϵC ∼ EC , EJ ≲ ϵL and ε ≪ 1.

FIG. S7. Electrical circuit diagram for the KITE (green)
shunted by a superinductance and a capacitance (blue). As in
the main text, we have E±

J = (1±ε)EJ and E±
C = EC/(1±ε).

Our analysis is organized as follows. We first write
down the exact Hamiltonian for the circuit in Fig. S7
and move to a basis where the kinetic energy is diagonal
and the modes are weakly coupled. Then, we derive the
low-frequency component of the Hamiltonian evaluated
at the equilibrium positions of the high-frequency modes.
Finally, we derive the ground state energy of the high-
frequency component and combine the results into an
effective single-mode low-energy Hamiltonian.

Three-mode Hamiltonian and basis transformation

We start with the circuit Hamiltonian [30]

Ĥ =
2EC

1− ε2
(N̂2

Σ + N̂2
∆ − 2εN̂ΣN̂∆) + 4ϵCM̂

2 +
1

2
ELϑ̂

2

+ ϵL

(
ϑ̂− φ̂Σ − φext − 1

2θext

)2

+ ϵL
(
φ̂∆ − 1

2θext
)2

− 2EJ cos φ̂Σ cos φ̂∆ + 2εEJ sin φ̂Σ sin φ̂∆ , (S6)

where we have introduced symmetric and antisymmetric
variables φ̂Σ = 1

2 (φ̂1 + φ̂2) and φ̂∆ = 1
2 (φ̂1 − φ̂2). Note

that N̂ =
(
N̂Σ N̂∆ M̂

)T
are the conjugate Cooper-pair

numbers to ϕ̂ =
(
φ̂Σ φ̂∆ ϑ̂

)T
. Unfortunately, model

reduction using the Born-Oppenheimer approximation
would be inefficient in this basis due to the strong cou-
pling between ϑ̂ and φ̂Σ arising from the large value of
ϵL relative to the other energy scales.
To remedy this, we move to a basis where the dominant

terms in the Hamiltonian are diagonal. The Hamiltonian
in Eq. (S6) may be decomposed into two parts: a linear
Hamiltonian that accounts for the energy of the capac-
itances and internal KITE inductance (proportional to
EC , ϵC , and ϵL), and a nonlinear potential (proportional
to EL and EJ). In our parameter regime, we can regard

the latter as a perturbation and proceed by diagonalizing
the former, which has the form

lim
EJ→0
EL→0

Ĥ = 4N̂TECN̂ + 1
2 ϕ̂

TELϕ̂

EC = ϵC

 z −εz 0
−εz z 0
0 0 1

 EL = 2ϵL

 1 0 −1
0 1 0
−1 0 1


upon a gauge transformation to shift φ̂Σ → φ̂Σ − φext −
1
2θext and φ̂∆ → φ̂∆ + 1

2θext. We have also defined

z = EC

2ϵC(1−ε2) = EC

2ϵC
+ O(ε2) to parameterize the de-

gree of capacitive loading, which diverges in the limit of
vanishing junction capacitance. This linear Hamiltonian
can be diagonalized with the transformation

ϕ̂ = Λφ̂

Λ =

1 (z − 1)ε −z
0 1 z(1 + z)ε
1 −ε 1

+O(ε2) ,

which has the effect of shuttling the coupling from terms
of order ϵL to terms of smaller order EJ and EL. We
denote the transformed superconducting phases φ̂ =(
φ̂ θ̂ ζ̂

)T
. Note that in the limit of vanishing junc-

tion asymmetry and capacitance, z diverges and ϑ̂ → φ̂.
Recalling that the charging and inductive energy ma-
trices transform according to EC → Λ−1EC(Λ

T)−1 and
EL → ΛTELΛ, we arrive at the Hamiltonian

Ĥ =
4ϵC

1 + z−1
N̂2

φ + 2ECN̂
2
θ +

4ϵC
1 + z

N̂2
ζ

+ ϵLθ̂
2 + ϵL(1 + z)2ζ̂2

+
1

2
EL

(
φ̂+ ζ̂ − εθ̂ + φext +

1
2θext

)2

− 2EJ cos
[
φ̂− zζ̂ + (z − 1)εθ̂

]
× cos

[
θ̂ + z(1 + z)εζ̂ + 1

2θext

]
+ 2εEJ sin

(
φ̂− zζ̂

)
sin

(
θ̂ + 1

2θext

)
+ ϵL O(ε2) ,

(S7)

where we have introduced the transformed conjugate
Cooper-pair numbers N̂φ, N̂θ, and N̂ζ ; and shifted φ̂ →
φ̂+φext +

1
2θext. Note that the charging energy of the φ̂

mode approaches ϵC when the junction capacitance van-
ishes. On the other hand, when the shunting capacitance
and junction asymmetry vanish, the Josephson potential
terms in Eq. (S7) are identical to those in Eq. (S6).

Born-Oppenheimer approximation

In our parameter regime, ϵL is the dominant energy
scale. Therefore, the Hamiltonian in Eq. (S7) describes
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FIG. S8. Comparison of models of the device. (a–b) Transi-
tion frequencies from the ground state obtained from numeri-
cal diagonalization of the three-mode Hamiltonian in Eq. (S6)
and the one-mode Hamiltonian in Eq. (S10) with parameters
in the first row of Tab. I, in addition to analytic results from
RWA with the same parameters. Note the difference between
these parameters and those obtained from a Hamiltonian fit
(first and second rows of Tab. S2, respectively). (c) Adjacent
transition frequencies emphasizing the differences between the
three models.

Ω/2π EJ/h δEJ/h η

Analytic 2.93 1.14 0.25 3.31

One-mode fit 2.86 0.79 0.27 3.40

TABLE S2. Comparison of the effective circuit parameters.
The top row is obtained from fitting the data to the one-mode
Hamiltonian, while the second row is obtained from analytic
model reduction with physical circuit parameters found by
fitting to the three-mode Hamiltonian.

two high-frequency modes θ̂ and ζ̂, and one low-frequency
mode φ̂, which are all perturbatively coupled through
the terms proportional to EJ and EL. Our goal is to
derive an effective Hamiltonian for the low-frequency φ̂
mode. A method that is well suited for this purpose is
the Born-Oppenheimer approximation, where one sets φ̂
to a classical parameter φ in Eq. (S7) and removes the
kinetic term proportional to N̂2

φ, yielding the Hamilto-

nian Ĥθζ . One then needs to calculate the ground state

energy E0(φ) of Ĥθζ . The Born-Oppenheimer approxi-
mation states that the effective potential of the φ̂ mode
is well captured by E0(φ̂). However, an analytic expres-
sion for E0(φ) is unknown. Instead, we seek a low-order
expansion of Eq. (S7) in order to analytically compute
an approximate expression for E0(φ).
We recall that we are placed in the parameter regime

where EL ≪ EJ ≲ ϵL. In the following, we will assume
EJ/ϵL = O(λ) and EL/EJ = O(λ), where λ is a small
parameter. In the semiclassical limit of vanishing quan-
tum fluctuations of θ̂ and ζ̂, the effective potential of φ̂
coincides with the full potential Û from Eq. (S7) evalu-

ated at the equilibrium values θ̂0 and ζ̂0. The equilibrium

values themselves are found by solving ∂Û
∂θ̂

∣∣
θ̂0,ζ̂0

= 0 and

∂Û
∂ζ̂

∣∣
θ̂0,ζ̂0

= 0. Retaining only the lowest-order terms in λ

and ε, we find

θ̂0 = −EJ

ϵL

[
sin 1

2θext cos φ̂+O(λ, ε)
]

ζ̂0 =
EJz

ϵL(1 + z)2
[
cos 1

2θext sin φ̂+O(λ, ε)
]
. (S8)

The low-frequency Hamiltonian can then be
calculated—in the semiclassical limit of vanishing
fluctuations of the phases θ̂ and ζ̂—to be

Ĥφ =
4ϵC

1 + z−1
N̂2

φ + Û
∣∣∣
θ̂0,ζ̂0

=
2EC

1 + z
N̂2

φ +
1

2
EL

(
φ̂+ φext +

1
2θext

)2
− E2

J

2ϵL

[
sin2 1

2θext −
z2

(1 + z)2
cos2 1

2θext

]
cos 2φ̂

− 2EJ cos 1
2θext cos φ̂+ 2εEJ sin 1

2θext sin φ̂

+ λEJ O(λ, ε) + EC O(ε2) . (S9)

Finally, shifting φ̂ → φ̂−φext− 1
2θext and setting θext = π

yields the single-mode model referenced in the main text,

Ĥφ

∣∣∣
π
=

4ϵC
1 + z−1

N̂2
φ +

1

2
ELφ̂

2 +
E2

J

2ϵL
cos [2(φ̂− φext)]

− 2εEJ cos(φ̂− φext)

+ λEJ O(λ, ε) + EC O(ε2) (S10)

after neglecting constant terms. We see that the shunting
capacitance renormalizes the charging energy, while the
inductive energy is completely unchanged. The first, sec-
ond, and third terms in the potential represent the con-
tributions of the inductive shunt, two-Cooper-pair tun-
neling, and asymmetric dc-SQUID, respectively.
The Hamiltonian in Eq. (S10) is the main result of

this section, and it explains both the approximate val-
ues of the effective parameters Ω, EJ , δEJ , and η of the
low-energy Hamiltonian as well as the functional form.
Overall, we sought a lowest-order result in the the pa-
rameters ε and λ, and completely neglected fluctuations
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of the high frequency modes. The parameters achieved
in the experiment are not especially deep in this param-
eter regime—for instance EJ/ϵL = 0.58 and the fluctu-

ations of θ̂ are of order
(

EC

2ϵL

)1/4

= 0.82 (similarly for

ζ̂)—making the effective parameters in Eq. (S10) differ
slightly from those found using a fit (see Tab. S2). Im-
proved accuracy is likely possible using higher order cor-
rections in λ and including fluctuations.

FIG. S9. Reflected readout resonator phase as a function of
dc current in both loop and KITE flux bias lines (respec-
tively the top and left current sources in Fig. 3b) at probe
frequency 5.055 32GHz. The phase response is periodic in
two directions, which we identify with white arrows to be the
independent external fluxes φext and θext.

EXTERNAL FLUX DEPENDENCE AND
COHERENCE TIMES

Due to their layout, our physical flux bias lines (see
Fig. 3b) inevitably couple to both circuit external fluxes
φext and θext. For initial characterization, we probe the
readout resonator at the single frequency 5.055 32GHz
and measure the reflected phase as a function of both bias
currents. As the resulting pattern is 2D-periodic with
many flux quanta visible, we can easily find the affine
transformation that maps bias currents to φext and θext,
as shown in Fig. S9. Additionally, we observe external
flux drifts on the order of 1–2% of a flux quantum on
daily timescales, which we calibrate regularly using the
procedure described in Ref. 30.

In addition to the spectroscopy data shown in the
main text, we acquire coherence data of the lowest fre-
quency transition—the qubit—at the four external flux
sweet spots, as shown in Fig. S10. As visible in Fig.
3, the qubit frequency varies by an order of magnitude
from 636MHz to 6.882GHz as the external flux point is
stepped from (θext, φext) = (0, π) to (π, π) to (π, 0) to

(0, 0); in other words, counter-clockwise around the pla-
quette in Fig. S10 starting at the green point. As the
qubit frequency increases, the observed relaxation times
decrease from 21.3 µs to 4.8µs, indicating a roughly con-
stant quality factor loss channel such as dielectric loss.
The coherence times measured with a Ramsey sequence
range from 0.8–6.6 µs and improve by about a factor of
two using a single echo pulse (not shown). The dephasing
is likely due to a combination of second-order flux noise,
phase-slips in the array junctions, and photon shot noise
in the readout resonator.
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FIG. S10. Qubit coherence times measured at the four distinct flux sweet spots, as indicated by colored circles in the central
panel, which is a zoom of the wide external flux map in Fig. S9. The sweet spots are labeled by their coordinates (θext, φext),
and the white lines connecting them correspond to the axes used for the spectroscopy data in Fig. 3.
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