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Abstract

This manuscript presents an experimental investigation into the effectiveness
of Sliding Mode Control (SMC) for vibration mitigation of a structure equipped
with a Hybrid Mass Damper (HMD), as compared to conventional linear con-
trollers. The experimental setup involves a cantilever beam exhibiting a first
bending mode at 21Hz, subjected to strong parametric uncertainties and exter-
nal excitation through a shaker. Additionally, an inertial actuator with internal
resonance at 21Hz is utilized to apply passive and active control to the vibrating
beam. The SMC approach is compared to three more common HMD control
methods: α−controller, LQG, and passivity-based control. To highlight the ro-
bustness and performance advantages of SMC, the nominal system undergoes
significant mass and inertia modifications, not accounted for during the tuning
of the observer and the controllers. The performances of the various controllers
are then compared on four scenarios: two nominal identified systems and two
configurations with uncertain parameters. Experimental results underscore the
superior capabilities of SMC in mitigating structural vibrations, showcasing not
only enhanced stability but also superior performance when confronted with
substantial parametric uncertainties, outperforming traditional linear control
methods.

Keywords: Sliding mode control, Nonlinear control, Tuned mass damper,
Hybrid mass damper, Robust control, Uncertain system

1. Introduction

The Tuned Mass Damper (TMD) is one of the most widely used passive
anti-vibration device [1, 2] in many application fields, especially in civil engi-
neering for seismic concerns or transportation since vibrations are inherent to
any vehicle dynamics. They usually consist of a suspended mass, a spring, and5

a dash-pot attached to the primary structure disturbed by an external source
of vibration. TMDs must be tuned properly in mass and stiffness such that
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their eigenfrequency matches the targeted mode on the primary structure or
bandwidth. Damping tuning must also be addressed [3, 4] in order to display
optimal passive control performances.10

However, one of the major flaws of passive TMDs is their high sensitivity
to the primary system eigenstructure. Yet, the modal response of transporta-
tion systems can vary drastically with excitation amplitude due to structural
nonlinearities [5] or with time due to configuration changes in mass distribution
or payload variations. The external excitation can also shift in the frequency15

domain as is the case for rotating machines with a variable angular velocity
typically or seismic excitation [6, 7]. Hence, many methods have been devel-
oped in the last decades to improve TMDs vibration control performances and
robustness to parametric changes in the primary structure.

Although not within the scope of this manuscript, it should be mentioned as20

one the directions possible to improve the TMDs efficiency non-linear passive
solutions also called Non-linear Energy Sinks (NES) [8, 9]. These passive vibra-
tion mitigation systems exhibit time-varying eigenfrequencies in response to the
excitation amplitude of the host structure, enabling a broader frequency range
for energy transfer between the primary structure and the proof mass. However,25

the implementation of such passive systems necessitates precise tuning of their
mechanical properties to ensure optimal performance.

An other efficient method to improve the performances of TMDs is active
control also called hybridization since the actuator is added in parallel with
the tuned spring and dash-pot forming a Hybrid Mass Damper (HMD). Among30

the numerous linear controllers applied to HMDs, one can find classical control
methods such as PID control, Optimal control, H-infinity optimization [10, 11]
or more physically oriented controllers like Direct Velocity Feedback (DVF),
Integral Force Feedback (IFF) or acceleration feedback [12], α-controller [13],
Dual-loop control [14] or Skyhook inspired control [15, 16]. Such control meth-35

ods can easily enhance the TMD passive behavior by increasing the vibration
attenuation and also enlarging the isolation bandwidth. Nevertheless, the per-
formance limits of active control are generally imposed by stability concerns.
Besides, stability margins quickly reduce or even disappear when the primary
structure suffers significant variations in its modal response due to the reasons40

mentioned earlier. As a consequence, the control can possibly degrade the vi-
bration level on the structure achieved with passive control by spill-over effect
or even be unstable.

To tackle the weaknesses of linear control when facing significant parametric
uncertainties in uncertain systems, nonlinear robust control methods have been45

developed for robotics applications first and seismic isolation as Sliding Mode
Control (SMC). A sliding surface is defined as a manifold expressed by linear or
nonlinear operators of the system states, modal or physical. Then, the dynamics
of the closed-loop system are reduced to those of the sliding variable and forced
to reach the sliding surface with a switching control signal depending on the sign50

of the sliding variable i.e the system position in the phase space with respect
to the sliding manifold. Different methods have been developed to compute the
desired sliding surface like Optimal SMC (OSMC) [17] based on linear quadratic
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minimization. Frequency-shaped sliding surfaces have also been proposed first
by Young and Ozguner [18] and developed further by Zuo and Slotine [19] for55

vibration mitigation.
Adhikari et al. [20] applied SMC to the control of HMDs on top of build-

ings for seismic vibrations only considering the state of the upper floor and
highlighted the robustness of the method. Later, new developments and ap-
plications in vibration control using SMC have shown its performance interest60

when applied to smart structures [21], nonlinear Duffing systems [22] or systems
with time delays [23].

Concha et al. [24] proposed recently a tuning method for HMD control using
SMC based on Ackermann’s formula and the original work of Ackermann and
Utkin [25]. The authors compared the performances with the classical linear65

LQR approach and also OSMC taking into account explicitly the constraint
of control signal amplitude. However, the robustness to uncertainties was not
specially addressed with the experimental setup. Adaptive SMC has also been
proposed to provide additional robustness capabilities to SMC. In [26], an adap-
tive fuzzy SMC has been applied to vibration control of a beam with parametric70

uncertainties due to mass addition leading to a 19% variation of the first modal
frequency. More recently, Hu et al. [27] used an adaptive disturbance observer
to handle the uncertainties in wind turbines and reduce the dynamic loads.
Nevertheless, if robustness is one of the main features of all the existing SMC-
derived methods, it is not always illustrated experimentally in vibration control75

applications, especially in higher frequencies than seismic excitation.
The contribution of the following paper is to experimentally emphasize the

robustness advantages of SMC in addressing vibration mitigation problems with
substantial parametric uncertainties when applied to HMDs. Thus, such nonlin-
ear control method is rarely used for vibration control at higher frequencies than80

seismic excitation or in the context of TMD hybridization. The second part of
the contribution is that few studies address practical robustness problems due
to strong parametric uncertainties in the aforementioned vibration control con-
text using SMC. Here, this nonlinear control method is compared against three
other controllers on a cantilever beam with additional/removable mass to shift85

its modal response to lower or higher frequencies. These controllers are rep-
resentative of diverse common approaches in control theory. Furthermore, the
observer design exclusively focuses on the first bending mode of the beam to
showcase the performance of the different controllers in handling unmodeled
dynamics. By doing so, the study effectively highlights the efficacy of SMC90

in managing uncertainties and its potential superiority over alternative control
methods for HMDs.

The manuscript is organized as follows: the section 2 introduces the ex-
perimental setup with its different nominal and uncertain configurations, and
respective identifications. Section 3 then develops the four different controllers,95

including SMC to be tested on the control of the HMD. Finally, section 4
presents and summarizes all the experimental results obtained and compares
the SMC performance and robustness to the three other controllers.
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2. System definition and identification

In this section, the experimental setup is presented with the identification100

method and associated results.

2.1. Experimental setup

(a) (b)

Figure 1: Experimental setup, nominal system B with additional mass.

The experimental system considered in this manuscript is a steel clamped
beam of dimensions 600×100×10mm as displayed in Figure 1 and in the cor-
responding scheme in Figure 2. An electrodynamic shaker applies a vertical105

disturbance force to the structure and a sensor measures the acceleration close
to the free end of the beam. Besides, a Micromega inertial actuator is also
placed approximately in the middle of the cantilever, close to the perturbation
force application point. This actuator, whose principle is detailed in Figure 3
acts first as an optimized passive TMD device (Tuned Mass Damper) with a110

moving mass of 160g, an internal resonance tuned at 21Hz and approximately
11% of damping factor. In addition to stiffness k and viscous damping c, the
inertial actuator is also constituted of a coil with a permanent magnet allowing
control of the force between the beam and the reaction mass with a current
signal input icontrol.115

In order to test the robustness capabilities of the different controllers, two
nominal systems, both with the first bending mode at 21Hz are to be identified:

� Nominal system A : clamped beam of dimensions 616×100×10mm,

� Nominal system B : clamped beam of dimensions 536×100×10mm with
additional mass of 0.9kg.120

Then, two uncertain configurations are to be tested:

� Uncertain system A : nominal system A with additional mass of 0.9kg.
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� Uncertain system B : nominal system B without the additional mass of
0.9kg.

The additional mass used in this context to add parametric uncertainties125

in the closed-loop provides a substantial mass variation i.e between 18.6 and
21.4%. The objective here is to shift significantly the system modal frequencies
to highlight the different controllers robustness characteristics.

dSpace control unit

accelerometer

Inertial actuator

clamped beam

additional mass

control
signal u(t)

shaker

disturbance w(t)

measure y(t)

current amplifier

Figure 2: Scheme of the experimental setup, nominal system B with additional mass.

N SS

reaction mass m

Coil

Permanent
magnet

k

icontrol

c

Figure 3: Scheme of the inertial control actuator.

2.2. Identification of the system

Let us now define H0(s) the transfer function between the electrodynamic130

shaker input disturbance w(t) and the accelerometer output signal y(t), and
H1(s) the transfer function between the inertial actuator input u(t) and the
accelerometer signal y(t) with s as the Laplace variable. Since the objective
of the control is to assist and enhance the performances of the passive TMD,
only the first mode of the beam will be considered in the model of H1(s). It is135

also well known that the addition of the TMD device on the beam adds another
mode to the original system [2].

Accordingly, the Figure 4 displays the considered simplified model of the
structure with 2 degrees of freedom wherem0 is the modal mass of the cantilever
1st bending mode added to the TMD fixed mass, m1 is the TMD mobile mass,140
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k0 is the modal stiffness of the 1st bending mode, k1 the stiffness of the TMD,
x0 and x1 are the spatial coordinates of the masses and F is the force control
input.

Figure 4: Dynamic system model.

For the sake of simplicity, the damping is not considered when deriving the
system equations of motion given by:145

m0ẍ0 = −F − k1(x0 − x1)− k0x0 (1)

m1ẍ1 = F + k1(x0 − x1) (2)

In the Laplace domain, the transfer function between the acceleration of the
beam ẍ0 and the control input F is then written from (1) as:

Ẍ0

F
(s) =

−m1s
4

(m0s2 + k0 + k1)(m1s2 + k1)− k21
(3)

According to the previous equation, we know model H1(s) as a 4th order
proper transfer function with 2 pairs of conjugate poles and 2 pairs of zeros.
The zeros are not defined as pure derivators to keep some design freedom and150

be able to correct the phase of Hi afterwards within the control bandwidth.
Thereby, H1(s) can be written as a product of two proper transfer function

of order 2:

H1(s) =

2∏
i=1

(s− zi,1)(s− zi,2)

s2 + 2ξiωis+ ω2
i

(4)

=

2∏
i=1

H1,i(s) (5)
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with (zi,1, zi,2) ∈ C2, ωi ∈ R+ is the frequency of the ith pole pair in rad.s−1

and ξi ∈ R+∗ the damping ratio. We now define a state space realization for155

each intermediate sub-function H1,i(s) as:

H1,i

{
ẋi = Aixi +Biui

yi = Cixi +Diui
(6)

with xi ∈ R2 the state vector, ui ∈ R and yi ∈ R respectively the input
and output of system H1,i. One possible realization of the state space system
(Ai, Bi, Ci, Di) is:

Ai =

[
0 1

−ω2
i −2ξiωi

]
, Bi =

[
0
1

]
, Di = 1 (7)

where the unitary gain in the control matrix Bi is a design choice. Let us now160

define two possible cases for the system zeros zi. In the first case, the identified
zeros are both real such that zi,1 = a1 and zi,2 = a2 with (a1, a2) ∈ R2. Then
Ci can be defined as:

Ci =
[
a1a2 − ω2

i , −(a1 + a2)− 2ξiωi

]
(8)

If the identified zeros are a pair of conjugate complex such that zi,1 = a1 + ib1
and zi,1 = a1 − ib1 with (a1, b1) ∈ R2. Then Ci can be defined as:165

Ci =
[
a21 + b21 − ω2

i , −2a1 − 2ξiωi

]
(9)

Thus, the total transfer function H1(s) = H1,1(s)H1,2(s) can be defined by the
following state space realization:

H1,i

{
ẋ′ = A′x′ +B′u
y = C ′x′ +D′u

(10)

with x′ ∈ R4 the state vector such that x′ = [xT
1 xT

2 ]
T , u ∈ R the voltage

control input and y ∈ R the voltage output of the accelerometer. The matrices
A′ ∈ R4×4, B′ ∈ R4×1, C ′ ∈ R1×4 and D′ ∈ R are defined as:170

A′ =

[
A1 02×2

B2C1 A2

]
, B′ =

[
B1

B2D1

]
C ′ =

[
D1C1 C2

]
, D′ = D2D1 (11)

Considering that this realization is not well balanced in terms of controlla-
bility and observability, the Gramian method [28] is applied to the system
(A′, B′, C ′, D′) by a coordinate transformation defining a new state vector x =
T−1x′ with T ∈ R4×4. The new realization of H1 is now defined by:

H1

{
ẋ = Ax+Bu
y = Cx+Du

(12)

with A = T−1A′T , B = T−1B′, C = C ′T , and D = T−1B′.175
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To identify H1(s), a white noise of RMS value 1.6V and sampling frequency
10kHz is applied to the current amplifier connected to the HMD. The measured
and identified transfer functions H1(f) are displayed in Figure 5 for the nominal
systems A and B. The identified poles and zeros are summarized in Table 1. As
desired, the poles of the nominal systems corresponding to the first two modes180

are very close to each other. As for the zeros, their placement has been tuned to
obtain the best curve-fitting within the control bandwith corresponding to the
vicinity of the 1st bending mode. As mentioned earlier, they were not defined as
pure derivators to allow phase correction close to the controlled eigenfrequencies.
Such angular correction could be due to non-perfect experimental boundary185

conditions from the beam clamping and its support table whose low frequency
dynamics are close enough to the beam first mode to disturb the system.
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Figure 5: Measured and identified transfer functions H1(f) for (a) nominal system A, and (b)
nominal system B.

- - A B

H1,1

poles
−5.53 + 129i −5 + 130.6i
−5.53− 129i −5− 130.6i

zeros
14.6 + 94.1i 13.9 + 99.6i
14.6− 94.1i 13.9− 99.6i

H1,2

poles
−27.3 + 152.4i −32.5 + 148.6i
−27.3− 152.4i −32.5− 148.6i

zeros
−132.9 −228
130 188

Table 1: Identification parameters.

Finally, Figure 7 displays the measured nominal and uncertain systems de-
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fined earlier through H1(f). Mainly, the first bending mode of the beam is
shifted in frequency from 21Hz (nominal A and B) to 17.5Hz or 26Hz giving190

an interesting variation of +24%/-17% in modal frequency for the robustness
estimation of the different controllers.

To complete the analysis of the nominal systems, the transfer functions H0

defining the frequency response function between the exogenous perturbation
from the shaker and the error sensor i.e the accelerometer, are measured by195

applying also a white noise of RMS value 2.21V and sampling frequency 10kHz
to the shaker amplifier. The results for systems A and B are displayed in Figure
6. It is worth noticing that even if nominal systems A and B are set to have the
first beam bending mode at 21Hz, they present different mass ratios and inertia
distribution which obviously impacts the global effect of the HMD on the beam200

vibration and the overall frequency response of the system.
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Figure 6: Measured transfer functions H0(f) for nominal systems A and B.

3. Control design

In the following section, 3 different controllers, representative of different
common approaches in control theory, are introduced to control the identified
nominal system (12) in addition with SMC: α-controller, LQG and passivity-205

based control. The αcontroller uses a velocity feedback method with no need of
observer, LQG is one of the most widely used optimal control method but comes
with the additional constraint of the need for a properly designed observer.
Finally, passivity-based control is in general used for systems with non-negligible
parametric uncertainties due its inherent robustness.210

3.1. α-controller

This controller introduced by Colette et al. [13] is specially designed for
the control of HMD since it only requires as input the velocity of the primary
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Figure 7: Measured transfer functions H1(f) for nominal and uncertain systems A and B.

structure at the application point of the active device. Defining v ∈ R as the
measured velocity of the beam, the control signal u is theoretically:215

u = −kα
(s+ α)

2

s2
v (13)

= −Kα(s)v (14)

with kα ∈ R+ the control gain and α ∈ R the main tuning parameter of the
controller where the optimal theoretical tuning is ω1 < α < ω2.

However, the denominator of Kα(s) adds 2 marginally stable poles in the
open loop transfer function. Thus, the controller must be modified to avoid
any offset in the command signal since the measured acceleration must also be220

integrated first before applying the control law. Hence, a high pass integrator
F in the form 1/(s+ωint) with ωint ∈ R+ and ωint << ωi ∀i ∈ [1, 2] is added to
the feedback loop between the measurement y from the accelerometer and the
α-controller. Similarly, the marginally stable poles of Kα(s) are slightly shifted
to guarantee the stability of the open loop such that:225

Kα = −kα
(s+ α)

2

(s+ ωint)
2 (15)

Finally, the Figure 8 displays the block diagram of the control loop. The
transfer function Hcl(s) between the perturbation w and the measurement y is
defined by:

Hcl(s) = H0(s) (I +H1(s)Kα(s)F (s))
−1

(16)

where the objective of the control is to minimize ||Hcl(s)||∞ by choosing properly
α and kα.230
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Figure 8: α-controller diagram.

3.2. LQG

The next linear controller being compared to robust nonlinear control is
LQG, or the widely used linear quadratic regulator in addition with a Kalman
observer. Let us define the control gain matrix K ∈ R1×4 such that the control
signal u = −Kx with x the state vector of system (12). Hence, K is determined235

by minimizing the following functional J :

J =

∫ ∞

t=0

xTQx+ uTRu dt (17)

where Q ∈ R4×4 is positive definite and R ∈ R+∗. Both matrices determine the
control gain and so the stability margin with the linear quadratic regulator K.

Since the full state vector x is not available to feed the controller, a Kalman
observer is designed to compute the estimation x̂ of x. The observer is in the240

form of the following state space realization:

˙̂x = Ax̂+Bu+ L (y − Cx̂) (18)

where L ∈ R4×1 is the observer gain matrix. Thus, the control signal is defined
by u = −Kx̂. The Figure 9 displays the block diagram of the LQG control loop.

3.3. Passivity-based control

The next controller to be applied uses the concept of passivity. The system245

is forced to reach a manifold σ = Ex = 0 and σ̇ = 0 with σ ∈ R and E ∈ R1×4.
A simple nonlinear switching control feedback can be defined as:

u = −kpsgn(σ) (19)

with kp ∈ R+. To guarantee the closed-loop stability, the linear operator E is
determined with the principle of passivity using the Kalman-Yakubovitch-Popov
lemma.250
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Figure 9: LQG controller diagram.

Figure 10: Lure’s problem scheme with static nonlinear feedback.

First, the closed loop system is put into the form of Lure’s problem where
the static nonlinear part h(σ) = kpsgn(σ) is a feedback of the linear system HE

as displayed in Figure 10. The system HE is written as:

HE

{
ẋ = Ax +Bu
σ = Ex

(20)

Since h(σ) lies in the first and third quadrant, the passivity of the closed-loop
is guaranteed if HE is a positive real transfer function [29]:255

Lemma 1. Let HE(s) = E(sI − A)−1B be a m×m transfer function matrix,
where (A,B) is controllable and (A,E) is observable. Then HE(s) is strictly
positive real if and only if there exist matrices P = PT > 0 and G such that:

PA+AT = −GTG (21)

PB = ET (22)

For the sake of simplicity, we define G = I and obtain P from the Lyapunov
equation (21). Finally, the matrix E guaranteeing the close-loop stability for260

any gain kp > 0 is given by E = BTP . The block diagram of the passivity-based
controller is shown in Figure 11 where the theoretical sign function is replaced
by σ/(|σ|+ ϵ) with ϵ ∈ R+∗, and ϵ << 1 for practical implementation concerns
due to chattering. Since the full state is not available, σ is defined by σ = Ex̂
with x̂ the state estimation from Kalman observer (18).265
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Figure 11: Passivity-based control diagram.

3.4. Sliding mode control

The last controller to be defined and applied to the experimental setup is
based on the sliding mode control method [30]. The principle of such a method
is to define first a sliding variable σ as a function, linear or nonlinear of the
error. A reduced-order system is then defined depending only on the dynamics270

of the sliding variable. Finally, a switching control signal is applied to force the
states of the reduced-order system to converge to the sliding surface defined i.e
σ = σ̇ = 0.

The objective is to design a controller that constrains the trajectory of the
system (12) to the manifold σ = Sx = 0 with S ∈ R1×4. The switching function275

S is to be defined later to guarantee closed-loop convergence. As shown in the
corresponding block diagram in Figure 12, the control signal u is the addition
of a linear equivalent control and a nonlinear switching control where the first
part is not necessary to maintain the closed-loop stability.

Assuming the system is already on the sliding manifold such that σ = σ̇ = 0,280

from (12) we have:

Sẋ = SAx+ SBu = 0 (23)

The equivalent control ueq maintaining the system states on the sliding surface
is:

ueq = −(SB)−1SAx (24)

= −Keqx (25)

where SB must be non singular by definition. The next step in the controller
synthesis is to operate a coordinate transformation to the state x and obtain a285

regular form state space realization of (12). Such transformation is necessary
to guarantee the existence of (SB)−1 in (24). Since rank(B) = 1, there exists
an orthogonal matrix Tr ∈ R4×4 such that:

TrB =

[
0

B̃

]
(26)
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with B̃ ∈ R ̸= 0. Thus, Tr is obtained through QR factorization of B. The
transformed state is now defined by x̄ = Trx which partitions the system as:290

x̄ =

[
x1

x2

]
(27)

with x1 ∈ R3 and x2 ∈ R. Therefor, the linear system (A,B) is written in the
new coordinates system:{

ẋ1 = A11x1 +A12x2

ẋ2 = A21x1 +A22x2 +B̃u
(28)

with

TrATT
r =

[
A11 A12

A21 A22

]
(29)

The switching function S in the x̄ coordinate system written:

STT
r = [S1 S2] (30)

where S1 ∈ R1×3 and S2 ∈ R. Considering (26) and (30), it comes SB = S2B̃295

with S2 ̸= 0 ensuring the existence of (SB)−1. Assuming the system reaches
the sliding motion in (28) we obtain:

Sx = S1x1 + S2x2 = 0 (31)

x2 = −Mx1 (32)

where M = S−1
2 S1. Equation (28) becomes:

ẋ1 = (A11 −A12M)x1 (33)

From (30), the switching function S is defined as:

S = S2[M 1]Tr (34)

For the sake of simplicity, S2 is chosen as S2 = B̃−1 such that SB = 1. Fi-300

nally, M is determined properly by linear quadratic minimization from (33). We
now define a positive definite matrix Q ∈ R4×4 and a functional J to minimize:

J =
1

2

∫ +∞

ts

xTQx dt (35)

with ts describing the time for the closed loop to converge to the sliding manifold.
Q is then transformed and partitioned in the new coordinate system:

TrQTT
r =

[
Q11 Q12

QT
12 Q22

]
(36)

14



Hence, we choose a suitable virtual control v = x2 + Q−1
22 Q

T
12x1 and the305

function J can be written:

J =
1

2

∫ +∞

ts

xT
1 Q̂x1 + vTQ22v dt (37)

The virtual control v is finally substituted into ẋ1 expression from (28) and
it comes

ẋ1 = Âx1 +A12v (38)

with Q̂ = Q11 −Q12Q
−1
22 Q

T
12, Â = A11 −A12Q

−1
22 Q

T
12, and M being the solution

to the LQ problem (Â, A12, Q̂, Q22). Once the sliding manifold is defined, the310

nonlinear control part unl defined by:

unl = −ρ(SB)−1 σ

|σ|+ ϵ
(39)

= −Kσ
σ

|σ|+ ϵ
(40)

where ρ ∈ R+. As for the passivity-based control, the real sliding variable is
defined by σ = Sx̂ with x̂ the state estimation from (18).

Figure 12: Sliding mode control diagram.

4. Experimental results

The following section will present the experimental results obtained with the315

four developed controllers on the nominal and uncertain systems A and B.
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4.1. Control parameters

First, the Kalman observer of the initial system states x is computed con-
sidering the following parameters: Vd = 1.104 × I4 and Vn = 1 since the mea-
surement noise is minimum. Hence, the observer gain matrix LT is solution of320

the LQR problem (AT , CT , Vd, Vn). The same tuning of the observer is used for
the α-controller, LQG controller, passivity-based controller and SMC.

Considering the α-controller, the cutt-off frequency parameter ωint affecting
the controller Kα(s) and the pseudo-integrator is set at ωint = 2π rad.s−1.
In addition, a digital high-pass Chebyshev of order 10 filters the measure y325

to avoid any remaining continuous component in the control signal. Then,
the parameters kα and α are obtained numerically to minimize the H-infinity
norm of the closed-loop system such that α = 132.5rad.s−1, kα,A = 290, and
kα,B = 522.

For the LQG controller, the matrix coefficients are Q = I4 and R = 1.10−4
330

and correspond to the best performance achievable without parasitic spill-over
phenomenon in the system response.

Considering the passivity-based controller, ϵ is set to 0.1 to avoid a steep
function h(σ) since no further gain has been observed with strict sign function.
The gain kp is then set to 1.335

Finally for SMC, the weighting matrix Q is also set to I4 and ϵ = 10−6 which
is negligible. The parameter defining the switch amplitude ρ is set to 1. As
mentioned earlier for the linear quadratic regulator, this amplitude corresponds
to the best reachable performance. Therefore, no performance gain is further
achieved with a switching amplitude superior to this value. Since the product340

SB is designed such that SB = 1, the gain Kσ equals the value of ρ.
Meanwhile, the SMC equivalent control ueq is set to 0 to assess only the

performance and robustness provided by the nonlinear switching control signal.

4.2. Nominal performance

As mentioned in the Subsection 2.1, the proposed controllers are applied first345

to the nominal systems A and B properly identified. For the perturbation signal,
the same band-limited white noise of RMS value 2.21V and sampling frequency
of 10kHz is applied to the shaker amplifier like the identification process of
H0. Figure 13 presents the frequency response function Hcl(f) of the closed-
loop system between the perturbation w and the acceleration measurement y at350

the end of the beam for system A. One can notice immediately that the LQG
controller, the passivity-based controller, and the SMC manage to reduce the
system response for some unmodeled dynamics i.e. the second bending mode of
the cantilever beam. Figure 13b shows accordingly to the previous observation
a zoom on the same FRF for bandwidths around the first and second modes.355

The same results with the nominal system B are displayed in Figure 14.
Considering the nominal systems, all controllers present the same level of

attenuation for modeled dynamics (1st bending mode), between -7dB and -8dB
compared to the passive TMD. Nevertheless, when it comes to unmodeled dy-
namics, the α-controller does not affect at all the 2nd mode. On the other hand,360
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the three other controllers mitigate also the second mode which corresponds to
unmodeled dynamics of the system. This is mainly due to the observer since
the phase error between the measured transfer function H1(f) and its simplified
model (see Figures 5a and 5b) is reduced at these frequencies, in addition with
an observer gain sufficiently high to impact the vibration level.365

Nevertheless, SMC displays a superior performance on the second mode
compared to the other controllers with system A: up to -25dB. For the nomi-
nal system B however, the beam is shortened and its rigidity and modal mass
are increased accordingly. Consequently, such configuration leads to a satura-
tion phenomenon in the system controllability due to the limited inertial mass370

supporting the control effort within the HMD.

(a) (b)

Figure 13: Transfer functions Hcl(f) for nominal system A (a) with zoom on modes 1 and 2
(b).

4.3. Robustness to parametric uncertainties

The following Subsection presents the core result of this manuscript since
it highlights the robustness of the SMC method for vibration mitigation on
uncertain systems containing modeled and unmodeled dynamics. The same375

four controllers tuned specifically for nominal systems A or B are now applied
to their uncertain versions where the frequencies of the modes are significantly
shifted downward (A,-17%) or upward (B,+24%). The Figure 15 displays the
FRFHcl(f) for uncertain system A (added mass). It is crucial to emphasize that
the observer remains tuned for the nominal system during the transition from380

the initial to the uncertain one, allowing for an assessment of the robustness of
the observer-controller combination.

One can observe that performances for the control of the 1st beam mode now
differ from the nominal case. While the SMC maintains a reasonable attenuation
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(a) (b)

Figure 14: Transfer functions Hcl(f) for nominal system B (a) with zoom on modes 1 and 2
(b).

of -6.5dB corresponding to a performance loss of 0.5dB compared to the nominal385

system, the other controllers struggle to keep their initial reduction level. For
instance, the α-controller even degrades the passive system behavior on the 1st

mode of uncertain system B. Considering the 2nd mode, the same conclusions
emitted earlier from the nominal case apply where the SMC continues to show
superior performance.390

Finally, the Figure 16 presents the closed-loop response FRF Hcl(f) for the
uncertain system B. These last results confirm the robustness of SMC with
modeled and unmodeled dynamics compared to other linear methods. It is
worth noting that the control performances on the second mode are noticeably
superior in the uncertain system B when compared to the nominal system. This395

improvement can be attributed to the alteration in the mass ratio between the
inertial actuator and the beam. In the case of the uncertain system, where mass
removal is involved, the HMD encounters less difficulty in effectively mitigating
the beam’s vibration.

To summarize all the mentioned observations, The Figures 17a and 17b400

display the level of attenuation in dB for each controller and every system.
Taking the LQG method as a reference, the SMC shows an average performance
gain of 22.5% on the uncertain systems for both modeled and unmodeled modes,
with a maximum of 43% for the 1st mode on uncertain system A.

Lastly, Figure 17c presents for each controller and mechanical system the405

RMS value of the control signal. Figure 17d displays a time extract of the
control signal for each controller on the nominal system A. It is noticeable that
since the SMC uses a switching control signal of amplitude ρ, its RMS value is
generally much higher. Hence, performance and especially robustness still come
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at the cost of control energy. In addition, it is important to emphasize that410

chattering and its consequences on the mechanical device and noise disconfort
is not regarded here. However, adaptive gain for SMC is a possibility to reduce
chattering and unnecessary control effort.

Meanwhile, the outcomes are closely linked to the performance of the Kalman
observer concerning the LQG, passivity-based controller, and SMC. However,415

there is an opportunity to enhance the SMC technique by incorporating a robust
nonlinear observer, which would undoubtedly yield superior global performance
and increased robustness. Finally the Table 2 provides a global overview of the
various controllers’ assessment based on the experimental results.

(a) (b)

Figure 15: Transfer functions Hcl(f) for uncertain system A (a) with zoom on modes 1 and
2 (b).

5. Conclusion420

This paper proposed to experimentally illustrate the advantage of the SMC
method for vibration mitigation using Hybrid Mass Dampers over commonly
used controllers. The considered dynamic structure was a cantilever beam with
the first bending mode located at 21Hz and excited by a shaker. The HMD
was a controllable inertial actuator with its internal resonance tuned to the425

beam first mode. A removable additional mass was used to introduce significant
parametric uncertainties. Three different control methods have been compared
with SMC: α−controller, LQG and passivity-based control, on two nominal and
two uncertain systems. If the performances of all controllers were equivalent
for well-identified systems, it was not the case when considering unmodeled430

dynamics and parametric uncertainties causing significant positive and negative
shifts in the modal frequencies (-17%/+24% for the first beam mode). Thus, the
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(a) (b)

Figure 16: Transfer functions Hcl(f) for uncertain system B (a) with zoom on modes 1 and
2 (b).

experimental results, especially when controlling uncertain systems, highlighted
clearly the robustness and performance gain of SMC for vibration mitigation.
It is of high importance to recall that such characteristics are highly desirable435

for active vibration control devices located on transportation systems since their
mass and inertia distribution can drastically vary during the one same operating
phase. However, it must be mentioned that the highlighted benefits of SMC
come at the cost of control energy. Future work will be realized on robust and
adaptive observers to further enhance the performance of SMC applied to HMDs440

while reducing energy consumption and chattering with adaptive methods.
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[16] S. Chesné, Hybrid skyhook mass damper, Mechanics & Industry 22 (2021)
49.

[17] V. Utkin, Methods for constructing discontinous planes in multidimensional
variable structure systems, Automation and Remote control 31 (1977)485

1466–1470.
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Figure 17: For each controller: attenuation levels for (a) the first beam mode and (b) the
second beam mode, (c) RMS value of the control signal u, (d) control signal extract on
nominal system A.
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