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The combination of quantum many-body and machine learning techniques has recently
proved to be a fertile ground for new developments in quantum computing. Since the pi-
oneering work of Huang et al. [HKT+22], several works have shown that it is possible to
classically efficiently predict the expectation values of local observables on all states within
a phase of matter using a machine learning algorithm after learning from data obtained by
measuring other states in the same phase. However, existing results are restricted to phases
of matter such as ground states of gapped Hamiltonians and Gibbs states that exhibit ex-
ponential decay of correlations. In this work, we drop this requirement and show how it is
possible to learn local expectation values for all states in a phase, where we adopt the Lind-
bladian phase definition by Coser & Pérez-Garćıa [CPG19], which defines states to be in the
same phase if we can drive one to other rapidly with a local Lindbladian. This definition
encompasses the better-known Hamiltonian definition of phase of matter for gapped ground
state phases, and further applies to any family of states connected by short unitary circuits,
as well as non-equilibrium phases of matter, and those stable under an external dissipative
interaction. Under this definition, we show that N = O(log(n/δ)2polylog(1/ε)) samples suffice
to learn local expectation values within a phase for a system with n qubits, to error ε with
failure probability δ. This sample complexity is comparable to that for previous results on
learning gapped and thermal phases of matter, and it encompasses, in a unified and stream-
lined way, all previous results of this nature and more. As a complementary result, we show
that we can learn families of states which go beyond the Coser & Pérez-Garćıa definition of
phase, and we derive a more general bound on the sample complexity which is dependent on
the mixing time between states under a Lindbladian evolution.
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I. INTRODUCTION

Understanding quantum many-body systems is a fundamental task in quantum chemistry, solid
state physics, and quantum information science. A huge number of powerful techniques have been
brought to bear on this problem, including the development of the density matrix renormalization
group, tensor network techniques, Monte Carlo, and with the advent of quantum computing, meth-
ods such as the Variational Quantum Eigensolver have become popular, as well as more advanced
techniques [Whi92, Vid08, PMS+14, GKW16, CPGSV21, Cub23]. Nonetheless, determining the
properties of many-body quantum systems from first principles remains a computationally intract-
able task. While the advent of fault-tolerant quantum computers will hopefully enable us to solve
a much wider array of problems, in the mean time we are still confined to classical computation.

From a complexity theoretic perspective, tasks such as finding ground state energies, learning
observables measured on many-body quantum states, or determining the boundaries of a phase are
known to be computationally intractable in general [KSV02, Amb14, GPY19, WB21, BCGW22].
Thus we cannot expect a solution to such problems from just a description of the interactions
between particles, however, we might expect that if we have access to additional information, we
could significantly speed up these computations. Recently new techniques have emerged from
classical Machine Learning and have been successfully applied to quantum systems, including
tasks such as identifying phases of matter [RNS19, RKT+19, DPZ19], characterising observables
on phases of matter [BWP+17, CM17, CB23], and approximating quantum states [GD17, PK20,
BGL20, NYN21]. These proposals mark a paradigm shift: instead of directly computing physical
properties of quantum states from a given class, we first generate some measurement data for a
few examples (training stage) on a quantum computer or simulator and then use machine learning
methods to extrapolate to unseen states. However, the demonstration of the effectiveness of
these techniques has been largely heuristic and in many cases lacked rigorous justification beyond
intuition or empirical success.

In this work, we consider such an approach for the task of learning observables everywhere
within a phase of matter, which we call learning the phase (under some definition of “phase of
matter”). The ability to learn a phase of matter in this way is desirable as it allows one to learn
properties of states which have not been observed from samples which are different from — but
related to — the state of interest. This is particularly helpful if preparing a sample of the state of
interest is experimentally difficult or computationally intractable (or just reducing the overhead
of sampling many states). Additionally, it allows for a classical representation of the entire phase
to be stored.

In seminal work by Huang et al., the task of learning to predict local observables of quantum
many-body ground states everywhere within a gapped phase of matter was considered, where the
gapped phase is defined as the set of ground states where the ground states belong to a family of
Hamiltonians which can be smoothly moved between without the spectral gap closing [HKT+22].
The authors proved that a classical machine learning algorithm, with access to data sampled
from states within the quantum phase, could outperform algorithms which took no data from
input samples (provided the complexity assumption RP ̸= NP holds). A key step in this work
was using classical shadow techniques to obtain a classically compact representation of quantum
states, which could then be classically post-processed [HKP20].

This first result by Huang et al. [HKT+22] proves learnability of quantum phases of gapped sys-
tems and has a sample complexity that is exponential in the precision and polynomial in the system
size. Subsequent work addressed some of these limitations. The learnability of observables was ex-
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tended to thermal phases of matter which have exponentially decaying correlations in [ORSW23],
which also improved the the number of samples needed was improved to O(log(n/δ)2polylog(1/ε)).
Improved scaling for gapped ground state phases was also achieved in [LHT+23] which reduced
the scaling to O(log(n/δ)2polylog(1/ε)). Further work by [CGN23] demonstrated learnability under
assumptions about the continuity of matrix elements of the density matrix with similar sample
complexity. However, learnability of more general phases of matter is unknown, and in particu-
lar, phases which have algebraically decaying correlation functions (i.e. a weaker form of decay
compared to the exponential decay).

In this work we seek to bridge this gap. Here we use the definition introduced by Coser
& Pérez-Garćıa in [CPG19], under what we call Lindbladian Phases of Matter. This definition
asserts that two states are in the same phase of matter if one can mix from one to the other
rapidly using a time-independent, local Lindbladian. This definition naturally encompasses many
of the properties we expect from a phase of matter, including stability under local perturbations
and continuity of local observables within the phase. This allows us to formalise the idea that
we can take a representative state in the phase, and then “move around” in the phase while the
properties vary smoothly. Furthermore, the definition is physically motivated in the sense that if
two states are mixed rapidly by a Lindbladian, then there exists a physical process which allows
us to go from one to the other rapidly, and we can show that the “long-range” physics of the two
states is similar.

This characterisation provably encompasses the local unitary definition of phase and the gapped
Hamiltonian definition of phase, and is expected to generalise thermal phases (although this has
yet to be proved rigorously). The Lindbladian definition of phase also naturally applies to mixed
states in an analogous way to the local unitary definition used to define quantum phases. Since
it makes no restrictions on the decay of correlations or spectral gap, this definition is in principle
not limited to ground states of gapped Hamiltonians or thermal states with exponential decay
of correlations — it can apply to gapless phases and thermal states with algebraically decaying
correlations. Rather than characterising these phases as static properties of a Hamiltonian (or
other description), this definition gives an interpretation for phases in terms of relations between
states.

In this setting, we develop a learning procedure which provably allows us to learn observables
efficiently and with high probability everywhere in the phase of matter, defined by this Lindbladian
definition. The algorithm takes quantum data and performs a classical shadow procedure to extract
classical data, which can then be used to construct an estimator for observables of interest. Since
all we require are the shadows, we could instead directly use classical data generated from some
alternative classical procedure such as a tensor network or Monte Carlo simulation. This may be
advantageous if we can only perform the experiment on a classical computer and wish to reduce
the number of computational experiments we wish to perform.

To prove our results we employ a combination of techniques. We use Lieb-Robinson bounds
to relate temporal mixing times to spatial correlation lengths, allowing us to constrain how the
system behaves within a phase. We then use techniques from classical shadows to reduce the
quantum data we have been given to classical data that can be efficiently processed. Finally, we
use results from concentration of measure to put bounds on sample efficiency and learnability.

This work is structured as follows. In Section II we review the Lindbladian definition of phase
put forward in [CPG19]. The rigorous statement of the learning problem and the results we
prove are stated in Section III. Section IV gives the learning algorithm and outlines why it works.
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Section V contains a discussion of how our results relate to some other definitions of phase, and
some physical examples. Finally, in Section VI we summarise our results and give a discuss for
related and future work.

II. THE LINDBLADIAN DEFINITION OF PHASE OF MATTER

Recent works [HKT+22, ORSW23, LHT+23] have demonstrated how one can learn particular
phases of matter efficiently under some structural assumptions. However, these works were con-
strained to phases of ground or Gibbs states satisfying exponential decay of correlations. We will
now discuss a definition of phase of matter that will allow us to extend these learning results to
other classes of physical systems and (partially) recover previous results under a unified framework.
We call this the Lindbladian definition of phase of matter.

Loosely speaking, the Lindbladian definition of a phase of matter asserts that two separate
states on n qubits are in the same phase if there exists a dissipative, time-independent evolution
generated by a geometrically local Lindbladian which maps between these states (or rather within
ε trace distance in time polylog(n/ε)). The intuitive motivation for this is as follows: if there
is a phase transition between two states, we should expect global, discontinuous changes to the
properties of the system, and hence we expect long-ranged correlations to be instituted across the
system at some point when evolving one state into the other. Famously, the physics of a system at
a phase transition is “scale invariant” due to these long-ranged correlations. But if one state can
be evolved to another using a geometrically local evolution in only time ∼ polylog(n), then, due to
the locality of the interactions in the Lindbladian, there is not sufficient time to create these long-
ranged correlations. Thus the two states should be in the same phase. In condensed matter, this
is related to the notion that the correlation length should diverge when moving between phases.

We note that typically one can go from a highly-ordered to disordered state quickly by destroy-
ing correlations, but the reverse is not true. As an example, consider taking some ordered state
and applying the local depolarising channel to all the qudits — it rapidly mixes to the maximally
mixed state, but we should not expect the reverse to be true. As such, we say that two states are
in the same phase only if there is a rapid Lindbladian evolution between the states going in both
directions. Formally, the definition of a Lindbladian phase of matter is given in [CPG19] as:

Definition II.1 (Phase of Matter, Definition 1 of [CPG19]). We say that a state ρ0 can be driven
fast to another state ρ1, and we write ρ0 → ρ1, if there exists a dissipative evolution generated
by a geometrically local and time-independent Lindbladian Ln acting on the n-qudit system and a
ancillary system which preserves the locality of the primary system∥∥etLn(ρ0 ⊗ ω0)− ρ1 ⊗ ω1

∥∥
1
≤ poly(n)e−γt,

with ω0 and ω1 respectively the initial and final states of the ancillas, and for a constant γ.
We say that two states belong to the same phase if there exist two local Lindbladian evolutions

as described above such that ρ0 → ρ1 and ρ0 ← ρ1, and in this case we write ρ0 ←→ ρ1.

By an “ancillary system which preserves the locality of the primary system”, we mean that the
ancillary system has a spatial structure, and qudits in the ancillary system are only coupled to
nearby qudits in the primary system.

We leave any further discussion of the details of this definition of phase of matter to [CPG19],
and simply take this as the definition of phase that we will work with. Throughout we assume
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that we are working with open or periodic boundary conditions. To make this definition of phase
valid between systems of different sizes, we also impose a compatibility condition between states
which belong to the same phase of different sized systems. Roughly speaking, if two states are in
the same phase at different system sizes.

Condition II.2 (Compatibility Condition). Consider two local Lindbladians L,L′. Let {LS}S
denote a family of Lindbladians such that within S ⊆ Λ, LS acts as L, and outside of S it acts
as L′. Denote limt→∞ etLS (ρS0 ⊗ ωS

0 )(ρ0) = ρS∞ ⊗ ωS
1 , where ωS

0 , ω
S
1 are associated auxiliary states.

Then consider three subsets of the lattice A ⊂ R ⊂W such that A does not contain the boundaries
of R, and R does not contain the boundaries of W . Then the Lindbladian satisfies the compatibility
condition if for1 γ = Ω(1):

| trAc [etLR(ρW∞ ⊗ ωR
0 )− ρR∞ ⊗ ωR

1 ]| ≤ poly(|R|)e−γt.

The definition of phase in Definition II.1 (along with the compatibility condition, Condition II.2)
has the benefit of (a) defining phases of matter by relative relations between states (b) allowing
us to easily define phases of matter for mixed states, not just pure states. Additionally, this
definition of phase allows us to meaningfully talk about phases for finite sized systems, whereas
properties associated with phase transitions only truly happen in the thermodynamic limit (e.g.
non-analyticity of observables).

In Definition II.1, we state we wish to maintain geometric locality not only in the system of
interest, but also in the ancillary system. To ensure this, we require that there is a notion of
locality on the ancillary system as well as the full system, and that the norm of terms acting on
the auxiliary system is bounded by the same bound on the primary system. We also ensure that
all the interactions are of bounded strength and the size of the auxiliary system is no more than
poly(n) if the system of interest is of size n. The addition of Condition II.2 enforces that if we
consider a small local area of a steady state at two different sizes, then locally they should look
very similar and mix rapidly between each other.

A key point that follows from the previous definitions and conditions is that generally, local
observables will satisfy what is called local rapid mixing, which states that local regions of the
lattice mix to their steady state in a time independent of the full system size. More formally:

Condition II.3 (Local Rapid Mixing). Let L be a Lindbladian with steady state ρ∞, and let ρ0
be some point in the same phase as ρ∞, such that ρ0 is the steady state of the Lindbladian L′. Let
OA be any geometrically local observable supported on A ⊂ Λ. Then:

| tr[OA(Tt(ρ0)− ρ∞)]| ≤ poly(|A|)e−γt,

for some constant γ determined by the Lindbladian.

In Appendix B we demonstrate that local rapid mixing follows from Definition II.1 with Condi-
tion II.2.

The Lindbladian definition of phase should be compared to the Hamiltonian definition of phase
of matter defined for pure states, in which a phase can be described either as the set of ground
states of a smoothly parameterised family of Hamiltonians for which the gap does not close, or

1 This results in this paper also hold for γ = Ω(1/ polylog(n)), but since this mixing time does not appear physically,
will ignore this subtlety.
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Figure 1. A schematic diagram of states one either side of a phase boundary. Crosses represent states in
the respective phases and arrows represent rapid evolutions generated by fixed Lindbladians between states.
There does not exist a rapid evolution from the disordered state to the ordered state as we expect that
crossing the phase boundary from disorder to order requires the generation of long-ranged correlations.

by a constant depth circuit where the unitaries have polylog(n) locality [CGW10]. These two
definitions can be shown to be equivalent as per [BMNS12] or [CPG19, Sec. 3.1]. The funda-
mental motivation between the Hamiltonian definition and the Lindbladian definition is the same
— a gapped family of ground states is guaranteed to have exponentially decaying correlations
everywhere, and so long-range correlations are never generated. Similarly, when considering the
finite-depth circuit definition of phase, we realise that time evolution generated by local operators
should not generate long-ranged correlations and should ensure the smoothness of the expectation
values of local observables. However, the Hamiltonian and circuit definitions of phase struggle to
deal with mixed states, whereas the Lindbladian definition naturally encapsulates them. Import-
antly, like the circuit definition for gapped ground state phases, the Lindbladian definition here
is applicable to phases with algebraic decay of correlations, rather than the stricter exponential
decay of correlations.

A. Transitivity of Lindbladian Phases

Although not immediately obvious, the Lindbladian definition of phase divides the set of states
into equivalence classes and provides a partial order among these classes (see Fig. 1 as an example).
The definition is clearly reflexive and symmetric, but it can also be shown to be transitive: if
ρ0 → ρ1 and ρ1 → ρ2, then there exists a local, time-independent Lindbladian which takes ρ0 → ρ2
(see [CPG19, Sec. 3.2] for an explicit proof of this). Therefore the Lindbladian definition of phase
establishes equivalence classes of states — each phase is such an equivalence class. Although
not proven, intuitively one should think of the ordering of these equivalence classes as physically
corresponding to more highly ordered phases — more “ordered” phases should be harder to create.
For example, with an Ising model Hamiltonian, we should be able to rapidly go from a highly
ordered phase (e.g. ferromagnetic phase) to a disordered phase (e.g. high temperature phase), but
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should not expect the reverse to be true. Generating the ferromagnetic phase requires spins to be
aligned everywhere, and hence requires long-ranged correlations.

B. Parameterising Phases of Matter

Given a phase of matter that we wish to learn, we need an efficient way of referring to the states
in the phase. With this in mind we arbitrarily choose a state ρ∗ in the phase to be our reference
state, and we will define all other states with respect to this state in terms of the Lindbladian and
the time to reach them under that Lindbladian. From the transitive property of the definition of
phase, the choice of reference state does not matter. As such we can parameterise the states in
the phase as:

ρ(L, ω, t) := etL(ρ∗ ⊗ ω), (II.1)

where t ≥ 0. Thus the question of parameterising the phase becomes a question of parameterising
the Lindbladian. We allow for each local term in the Lindbladian to be parameterised in both a
continuous and discrete manner, such that Lq(x) :=

∑m
j=1 L

qj
j (xj), xj ∈ Rℓ, qj ∈ [Q]ℓ, and where

Q is discrete labelling of local terms. The subset of Rℓ that xj is restricted to is determined by
the parameters of the phase. More formally:

Definition II.4 (Efficiently Parameterisable Phase). A set of states which form a phase of matter,
in the sense of Definition II.1, is efficiently parameterisable if the set of all Lindbladians describing
the phase, in the sense of Eq. (II.1), can be efficiently parameterised. We will assume the set of
such Lindbladians can be written as {Lq(x)}x,q, x ∈ Φ ⊆ Rm, q ∈ [Q]m with

Lq(x) :=
m∑
j=1

Lqjj (xj),

where each Lqj (xj) is a local term, and xj ∈ Rℓ, qj ∈ [Q]ℓ for ℓ = O(1). Here x ∈ [−1, 1]m,
is a continuous parameterisation of the Lindbladian, and q ∈ [Q]m is a discrete labelling of the
Lindbladian terms. We further assume that the auxiliary state ω is in a finite set of states ω ∈
{ωi}Wi=1. Here m = O(n) and Q,W = O(1).

We note that for a phase of matter to be efficiently learnable, it must at least be efficiently
parameterisable, otherwise there is no way of efficiently describing the state that we’re interested
in learning about. Thus restricting to the set of efficiently parameterisable phases is necessary.
There may be other ways of efficiently parameterising Lindbladians compared to Definition II.4,
in which case we expect our results to still hold. Definition II.4 should thought of similarly to how
a gapped ground state phase can be efficiently described by the parameterising the corresponding
set of Hamiltonians.

III. MAIN RESULTS

The set up is as follows: given a phase of matter as per Definition II.1 and Condition II.2, we
wish to predict expectation values of local observables everywhere in the phase with high prob-
ability using information from a limited number of samples drawn from points in the phase. An
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instance where this may be interesting is if these samples are sets of states that are expensive
to prepare in a laboratory, and hence we want to minimise the number that we have to prepare.
Alternatively, they maybe be the output of a similarly expensive quantum (or classical) computa-
tion. Being able to solve Problem III.1 (formulated below) would allow us to learn the observable
O at points in the phase without doing the actual work of preparing the state. In general, there
may be regions of the parameter space that are harder to reach in terms of state preparation or
computational effort.

Problem III.1 (Learning Phases of Matter). Assume we can parameterise the Lindbladians de-
fining phase of matter as L(x), x ∈ Φ ⊆ Rm, where Φ defines the set of parameters within the
phase. Given N samples {ρ(xi, ω, τi)}Ni=1 of a quantum state, drawn from different points of the
parameter-space of a phase of matter from some probability distribution, and a local observable
O =

∑
iOi, predict the function

fO(L, ω, t) := tr[Oρ(L, ω, t)],

everywhere in the phase of matter.

Although the problem, as phrased here, only applies to linear functions of the state, it is possible
to extend this to consider non-linear functions by taking tensor products. The phase Φ ⊆ Rm

is simply a set of parameters describing Lindbladians where the Lindbladian definition of phase
holds, e.g. it may be something such as Φ = [−1, 1]m.

We give a learning algorithm, which, if given samples taken from a sufficiently anti-concentrated
distribution across the phase, allows us to predict any local observable O with high probability.

Theorem III.2 (Learning Algorithm for Phases of Matter (Informal)). Let n be the system size.
With the conditions of the previous paragraph, given a set of N samples {(xi, τi), ρ̃(L(xi), τi)}Ni=1,

where ρ̃(L(xi), τi) can be stored efficiently classically, and N = O
(
log

(
M
δ

)
log

(
n
δ

)
epolylog(ε

−1)
)
,

there exists an algorithm that, on input x ∈ Φ ⊆ Rm, t ≥ 0 and a local observable O =
∑M

i=1Oi,

produces an estimator f̂O such that, with probability (1− δ),

sup
x∈[−1,1]m

|fO(L(x), ω, t)− f̂O(L(x), ω, t)| ≤ ε
M∑
i=1

∥Oi∥∞ .

Moreover, the samples ρ̃(L(xi), τi) are efficiently generated from measurements of the states in the
phase {ρ̃(L(xi), τi)}Ni=1 followed by classical post-processing which takes time O(nN).

The formal version is given in Theorem B.13. This demonstrates we only need quasi-polynomially
many samples in 1

ε and logarithmically many in n to learn the entire phase, and the classical
post-processing can be done efficiently. We note that although our results as stated assume some
parameterisation of the phase, we do not need to know this parameterisation for the learning
algorithm — we need only the promise that the parameterisation exists and is sufficiently well-
behaved. This allows us to deal with systems where we have imperfect knowledge of the system
and state. For example, if there is noise present, but we do not know its exact form, but may
know it is proportional to some parameter (e.g. temperature).

Finally, we remark that because our method ultimately uses classically stored data, and thus it
also works for data which is generated and stored classically. For example, data from using Monte
Carlo methods for quantum systems (or similarly any other classical model method such as tensor
networks).
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A. Learning Steady State Phases

Often the idea of a phase of matter in the sense of Definition II.1 is too general, and what
we are actually interested in is a subset of the general case, for example, a quantum phase of
matter (i.e. the ground states of a family of Hamiltonians in the same phase). Since ground
states of Hamiltonians can always be written as a steady state of a local Lindbladian evolution
(see [VWIC09, Cub23]), we can study these phases by first restricting to the subset of states which
are the steady states of the Lindbladians2. We call these Steady State Phases (see Fig. 2 for an
illustration). We denote the steady state of a Lindbladian L as ρ∞(L, ω), or just ρ∞(L) where the
auxiliary state is not relevant. The following corollary then follows from Theorem III.2 (for a full
proof and statement, see Appendix B 2).

Figure 2. A schematic diagram of a Steady State Phase defined relative to a state ρ∗ (red circle). States
in the phase are represented by blue circles and the phase is represented by the surface with black outlines
(parameterised by x1, x2). The phase is the set of states {ρ∞(x)}x which are steady states of a set of
Lindbladian evolutions from ρ∗ (the Lindbladian evolution is denoted by the purple paths).

Corollary III.3 (Learning Algorithm for Steady State Phases (Informal)). With the conditions of
the previous paragraph and Theorem III.2, given a set of N samples N = O

(
log

(
M
δ

)
log

(
n
δ

)
epolylog(ε

−1)
)
,

there exists an algorithm that, on input x ∈ Φ ⊆ Rm and a local observable O =
∑M

i=1Oi, produces

an estimator f̂O such that, with probability (1− δ),

sup
x∈[−1,1]m

|fO(L(x))− f̂O(L(x))| ≤ ε
M∑
i=1

∥Oi∥∞ .

2 Thermal states can be written as fixed points of local Lindbladians in certain case, e.g. when they can be prepared
as a local quantum circuit [BK19]. Other Lindbladians which prepare Gibbs states e.g. [KT13, CCK+23] are not
generally local operators.
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B. Learning Classes of States Without Rapid Mixing

We can of course consider learning families of states which do not necessarily satisfy the Lindbla-
dian definition of phase or rapid mixing. That is, we may be able to relate states by a Lindbladian
evolution, but they may not satisfy Definition II.1 or Condition II.2. Instead, we suppose they
satisfy a condition similar to Definition II.1, but with a more general slow mixing condition:∥∥etL(ρ0 ⊗ ω0)− ρ1 ⊗ ω1

∥∥
1
≤ f(n)e−γt. (III.1)

The longer mixing time allowed by this condition means that, as we move between states in the
family we are considering, new correlations can potentially be introduced over long distances. Thus
we should expect the behaviour between such states to behave less smoothly. We show that it
is still possible to learn such families of states, but that we require additional resources which
increase as the mixing time increases.

Theorem III.4 (Learning under Slow Mixing). Consider a set of states satisfying the slow-mixing
assumption Eq. (C.2), then the number of samples required to learn an estimator of local expectation
values (in the sense of Theorem III.2) scales as:

N = O

(
log

(
M

δ

)
log

(
n

δ

)
epolylog(f(n)/ε)

)
. (III.2)

We note that we do not recover Theorem B.13 in the case f(n) = poly(n) as we have not also
imposed the compatibility condition between systems of different sizes from Condition II.2. That
is, this slow mixing learning does not necessarily require compatibility between different system
sizes, and can characterise systems where there is unusual or unstable behaviour as the system
grows.

IV. THE LEARNING PROCEDURE AND PROOF OUTLINE

A. The Learning Procedure

The method we use to construct an estimator is remarkably simple. We consider learning
steady state phases, but the idea generalises to the general case straightforwardly. We consider
the N samples we are given from various parameters xi, and for each of these samples we perform
a randomised 1-local Clifford measurement. If we record the xi and the measurement outcome, we
can construct a single-measurement classical shadow for point ρ̃∞(xj). These single-measurement
shadows will be written as:

ρ̃∞(xj) =
n⊗

i=1

(|zi⟩ ⟨zi|)

|z⟩ ∈ {|0⟩ , |1⟩ , |+⟩ , |−⟩ , |+i⟩ , |−i⟩}

where |±i⟩ are the eigenstates of the Pauli Y operator. The eigenstate assigned to each qubit
depends on the randomised Pauli measured and the resultant measurement outcome. As explained
in [HKP20], it is then possible to use this data to construct very efficient estimators for local
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properties of quantum states given i.i.d. copies. Later, [ORSW23] extended this to the case where
we are given copies of states that are close to each other. We will use that version here.

To construct our estimator for the observable O on a state ρ∞(y), for some point y in the phase
(y ∈ [−1, 1]m), we consider the parameters xi of our samples. We then choose a set of points
Γ = {xj}j , where a sample is added to Γ if ||xj|A(r) − y|A(r)||ℓ∞ ≤ γ for some appropriately small
parameter γ and some sufficiently large region A(r). Here A(r) is a ball of radius r = Θ(log(ε−1))
around the support of the observable O, where ε is the precision we wish our estimator to be
correct to. We then construct an estimator:

fO(y) =
1

|Γ|
∑
j∈Γ

tr[Oρ̃∞(xj)],

A flowchart of the learning and predictions state is given in Fig. 3.

Figure 3. Schematic representation of our algorithm to learn phases of matter. The training stage just con-
sists of collecting shadows corresponding to various parameters. In the prediction stage, given an observable
O and corresponding parameter y supported on a region Supp(O), we search for parameters xi we sampled
that have parameters close to y on an enlarged region around A and compute the expectation value of O
on the corresponding shadows. The prediction is then a median of means estimate on the values. Note that
no machine-learning techniques are required for the estimate.
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B. Proof Outline

Here we give a brief outline of the proof of learning of steady state phases (Corollary III.3).
The proof for general Lindbladian phases follows in a similar manner.

Localising the Physics of the System: Consider two steady states ρ∞(x), ρ∞(x′) of Lind-
bladians L(x),L(x′). If these two points are in the same phase, then there is a rapidly mixing
path from a reference state to both of them under L(x),L(x′) respectively. The fact L(x),L(x′)
are local Lindbladians means that they have associated Lieb-Robinson bounds — a finite speed
of propagation of information in the system. In simple terms, Lieb-Robinson bounds say that if
LA(r) is the restriction of L to the region A(r), then the evolution of an operator at the centre of
A(r) follows: ∥∥∥etL∗

(O)− e
tL∗

A(r)(O)
∥∥∥ ≤ ∥O∥ | supp(O)|J (evt − 1− vt)e−βr

v

for appropriate constants β, v, and where J characterises the strength of the Lindbladian. The full
statement is in Lemma A.4.

This, plus the rapid mixing condition, implies that the long-range physics ρ∞(x), ρ∞(x′) must
be similar for both states as the Lindbladian evolution does not have time to change the long-
range correlations. Thus, given an expectation value of some local observable A measured on
ρ∞(x), ρ∞(x′) respectively, we should only expect the difference between tr[Oρ∞(x)], tr[Oρ∞(x′)]
to depend on the parameters of x, x′ describing the system geometrically close to the support of
O.

The proof uses techniques from [CLMPG15] to show that steady states of Lindbladians which
are close in parameter space also share similar properties, and look the same on a local section of
the lattice.

Local Physics Implies More Efficient Local Parameterisation: We now want to charac-
terise how large the region around the support of O we need to consider in order to parameterise
tr[ρ∞(x)O]. We see that the rate of rapid mixing gives the answer to this, and that the effect of
parameters away from the support of O decays rapidly, with a spatial decay rate depending on the
mixing time. This tell us that even if x, x′ are very different overall, as long as they are close in
the region around O, then tr[ρ∞(x)O], tr[ρ∞(x′)O] will have similar values.

Sampling from the Phase and Constructing the Estimator: We now assume we are given
N quantum states sampled from points Y1, . . . , YN ∼ D from the phase, where D is a sufficiently
anti-concentrated distribution (i.e. that attributes sufficient mass to all points). For a given
observable Oi, we then estimate the reduced steady state states over large enough enlargements
Si∂ of the observable supports Si := {xj | supp(Lj(xj)) ∩ Si∂ ̸= ∅} ∩ [x− ε, x+ ε]m.

Assuming an anti-concentration property of the distribution D which our samples are selected
from, the probability that a small region Si∂ in parameter space contains t variables Yi1 , . . . , Yit
becomes large for large enough N . We then run the classical shadow tomography protocol on those
states separately in order to construct efficiently classically describable and computable product
matrices ρ̃∞(Y1), . . . , ρ̃∞(YN ) [HKP20]. Then for any region of the lattice Si, we select the shadows
ρ̃∞(Yi1), . . . ρ̃∞(Yit) whose local parameters are close to that of the target state and construct the
empirical average ρ̃∞Si

(x) := 1
t

∑t
j=1 trSc

i

[
ρ̃∞(Yij )

]
.
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Since we are promised that the states are in the same phase, as per Definition II.1, then
there must be a rapidly mixing Lindbladian between them, and hence as discussed in the previous
paragraph, they must look similar locally. The estimator f̂O is then naturally chosen as an empirical
average f̂O(x) :=

∑M
i=1 tr[Oi ρ̃∞Si

(x)].

V. RELATION TO LEARNING FROM OTHER DEFINITIONS OF PHASE

A. Gapped Hamiltonian & Circuit Definitions of “Phase of Matter”

An important subset of cases we are interested in is the case of ground states of Hamiltonians.
Notably, for gapped ground states, a “phase of matter” can be described either as a the set of
ground states that can be smoothly moved between in constant time using the adiabatic theorem,
or by a constant depth circuit where the unitaries have polylog locality. These two definitions can
be shown to be equivalent.

Importantly for our purposes, the Lindbladian definition of phase encompasses the circuit defin-
ition of phase. That is, if two states are related by a regular path of Hamiltonians H(s), such that
for all s the Hamiltonian is gapped, then these two states also satisfy the Lindbladian definition
of phase [CPG19, Section 3]. Thus we get as a corollary:

Corollary V.1 (Efficient Learning of Gapped Ground State Phases). Consider the ground states
of a Hamiltonian H(x), where Φ ⊆ Rm, where for x ∈ Φ, the spectral gap of H(x) is lower bounded
by an O(1) constant (i.e. Φ characterises a gapped phase of matter). Then the family of ground
states are in the same phase as per the Lindbladian definition, Definition II.1, and therefore can
be learned with a number of samples scaling as N = O(log(n/δ) log(M/δ)2polylog(1/ε)).

Furthermore, the same scaling holds for phases of matter defined by states which are related by
an O(1) depth circuit with unitaries with O(log(n)) locality.

We also note that the circuit definition of “phase of matter” goes beyond just the set of ground
states of gapped Hamiltonians, and can more generally be used to characterise equivalence classes
of states [PSC21]. Since the above Corollary V.1 holds for polylog(n) depth circuits with O(1)
local gates, we see that our learning result applies to equivalence classes of states defined by these
local unitaries. Indeed, it allows learning of phases which correspond to gapless phases of matter,
provided the states satisfy the above circuit definition of phase of matter.

B. Examples for Rapidly Mixing Systems

There are some cases where we can relate the Lindbladian definition of phase to physical
examples. It is known that there is a finite depth circuit relating the low-temperature 4D Toric
code to its ground state [Has11]. We can map this construction a time-independent Lindbladian
to show that the low-temperature Gibbs state and ground state of the 4D Toric code are in the
same phase.

More generally, bounding mixing times for Lindbladians is a notoriously difficult task, which
makes it hard to put the Lindbladian definition of phase in contact with physical systems (see the
introduction of [CRF20] for a discussion of this for thermal phases of matter).

We point out that for commuting Hamiltonians in 1D, all states mix rapidly in log(n) time under
an evolution generated by the Davies generator, showing that the Lindbladian definition agrees
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with the standard definition of phase which says that there are no thermal phase transitions in 1D
systems [BCG+23]. At high-temperatures (i.e. above a phase transition) it is known that one can
rapidly mix between Gibbs states of the classical 2D Ising model under Glauber dynamics [LP17,
Chapter 15], and similarly if a uniform external magnetic field is applied [MOS94], which also
holds true for systems satisfying strong spatial mixing. An O(log(n/ε)) mixing time also holds
provided certain conditions on the Gibbs state are satisfied [FG18].

However, these authors know of very little literature showing mixing times between states which
are in the same, non-trivial phase (e.g. low-temperature thermal states). [MSW03] demonstrates
that if the boundary conditions are fixed, the Ising model on a tree mixes in time O(n log(n/ε)) un-
der Glauber dynamics (which morally could be considered O(log(n/ε)) under parallelised Glauber
dynamics). Since fixed boundary conditions can be considered long-ranged correlations, this ar-
guably constitutes the states being in the same phase.

Chen et al. [CCK+23] demonstrate a Lindbladian which maps to Gibbs states, for which
they expect to the spectral gap to be constant for high temperature states, or states in the same
phase, hence we expect might expect log(n/ε) mixing times3. However, the Lindbladian here is
not local, and our results do not direct apply here. [BK19] demonstrate that certain classes of
thermal states satisfying that correlations are exponentially decaying, and that erased patches can
be recovered locally, can be prepared using log-depth local quantum circuits suggesting these are
in the high-temperature phase by the Lindbladian definition.

More generally, we can always start from a reference state and consider the family of states which
is generated by evolving that state for a finite time by a family of parametrised local Lindbladians.
This includes families of states related by finite-depth quantum circuits. Thus, in principle, the
learning results in this work can be applied to gapless phases of matter or a reference state with
algebraically decaying correlations where this condition holds.

VI. CONCLUSIONS AND DISCUSSION

We have shown that it is possible to sample-efficiently learn observables in phases of matter
defined under the Lindbladian definition of phase. This definition of phase not only covers previ-
ously investigated phases of matter such as gapped ground states phases, but allows us to generalise
to other phases of matter including gapless phases as matter, phase defined by mixed states, such
as those with noise or some contact with an external system, and at least some thermal phases.
The Lindbladian definition of phase is a very natural definition which incorporates intuitive aspects
of phase, including (i) stability under perturbations (ii) similarity of correlations (iii) a partial
ordering of states. Despite this generality, our methods allow for sample efficient learning which
is similar to [ORSW23] and [LHT+23], and better than [HKT+22]. Furthermore, the estimators
constructed here are simple empirical averages, and are both conceptually and computationally
easy to implement. Thus, given both its generality, power to encompass a variety of physical sys-
tems and technical simplicity, we believe that the framework laid out in this work has the potential
to find applications in a variety of settings at the intersection of machine learning and quantum
many-body systems.

3 Technically the spectral gap of the Lindbladian does not always characterise the mixing time, but suggests a fast
mixing time.
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A. Future Work and Related Questions

Lindbladian Phases in Physical Systems. Currently, there are still some gaps in our under-
standing of which families of states constitute a phase under the Lindbladian definition of phase.
Although we can construct Lindbladians for which the gapped ground state phases satisfy the rapid
mixing condition, in other cases (e.g. thermal phases) this is not so clear. Greater investigation
into this definition is warranted, although proving rigorous bounds on mixing times of Lindbla-
dians is notoriously difficult. We expect that Gibbs states and thermal phases can generally be
described by the Lindbladian definition of matter, but it remains an open question to establish
this rigorously.

Beyond Lindbladian Phases. Beyond the definition of Lindbladian phases, there exist other
definitions of phase of matter which may be physically relevant and be worth investigating [AFD21,
dGTS22, MC23, RdAGRMPG22, PSC21, LL23]. Currently it is unclear how exactly these different
definition relate to each other. We speculate that any definition of phase characterised by rapid
mixing between states under a geometrically local evolution should satisfy results similar to the
ones given here. Furthermore, is would be interesting to see if the Lindbladian definition of phase
can be proven to be the same/different from the steady state definition of phase introduced in
[RGvK23]. Indeed, we expect that at the very least, one can learn local patches of phases defined
in [RGvK23].

Learning Phase Boundaries. The results in this work are concerned with learning a known
phase. However, in general, determining where the boundaries of a phase diagram are is not a trivial
task. For the Hamiltonians of [CLMPG15, BCL+17, BCW21, WB21], the families of Hamiltonians
are parameterised by a single parameter either φ ∈ [0, 1] or φ ∈ [0, 1] ∩ Q, but determining the
position of the boundary is at least as hard as QMAEXP (in the case of a finite-sized system) or
is undecidable (in the thermodynamic limit). Moreover, common techniques for approximating
phase boundaries must fail due to these complexity/computability results [WOC22].

Huang et al. [HKT+22] show that for a finite-sized system there is a provable sample-efficient ad-
vantage. They demonstrate one can use Support Vector Machine techniques and samples from the
separate phases to efficiently learn the phase boundary with polynomially many samples, provided
there is a local order parameter. The case where there no samples are provided is PQMAEXP-complete
in general [WB21]. For the general case of no local order parameter, the sample complexity remains
an open question, and for many topological phases is believed to be exponential.

Further Learning Techniques. The learning algorithm in this work generates an estimator
for the local observable of interest by an empirical average. We conjecture that if one uses the
techniques used here to prove smoothness of local observables and concentration of measure in
combination with more advanced techniques from machine learning, then one may well be able to
greatly improve the sample complexity required in practice.
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SUPPLEMENTARY MATERIAL

Appendix A: Notation and definition of Lindbladian superoperators

Given a finite dimensional Hilbert spaceH, we denote by B(H) the algebra of bounded operators
on H, whereas Bsa(H) denotes the subspace of self-adjoint operators. We denote by D(H) the set
of positive operators on H of unit trace, and by D+(H) the subset of positive, full-rank operators
on H. Schatten norms are denoted by ∥.∥p for p ≥ 1. The identity matrix in B(H) is denoted by I.
In this work, systems on a D-dimensional lattice Λ = [−L,L]D where at each site x of the lattice
we will associate a d-dimension Hilbert space Hx. We denote the subset of lattice points within
a ball of radius r, centred on u as bu(r). The algebra of observables supported on Λ is defined as
AΛ =

⊗
x∈Λ B(Hx). A linear map T : A → A is called a superoperator.

The dynamics of a Markovian, dissipative system is generated by a superoperator known as
a Lindbladian. In this work, we consider a family of local, time-independent Lindbladians acting
over the D-dimensional lattice Λ = [−L,L]D. Lindbladians have the form:

L(ρ) = i[ρ,H] +
∑

LjρL
∗
j −

1

2

∑
j

{L∗
jLj , ρ} (A.1)

where H is a Hermitian matrix, {Lj}j a set of matrices called the Lindblad operators. [A,B] and
{A,B} denote the commutator and the anticommutator respectively of operators A,B. The time
evolution operator is then given by etL. The fact that the Lindbladian is local means it can be
written as a sum of local terms:

L(x) =
∑
j

Lj(xj),

where we have allow the terms to depend on some parameterisation, x ∈ Rm, and where each
xj ∈ Rℓ, and ℓ = O(1). For the rest of this work we will assume that the Lindbladian is linearly
parameterised, Lj(xj) = xjEj , for an operator Ej . However, the result apply equally for Lindbla-
dians with bounded derivatives. We will often characterise a phase as a subset of parameter space
Φ ⊆ Rm.

Each Lj(xj) supported on a ball Aj around site j ∈ Λ of radius r0. Thus the interactions have
finite range. We will also use the notation Lu,r to denote a term with support entirely within bu(r).
Given a vector x ∈ Rm, a subsection of the lattice S ⊆ Λ and a local Lindbladian L(x), then x|S
refers to the restriction of x to only those parameters which describe local terms in Lj(xj) which
have support on S.

Consider two families of local Lindbladians, L,L′ with local terms Lj ,L′j respectively. For some

A ⊆ Λ, we will also use the notation LA(x) =
∑

j:supp(Lj)⊆A Lj(xj) +
∑

j:supp(Lj) ̸⊆A L′j(xj). That

is, the Lindbladian has terms from L within A, and terms from L′ outside of A.

Definition A.1 (Lindbladian Steady State). We say that L has a unique steady state ρ∞ if, for
all density matrices ρ, limt→∞ etL(ρ) = ρ∞. For parameterised sets of Lindbladians {L(x)}x, each
with a unique steady state, we denote the corresponding steady state by ρ∞(x).

Any given Lindbladian forms the generator of a one parameter semigroup which represents the
evolution of the system through time. We denote this Tt = etL, and its dual is denoted T ∗

t = etL
∗
,

such that for a state ρ and an observable A, then tr[ATt(ρ)] = tr[ρT ∗
t (A)].
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We can then define the relevant completely bounded norms for these superoperators as

∥T∥1→1,cb = sup
n
∥T ⊗ 1n∥1→1 = sup

n
sup

X∈AΛ⊗Mn,X ̸=0

∥T ⊗ 1n(X)∥1
∥X∥1

.

and similarly

∥T∥∞→∞,cb = sup
n
∥T ⊗ 1n∥∞→∞ = sup

n
sup

X∈AΛ⊗Mn,X ̸=0

∥T ⊗ 1n(X)∥∞
∥X∥∞

.

We note that ∥T∥1→1,cb = ∥T ∗∥∞→∞,cb. We define the strength of the Lindbladian as:

J = sup
u,r
∥Lu,r∥1→1,cb , f(r) = sup

u

∥Lu,r∥1→1,cb

J
.

For the remainder of this work, we will assume that we are working with finite range interactions,
and so f(r) is compactly supported. However, these results can be adapted to exponentially
decaying and sufficiently fast decaying polynomial decays. When talking about a specific observable
O, we will assume it is supported on a ball of diameter at most k0 around site i in the lattice.

Finally, we need to restrict the family of Lindbladians we are restricting to, realising that we
need to be able to talk about Lindbladians at different systems sizes:

Definition A.2 (Uniform Families of Lindbladians). A uniform family of Lindbladians L with
strength (J, f) is given by the following:

• infinite Lindbladian: a Lindbladian M on all of ZD with strength (J, f);

• boundary conditions: we assume either open or periodic boundary conditions.

From here onward, we impose Definition A.2 on all Lindbladians which act on the primary system,
but not necessarily on the auxiliary system. A Lindbladian acting on a finite lattice is then defined
by the restriction of the infinite Lindbladian to that subsection of the lattice, plus the relevant
boundary conditions.

An important subset of uniform families of Lindbladians are those with translationally invariant
terms, which naturally define a Lindbladian on an infinite lattice.

1. Toolbox

A key tool we will utilise for our efficient learning results are Lieb-Robinson bounds, which put
a “speed limit” on the propagation of information throughout a system having geometrically local
interactions. We will import many of the techniques and lemmas from [CLMPG15] to prove our
result.

Assumption A.3 (Lieb-Robinson Condition). Let L =
∑

u,r Lu,r be a local Lindbladian, where
Lu,r is a Lindbladian term with support entirely contained within a ball of radius r centred at u,
denoted bu(r). We say L satisfies the LR condition if and only if there exist positive constants µ, v
such that:

sup
x∈Λ

∑
u∈Λ

∑
r≥dist(u,x)

∥Lu,r∥1→1,cb |bu(r)|νµ(r) ≤
v

2
<∞.
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Furthermore,

νµ(r) = eµr,

and ν−1
µ (r) = 1/νµ(r).

This is satisfied if L has finite ranged or exponentially decaying interactions [CLMPG15, Remark
5.2]. This assumption allows us to put limits on the propagation of correlations and other effects
as the system evolves. Importantly, using the Lieb-Robinson bounds for dissipative systems from
[Pou10, NVZ11], the following lemma can be derived:

Lemma A.4 (Localising the Evolution, Lemma 5.5 of [CLMPG15]). Let OA be a local observable
supported on A ⊂ Λ, and let A(r) denote a ball of radius r around A. Denote OA(t) = T ∗

t (OA)
its evolution under a local Lindbladian L with strength (J, f). Given r > 0, denoted by OA(r; t)
its evolution under the Lindbladian LA(r) with strength (J, f), which is identical to L within A(r),
but may differ outside. Then, using the notation from Assumption A.3, the following bound holds:

∥OA(t)−OA(t; r)∥ ≤ ∥OA∥ |A|J
evt − 1− vt

v
ν−1
β (r),

for a constant β.

Appendix B: Learning Lindbladian Phases of Matter

In this section we show that phases satisfying the Lindbladian definition of phase, in addition to
the compatibility condition (Condition II.2), can be learned efficiently. One of the key components
to this is to show that by perturbing the Lindbladian, the properties of the states along the
trajectory of the Lindbladian do no vary too much. There are multiple results showing properties
similar to this under various assumptions, e.g. [ABFJ16, GLTG21, LL23]. However, for our
purposes, we follow a similar path to the proof of [CLMPG15].

The first step of the proof is to prove that the local rapid mixing condition holds:

Condition B.1 (Local Rapid Mixing). Let L be a Lindbladian with steady state ρ∞, and let ρ0
be some point in the same phase as ρ∞ (e.g. the reference point of the phase, ρ∗), such that ρ0
is the steady state of the Lindbladian L′. Let OA be a geometrically local observable supported on
A ⊂ Λ. Then:

| tr[OA(Tt(ρ0)− ρ∞)]| ≤ poly(|A|)e−γt

We first prove a LTQO-type condition, which states that local observables on A are in some
sense indistinguishable between steady states of different sizes.

Lemma B.2 (LTQO-Type Condition). Let L be a uniform family of Lindbladians which for any
A ⊂ Λ, the Lindbladian has local terms of L within A and terms of some other Lindbladian outside

of A. Let OA be an observable supported on A ⊂ Λ and let ρ
A(s)
∞ be the steady state of LA(s) and

let ρ∞ be the unique steady state of L. Assume ρ
A(s)
∞ and ρ∞ are in the same phase. Then:

sup
OA

| tr[OA(ρ∞ − ρA(s)
∞ )]| ≤ ∥OA∥

(
J

v
|A|+ c|A|κ

)
∆0(s)
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where

∆0(s) =

(
|A(s)|
|A|

)κv/(v+γ)

ν−1
β′ (s)

and β′ = βγ/(v + γ).

Proof. Applying the triangle inequality gives:

| tr[OA(ρ∞ − ρA(s)
∞ )]| ≤ | tr[OA(ρ∞ − T

A(s)
t (ρ∞))]|+ | tr[OA(T

A(s)
t (ρ∞)− ρA(s)

∞ )]|

= | tr[OA(Tt(ρ∞)− T
A(s)
t (ρ∞))]|+ | tr[OA(T

A(s)
t (ρ∞)− ρA(s)

∞ )]|

The first term can be bounded by applying the Lieb-Robinson bounds summed up in Lemma A.4
giving:

| tr[OA(Tt(ρ∞)− T
A(s)
t (ρ∞))]| = tr[ρ∞(T ∗

t (OA)− T
∗A(s)
t (OA))]

≤ ∥ρ∞∥1
∥∥∥T ∗

t (OA)− T
∗A(s)
t (OA))

∥∥∥
≤ ∥OA∥ |A|

J

v
evtν−1

β (s)

The second term is bounded by Condition II.2:

| tr[OA(T
A(s)
t (ρ∞)− ρA(s)

∞ )]| ≤ ∥OA∥ |A(s)|κe−γt.

Putting these together:

| tr[OA(ρ∞ − ρA(s)
∞ )]| ≤ ∥OA∥ |A|

J

v
evtν−1

β (s) + ∥OA∥ |A(s)|κe−γt

= ∥OA∥ |A|
J

v
evtν−1

β (s) + ∥OA∥ |A|κp(s)e−γt,

where in the last step we have simply taken the s dependence out of A(s) to make it more explicit,
p(s) = (|A(s)|/A)κ.

We then choose t = t(s) such that evtν−1
β (s) = p(s)e−γt,

t(s) = log(νβ(s)p(s))
1/(v+γ).

This gives e−γt = νβ′(s)p(s)γ/(v+γ) where β′ = βγ/(v + γ), which gives

∆0(s) =

(
|A(s)|
|A|

)κv/(v+γ)

ν−1
β′ (s)

By slightly modifying the proof of Proposition 6.6 in [CLMPG15], we show the above lemma
implies that when moving between states within a phase, we expect even faster mixing of the local
observables compared to the state.
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Lemma B.3 (Rapid Mixing of Observables within a Phase). Let L be a Lindbladian with steady
state ρ∞, and let ρ0 be some point in the same phase as ρ∞ (e.g. the reference point of the phase,
ρ∗), such that ρ0 is the steady state of the Lindbladian L′. Let LA(s) be a Lindbladian with local
terms corresponding to L within A(s), and L′ outside of A(s). Let OA be a geometrically local
observable supported on A ⊂ Λ. Then:

| tr[OA(Tt(ρ0)− ρ∞)]| ≤ 2 ∥OA∥
(
J

v
|A|+ c|A|κ

)
p(t(v + γ)/β)e−γt,

where p is a polynomial.

Proof. Denote s0 to be the minimum s ≥ 0 such that A(s) = Λ.
Applying the triangle inequality gives:

| tr[OA(Tt(ρ0)− ρ∞)]| ≤ | tr[OA(Tt(ρ0)− T
A(s)
t (ρ0))]|+ | tr[OA(T

A(s)
t (ρ0)− TA(s)

∞ (ρ0))]|
+ | tr[OA(T

A(s)
∞ (ρ0)− ρ∞)]|.

The first term on the left-hand side is bounded by Lemma A.4.

tr[OA(Tt(ρ0)− T
A(s)
t (ρ0))]| ≤ ∥ρ0∥1

∥∥∥(T ∗
t − T

∗A(s)
t )(OA)

∥∥∥
≤ ∥OA∥ |A|

J

v
e−βs.

Then use the rapid mixing property in the compatibility condition, Condition II.2, we have:

tr[OA(T
A(s)
t (ρ0)− TA(s)

∞ (ρ0))]| ≤ c ∥OA∥ |A|κp(s)e−γt.

For the third term we apply Lemma B.2, which gives:

| tr[OA(T
A(s)
∞ (ρ0)− ρ∞)]| = | tr[OA((ρ

A(s)
∞ )− ρ∞)]|

≤ ∥OA∥
(
J

v
|A|+ c|A|κ

)
∆0(s).

Putting these all together gives:

| tr[OA(Tt(ρ0)− ρ∞)]| ≤ ∥OA∥ |A|
J

v
e−βs + c ∥OA∥ |A|κp(s)e−γt + ∥OA∥

(
J

v
|A|+ c|A|κ

)
∆0(s)

We now choose s = s(t) ≤ s0 to such that this term decays exponentially in t. In particular, we
choose s(t) = t(v + γ)/β, which gives:

∆0(s(t)) = p(t(v + γ)/β)e−γt.

Using this, we have:

| tr[OA(Tt(ρ0)− ρ∞)]| ≤ ∥OA∥ |A|
J

v
e−βs + c ∥OA∥ |A|κp(s)e−γt + ∥OA∥

(
J

v
|A|+ c|A|κ

)
∆0(s)

≤ 2 ∥OA∥
(
J

v
|A|+ c|A|κ

)
p(t(v + γ)/β)e−γt,
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which proves the lemma statement.

As a remark, we note that when t ≥ β/(v+ γ)s0, we can simply bound the quantity of interest as:

| tr[OA(Tt(ρ0)− ρ∞)]| ≤ c ∥OA∥ |A|κp(s0)e−γt.

To make the exponential decay of with t more explicit, we write the following corollary:

Corollary B.4 (Rapid Mixing of Local Observables II).

| tr[OA(Tt(ρ0)− ρ∞)]| ≤ 2 ∥OA∥W
(
J

v
|A|+ c|A|κ

)
e−γ′t

for some γ′ > 0 and W = O(1).

Proof. From Lemma B.3, we see that p(t(v + γ)/β) is a polynomial in t. We can simply choose a
W,γ′ such that

p(t(v + γ)/β)e−γt ≤We−γ′t.

Thus we have seen that we have obtained the rapid mixing condition.

1. Learnability with Local Rapid Mixing

We are interested in learning the quantity fO(L, t) = tr[Oρ(L, t)]. We will ignore the effect of
the auxiliary state as it is discretely parameterised, and so learning with respect to a different
auxiliary state can be formulated separately for each auxiliary state relative to the reference state
of interest.

We wish to compare how this quantity is related between “nearby” Lindbladians. The following
lemma shows that small perturbations in the Lindbladian only change the expectation value along
the evolution by a small amount which is independent of the evolution time.

Lemma B.5 (Stability of Observables within a Phase, Variant of Theorem 20 of [CLMPG15]).
Let L be a Lindbladian, and L′ = L+ E another local Lindbladian, where

E =
∑
u,r

Eu,r

and where the steady states of both L,L′ are in the same phase. Then:

|fO(L, t)− fO(L′, t)| ≤ c(|A|) ∥OA∥ ∥E∗∥∞→∞,cb ,

where c(|A|) = O(poly(|A|).
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Proof. Let Tt and St be the evolutions generated by L and L′ respectively.

|fO(L, t)− fO(L′, t)| = | tr[OATt(ρ
∗)]− tr[OASt(ρ

∗)]|
= | tr ρ∗[T ∗

t (OA)− S∗
t (OA)]|.

Using the fact [CLMPG15, Eq. (21)]:

T ∗
t (OA)− S∗

t (OA) =

∫ t

0
S∗
t−sE

∗T ∗
s (OA)ds

=
∑
u,r

∫ t

0
S∗
t−sE

∗
u,rT

∗
s (OA)ds

Thus

|fO(L, t)− fO(L′, t)| =
∑
u,r

tr

[
ρ∗

∫ t

0
S∗
t−sE

∗
u,rT

∗
s (OA)ds

]
.

Now choose d = dist(A, suppEu,r). We split the integral up into two separate parts: one
finishing at time t0 and the second beginning at t0, where t0 is a parameter we are free to choose.
We first consider:

tr

[
ρ∗

∫ t0

0
S∗
t−sE

∗
u,rT

∗
s (OA)ds

]
≤ ∥ρ∗∥1

∫ t0

0

∥∥S∗
t−sE

∗
u,rT

∗
s (OA)

∥∥ ds
≤

∫ t0

0

∥∥E∗
u,r(OA)

∥∥ ds
≤ ∥E∥1→1,cb ∥OA∥ |A|

2evt0 − v2t20 − 2vt0
v2νµ(d)

.

We now set t0 = t0(d) such that:

ν−1
µ (d)

evt0 − v2t20 − vt0
v2

≤ ν−1
µ/2(d).

Our choice for t0(d), which satisfies this, is t0(d) =
µ
2
log(v2/2)

v d. If t ≤ t0(d), then this integral is
bounded and we get the result in the lemma statement.

For t ≥ t0(d) consider:

tr

[
ρ∗

∫ t

t0(d)
S∗
t−sE

∗
u,rT

∗
s (OA)ds

]
= tr

[
ρ∗

∫ t

t0(d)
S∗
t−sE

∗
u,r(T

∗
s (OA)− tr[OAρ∞]1)ds

]
(B.1)

≤
∥∥E∗

u,r

∥∥
∞→∞,cb

∫ t

t0(d)
(tr[T ∗

s (OA)ρ
∗]− tr[OAρ∞]1) ds

≤ c′(|A|)
∥∥E∗

u,r

∥∥
∞→∞,cb

∥OA∥
∫ ∞

t0(d)
e−γsds (B.2)

≤
∥∥E∗

u,r

∥∥
∞→∞,cb

∥OA∥ c′(|A|)
1

γ
e−t0(d).
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where in Eq. (B.1) we have used that T ∗
∞(OA) = tr[OAρ∞]1, and that E∗

u,r(1) = 0. To get to
Eq. (B.2) we have used Condition B.1 and where c′(|A|) = O(poly(|A|)).

We denote h(d) = e−µd/2 + 1
γ e

−γt0(d) which is exponentially decay in d. Combining the t ≤ t0
and t ≥ t0 parts gives:

tr

[
ρ∗

∫ t

0
S∗
t−sE

∗
u,rT

∗
s (OA)ds

]
≤ ∥Eu,r∥1→1,cb ∥OA∥ c′(|A|)h(d), (B.3)

Thus

|fO(L, t)− fO(L′, t)| = ∥OA∥ c′(|A|) ∥E∥1→1,cb

∑
u,r

h(du,r). (B.4)

h(d) decreases exponentially with distance, but there are only a polynomial number terms in the
sum, hence the entire sum can be bounded by a constant. Hence we see that:

|fO(L, t)− fO(L′, t)| ≤ c(|A|) ∥E∥1→1,cb ∥OA∥ , (B.5)

for some c(|A|) = poly(|A|) (we have absorbed the sum
∑

u,r h(du,r) and c′(|A|) into the definition
of c(|A|)).

Changing the proof slightly, we get the corollary:

Corollary B.6 (Localising Expectation Values). Let L(x) = L +
∑
Lj(xj) be a continuously

parameterised family of Lindbladians, where each Lj(xj) is a local term supported on O(1) qudits
and xj ∈ [−1, 1]ℓ for a constant ℓ. Let (x, t), (x|S(r), t) correspond to two states in the same phase,
being equal on all parameters in the region S(r), but potentially different outside of S(r). Then:

|fO(L(x), t)− fO(L(x|S(r)), t)| ≤ C1e
−r/2ξ ∥OA∥ ,

for an O(1) constant C1.

Proof. We follow the proof up to Eq. (B.4), and then write:

|fO(L, t)− fO(L′, t)| ≤ ∥OA∥ |A|max
j
∥Lj∥1→1,cb

∑
j∈Sc(r)

h(rj)

We shift the centre of the lattice to be at the centre of the support of O such that:

|fO(L, t)− fO(L′, t)| ≤ ∥OA∥ |A|max
j
∥Lj∥1→1,cb

∑
|ℓ|>r

h(|ℓ|)
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We bound h(r) ≤ c′e−r/ξ where 1/ξ = min{γ, µ/2}. Summing over these contributions:

|fO(L, t)− fO(L′, t)| ≤ c′ ∥OA∥ |A|J
∑
|ℓ|>r

e−|ℓ|/ξ

= c′ ∥OA∥ |A|J
∑

a>k0+r/2

(
a+D − 1

D − 1

)
e−a/ξ

≤ c′ ∥OA∥ |A|JDD−1
∑

a>k0+r/2

aD−1e−a/ξ

≤ c′ ∥OA∥ |A|J(D − 1)!(2ξ)D−1DD−1
∑

a>k0+r/2

aD−1e−a/ξ

≤ c′ ∥OA∥ |A|J(D − 1)!(2ξ)D−1DD−1 e−(r+1)/ξ

1− e−1/2ξ

= C1e
−r/2ξ ∥OA∥ ,

where the above equation defines C1.

2. Restricting to Phases Defined by Steady States

A natural restriction to consider is the set of states formed by steady states of Lindbladians
which we can mixing rapidly between. Examples of such phases include ground states of local
Hamiltonians (which can be written as steady states of local Lindbladians) and also some Gibbs
states. Here we show that we can efficiently learn observables in these phases of matter. We define
them as the following:

Definition B.7 (Steady State Phase). Consider a family of states {ρ(L, ω, t)}L,t satisfying Defin-
ition II.1. We define the steady state phase to be the set of points belonging to this phase which
are also steady states of the Lindbladians describing this phase.

We will further assume that the set of Lindbladians can be continuously parameterised by4 x ∈
[−1, 1]m, L(x), and all states can be reached by evolution under etL(ρ∗⊗ω∗) for some fixed reference
states ρ∗, ω∗, hence the states in the phase can be conveniently denoted ρ∞(x) := limt→∞ etL(x)(ρ∗⊗
ω∗).

We note an important subtlety here: for two points ρ(x), ρ(x′) in the same steady state phase,
we do not require ρ∞(x) to mix rapidly to ρ∞(x′) under L(x′) (although this may also be the
case). We only require that there exists a relevant reference state ρ∗ which mixes rapidly (in the
sense of Definition II.1) to ρ∞(x) under L(x) and similarly for ρ∞(x′) under L(x′), and that it is
possible to rapidly mix back under a different Lindbladian.

We conjecture that all thermal of matter should be describable as steady state phases in the
sense above. However, proving this seems like a difficult task (proving mixing bounds on Lindbla-
dians is generally a non-trivial problem), particularly for quantum Hamiltonians.

Here we show that observables in a steady state phase of matter are learnable using concentra-
tion of measure arguments. Before starting this proof, we reiterate that each Lj(xj) is supported

4 In general we can consider any subset of Rm such that each parameter varies over an O(1) region.
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on a ball Aj around site j ∈ Λ of radius r0. Each Oi is supported on an area of radius no more
than k0.

During a training stage, we pick N points Y1, . . . , YN ∼ U independently distributed uniformly
at random in the phase, which we will assume is defined by points x ∈ [−1, 1]m, and are given
access to the steady state states ρ∞(Yj). Next, fix r ∈ N. Given an observable O =

∑M
i=1Oi, we

define Si = supp(Oi) and for each Si there is a ball of diameter at most k0 containing Si, and
further define Si(r) := {j ∈ Λ|dist(j, Si) ≤ r}. We can choose r0 = O(1) to be the minimum
integer such that the support of all Lj terms would fit inside a ball of radius r0. We construct for
any x ∈ [−1, 1]m the estimator

f̂O(x) =

M∑
i=1

tr
[
Oi ρ∞(Ŷi(x))

]
, with Ŷi(x) = argminYk

∥x|Si(r) − Yk|Si(r)∥ℓ∞ , (B.6)

where we recall that we denote by xSi(r) the concatenation of vectors xj corresponding to interac-
tions hj supported on regions intersecting Si(r). In words, we approximate the expectation value
of Oi by that of the state whose parameters in a region around Si are the closest to the state of
interest. We also denote Si ≡ Si(0). Using this we can prove the following:

Proposition B.8. We use the notation of the previous paragraph. Let {L(x)}x be a family of Lind-
bladians, each of which has a unique steady state within the same phase, defining a set {ρ∞(x)}x.
Consider a set of local observables such that each acts on a ball of lattice points of diameter no
more than k0. Then the estimator for O =

∑
iOi, given by f̂O(x) =

∑
i tr[Oiρ∞(Ŷi(x))] satisfies

the bound:

sup
x∈[−1,1]m

|fO(x)− f̂O(x)| ≤ ε

M∑
i1

∥Oi∥∞ ,

with probability at least (1− δ), whenever

N =
(γ
2

)−[2(r+r0+k0)]Dℓ
log

(
M

δ

)
+
(γ
2

)−[2(r+r0+k0)]Dℓ
log

(γ
2

)[2(r+r0+k0)]Dℓ

with

r =

⌈
2ξ log

(
4c′|A|J(D − 1)!(2ξ)D−1DD−1

εe1/2ξ(1− e−1/2ξ)

)⌉
γ =

ε

2[2(r + k0)]DJℓ
.

Before we prove this result it is useful to study its asymptotic scaling. We note, r = Θ(log(ε−1)),

γ = Θ
(

ε
log(ε−1)D

)
, so that the number of samples needed is asymptotically

N = Θ

(
log

(M
δ

)
epolylog(ε

−1)

)
.

Proof of Proposition B.8. We fix Oi and r > 0, and restrict ourselves to the subset of parameters
x|Si(r). The number of parameters in that subset is bounded by the volume V (r + r0 + k0) of the
ball Si(r + r0) times the number ℓ of parameters per interaction. We denote this total number of
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parameters by mr := V (r+r0+k0)ℓ. Next, we partition the parameter space [−1, 1]mr into cubes
of side-size γ ∈ (0, 1). By the coupon collector’s problem, we have that the probability that none of
the sub-vectors Yj |Si(r) is within one of those cubes is upper bounded by e−N(γ/2)mr+mr log(2/γ). By
a union bound, the probability that for any i ∈ [M ], any cube is visited by at least one sub-vector
Yj |Si(r) is lower bounded by 1− δ, δ := Me−N(γ/2)mr+mr log(2/γ). In other words, with probability

1− δ there is a Ŷi(x)|Si(r) in the N samples satisfying

∥x|Si(r) − Ŷi(x)|Si(r)∥∞ ≤ γ (B.7)

for all i ∈ [M ].

Denoting f̂Oi(x) = tr[ρ(Ŷi(x)|S(r))OA], we now want to control the following quantity:

|fOi(x|S(r))− f̂Oi(x)| ≤ lim
t→∞

tr

[
Oi

∫ t

0
e−(t−s)L(x|S(r))(L(x|S(r))− L(Ŷi(x)|S(r)))e−sL(Ŷi(x)|S(r))(ρ∗)ds

]
≤ ∥ρ∗∥1 lim

t→∞

∫ t

0

∥∥∥L∗(x|S(r))− L∗(Ŷi(x)|S(r))(Oi)
∥∥∥ ds (B.8)

≤ ∥Oi∥
∑

j∈S(r)

J
∥∥∥x|S(r) − Ŷi(x)|S(r)

∥∥∥
∞

(B.9)

≤ ∥Oi∥V (r)Jγ, (B.10)

where we have used Lemma B.5 in the first line, and used Eq. (B.7) to go the third line to the
fourth line. From Corollary B.6, we have.

| tr[Oi(ρ∞(x)− ρ∞(x|S(r)))]|, | tr[Oi(ρ∞(Ŷi(x))− ρ∞(Ŷi(x)|S(r)))]| ≤ C1e
−r/2ξ ∥OA∥ .

Using this, the definitions fOi(x), f̂Oi(x), and Eq. (B.10):

|fOi(x)− f̂Oi(x)| ≤ | tr[Oi(ρ∞(x)− ρ∞(x|S(r)))]|+ | tr[Oi(ρ∞(Ŷi(x))− ρ∞(Ŷi(x)|Si(r)))]|
+ | tr[Oi(ρ∞(x|S(r))− ρ∞(Ŷi(x)|Si(r)))]|

≤ (2C1e
−r/2ξ + C2(r)γ) ∥OA∥ , (B.11)

where C2(r) = V (r)Jℓ. Now, the volume V (s) of a ball of radius s in Λ is equal to

V (s) =
∑
a≤s

(
a+D − 1

D − 1

)
≤ (2s)D .

Suppose we want |fO(x) − f̂O(x)| ≤ ε for some ε > 0, we choose to portion the error so that
2C1e

−r/2ξ ≤ ε/2 and C2(r)γ ≤ ε/2. Thus we also need to choose γ such that C2(r)γ = V (r)Jℓγ ≤
ε/2.

Thus, given a δ we wish to achieve, we have:

δ := Me−N(γ/2)mr+mr log(2/γ).
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Choosing parameters:

r =

⌈
2ξ log

(
4C1

ε

)⌉
=

⌈
2ξ log

(
4c′|A|J(D − 1)!(2ξ)D−1DD−1

εe1/2ξ(1− e−1/2ξ)

)⌉
γ =

ε

2C2(r)

=
ε

2[2(r + k0)]DJℓ

Thus we get a number of samples needed as scaling as:

N =

(
2

γ

)mr

log

(
M

δ

)
+

(
2

γ

)mr

log
(γ
2

)m2

=
(γ
2

)−[2(r+r0+k0)]Dℓ
log

(
M

δ

)
+
(γ
2

)−[2(r+r0+k0)]Dℓ
log

(γ
2

)[2(r+r0+k0)]Dℓ
.

where we have used that mr = V (r + r0 + k0)ℓ = [2(r + r0 + k0)]
Dℓ.

Thus, in order to get a good approximation to fO(x), we simply need sufficiently many samples
of the observable of interest at different points in the parameter space of the phase. We can
learn these using classical shadows. Since only one copy of each ρ̃∞(Ŷi(x)) is available, the value
of observables reconstructed from it is likely to be too noisy. Here we follow the same steps as
[ORSW23] and use multiple copies of states “close to” x to reconstruct a better shadow at x.

More specifically, consider a steady state from the phase ρ(x) and a family ρ∞(x1), . . . , ρ∞(xN )
of states with the promise that for any i ∈ [M ] there exist t vectors xi1 , . . . , xit such that
maxj∈[t] ∥x|Si(r) − xij |Si(r)∥∞ ≤ γ. We run the shadow protocol and construct product operators
ρ̃∞(x1), . . . , ρ̃∞(xN ). Then for any ball B of radius k0, we select the shadows ρ̃∞(xi1), . . . ρ̃∞(xit)
and construct the empirical average

ρ̃B(x) :=
1

t

t∑
j=1

trBc

[
ρ̃∞(xij )

]
. (B.12)

The error of this estimate can be bound using the following from [ORSW23]:

Proposition B.9 (Robust shadow tomography, Prop D.2 of [ORSW23]). Fix ε, δ ∈ (0, 1). In the
notations of Proposition B.8, with probability 1− δ′, for any ball B of radius k0, the shadow ρ̃B(x)

satisfies ∥ρ̃B(x)− trBc [ρ∞(x)]∥1 ≤ 2C1 e
− r

2ξ + C2(r)γ + ε as long as

q ≥ 8.12k0

3.ε2
log

(
nk02k0+1

δ′

)
. (B.13)

We are now ready to prove the main result of this section — this is the formal version of
Corollary III.3:
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Theorem B.10 (Learning Steady State Phases). Use the notation of Proposition B.8 and
Eq. (B.12). Denote f̃Oi(x) = tr

[
Oi ρ̃Si(x)

]
the function constructed from the shadow tomo-

graphy protocol of Proposition B.9. Consider a set of N shadows {ρ̃∞(xi)}Ni=1 and suppose we
wish that:

|fO(x)− f̃O(x)| ≤ ε
∑
i

∥Oi∥∞ ,

with probability (1− δ).(1− δ′), with associated parameters:

r = 2ξ log

(
4c′|A|J(D − 1)!(2ξ)D−1DD−1

εe1/2ξ(1− e−1/2ξ)

)
γ =

ε

2[2(r + k0)]DJℓ

q =
8.12k0

3.ε2
log

(
nk02k0+1

δ′

)
.

Then it is sufficient to choose:

N = q
(γ
2

)−[2(r+r0+k0)]Dℓ
log

(
M

δ

)
+ q

(γ
2

)−[2(r+r0+k0)]Dℓ
log

(
q
γ

2

)[2(r+r0+k0)]Dℓ

Proof. We follow the reasoning of [ORSW23, Theorem D.3]: adapting the proof of Proposition B.8,
it is clear that with probability

1− δ := 1−Me
−N 1

q
(γ/2)mr+mr log(2/γ)+log q

each cube is visited at least t times. Conditioned on that event, and choosing q such that Equa-
tion (B.13) holds, we have that with probability 1− δ′

|fOi(x)− f̃Oi(x)| ≤
(
2C1e

− r
2ξ + C2(r)γ + ε

)
∥Oi∥∞ . (B.14)

3. Learning General Phases of Matter with Local Rapid Mixing

Appendix B 2 proved that we could efficiently learn a phase of matter which is restricted to
steady states of Lindbladians. However, there are points in the phase which are not steady states
of Lindbladians, but can nonetheless be reached by a rapid time evolution under a Lindbladian
with some auxiliary state. We wish to show that we can learn these phases too. We first need to
prove an analogue of Corollary B.6, but where the times are not necessarily equal:

Lemma B.11. Let L(x) = L+
∑
Lj(xj) be a continuously parameterised family of Lindbladians,

where each Lj(xj) is a local term supported on O(1) qudits and xj ∈ [−1, 1]ℓ for ℓ = O(1). Then

|fO(L(x), ω, t)− fO(L(x|S(r)), ω, t′)| ≤ ∥OA∥
(
2C1e

−r/2ξ + J |S(r)|δt
)
,

for an O(1) constant C1 and where |t− t′| ≤ δt.
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Proof. Since ω will be fixed throughout, we will neglect it for now and write fO(L(x), t) :=
fO(L(x), ω, t). Using the triangle inequality:

|fO(L(x), t)− fO(L(x|S(r)), t′)| ≤ |fO(L(x), t)− fO(L(x|S(r)), t)|+ |fO(L(x|S(r)), t)− fO(L(x|S(r)), t′)|.

From Corollary B.6, the first term on the right-hand side is bounded as:

|fO(L(x), t)− fO(L(x|S(r)), t)| ≤ C1e
−r/2ξ ∥OA∥ .

For the second term on the right-hand side, assume t′ > t without loss of generality, and consider:

fO(L(x|S(r)), t′)− fO(L(x|S(r)), t) = tr

∫ t′

t
OAL(x|S(r))esL(x|S(r))(ρ0)ds

≤
∫ t′

t
∥OA∥

∥∥L(x|S(r))∥∥1→1,cb

∥∥∥esL(x|S(r))
∥∥∥
1→1,cb

∥ρ0∥1 ds

≤ (t− t′) ∥OA∥ J |S(r)|.

Taking into account the case t′ ≤ t, we get

|fO(L(x|S(r)), t′)− fO(L(x|S(r)), t)| ≤ Jδt ∥OA∥ |S(r)|.

Combining these two gives:

|fO(L(x), t)− fO(L(x|S(r)), t′)| ≤ ∥OA∥
(
2C1e

−r/2ξ + J |S(r)|δt
)

We now move onto learning the phase of matter. Similar to learning the steady state phase as
outlined in Appendix B 2, we will take N samples, but noting that time must be considered as an
additional parameter, they are labelled as (Y1, τ1), . . . (YN , τN ) ∼ U . We are given access to the

corresponding states eτi(t)L(Ŷi(x))(ρ∗ ⊗ ω). We can then construct estimators:

f̂(L(x), ω, t) =
∑
j

tr[Oje
τi(t)L(Ŷi(x))(ρ∗ ⊗ ω)] (B.15)

with (Ŷi(x), τi(t)) := argmin(Yk,τk)
∥(x|Si(r), t)− (Yk|Si(r), τk)∥ℓ∞ , (B.16)

where in the second expression, we treat (x|Si(r), t) as a concatenated vector of the vector x|Si(r)

and t. We remember that ρ∗ is the reference state for the phase.
In words, we approximate the expectation value of Oi by that of the state whose parameters in

a region around Si are the closest to the state of interest and who are close in time. We can then
bound the error associated with this estimator as follows:

Proposition B.12 (Rapid Local Mixing: Learning General Lindbladian Phases). Consider a

phase of matter. Then the estimator f̂(L(x), ω, t) =
∑

j tr[Oje
τi(t)L(Ŷi(x))(ρ∗ ⊗ ω)] satisfies the

bound:

sup
x∈[−1,1]m

t≥0
ω∈W

|fO(L(x), ω, t))− f̂O(L(x), ω, t))| ≤ ε
M∑
i1

∥Oi∥∞ ,
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with probability at least (1− δ), whenever

N = |W |
(
γ

tε

)−1 (γ
2

)−[2(r+r0+k0)Dℓ]
[
log

(
M

δ

)
+ [2(r + r0 + k0)

Dℓ] log
(γ
2

)
+ log

(
γ

tε

)]
.

with

r = 2ξ log

(
4c′|A|J(D − 1)!(2ξ)D−1DD−1

εe1/2ξ(1− e−1/2ξ)

)
γ =

ε

2[2(r + k0)]DJℓ

tε =
1

γ′
log

(
6c′(|A|)

ε

)
.

We note that if we take the asymptotic scaling, then r = O(log(1/ε)), γ = O(ε/ logD(1/ε)) and
tε = O(log(1/ε)), which together gives a leading order term of:

N = O

(
log

(
M

δ

)
2−polylog(ε−1)

)
.

Proof of Proposition B.12. We wish to be able to learn fO everywhere in the phase. However,
while the parameter x ∈ [−1, 1]m has a bounded domain, t does not. We can fix this by realising
we can get ε close to any state using Condition B.1:

| tr[OA(Tt(ρ0)− ρ∞)]| ≤ c′(|A|)e−γ′t

hence if we wish to get precision εmix, it is sufficient to choose

tε =
1

γ′
log

(
2c′(|A|)
εmix

)
. (B.17)

Thus to learn fO everywhere to high precision, we need only consider t ∈ [0, tε].
We fix Oi and r > 0, and restrict ourselves to the subset of parameters x|Si(r) and the time

parameter t. The number of parameters in that subset is bounded by the volume V (r + r0 + k0)
of the ball Si(r + r0) times the number ℓ of parameters per interaction. We denote it by mr :=
V (r+r0+k0)ℓ. Next, we partition the parameter space [−1, 1]mr × [0, tε] onto cubes of side-length
γ ∈ (0, 1). By the coupon collector’s problem, we have that the probability that none of the sub-
vectors Yj |Si(r) is within one of those cubes is upper bounded by e−N(γ/2)mr (γ/tε)+mr log(2/γ)+log(tε/γ).
By union bound, the probability that for any i ∈ [M ], any cube is visited by at least one sub-vector
Yj |Si(r) is lower bounded by 1−δ, δ := Me−N(γ/2)mr (γ/tε)+mr log(2/γ)+log(tε/γ). In other words, with

probability 1− δ there is a Ŷi(x)|Si(r) in the N samples satisfying

max{∥x|Si(r) − Ŷi(x)|Si(r)∥∞ , |t− τi|} ≤ γ (B.18)

for all i ∈ [M ].
We wish to bound the following quantity:

|fO(L(x), ω, t))− f̂O(L(x), ω, t))| ≤ |fO(L(x), t)− fO(L(x|S(r)), t)| (B.19)

+ |fO(L(x|S(r)), t)− fO(L(Ŷi(x)|S(r)), t)| (B.20)

+ |fO(L(Ŷi(x)|S(r)), t)− f̂O(L(x), t)|, (B.21)
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where we have used the triangle inequality.
Considering the second term, Eq. (B.20), on the right-hand side and applying Lemma B.5:

|fO(L(x|S(r)), t)− fO(L(Ŷi(x)|S(r)), t)| ≤
∣∣∣∣ tr [OA

∫ t

0
e−(t−s)L(x|S(r))(L(x|S(r))

− L(Ŷi(x)|S(r)))e−sL(Ŷi(x)|S(r))(ρ∗)ds

]∣∣∣∣
≤
∣∣∣∣∑

u

tr

[
ρ∗

∫ t

0
S∗
t−sE

∗
u,rT

∗
s (OA)ds

] ∣∣∣∣
≤
∑
u

|xu,r − ŷu,r|
∣∣∣∣ tr [ρ∗ ∫ t

0
S∗
t−sL∗u,rT ∗

s (OA)ds

∣∣∣∣] ,
where here we have used xu,r, ŷu,r to denote the elements of x, Ŷi which describe the term Lu,r,
and we have that the Lindbladian is linearly parameterised. We then bound this as per Eq. (B.3):

≤ c(|A|) ∥OA∥
∑

i∈S(r)

J
∥∥∥x|S(r) − Ŷi(x)|S(r)

∥∥∥
ℓ∞

≤ c(|A|) ∥OA∥V (r)Jγ.

For the third term on the right-hand side Eq. (B.21), |fO(L(Ŷi(x)|S(r)), t) − f̂O(L(x), t)| assume
τi(t) > t without loss of generality, and consider:

|fO(L(Ŷi(x)|S(r)), t)− f̂O(L(x), t)| = |fO(L(Ŷi(x)|S(r)), t)− fO(L(Ŷi(x)|S(r)), τi(t))|

= tr

∫ τi(t)

t
OAL(x|S(r))esL(x|S(r))(ρ∗)ds

≤
∫ τi(t)

t
∥OA∥

∥∥L(x|S(r))∥∥1→1,cb

∥∥∥esL(x|S(r))
∥∥∥
1→1,cb

∥ρ∗∥1 ds

≤ (τi(t)− t) ∥OA∥ J |S(r)|.

Taking into account the case τi(t) ≤ t, we get

|fO(L(Ŷi(x)|S(r)), t)− f̂O(L(x), t)| ≤ J |τi(t)− t| ∥OA∥ |S(r)|
≤ Jγ ∥OA∥ |S(r)|.

where the last line follows from |τi− t| ≤ γ as per Eq. (B.18). Thus using Eq. (B.19) we can bound
the total difference as:

|fO(L(x|S(r)), t)− f̂O(L(x), t)| ≤ ∥OA∥V (r)Jℓγ + γJ ∥OA∥ |S(r)|

Finally, if we make the restriction that τi(t) ≤ tε, then we have additional error from this assump-
tion (see Eq. (B.17) for definition of εmix):

|fO(L(x|S(r)), t)− f̂O(L(x), t)| ≤ ∥OA∥V (r)Jℓγ + γJ ∥OA∥ |S(r)|+ εmix

= γ ∥OA∥V (r)Jℓ+ γJ ∥OA∥V (r) + εmix

= γ ∥OA∥V (r)J(ℓ+ 1) + c(|A|) ∥OA∥ e−γ′tε

≤ γ ∥OA∥ J(ℓ+ 1)(2r)D + c(|A|) ∥OA∥ e−γ′tε .
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We now consider the total error according to Eq. (B.19). First consider:

|fO(L(x), t)− fO(L(x|S(r)), t)|, | tr[OA(ρ(Ŷi(x), t)− ρ(Ŷi(x)|S(r)), t)]| ≤ C1e
−r/2ξ ∥OA∥ ,

where the bound is given by Corollary B.6. Using this and applying the bounds to Eq. (B.19), we
have:

|fO(L(x), t)− f̂O(L(x), t)| ≤ 2C1e
−r/2ξ ∥OA∥+ γ ∥OA∥ J(ℓ+ 1)(2r)D + c(|A|) ∥OA∥ e−γ′tε .

We arbitrarily choose the error budget such that:

2C1e
−r/2ξ ∥OA∥ , γ ∥OA∥ J(ℓ+ 1)(2r)D, c(|A|) ∥OA∥ e−γ′tε ≤ ε/3.

This allows us to choose:

r = 2ξ log

(
24C1

ε

)
γ =

ε

J(ℓ+ 1)(2r)D

tε =
1

γ′
log

(
3c(|A|)

ε

)
.

Doing so gives us a number of samples scaling as:

N =

(
tε
γ

)(
2

γ

)mr
[
log

(
M

δ

)
+ log

(γ
2

)mr

+ log

(
γ

tε

)]
=

(
γ

tε

)−1 (γ
2

)−[2(r+r0+k0)ℓ]
[
log

(
M

δ

)
+ [2(r + r0 + k0)ℓ] log

(γ
2

)
+ log

(
γ

tε

)]
.

Finally, for need to repeat this process for every ωi ∈ W . However, since |W | = O(1), this only
needs to be done a constant number of times. This gives the lemma statement.

We now have results showing that we learn phases of matter if we have estimates of observables
to sufficient precision everywhere. We now need to show that we can generate such estimates
efficiently. To do so, we again enlist the robust classical shadows technique discussed previously,
and formalised in Proposition B.9.

Consider a state from the phase ρ(x, ω, τ) and a family ρ(x1, ω, τ1), . . . , ρ(xNω, τN ) of states
with the promise that for any i ∈ [M ] there exist t vectors (xi1 , τi1), . . . , (xit , τit) such that
maxj∈[t] ∥(x|Si(r), τ) − (xij |Si(r), τij )∥∞ ≤ γ. We run the shadow protocol and construct product
operators ρ̃(x1, ω, τ1), . . . , ρ̃(xN , ω, τN ). Then for any ball B of radius k0, we select the shadows
ρ̃(xi1 , ω, τi1), . . . ρ̃(xit , ω, τit) and construct the empirical average

ρ̃B(x, ω, τ) :=
1

q

q∑
j=1

trBc

[
ρ̃(xij , ω, τij )

]
. (B.22)

Using this we can state our main result of this work (the formal version of Theorem III.2).
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Theorem B.13 (Learning Phases of Matter). Use the notation of Proposition B.12. Denote
f̃Oi(L(x), ω, t)) = tr

[
Oi ρ̃Si(x, ω, t)

]
the function constructed from the shadow tomography protocol

of Proposition B.9. Consider a set of N shadows {ρ̃(xi, , ωi, τi)}Ni=1 and suppose we wish that:

sup
x∈[−1,1]m

t≥0
ω∈W

|fO(L(x), ω, t))− f̃O(L(x), ω, t))| ≤ ε
M∑
i1

∥Oi∥∞ ,

with probability (1− δ).(1− δ′), with associated parameters:

r = 2ξ log

(
4c′|A|J(D − 1)!(2ξ)D−1DD−1

εe1/2ξ(1− e−1/2ξ)

)
γ =

ε

2[2(r + k0)]DJℓ

tε =
1

γ′
log

(
6c′(|A|)

ε

)
q =

8.12k0

3.ε2
log

(
nk02k0+1

δ′

)
.

Then it is sufficient to choose:

N = |W |q
(
γ

tε

)−1 (γ
2

)−[2(r+r0+k0)ℓ]
[
log

(
M

δ

)
+ [2(r + r0 + k0)ℓ] log

(γ
2

)
+ log(q) + log

(
γ

tε

)]
.

Proof. We follow the reasoning of [ORSW23, Theorem D.3]: adapting the proof of Proposi-
tion B.12, it is clear that with probability

1− δ := 1−Me
−N 1

q
(γ/2)mr (γ/tε)+mr log(2/γ)+log(tε/γ)+log q

each cube is visited at least q times. Conditioned on that event, and choosing t such that Equa-
tion (B.13) holds, we have that with probability 1− δ′

|fO(L(x), t)− f̃O(L(x), t)| ≤ C1e
−r/2ξ ∥OA∥+ γ ∥OA∥ J(ℓ+ 1)(2r)D + c(|A|) ∥OA∥ e−γ′tε .

We then choose the parameters to achieve the error in the theorem statement.

Appendix C: Learning Families of States with Slow Mixing

We can also consider the case where rapid local mixing does not occur and we allow for slower
mixing that the polylog(n) global mixing. That is, we will replace the mixing assumption with∥∥etL(ρ0 ⊗ ω0)− ρ1 ⊗ ω1

∥∥
1
≤ f(n)e−γ′t. (C.1)

As a result, for a general local observable we have that the local mixing is only as fast as the global
mixing between states in the same phase:

| tr[OA(Tt(ρ0 ⊗ ω0)− ρ∞ ⊗ ω1)]| ≤ ∥OA∥ f(n)e−γ′t. (C.2)

Similarly to the rapidly mixing case, we can consider the set of steady states under this slow mixing
condition. We call such a set of states a Steady State Phase with Slow Mixing (as they satisfy a
similar condition the Lindbladian definition of phase).
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1. Slow Mixing: Steady State Phases

We first consider learning steady state phases, as defined in Definition B.7. Implementing the
slow mixing condition in the proof of Lemma B.5 gives a weaker bound:

Lemma C.1 (Slow Local Mixing: Perturbation Bounds). Let L be a Lindbladian, and L′ = L+E
another local Lindbladian, where

E =
∑
u,r

Eu,r

and where L,L′ the steady states of both Lindbladians are in the same phase. Then:

|fO(L, t)− fO(L′, t)| ≤ c(n) ∥OA∥ ∥E∗∥∞→∞,cb .

where c(n) = O(f(n)).

Proof Sketch. We follow the proof of Lemma B.5 until we reach Eq. (B.2). At this point we use
the bound Eq. (C.2). Continuing from here gives the lemma statement.

With this lemma in hand, we can follow through the same proof as for the rapid mixing proof. In
particular, in analogy to Corollary B.6, we get the following:

Corollary C.2 (Slow Local Mixing: Localising Functions). Let L(x) = L +
∑
Lj(xj) be a con-

tinuously parameterised family of Lindbladians, where each Lj(xj) is a local term supported on
O(1) qudits and xj ∈ [−1, 1]ℓ for a constant ℓ. Then

|fO(L(x), t)− fO(L(x|S(r)), t)| ≤ C1(n)e
−r/2ξ ∥OA∥ ,

for an C1(n) = O(f(n)).

Pushing these changes through the lemmas about learning — in particular Proposition B.8, the
following can be shown:

Theorem C.3 (Slow Local Mixing: Learning steady state Phases). Use the notation of Proposi-
tion B.8 and Eq. (B.22). Denote f̃Oi(x) = tr

[
Oi ρ̃Si(x)

]
the function constructed from the shadow

tomography protocol of Proposition B.9. Consider a set of N shadows {ρ̃(β, xi)}Ni=1 and suppose
we wish that:

|fO(x)− f̃O(x)| ≤ ε
∑
i

∥Oi∥∞ ,

with probability (1− δ).(1− δ′), with associated parameters:

r = 2ξ log

(
4c′|A|J(D − 1)!(2ξ)D−1DD−1f(n)

εe1/2ξ(1− e−1/2ξ)

)
γ =

ε

2[2(r + k0)]DJℓ

q =
8.12k0

3.ε2
log

(
nk02k0+1

δ′

)
.
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Then it is sufficient to choose:

N = q
(γ
2

)−[2(r+r0+k0)]Dℓ
log

(
M

δ

)
+ q

(γ
2

)−[2(r+r0+k0)]Dℓ
log

(
q
γ

2

)[2(r+r0+k0)]Dℓ

N = O

(
2polylog(f(n)/ε) log

(
M

δ

)
log

(
n

δ

))
.

Proof. It is clear that with probability

1− δ := 1−Me
−N 1

q
(γ/2)mr+mr log(2/γ)+log t

each cube is visited at least q times. Thus the appropriate value of N is given by:

N = q
(γ
2

)−mr

log

(
M

δ

)
+ q

(γ
2

)−mr

log
(
q
γ

2

)mr

.

where mr = [2(r + r0 + k0)]
Dℓ.

To make an appropriate choice of r, γ, we need to understand the error between the localised
function and the full version. We we use an analogy to Eq. (B.11):

|fOi(x)− f̃Oi(x)| ≤
(
2C1(n)e

− r
2ξ + C2(r)γ + ε

)
∥Oi∥∞

where C1(n) = O(f(n)) as per Corollary C.2 and C2(r) = 2[2(r + k0)]
DJℓ is defined as per the

proof of Proposition B.8. Setting these to be of the relevant error size, we see that we can choose:

r = 2ξ log

(
C1(n)

ε

)
= 2ξ log

(
4c′|A|J(D − 1)!(2ξ)D−1DD−1f(n)

εe1/2ξ(1− e−1/2ξ)

)
γ =

ε

C2(r)
=

ε

2[2(r + k0)]DJℓ
= O

(
ε

logD(f(n)/ε)

)
= O

(
ε2−c log log(f(n)/ε)

)

2. Slow Local Mixing: General Lindbladian Phases

In the case of a general phase of matter as per Definition II.1, we see that we can repeat the
same analysis. Using Corollary C.2, we can derive a bound on the number of samples needed in a
similar way to Theorem B.13. In particular, we only need to be careful about the time parameter
when learning the entire phase (rather than just the steady states). We use the same learning
algorithm as in the rapid local mixing case.

Theorem C.4 (Slow Local Mixing: Learning Phases of Matter). Use the notation of Proposi-
tion B.12. Denote f̃Oi(L(x), ω, t)) = tr

[
Oi ρ̃Si(x, ω, t)

]
the function constructed from the shadow

tomography protocol of Proposition B.9. Consider a set of N shadows {ρ̃(xi, ωi, τi)}Ni=1 and suppose
we wish that:

sup
x∈[−1,1]m

t≥0
ω∈W

|fO(L(x), ω, t))− f̃O(L(x), ω, t))| ≤ ε
M∑
i1

∥Oi∥∞ ,
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with probability (1− δ).(1− δ′), with associated parameters:

r = 2ξ log

(
4c′|A|J(D − 1)!(2ξ)D−1DD−1f(n)

εe1/2ξ(1− e−1/2ξ)

)
γ =

ε

3[2(r + k0)]DJ(ℓ+ 1)

tε =
1

γ′
log

(
3f(n)

ε

)
q =

8.12k0

3.ε2
log

(
nk02k0+1

δ′

)
.

Then it is sufficient to choose:

N = |W |q
(
γ

tε

)−1 (γ
2

)−[2(r+r0+k0)Dℓ]
[
log

(
M

δ

)
+ [2(r + r0 + k0)ℓ] log

(γ
2

)
+ log(q) + log

(
γ

tε

)]
= O

(
log

(
n

δ

)
log

(
M

δ

)
2polylog(f(n)/ε)

)
.

Proof. We follow the reasoning of [ORSW23, Theorem D.3]: adapting the proof of Proposi-
tion B.12, it is clear that with probability

1− δ := 1−Me
−N 1

q
(γ/2)mr (γ/tε)+mr log(2/γ)+log(tε/γ)+log q

each cube is visited at least q times. Conditioned on that event, and choosing q such that Equa-
tion (B.13) holds, we have that with probability 1 − δ′, and using the slow local mixing bound
Corollary C.2

|fO(L(x), t)− f̃O(L(x), t)| ≤ C1(n)e
−r/2ξ ∥OA∥+ γ ∥OA∥ J(ℓ+ 1)(2r)D + f(n) ∥OA∥ e−γ′tε .

We divide up the error budget between these three terms equally such that:

C1(n)e
−r/2ξ, γJ(ℓ+ 1)(2r)D, f(n)e−γ′tε ≤ ε/3

are all equal. Thus we need to set

tε =
1

γ′
log

(
3f(n)

ε

)
r = 2ξ log

(
3C1(n)

ε

)
= O

(
log

(
f(n)

ε

))
γ =

ε

3J(ℓ+ 1)(2(r + k0))D
= O

(
ε

logD(f(n))

)
.
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