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Abstract

A major thrust in quantum algorithm development over the past decade has been the search
for the quantum algorithms that will deliver practical quantum advantage first. Today’s quan-
tum computers and even early fault-tolerant quantum computers will be limited in the number
of operations they can implement per circuit. We introduce quantum algorithms for ground
state energy estimation (GSEE) that accommodate this design constraint. The first estimates
ground state energies and has a quadratic improvement on the ground state overlap parameter
compared to other methods in this regime. The second certifies that the estimated ground state
energy is within a specified error tolerance of the true ground state energy, addressing the issue
of gap estimation that beleaguers several ground state preparation and energy estimation algo-
rithms. We note, however, that the scaling of this certification technique is, unfortunately, worse
than that of the GSEE algorithm. These algorithms are based on a novel use of the quantum
computer to facilitate rejection sampling. After a classical computer is used to draw samples,
the quantum computer is used to accept or reject the samples. The set of accepted samples
correspond to draws from a target distribution. While we use this technique for ground state
energy estimation, it may find broader application. Our work pushes the boundaries of what
operation-limited quantum computers are capable of and thus brings the target of quantum
advantage closer to the present.

1 Introduction

Estimating the ground state energy of quantum many-body systems is a fundamental problem in
condensed matter physics, quantum chemistry, material science and quantum information. It serves
as a basic subroutine in drug discovery and materials design [1, 2, 3, 4]. In this problem, the system
of interest is characterized as an n-qubit Hamiltonian H with unknown spectral decomposition
H =

∑

j Ej |Ej〉 〈Ej |, where E0 < E1 ≤ E2 ≤ ... are the eigenvalues of H and the |Ej〉’s are
the orthonormal eigenstates of H, and we need to estimate the lowest eigenvalue E0 of H within
additive error ǫ with high probability. Due to its significance, this problem has been extensively
studied in the past decades, and various methods have been proposed to tackle it. Among these
methods, two main approaches to ground state energy estimation (GSEE) have been explored.

GSEE assuming a fault-tolerance cost model The first approach to GSEE is based on the
quantum phase estimation (QPE) algorithm [5, 6] and often has rigorous performance guarantees.
In this approach, we assume that there exists an efficient procedure to prepare a state |ψ〉 that has
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non-trivial overlap with the ground state of H (i.e. |〈E0|ψ〉| = Ω(1/poly (n))). This assumption
is reasonable in many practical settings. For example, Refs. [7, 8, 9, 10] provide several methods
for creating such states for quantum chemistry Hamiltonians. Given the “ansatz state” |ψ〉, we
can perform standard QPE on the time evolution of H using |ψ〉 as the initial state. Assuming
p0 := |〈E0|ψ〉|2, we can obtain an ǫ-accurate estimate of E0 by using O(p−1

0 ) QPE circuits, each
of which uses O

(

log
(

ǫ−1p−1
0

))

ancilla qubits and implements a time evolution of H for a duration
at most O(ǫ−1p−1

0 ). Subsequently, the polynomial scaling of the algorithm runtime is O(ǫ−1p−2
0 ).

Several variants of this basic algorithm have been proposed in which the overall evolution time is
reduced to Õ(ǫ−1p−1

0 ) [11, 12, 13, 14], or the maximal evolution time is reduced to O
(

ǫ−1 log
(

p−1
0

))

[11, 12, 13, 15, 16, 14], or the number of ancilla qubits is reduced to O(1) [17, 18, 15, 14].
Despite these improvements, all of these algorithms require implementing a time evolution of

H up to O(ǫ−1) time. This implies that the number of operations per circuit on the quantum
computer is quite large when the tolerable error ǫ is small. As an example, [19] estimated that the
number of T gates required to implement ground state energy estimation to sufficient accuracy for
a class of small molecules is greater than 1010; the error rate of each gate must be significantly less
than 10−10. Today’s quantum hardware and that of the near future are far more limited in the
number of gates that can be implemented per circuit. As an example, IBM recently announced
their 100 × 100 challenge [20], in which, by 2024, they aim to realize accurate expectation value
calculations using circuits of 100×100 = 104 quantum gates, each of error rate 10−3. There is large
consensus in the community that the only feasible approach to increasing the number of operations
from 104 to greater than 1010 is by building large-scale quantum architectures that can implement
low-error-rate fault-tolerant operations.

The GSEE algorithms above were developed with a fault-tolerant quantum computer in mind.
It is by now standard to assume a cost model where the overhead of reducing error rates (through
fault-tolerant protocols) does not change the polynomial scaling of a quantum algorithm; that is,
the cost is logarithmic in the number of operations. Under this model, it is usually favorable to
reduce algorithm runtime at the cost of an increased number of operations per circuit. For this
reason, methods for ground state energy estimation have been developed [21] that increase the
number of ancilla qubits and operations to reduce the overall runtime.

GSEE assuming a pre-fault-tolerance cost model The second approach to GSEE is the
variational quantum eigensolver (VQE) [22, 1, 23]. This approach was initially conceived assuming
a cost model where fault-tolerant protocols are unavailable and thus gate error rates are fixed. For
a given circuit error rate, this limits the maximum number of quantum operations per circuit. The
method uses an ansatz circuit of limited number of operations to generate an approximation of the
ground state of H. While this algorithm is amenable to near-term implementation, it lacks perfor-
mance guarantees for two reasons. First, the accuracy of its output depends on the representation
power of the chosen variational ansatz which is often hard to understand. Second, in order to find
the optimal ansatz parameters, one needs to solve the associated non-convex optimization problem
which could be challenging [24]. Furthermore, since VQE needs to repeatedly evaluate the energy
of the ansatz state (via direct sampling or more sophisticated methods [25, 26]), this algorithm
becomes too time-consuming to be practical for chemical system sizes of industrial relevance, as
shown in a recent work [27] and are more sensitive to noise than previously expected [28, 29, 30, 31].

GSEE assuming a limited-number-of-operations cost model The two modes of ground
state energy estimation algorithms introduced so far were developed assuming two very different
cost models: logarithmic-overhead error reduction through fault-tolerance and fixed error rate.
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These models correspond to future fault-tolerant architectures and today’s near-term intermediate
scale devices, respectively. These cost models may not be sufficient to describe the capabilities and
limitations of early fault-tolerant quantum computers [32]. This motivates the development of cost
models that interpolate between these two regimes. While rigorously developing such cost models
is beyond the scope of our work, we will assume a proxy for such a model: any early fault-tolerant
quantum computer will be limited in the number of logical operations it can implement per circuit
while keeping the total error rate below some amount. This motivates the development of quantum
algorithms in which the number of operations can be reduced below that allotted by the device,
while paying a cost of an increase in runtime.

Several recent works have been developed under similar premises. The first was the so-called
α-VQE method [33] in which a variable-depth amplitude estimation is introduced. Later, Wang
et al. introduced a variable-depth amplitude estimation algorithm that is robust to substantial
amounts of error [25]. Similar methods were explored in the context of quantum algorithms for
finance [34, 35]. Some of these methods have been implemented on quantum hardware [36, 37].
Other algorithms have been introduced for early fault-tolerant quantum computers with the aim
of reducing the number of ancilla qubits compared to their traditional counterparts [38, 15, 39].

Recently, Wang et al.[40] applied this methodology to the task of ground state energy estima-
tion. They asked whether there exists a method for ground state energy estimation that uses fewer
operations per circuit than previous approaches (i.e. the merit of VQE), while admitting a rigorous
performance guarantee (i.e. the merit of traditional GSEE methods). Inspired by the recent work
of Lin and Tong [15], they showed that, given a lower bound ∆ on the spectral gap of H around
E0, one can estimate E0 within additive error ǫ with high probability by using Õ

(

∆2ǫ−2p−2
0

)

quantum circuits, where each circuit evolves H up to O
(

∆−1 polylog
(

∆ǫ−1p−1
0

))

time and re-
quires a single ancilla qubit. Note that the maximal evolution time is only poly-logarithmic in
1/ǫ, which is exponentially better than previous methods. Furthermore, the parameter ∆ can
be chosen anywhere between Θ(ǫ) and Θ(∆true), where ∆true := E1 − E0, and tuning it leads to
a class of GSEE algorithms that smoothly interpolate between an algorithm with circuit depth
O
(

∆−1
true polylog

(

∆trueǫ
−1p−1

0

))

and runtime Õ
(

∆trueǫ
−2p−2

0

)

and an algorithm with circuit depth

O
(

ǫ−1 polylog
(

p−1
0

))

and runtime Õ(ǫ−1p−2
0 ). In other words, these algorithms smoothly transi-

tion from having low circuit depth to achieving Heisenberg-limit scaling in the runtime with respect
to ǫ. Later, Ding and Lin [41] recovered this result using a different approach.

Although Refs. [40] and [41] significantly reduce the circuit depth for GSEE, one aspect of
their algorithms is somewhat unsatisfactory — their runtimes are quadratic in 1/p0. This means
that if the overlap between the input state |ψ〉 and the ground state |E0〉 is small, these algorithm
could take a long time to finish. Is it possible to improve the dependence on 1/p0 to linear while
preserving the nice features of these algorithms? In this work, we answer this question in affirmative.
Precisely, we prove that, given a lower bound ∆ on the spectral gap of H around E0, one can
estimate E0 within additive error ǫ with high probability by using Õ(∆2ǫ−2p−1

0 ) quantum circuits,
where each circuit has O

(

∆−1 polylog
(

∆ǫ−1p−1
0

))

depth and requires O(1) ancilla qubits. This
algorithm works with two common input models of H: 1. The block-encoding model, in which H
is embedded as a sub-matrix of a larger unitary operator; 2. The Hamiltonian-evolution model, in
which a controlled time evolution of H can be efficiently implemented. Moreover, as in Ref. [40], we
can tune the parameter ∆ anywhere between Θ(ǫ) and Θ(∆true), and doing so yields a class of GSEE
algorithms that smoothly transition from having circuit depth O

(

∆−1
true polylog

(

∆trueǫ
−1p−1

0

))

and

runtime Õ
(

∆trueǫ
−2p−1

0

)

to having circuit depth O(ǫ−1 polylog
(

p−1
0

)

) and runtime Õ
(

ǫ−1p−1
0

)

.
Therefore, our algorithm is also able to trade circuit depth for runtime like the one in Ref. [40] but
has a shorter runtime than the latter.

3



The core component of our algorithm is a novel procedure for performing rejection sampling
on a quantum computer. We apply it to draw random values from a neighborhood of E0. Specif-
ically, suppose we want to draw a sample from a target Gaussian-like distribution ν(x) such that
ν(x) peaks around E0. It might be difficult to do so directly. Instead, we first draw a ran-
dom value x from another distribution µ(x), and construct a unitary operator Ux(H) such that

|
〈

0k
∣

∣Ux(H)
∣

∣0k
〉

|ψ〉 |2 ∝ ν(x)
µ(x) for some integer k. Then we accept x if a measurement on the first

k qubits of Ux(H) |ψ〉 yields outcome 0k, and discard x otherwise. This procedure is akin to the
standard rejection sampling algorithm.

We show that one can utilize quantum singular value transformation (QSVT) [42] or similar
techniques [43, 14] to implement Ux(H) with a low-depth circuit. Furthermore, the circuit only
involves a few ancilla qubits and the rejection sampling procedure is efficient (i.e. not many raw
samples are discarded). Once we obtain sufficiently many samples from the desired distribution
ν(x), we compute their mean which is close to E0 with high probability.

Although good estimates of the spectral gap are available for many physically relevant mod-
els [44], this is not always the case. Furthermore, our algorithm will yield good estimates of the
ground state energy for evolution times t ≪ ∆−1 if the initial state has more structure. For in-
stance, if it has large overlap with the ground state and little overlap with other low-energy states.
Thus, it is highly desirable to ensure that our algorithm can be proven to give reliable estimates
when we do not know ∆ or have reasons to believe we have a structured initial state. To address
this, we devise a test that does not rely on knowledge of the spectral gap and only accepts if the
ground state energy estimate produced by the algorithm is within some tolerated error of the true
ground state energy 1. Furthermore, the test will always accept if we evolve for times proportional
to the inverse of the spectral gap. Although our algorithm, together with the certification result,
is the first to deliver certifiably correct energy estimates in the regime of depths ≪ ǫ−1, its sample
complexity of Õ(ǫ−4p−3

0 ) might make its implementation prohibitive in some contexts.
The remainder of this paper is organized as follows. In Section 2, we formally define our problems

and summarize our main results. Then in Section 3, we describe our method for performing rejection
sampling on a quantum computer and utilize it to design a quantum algorithm for GSEE. The
implementation details of certain parts of the algorithm depend on the input model of H and are
deferred to Sections 4 and 5, where we develop the full-fledged versions of this algorithm in the
block-encoding model and the Hamiltonian-evolution model, respectively, and analyze the costs of
the resulting algorithms. After that, in Section 6, we present a method for certifying the correctness
of the outputs of our algorithms. Finally, Section 7 concludes this paper.

2 Overview of the main results

2.1 Problem formulation

Let us start with a formal definition of the GSEE problem:

Definition 2.1 (GSEE). Suppose H is an n-qubit Hamiltonian with unknown spectral decomposi-
tion H =

∑N−1
j=0 Ej |Ej〉 〈Ej|, where N = 2n, −1 ≤ E0 < E1 ≤ E2 ≤ ... ≤ EN−1 ≤ 1, E1 − E0 ≥ ∆

for known ∆ > 0, and the |Ej〉’s are orthonormal eigenstates of H. Moreover, suppose we can

prepare an n-qubit state |ψ〉 =∑N−1
j=0 γj |Ej〉 such that |γ0|2 ≥ η for known η ∈ (0, 1). Our goal is

to estimate E0 within accuracy (i.e. additive error) ǫ with probability at least 1− δ, for given ǫ > 0

1Note that our test certifies that a ground state energy estimate is ǫ-close to the correct one, not that the spectral
gap of the Hamiltonian was at least some ∆0.
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and δ ∈ (0, 1). Furthermore, we want to achieve this by using quantum circuits that depend on H
and |ψ〉 and classical post-processing of their outcomes.

The above definition of the GSEE problem has omitted one important detail — how H is
accessed. In this paper, we will consider two common input models of H: the block-encoding
model [42] and the Hamiltonian-evolution model.

Definition 2.2 (block-encoding). Let n,m ∈ N and α, γ ∈ R+ be arbitrary. We say that an
(n+m)-qubit unitary operator U is an (α,m, γ)-block-encoding of an n-qubit linear operator A if

‖α (〈0m| ⊗ I)U (|0m〉 ⊗ I)−A‖ ≤ γ. (1)

For simplicity, we will only consider (1,m, 0)-block-encodings of H in this work. In fact, our
results in Sections 4 can be readily extended to general block-encodings of H, but doing so would
complicate the notation and obscure our main message.

Definition 2.3 (GSEE in the block-encoding model). For GSEE in the block-encoding model, we
assume that there exists a method to implement a (1,m, 0)-block-encoding U of H for some integer
m ≥ 0. Our quantum circuits will consist of multiple queries to U and U † and other primitive
quantum gates, and act on

∣

∣0k
〉

|ψ〉 for some k ≥ m. The other assumptions are the same as in
Definition 2.1.

Definition 2.4 (GSEE in the Hamiltonian-evolution model). For GSEE in the Hamiltonian-
evolution model, we assume that there exists a method to implement the controlled time evolution
of H, i.e. the unitary operation controlled-eiHt := |0〉〈0| ⊗ I + |1〉〈1| ⊗ eiHt. Each of our quantum
circuits will consist of multiple queries to controlled-eiHt and controlled-e−iHt for some t = Θ(1)
and other primitive quantum gates, and act on

∣

∣0k
〉

|ψ〉 for some k ≥ 1. The other assumptions are
the same as in Definition 2.1.

2.2 Main results

Our main results are threefold: a new way of performing rejection sampling on a quantum device,
how to use it to obtain state-of-the-art early fault-tolerant algorithms for GSEE, and techniques
for certifying ground state energy estimates. We will now informally summarize these technical
contributions.

First, we start with a novel way to perform rejection sampling on a quantum computer:

Theorem 2.5 (Rejection sampling from the spectral measure). Let H be an n-qubit Hamilto-
nian with spectral decomposition H =

∑

iEi|Ei〉〈Ei|, and let |ψ〉 be an n-qubit state. Define the
probability measure p on R as

p(x) =
∑

i

piδ(x− Ei), pi = |〈Ei|ψ〉|2, (2)

Furthermore, let ν, µ be two probability density functions on R such that supp(p ∗ ν) ⊂ supp(µ),
where ∗ denotes the convolution. Finally, assume that there exists a constant M ∈ C such that
for every x ∈ supp(µ) we have access to a (1,m, 0)-block-encoding Ux of an operator hx(H) which
satisfies

|hx(H)|2 = ν(H − xI)
|M |2µ(x) , ‖hx(H)‖ ≤ 1, (3)

and that we can generate samples distributed according to µ. Then we can generate a sample
distributed according to p ∗ ν from an expected number |M |2 uses of such Ux’s.
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Using this rejection sampling routine, we are then able to obtain the following GSEE algorithm:

Theorem 2.6 (GSEE algorithm, informal). Suppose H is an n-qubit Hamiltonian with unknown
spectral decomposition H =

∑N−1
j=0 Ej |Ej〉 〈Ej|, where N = 2n, −1 ≤ E0 < E1 ≤ · · · ≤ EN−1 ≤ 1,

E1 − E0 ≥ ∆ for known ∆ > 0. Moreover, suppose we can prepare an n-qubit state |ψ〉 such that
|〈ψ|E0〉|2 ≥ η for known η ∈ (0, 1). Then in both the block-encoding model and the Hamiltonian-
evolution model, there exists an algorithm that, for any given ǫ > 0 and δ ∈ (0, 1), estimates E0

within additive error ǫ with probability at least 1− δ by making use of

Õ
(

η−1(∆2ǫ−2 + log
(

∆−1
)

) log
(

δ−1
))

quantum circuits, where each circuit has depth proportional to

Õ
(

∆−1 log(η−1∆ǫ−1)
)

.

We emphasize that in Theorem 2.6, ∆ is merely a lower bound on the true spectral gap ∆true :=
E1 − E0 of H, not necessarily ∆true itself. In fact, we can tune it between Θ(ǫ) and Θ(∆true), and
doing so leads to a class of GSEE algorithms:

Corollary 2.7 (GSEE algorithms, informal). Suppose H is an n-qubit Hamiltonian with unknown
spectral decomposition H =

∑N−1
j=0 Ej |Ej〉 〈Ej|, where N = 2n, −1 ≤ E0 < E1 ≤ · · · ≤ EN−1 ≤ 1,

∆true = E1 − E0 is the spectral gap of H. Moreover, suppose we can prepare an n-qubit state
|ψ〉 such that |〈ψ|E0〉|2 ≥ η for known η ∈ (0, 1). Then in both the block-encoding model and the
Hamiltonian-evolution model, for every β ∈ [0, 1], there exists an algorithm that, for any given
ǫ > 0 and δ ∈ (0, 1), estimates E0 within additive error ǫ with probability at least 1 − δ by making
use of

Õ
(

η−1
(

ǫ−2+2β∆2−2β
true + log

(

ǫ−β∆β−1
true

))

log
(

δ−1
)

)

quantum circuits, where each circuit has depth proportional to

Õ(ǫ−β∆β−1
true log(η

−1∆1−β
true ǫ

β−1)).

Note that this result interpolates between a standard limit (β = 0) and a Heisenberg limit
(β = 1) by exchanging the circuit depth for the number of samples. Importantly, rather than scaling
as η−2 like previous methods [40, 41], the number of repetitions here is quadratically improved to
an η−1 scaling. This is achieved without increasing (i.e. worsening the scaling of) the number of
quantum operations per circuit, which is what standard approaches to quadratic speedups (e.g.
amplitude amplification) require.

Figure 1 compares the performance of our GSEE algorithm with others in the literature. In
particular, one can see that our algorithm has the best performance in terms of η in the regime of
circuit depths between Õ(∆−1

true) and Õ(ǫ−1).
So far, we have only considered algorithms for GSEE with circuit depths proportional to ∆−1,

where ∆ > ǫ is a lower bound on the spectral gap ∆true = E1 − E0 of H. However, it is desirable
to develop algorithms that do not require this knowledge to accurately estimate the ground state
energy. Thus, we develop a method for certifying the ground state energy estimate, albeit with a
higher sample complexity:
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Circuit depth (Tmax)

Runtime
(Ttot)

η−2ǫ−1

η−1ǫ−1

η−1/2ǫ−1

∆−1

true

η−1ǫ−2∆true

η−2ǫ−2∆true

ǫ−1 η−1/2ǫ−1

[40, 41]

Cor. 2.7

[15, 16]

[14]

[14]

Figure 1: This figure shows the landscape of early fault-tolerant GSEE algorithms plotted accord-
ing to their runtimes and circuit depths. The loosely dashed green curve represents our previous
interpolation result [40] (which is also implied by Ref. [41]), while the lower densely dashed vio-
let curve depicts the result in Corollary 2.7 (which encompasses the results in Corollary 4.8 and
Corollary 5.8). For the purposes of this plot, we have assumed that ǫ < η∆true, leading us to place
η−1ǫ−2∆true above η−2ǫ−1, though this assumption is not necessary for the main results of our
paper.

Theorem 2.8 (Ground state energy certification, informal). Under the same conditions as Corol-
lary 2.7, there exists an algorithm that is given, as an input, arbitrary σ > 0 and Ê0 ∈ [E0−σ,E0+σ]
(but no lower bound on ∆true). It makes

Õ(η−3ǫ−4 log
(

δ−1
)

) (4)

uses of quantum circuits of depth Õ(σ−1) and produces a new estimate Ê′
0 of E0 that it either accepts

or rejects. If |Ê′
0−E0| > 4ǫ, it rejects Ê′

0 with probability at least 1−δ. If it accepts, then |Ê′
0−E0| ≤

ǫ with probability of incorrect acceptance at most δ. Furthermore, the maximal σ for which the
algorithm outputs an estimate Ê′

0 it accepts satisfies |Ê′
0 − E0| ≤ ǫ is σ = Ω

(

∆true/log
(

ǫ−1η−1
))

.

Thus, with a higher sample complexity, we can also produce a certificate that the estimate was
correct, even if we do not know the spectral gap ∆true of H. Furthermore, the algorithm described
above will always accept with high confidence if we go to depths proportional to the true spectral
gap, the minimal depth required in Cor. 2.7. Note, however, that in some situations the algorithm
can accept and, thus, give a correct estimate, even if σ ≫ ∆true. As we discuss in more detail in
Section 6, this can happen if, e.g. the initial state has little support on low-energy excitations.
We see that our certification algorithm does not certify the spectral gap itself, only our ground
state energy estimate. To the best of our knowledge, this is the first method to achieve certifiable
GSEE in the regime where the circuit depth is O(∆−1

true). Finally, note that the assumption that
we are given an estimate that satisfies |E0− Ê0| ≤ σ does not increase the overall depth of circuits
required for the certification method. This is because we will show how to obtain such an estimate
with circuits of depth O(σ−1) later in Section 3.3. Finally, let us briefly comment on the role of δ.
Our algorithm will be based on empirically estimating the variance of a random variable up to a
certain precision. As usual with such protocols, the empirical estimate will be within a tolerated
error up to a given failure probability. It is the case that our protocol always rejects correctly if it
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is given estimates of the variance within the tolerated error. Thus, the δ quantifies the probability
of the estimates deviating more than required for the verification and, then, we do not posess a
guarantee on its performance.

3 GSEE via rejection sampling

In the section, we will discuss our GSEE algorithm which will be based on a novel way of performing
rejection sampling on a quantum computer. But since we believe that this rejection sampling routine
will find applications elsewhere, we will first describe it in a higher level of generality.

3.1 Rejection sampling for the spectral measure

Given the spectral measure p associated with an initial state |ψ〉〈ψ| and a Hamiltonian H =
∑

i |Ei〉〈Ei|, i.e.

p(x) =
∑

i

piδ(x− Ei), pi = |〈Ei|ψ〉|2, (5)

we will show how to sample from a random variable with distribution p∗ν on a quantum computer,
where ν is another probability measure and ∗ denotes the convolution. It is then not difficult to
see that the density of p ∗ ν is given by:

(p ∗ ν)(x) =
∑

i

piν(x− Ei). (6)

Sampling from such distributions for various choices of ν gives us access to information about the
spectrum of the Hamiltonian. For instance, if ν is itself close to a delta distribution at 0, then
sampling from this distribution is close to sampling from p itself. This will, roughly speaking,
correspond to our algorithm later, where we will pick ν to be a Gaussian with small variance.

Let us now discuss the sampling routine. We will assume that we can classically sample from
a random variable X distributed according to a density µ such that supp(p ∗ ν) ⊂ supp(µ). Fur-
thermore, for every x ∈ supp(µ), we can implement a (1,m, 0)-block-encoding Ux of the operator
ν̃(H−xI)
Mµ̃(x) , where ν̃ and µ̃ satisfy:

∣

∣

∣

∣

ν̃(H − xI)
Mµ̃(x)

∣

∣

∣

∣

2

=
ν(H − xI)
|M |2µ(x) , (7)

and M ∈ C is a constant such that for all x ∈ supp(µ):

∑

i

pi
ν(Ei − x)
|M |2µ(x) ≤ 1. (8)

There are many cases where explicit block encoding circuits have been developed [45, 46].
Let us now explain the quantum algorithm that allows us to sample from p ∗ ν in this setting

with an expected number O(|M |2) runs of such Ux’s. First, we generate a sample x from the density

µ. After that, we implement the block-encoding Ux of ν̃(H−xI)
Mµ̃(x) and apply it to |0m〉 |ψ〉. Then we

measure the m ancilla qubits of the resulting state. If the outcome is 0m, we accept the sample.
Let us see why, conditioned on the acceptance, x will be distributed according to p ∗ ν.
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Note that:

Ux |0m〉 |ψ〉 = |0m〉
ν̃(H − xI)
Mµ̃(x)

|ψ〉+
∑

j∈{0,1}m, j 6=0m

|j〉
∣

∣ψ′
j

〉

, (9)

where the
∣

∣

∣
ψ′
j

〉

’s are unnormalized states. By expanding ν̃(H−xI)
Mµ̃(x) |ψ〉 in the eigenbasis of H, we see

that the probability of measuring 0m on the first register is expressed by:

∑

i

∣

∣

∣

∣

ν̃(Ei − x)
Mµ̃(x)

∣

∣

∣

∣

2

|〈Ei|ψ〉|2 =
∑

i

pi
ν(Ei − x)
|M |2µ(x) =

(p ∗ ν)(x)
|M |2µ(x) . (10)

Thus the probability we accept is exactly the same as if we ran the rejection sampling algorithm
for the densities p ∗ ν and µ. Furthermore, by standard properties of rejection sampling, we will,
in expectation, need O(|M |2) trials to generate a single sample from the target distribution.

From the discussion above, we obtain our new rejection sampling routine:

Theorem 3.1. Let H =
∑

i
Ei|Ei〉〈Ei| be a Hamiltonian on n qubits and |ψ〉 an n-qubit state.

Definite the probability measure p on R as

p(x) =
∑

i

piδ(x− Ei), pi = |〈Ei|ψ〉|2, (11)

Furthermore, let ν, µ be two probability density functions on R such that supp(p ∗ ν) ⊂ supp(µ),
where ∗ denotes the convolution. Finally, assume that there exists a constant M ∈ C such that for
every x ∈ supp(µ) we have access to a (1,m, 0)-block-encoding of a unitary Ux of an operator hx
which satisfies

|hx(H)|2 = ν(H − xI)
|M |2µ(x) , ‖hx(H)‖ ≤ 1, (12)

and that we can generate samples distributed according to µ. Then we can generate a sample
distributed according to p ∗ ν from an expected number |M |2 uses of such Ux’s.

Let us illustrate the rejection sampling routine with one of the leading examples of this work:
conditioned normal random variables. Suppose that we wish to sample from p∗nσ,[a,b], where nσ,[a,b]
is the density of a normal random variable with mean 0 and variance σ2 conditioned on an interval
[a, b]. That is nσ,[a,b] corresponds to the density:

nσ,[a,b](x) =
e−

x2

2σ

∫ b
a e

− y2

2σ dy
χ[a,b](x). (13)

Here χ[a,b](x) is the indicator function. One possible strategy we will follow to sample from this
distribution is to perform rejection sampling with the density µ given by the uniform distribution
on [a, b]. In this case, if we implement a block-encoding of the operator

hσ(H − xI) = e−
(H−xI)2

4σ2 , (14)

we see that it satisfies the requirement in Eq. (7) with |M |2 given by

|M |2 = σ
√
2π

(b− a)
∫ b
a (p ∗ nσ,[−∞,∞])(x)dx

, (15)
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as with this choice of |M |2, the ratio of the density of p ∗ nσ,[a,b] and the uniform distribution on
[a, b] coincide with the probability of accepting. Furthermore, the convolution p∗hσ is clearly upper
bounded by 1. Note that we do not need to know the constant in Eq. (15) to run the algorithm,
only hσ . But |M |2 will determine the number of repetitions.

Building upon recent work on GSEE, we will show how to estimate the ground state energy by
first sampling from the convolution of the spectral measure with a uniform distribution on [0, 1]
(the approach of Ref. [15]) and then refining the estimate by sampling with the convolution of the
same measure with a normal random variable (the approach of Ref. [40]). However, the previous
algorithms worked by estimating the density ν ∗p through generalized Hadamard tests. As here we
generate samples instead of estimating densities, we will obtain a better scaling in the ground-state
overlap.

We believe that the rejection sampling subroutine developed in this work is of independent
interest and will find application elsewhere. Indeed, to the best of our knowledge, it is the first
quantum algorithm for sampling from distributions associated with the spectral measure with a
constant number of ancilla qubits.

3.2 Basic idea for GSEE

We will now discuss our algorithm for GSEE based on rejection sampling. This algorithm consists
of two stages. The first stage generates a coarse estimate Ẽ0 of E0 by using the strategy of Ref. [14].
The second stage refines this estimate and improves its accuracy to arbitrarily small ǫ. To achieve
this goal, we make the following observation about Gaussian functions. Let fσ(x) := e−x2/(2σ2) be
(an unnormalized) Gaussian. If we truncate f2σ(x) = e−x2/σ2

to a sufficiently large interval around
0, then the mean of this truncated function is extremely close to 0, as long as the middle point of
the interval is not far from 0:

Lemma 3.2. Let σ > 0 and ǫ ∈ (0, σ] be arbitrary, and let w = 2σ
√

ln (eσ/ǫ). Then for any

s ∈ [−w/2, w/2], we have

∫ s+w

s−w
e−x2/σ2

dx ≥ 1.12σ and

∣

∣

∣

∣

∫ s+w

s−w
xe−x2/σ2

dx

∣

∣

∣

∣

≤ σǫ
2e , and hence

∣

∣

∣

∣

∫ s+w

s−w
xe−x2/σ2

dx

∣

∣

∣

∣

∫ s+w

s−w
e−x2/σ2

dx

≤ ǫ

2.24e
. (16)

If we perturb f2σ(x) slightly, then the resulting function still possesses a similar property:

Lemma 3.3. Let σ > 0 and ǫ ∈ (0, σ] be arbitrary, and let w = 2σ
√

ln (eσ/ǫ). Then for any

s ∈ [−w/2, w/2], if g : [s − w, s + w] → R+ satisfies that |g(x) − e−x2/σ2 | ≤ 0.03ǫ
σ ln(eσ/ǫ) for all

x ∈ [s− w, s + w], then we have

∫ s+w

s−w
g(x)dx ≥ σ and

∣

∣

∣

∣

∫ s+w

s−w
xg(x)dx

∣

∣

∣

∣

≤ 0.55σǫ, and hence

∣

∣

∣

∣

∫ s+w

s−w
xg(x)dx

∣

∣

∣

∣

∫ s+w

s−w
g(x)dx

≤ 0.55ǫ. (17)
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The proofs of Lemma 3.2 and Lemma 3.3 are given in Appendix A. As a corollary of Lemma
3.3, we obtain the following strategy for estimating an unknown quantity E with high accuracy:

Corollary 3.4. Under the same assumptions as in Lemma 3.3, if X is a random variable such
that it takes values from [E+ s−w,E+ s+w] for some unknown E ∈ R and its probability density
function is proportional to g(x− E), then its expected value E [X] is O(ǫ)-close to E.

Now we apply this strategy to GSEE in which the target quantity is E0. We first choose
appropriate σ = O(∆/

√

log (η−1∆ǫ−1)) and w = O(σ
√

log (σ/ǫ)). Then we find a coarse estimate
Ẽ0 of E0 such that s := Ẽ0 − E0 ⊆ [−w/2, w/2]. Next, we pick x uniformly at random from
[Ẽ0−w, Ẽ0 +w], and construct a quantum circuit that implements fσ(H −xI) approximately and
probabilistically, and run this circuit on the initial state

∣

∣0k
〉

|ψ〉 for appropriate k ≥ 1. Then the
probability of this circuit approximately performing fσ(H − xI) on |ψ〉 is roughly proportional to
f2σ(x− E0). Informally, this is because this probability is close to

‖fσ(H − xI) |ψ〉‖2 =
N−1
∑

j=0

pjf
2
σ(Ej − x) ≈ p0f2σ(E0 − x), (18)

since Gaussian functions decrease exponentially from their peaks and x ∈ [Ẽ0−w, Ẽ0 +w] is quite
far from the Ej’s for all j ≥ 1. We can determine whether this event happens by measuring the k
ancilla qubits and checking if particular outcomes are obtained in the end. If this event happens,
then x is accepted and appended to an array S; otherwise, x is rejected and discarded. Clearly,
the entries of S are i.i.d. random variables. Let Y be such a random variable. By Corollary 3.4,
its expected value E [Y ] is O(ǫ)-close to E0. Furthermore, we can prove that the probability of a
random x ∈ [Ẽ0 − w, Ẽ0 + w] getting accepted by this procedure is Ω(η/

√

log (∆ǫ−1)), i.e. this
rejection sampling method is efficient. Finally, we repeat the above procedure Õ(η−1∆2ǫ−2) times
and compute the mean of the accepted samples. Then by Chernoff’s bound, this quantity will be
O(ǫ)-close to E [Y ] with high probability, which implies that it is also an O(ǫ)-accurate estimate of
E0 with high probability, as desired.

3.3 Formal description of the GSEE algorithm

We will now describe our GSEE algorithm in a way that is agnostic to the input model of H.
This algorithm can be executed in both the block-encoding and Hamiltonian-evolution models. It
requires the block-encodings of certain functions of H whose implementation details depend on
the specific input model and will be explained in Sections 4 and 5. The other components of the
algorithm remains identical in these two models.

We first propose a basic GSEE algorithm (i.e. Algorithm 1) which generalizes the one from
Ref. [14]. This algorithm will be used to generate a coarse estimate of E0.

Before we give a formal description of the algorithm, let us consider a simplified and idealized
version to build up some intuition. Suppose that for λ ∈ (−1, 1), we can implement a (c,m, 0)-
block-encoding Vλ of the operator fλ(H), where fλ : [−1, 1]→ [0, 1] satisfies f(x) = 1 for x ∈ [−1, λ]
and f(x) = 0 for x ∈ (λ, 1]. Let us now suppose that |ψ〉 is an initial state such that |〈ψ|E0〉|2 ≥ η
for some known η ∈ (0, 1). If we pick λ > E0, then ‖fλ(H) |ψ〉 ‖2 ≥ η, as the operator fλ(H)
will act as the identity on the ground space of H. On the other hand, if we pick λ < E0 we have
‖fλ(H) |ψ〉 ‖2 = 0, as it will send all the eigenspaces of H to 0.

Furthermore, by the definition of block-encoding, if we measure the m ancilla qubits of the
state Vλ |0m〉 |ψ〉, the probability of getting outcome 0m is given by c2‖fλ(H) |ψ〉 ‖2. Thus, if we
could implement such a block-enconding, we could also infer what the ground state energy is by
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performing a binary search. Indeed, we only need to find the smallest λ such that ‖fλ(H) |ψ〉 ‖2 ≥ η.
As for a given λ, whether ‖fλ(H) |ψ〉 ‖2 ≥ η or ‖fλ(H) |ψ〉 ‖2 = 0 can be determined with success
probability of 2/3 by repeating the aforementioned experimentO(η−1) times and checking how often
we obtain measurement outcome 0m. So the block-encoding Vλ would give rise to an algorithm with
O(η−1 log

(

ǫ−1
)

)) runs to estimate the ground state energy with accuracy ǫ. However, implementing
block-encodings of non-smooth functions like fλ cannot be accomplished directly and it is necessary
to perform suitable approximations of fλ by smooth functions. This motivates the introduction of
the function fa,b;ǫ below. The fact that we only approximate fλ also introduces subtleties on how
we post-process the samples and perform the binary search, but the strategy is comparable to the
one described above.

Algorithm 1 Basic GSEE algorithm

1: procedure Basic GSEE(ǫ, δ, η, c, m)
2: l← −1;
3: r ← 1;
4: L← ⌈log3/2

(

ǫ−1
)

⌉;
5: M ← ⌈12cη−1 ln

(

Lδ−1
)

⌉;
6: ǫ′ ← min(

√
0.1η, 0.05);

7: while r − l > 2ǫ do
8: K ← 0;
9: a← (2l + r)/3;

10: b← (l + 2r)/3;
11: Let Va,b;ǫ′ be a (c,m, 0)-block-encoding of fa,b;ǫ′(H), where fa,b;ǫ′ : [−1, 1] → R satisfies

that 1− ǫ′ ≤ fa,b;ǫ′(x) ≤ 1 for all x ∈ [−1, a], |fa,b;ǫ′(x)| ≤ 1 for all x ∈ [a, b], and |fa,b;ǫ′(x)| ≤ ǫ′
for all x ∈ [b, 1];

12: for j = 1, 2, . . . ,M do

13: Measure the first m qubits of Va,b;ǫ′ |0m〉 |ψ〉 in the standard basis;
14: if the measurement outcome is 0m then

15: K ← K + 1;
16: end if

17: end for

18: if K < 0.5c−1ηM then

19: l← a;
20: else

21: r← b;
22: end if

23: end while

24: return (l + r)/2.
25: end procedure

Theorem 3.5. Suppose H is an n-qubit Hamiltonian with unknown spectral decomposition H =
∑N−1

j=0 Ej |Ej〉 〈Ej |, where N = 2n, −1 ≤ E0 < E1 ≤ E2 ≤ ... ≤ EN−1 ≤ 1, and the |Ej〉’s are or-

thonormal eigenstates of H. Moreover, suppose we can prepare an n-qubit state |ψ〉 =∑N−1
j=0 γj |Ej〉

such that |γ0|2 ≥ η for known η ∈ (0, 1). Finally, suppose for arbitrary a, b ∈ (−1, 1) and ǫ′ ≥ 0,
we can implement a (c,m, 0)-block-encoding of fa,b;ǫ′(H), where fa,b;ǫ′ : [−1, 1] → R satisfies that
1 − ǫ′ ≤ fa,b;ǫ′(x) ≤ 1 for all x ∈ [−1, a], |fa,b;ǫ′(x)| ≤ 1 for all x ∈ [a, b], and |fa,b;ǫ′(x)| ≤ ǫ′

for all x ∈ [b, 1]. Then for arbitrary ǫ > 0 and δ ∈ (0, 1), the output of Algorithm 1 (i.e.
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BASIC GSEE(ǫ, δ, η, c,m)) is ǫ-close to E0 with probability at least 1− δ.

Proof. We claim that in each iteration of thewhile-loop, if E0 ≤ a = (2l+r)/3, thenK > 0.5c−1ηM
with probability at least 1− δ/L; if E0 ≥ b = (l + 2r)/3, then K < 0.5c−1ηM with probability at
least 1− δ/L. If this is true, then after each iteration, E0 remains between l and r with probability
at least 1 − δ/L. Since there are at most L iterations in the while-loop, E0 is between the final l
and r with probability at least 1− δ. Then since l − r ≤ 2ǫ in the end, we know that (l + r)/2 is
ǫ-close to E0 with probability at least 1− δ, as desired.

To prove the above claims, we need to bound the probability of obtaining measurement outcome
0m in each iteration of the for-loop in the cases E0 ≤ a and E0 ≥ b respectively. If E0 ≤ a, then
this probability is

c−1
N−1
∑

j=0

pjf
2
a,b;ǫ′(Ej) ≥ c−1p0f

2
a,b;ǫ′(E0) ≥ c−1η(1 − ǫ′)2 ≥ 0.9c−1η. (19)

On the other hand, if E0 ≥ b, then this probability is

c−1
N−1
∑

j=0

pjf
2
a,b;ǫ′(Ej) ≤ c−1 max

0≤j≤N−1
f2a,b;ǫ′(Ej) ≤ c−1(ǫ′)2 ≤ 0.1c−1η. (20)

Next, we invoke the Chernoff-Hoeffding Theorem which states that if X1, . . . , Xn are i.i.d. random
variables which take values in {0, 1}. Let p = E [X1]. Then for any q ∈ (p, 1] and r ∈ [0, p), we have

P

[

1

n

n
∑

i=1

Xi ≥ q
]

≤ e−nD(q‖p), (21)

P

[

1

n

n
∑

i=1

Xi ≤ r
]

≤ e−nD(r‖p), (22)

where D(x‖y) := x ln (x/y)+(1−x) ln ((1− x)/(1 − y)) is the Kullback–Leibler divergence between
Bernoulli random variables with parameters x and y respectively. We also use the fact that

D(x‖y) ≥ (x− y)2
2max(x, y)

, ∀x, y ∈ (0, 1). (23)

If E0 ≤ a, then we have p ≥ 0.9c−1η, and hence

P
[

K/M ≤ 0.5c−1η
]

≤ e−MD(0.5c−1η‖p) (24)

in which

D(0.5c−1η‖p) ≥ (p− 0.5c−1η)2

2p
≥ 0.088c−1η, (25)

as (p−0.5c−1η)2

2p increases monotonically for p ≥ 0.5c−1η. Then by our choice of M , we know that

P
[

K ≤ 0.5c−1ηM
]

≤ δ/L.
On the other hand, if E0 ≥ b, we have p ≤ 0.1c−1η, and hence

P
[

K/M ≥ 0.5c−1η
]

≤ e−MD(0.5c−1η‖p) (26)
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in which

D(0.5c−1η‖p) ≥ (0.5c−1η − p)2
2 · 0.5c−1η

≥ 0.16c−1η. (27)

Then by our choice of M , we obtain that P
[

K ≥ 0.5c−1ηM
]

≤ δ/L.
The theorem is thus proved.

Next, we present our main GSEE algorithm (i.e. Algorithm 2) which utilizes Algorithm 1 to
obtain a coarse estimate of E0 and then refines this estimate by the strategy mentioned in Section
3.2:

Algorithm 2 Advanced GSEE algorithm

1: procedure ADV GSEE(ǫ, δ,∆, η, c1 ,m1, c2,m2)
2: if ǫ ≥ ∆/8 then

3: return BASIC GSEE(ǫ, δ, η, c1,m1);
4: end if

5: σ ← ∆

5
√

ln(ec2)
√

ln(eη−1∆ǫ−1)
;

6: ǫ1 ← min( ǫ
1.1 , σ);

7: w ← 2σ
√

ln (eσ/ǫ1);
8: Ẽ0 ← BASIC GSEE (w/2, δ/3, η, c1 ,m1);
9: ǫ′′ ← 0.0075ǫ1η

σ ln(eσ/ǫ1)
;

10: M ← ⌈32c22η−1
√

ln (eσ/ǫ1) ·max(2w2ǫ−2 ln
(

6δ−1
)

, ln
(

3δ−1
)

)⌉;
11: S ← empty array; ⊲ S may contain duplicate values
12: for i = 1, 2, . . . ,M do

13: Choose ξi uniformly at random from [Ẽ0 − w, Ẽ0 + w];
14: Let Wσ,ξi;ǫ′′ be a (c2,m2, 0)-block-encoding of gσ,ξi;ǫ′′(H), where gσ,ξi;ǫ′′ : [−1, 1] → R

satisfies that |gσ,ξi;ǫ′′(x)− e−(x−ξi)
2/(2σ2)| ≤ ǫ′′ and |gσ,ξi;ǫ′′(x)| ≤ 1 for all x ∈ [−1, 1].

15: Measure the first m2 qubits of Wσ,ξi;ǫ′′ |0m2〉 |ψ〉 in the standard basis;
16: if the measurement outcome is 0m2 then

17: Append ξi to S;
18: end if

19: end for

20: return 1
|S|
∑

y∈S
y.

21: end procedure

Theorem 3.6. Suppose H is an n-qubit Hamiltonian with unknown spectral decomposition H =
∑N−1

j=0 Ej |Ej〉 〈Ej |, where N = 2n, −1 ≤ E0 < E1 ≤ E2 ≤ ... ≤ EN−1 ≤ 1, E1 − E0 ≥ ∆
for known ∆ > 0, and the |Ej〉’s are orthonormal eigenstates of H. Moreover, suppose we can

prepare an n-qubit state |ψ〉 =∑N−1
j=0 γj |Ej〉 such that |γ0|2 ≥ η for known η ∈ (0, 1). In addition,

suppose for arbitrary a, b ∈ (−1, 1) and ǫ′ ≥ 0, we can implement a (c1,m1, 0)-block-encoding of
fa,b;ǫ′(H), where fa,b;ǫ′ : [−1, 1] → R satisfies that 1 − ǫ′ ≤ fa,b;ǫ′(x) ≤ 1 for all x ∈ [−1, a],
|fa,b;ǫ′(x)| ≤ 1 for all x ∈ [a, b], and |fa,b;ǫ′(x)| ≤ ǫ′ for all x ∈ [b, 1]. Finally, suppose for arbitrary
σ, ǫ′′ ∈ (0, 1) and ξ ∈ [−2, 2], we can implement a (c2,m2, 0)-block-encoding of gσ,ξ;ǫ′′(H), where

c2 ≥ 1 and gσ,ξ;ǫ′′ : [−1, 1] → R satisfies that |gσ,ξ;ǫ′′(x) − e−(x−ξ)2/(2σ2)| ≤ ǫ′′ and |gσ,ξ;ǫ′′(x)| ≤ 1
for all x ∈ [−1, 1]. Then for arbitrary ǫ > 0 and δ ∈ (0, 1), the output of Algorithm 2 (i.e.
ADV GSEE(ǫ, δ,∆, η, c1,m1, c2,m2)) is ǫ-close to E0 with probability at least 1− δ.
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Proof. Let Ê0 denote the output of Algorithm 2. If ǫ ≥ ∆/8, then Ê0 = BASIC GSEE (ǫ, δ, η, c1,m1)
is ǫ-close to E0 with probability at least 1 − δ by Theorem 3.5. So we only need to focus on the
case ǫ < ∆/8.

For convenience, we introduce the following notation. Let Ai = 1 if ξi is added to S, and Ai = 0
otherwise, for i = 1, 2, . . . ,M . Then since ξ1, ξ2, . . . , ξM are i.i.d. random variables, A1, A2, . . . , AM

are i.i.d. Bernoulli variables. Next, let K =
∑M

i=1Ai be the size of S at the end of the algorithm,
and let Xk be the k-th number added to S, for k = 1, 2, . . . ,K. Then X1,X2, . . . ,XK are i.i.d.
random variables, and Ê0 =

1
K

∑K
k=1Xk has the same expected value as X1.

We claim that:

P [|E [X1]− E0| ≥ ǫ/2] ≤ δ/3, (28)

P
[

K ≥ 8w2ǫ−2 ln
(

6δ−1
)]

≥ 1− δ/3, (29)

and

P

[

|Ê0 − E [X1] | ≥ ǫ/2 | K ≥ 8w2ǫ−2 ln
(

6δ−1
)

]

≤ δ/3. (30)

Let G denote the event K ≥ 8w2ǫ−2 ln
(

6δ−1
)

. If the above claims are true, then by Eqs. (29),
(30) and union bound, we get

P

[

|Ê0 − E [X1] | ≥ ǫ/2
]

≤ P

[

|Ê0 − E [X1] | ≥ ǫ/2 | G
]

+ P [¬G] ≤ δ/3 + δ/3 = 2δ/3. (31)

Then by Eqs. (28), (31), triangle inequality and union bound, we know that

P

[

|Ê0 − E0| ≥ ǫ
]

≤ P

[

|Ê0 − E [X1] | ≥ ǫ/2
]

+ P [|E [X1]− E0| ≥ ǫ/2] ≤ 2δ/3 + δ/3 = δ, (32)

as desired.
It remains to prove Eqs. (28), (29) and (30). Consider each iteration in the for-loop. Suppose

ξ ∈ [Ẽ0 − w, Ẽ0 + w] is chosen 2. Let Wσ,ξ;ǫ′′ be the (c2,m2, 0)-block-encoding of gσ,ξ;ǫ′(H). That
is,

Wσ,ξ;ǫ′′ |0m2〉 |ψ〉 = c−1
2 |0m2〉 gσ,ξ;ǫ′′(H) |ψ〉+

∑

s∈{0,1}m2 , s 6=0m2

|s〉
∣

∣φs,ξ,ǫ′′
〉

, (33)

where the
∣

∣φs,ξ,ǫ′′
〉

’s are unnormalized states. Consequently, the probability of obtaining measure-
ment outcome 0m2 when measuring the first m2 qubits of this state (in the standard basis) is

q(ξ) := P [Ai = 1|ξi = ξ] = c−2
2 〈ψ| g2σ,ξ;ǫ′′(H) |ψ〉 = c−2

2

N−1
∑

j=0

pjg
2
σ,ξ;ǫ′′(Ej). (34)

Meanwhile, let fσ(x) := e−x2/(2σ2) be Gaussian, and let

r(ξ) := c−2
2 〈ψ| f2σ(H − ξI) |ψ〉 = c−2

2

N−1
∑

j=0

pjf
2
σ(Ej − ξ). (35)

2One can prove w ≤ 0.8 by the problem assumptions and our choice of parameters. Then since Ẽ0 ∈ [−1, 1], we
have −1.8 ≤ Ẽ0 −w < Ẽ0 +w ≤ 1.8. This means that we might choose ξi > 1 or < −1 occasionally. This decision is
made to ease the proof.
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Then by the assumptions on gσ,ξ;ǫ′′ , we have

|g2σ,ξ;ǫ′′(x)− f2σ(x− ξ)| = |gσ,ξ;ǫ′′(x)− fσ(x− ξ)| · |gσ,ξ;ǫ′′(x) + fσ(x− ξ)| (36)

≤ 2|gσ,ξ;ǫ′′(x)− fσ(x− ξ)| (37)

≤ 2ǫ′′, ∀x ∈ [−1, 1], (38)

and hence |q(ξ)− r(ξ)| ≤ 2c−2
2 ǫ′′.

Now since ξi is uniformly distributed in [Ẽ0 − w, Ẽ0 + w], we get that

P [Ai = 1] =

∫ Ẽ0+w

Ẽ0−w
p(ξi = ξ) · P [Ai = 1|ξi = ξ] dξ =

1

2w

∫ Ẽ0+w

Ẽ0−w
q(ξ)dξ. (39)

This implies each Xk has probability density function

p(Xk = ξ) = p(ξi = ξ|Ai = 1) (40)

=
p(ξi = ξ) · P [Ai = 1|ξi = ξ]

P [Ai = 1]
(41)

=
q(ξ)

∫ Ẽ0+w

Ẽ0−w
q(ξ)dξ

, ∀ξ ∈ [Ẽ0 − w, Ẽ0 + w]. (42)

Furthermore, the expected value of Xk is

E [Xk] =

∫ Ẽ0+w

Ẽ0−w
ξ · p(Xk = ξ)dξ =

∫ Ẽ0+w

Ẽ0−w
ξq(ξ)dξ

∫ Ẽ0+w

Ẽ0−w
q(ξ)dξ

. (43)

Next, it is convenient to make a change of variables. Let s := Ẽ0 − E0. Then by Theorem 3.5,
we know that s ∈ [−w/2, w/2] with probability at least 1− δ/3. From now on, we will focus on the
case when this event happens. Moreover, let x := ξ − E0 and h(x) := q(E0 + x) = q(ξ). Then we
have x ∈ [s− w, s+ w] ⊆ [−3w/2, 3w/2]. Moreover, we have

P [Ai = 1] =
1

2w

∫ s+w

s−w
h(x)dx, (44)

and

E [Xk] = E0 +

∫ s+w
s−w xh(x)dx
∫ s+w
s−w h(x)dx

. (45)

In Appendix B, we prove that

Ej − ξ ≥ σ
√

ln
(

0.5c22/ǫ
′′) (46)

for all j ≥ 1. Consequently, f2σ(Ej − ξ) ≤ 2ǫ′′c−2
2 for all j ≥ 1. Then by Eq. (35), we obtain

∣

∣c22p
−1
0 r(ξ)− f2σ(E0 − ξ)

∣

∣ = c22p
−1
0

N−1
∑

j=1

pjf
2
σ(Ej − ξ) (47)

≤ c22p−1
0 max

1≤j≤N−1
f2σ(Ej − ξ) (48)

≤ c22p−1
0 · 2ǫ′′c−2

2 (49)

= 2p−1
0 ǫ′′, (50)
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Meanwhile, recall that |q(ξ)− r(ξ)| ≤ 2c−2
2 ǫ′′. Therefore, we have

∣

∣c22p
−1
0 q(ξ)− f2σ(E0 − ξ)

∣

∣ ≤
∣

∣c22p
−1
0 (q(ξ)− r(ξ))

∣

∣+
∣

∣c22p
−1
0 r(ξ)− f2σ(E0 − ξ)

∣

∣ (51)

≤ 2p−1
0 ǫ′′ + 2p−1

0 ǫ′′ (52)

= 4p−1
0 ǫ′′ (53)

≤ 4η−1ǫ′′ (54)

=
0.03ǫ1

σ
√

ln (eσ/ǫ1)
(55)

where the fourth step follows from p0 ≥ η and the last step follows from the definition of ǫ′. Now
since h(x) = q(ξ) and f2σ(E0 − ξ) = f2σ(x), we get

∣

∣c22p
−1
0 h(x) − f2σ(x)

∣

∣ ≤ 0.03ǫ1

σ
√

ln (eσ/ǫ1)
, ∀x ∈ [s− w, s + w]. (56)

Thus, by Lemma 3.3 we know that
∣

∣

∣

∣

∫ s+w

s−w
xh(x)dx

∣

∣

∣

∣

∫ s+w

s−w
h(x)dx

≤ 0.55ǫ1 ≤ 0.5ǫ. (57)

Combining Eqs. (45) and (57) yields that |E [Xk]− E0| ≤ ǫ/2 whenever |s| ≤ w/2, which happens
with probability at least 1− δ/3. So Eq. (28) holds.

Furthermore, Lemma 3.3 also implies that
∫ s+w
s−w c22p

−1
0 h(x)dx ≥ σ. Combining this fact and

Eq. (44) yields

P [Ai = 1] ≥ p0σ

2c22w
≥ ησ

2c22w
=

η

4c22
√

ln (eσ/ǫ1)
, (58)

where the second step follows from p0 ≥ η and the last steps follows from the definition of w. Then
we have

E [K] =MP [A1 = 1] ≥ Mη

4c22
√

ln (eσ/ǫ1)
= max(16w2ǫ−2 ln

(

6δ−1
)

, 8 ln
(

3δ−1
)

), (59)

where the last step follows from the definition of M . Now we invoke the multiplicative Chernoff
bound:

P

[

K ≥ E [K]

2

]

≥ 1− e−E[K]/8, (60)

and get

P
[

K ≥ 8w2ǫ−2 ln
(

6δ−1
)]

≥ 1− δ/3. (61)

So Eq. (29) is proved.
Finally, since Ê0 = 1

K

∑K
k=1Xk where X1,X2, . . . ,Xk are i.i.d. and each Xk takes values in

[Ẽ0 − w, Ẽ0 +w], by Hoeffding’s inequality, we get

P

[

|Ê0 − E [X1] | ≥ ǫ/2
]

≤ 2e−ǫ2K/(8w2). (62)

If K ≥ 8w2ǫ−2 ln
(

6δ−1
)

, then the RHS of Eq. (62) is at most δ/3. So Eq. (30) is proved as well.
The theorem is thus proved.
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Note that Algorithm 2 relies on block-encodings of fa,b;ǫ′(H) and gσ,ξ;ǫ′′(H) (which are approx-
imate threshold and Gaussian functions of H respectively), and their implementation depends on
how H is accessed. In the next two sections, we will give concrete implementation of these unitary
operations in the block-encoding and Hamiltonian-evolution models respectively, and analyze the
costs of the resulting GSEE algorithms in these models.

4 GSEE in the block-encoding model

In this section, we focus on GSEE in the block-encoding model. That is, we assume that there
exists a method to implement an (1,m, 0)-block-encoding U of H for some integer m ≥ 0. Our
quantum circuits will consist of multiple queries to U and U † as well as other primitive quantum
gates, and act on

∣

∣0k
〉

|ψ〉 for some integer k ≥ m.
We will develop a full-fledged version of Algorithm 2 in the block-encoding model. This means

that we need to give concrete implementation of the block-encodings of fa,b;ǫ′(H) and gσ,ξ;ǫ′′(H) in
Theorem 3.6 in this input model. To accomplish this, we utilize the technique of quantum singular
value transformation (QSVT) [42]. This technique allows us to implement any bounded low-degree
polynomial of a linear operator A by using a block-encoding of A and its inverse a small number
of times. Specifically, we will invoke Theorem 31 of Ref. [42] which states that:

Lemma 4.1. Suppose U is a (1,m, 0)-block-encoding of a Hermitian matrix A. Let P ∈ R[x]
be a degree-d real polynomial such that |P (x)| ≤ 1 for all x ∈ [−1, 1]. Then we can implement
a (2,m + 2, 0)-block-encoding Ũ of P (A) with 2d queries of U and U †, and O((m + 1)d) other
primitive quantum gates.

We will use QSVT to approximately implement the threshold and Gaussian functions of the
Hamiltonian H. To this end, we need low-degree polynomial approximations of such functions
in the relevant regions. Precisely, for the threshold functions, we have the following result which
follows directly from Corollary 6 of Ref. [43] or Lemma 14 of Ref. [42]:

Lemma 4.2. For every a, b ∈ [−1, 1], a < b and ǫ′ ∈ (0, 1), there exists an efficiently-computable

real polynomial fa,b;ǫ′(x) of degree O
(

log(1/ǫ′)
b−a

)

such that 1− ǫ′ ≤ fa,b;ǫ′(x) ≤ 1 for all x ∈ [−1, a],
|fa,b;ǫ′(x)| ≤ 1 for all x ∈ [a, b], and |fa,b;ǫ′(x)| ≤ ǫ′ for all x ∈ [b, 1].

Combining Lemma 4.1 and Lemma 4.2 yields:

Corollary 4.3. Suppose U is a (1,m, 0)-block-encoding of a Hermitian matrix A. For every a, b ∈
[−1, 1], a < b and ǫ′ ∈ (0, 1), let fa,b;ǫ′(x) be the polynomial in Lemma 4.2. Then we can implement a

(2,m+2, 0)-block-encoding V of fa,b;ǫ′(A) with O
(

log(1/ǫ′)
b−a

)

queries of U , U †, and O( (m+1) log(1/ǫ′)
b−a )

other primitive quantum gates.

Meanwhile, for the Gaussian functions, we have:

Lemma 4.4. For every σ, ǫ′′ ∈ (0, 1), there exists an efficiently-computable real polynomial Pσ;ǫ′′(x)

of degree O(max(σ−1,
√

log (1/ǫ′′))·
√

log (1/ǫ′′)) such that |Pσ;ǫ′′(x)| ≤ 1 and |Pσ;ǫ′′(x)−e−x2/(2σ2)| ≤
ǫ′′ for all x ∈ [−π, π].

The proof of Lemma 4.4 is given in Appendix C. This lemma implies:

Corollary 4.5. For every σ, ǫ′′ ∈ (0, 1) and ξ ∈ [−2, 2], there exists an efficiently-computable real
polynomial gσ,ξ;ǫ′′(x) of degree O(max(σ−1,

√

log (1/ǫ′′)) ·
√

log (1/ǫ′′)) such that |gσ,ξ;ǫ′′(x)| ≤ 1 and

|gσ,ξ;ǫ′′(x)− e−(x−ξ)2/(2σ2)| ≤ ǫ′′ for all x ∈ [−1, 1].
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Combining Lemma 4.1 and Corollary 4.5 yields:

Corollary 4.6. Suppose U is a (1,m, 0)-block-encoding of a Hermitian matrix A. For every σ, ǫ′′ ∈
(0, 1) and ξ ∈ [−2, 2], let gσ,ξ;ǫ′′(x) be the polynomial in Corollary 4.5. Then we can implement a

(2,m+2, 0)-block-encoding W of gσ,ξ;ǫ′′(A) with O(max(σ−1,
√

log (1/ǫ′′)) ·
√

log (1/ǫ′′)) queries of
U and U †, and O((m+ 1) ·max(σ−1,

√

log (1/ǫ′′)) ·
√

log (1/ǫ′′)) other primitive quantum gates.

Equipped with concrete implementation of fa,b;ǫ′(H) and gσ,ξ;ǫ′′(H), we are now ready to state
the main result about GSEE in the block-encoding model:

Theorem 4.7. Suppose H is an n-qubit Hamiltonian with unknown spectral decomposition H =
∑N−1

j=0 Ej |Ej〉 〈Ej |, where N = 2n, −1 ≤ E0 < E1 ≤ E2 ≤ ... ≤ EN−1 ≤ 1, E1−E0 ≥ ∆ for known
∆ > 0, and the |Ej〉’s are orthonormal eigenstates of H. Moreover, suppose we can prepare an

n-qubit state |ψ〉 =∑N−1
j=0 γj |Ej〉 such that |γ0|2 ≥ η for known η ∈ (0, 1). Finally, suppose U is a

(1,m, 0)-block-encoding of H. Then there exists a quantum algorithm that, for any given ǫ > 0 and
δ ∈ (0, 1), estimates E0 within additive error ǫ with probability at least 1− δ by making use of

Õ(η−1(∆2ǫ−2 + log
(

∆−1
)

) log
(

δ−1
)

)

quantum circuits, where each circuit uses

Õ(∆−1 log(η−1∆ǫ−1))

queries of U and U †, and
Õ((m+ 1)∆−1 log(η−1∆ǫ−1))

other primitive quantum gates.

Proof. We estimate the ground state energy of H by running Algorithm 2 with appropriate pa-
rameters. Specifically, Corollary 4.3 implies that for arbitrary a, b ∈ (−1, 1) and ǫ′ ≥ 0, a

(2,m+2, 0)-block-encoding of fa,b;ǫ′(H) can be implemented with O
(

log(1/ǫ′)
b−a

)

queries of U and U †,

and O( (m+1) log(1/ǫ′)
b−a ) other primitive quantum gates, where fa,b;ǫ′ : [−1, 1]→ R satisfies that 1−ǫ′ ≤

fa,b;ǫ′(x) ≤ 1 for all x ∈ [−1, a], |fa,b;ǫ′(x)| ≤ 1 for all x ∈ [a, b], and |fa,b;ǫ′(x)| ≤ ǫ′ for all x ∈ [b, 1].
Moreover, Corollary 4.6 implies that for arbitrary σ, ǫ′′ ∈ (0, 1) and ξ ∈ [−2, 2], a (2,m+2, 0)-block-
encoding of gσ,ξ;ǫ′′(H) can be implemented with O(max(σ−1

√

log (1/ǫ′′), log (1/ǫ′′))) queries of U

and U †, and O((m + 1)max(σ−1
√

log (1/ǫ′′), log (1/ǫ′′))) other primitive quantum gates, where

gσ,ξ;ǫ′′ : [−1, 1] → R satisfies that |gσ,ξ;ǫ′′(x)| ≤ 1 and |gσ,ξ;ǫ′′(x) − e−(x−ξ)2/(2σ2)| ≤ ǫ′′ for all
x ∈ [−1, 1]. Consequently, we can run Algorithm 2 with parameters (ǫ, δ,∆, η, 2,m + 2, 2,m + 2),
and by Theorem 3.6, its output is ǫ-close to E0 with probability at least 1− δ, as desired.

It remains to analyze the resource cost of ADV GSEE(ǫ, δ,∆, η, 2,m+2, 2,m+2). If ǫ ≥ ∆/8,
then we only need to run BASIC GSEE (ǫ, δ, η, 2,m + 2). This procedure makes use of

Õ(η−1 log
(

ǫ−1
)

log
(

δ−1
)

) = Õ(η−1 log
(

∆−1
)

log
(

δ−1
)

)

quantum circuits, where each circuit implements a (2,m+2, 0)-block-encoding of fa,b;ǫ′(H) in which
b− a = Ω(ǫ) and ǫ′ = Ω(

√
η). We can construct this circuit by using

O
(

log (1/ǫ′)
b− a

)

= O(ǫ−1 log
(

η−1
)

) = O(∆−1 log
(

η−1
)

)
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queries of U and U †, and

O
(

(m+ 1) log (1/ǫ′)
b− a

)

= O((m+ 1)ǫ−1 log
(

η−1
)

) = O((m+ 1)∆−1 log
(

η−1
)

)

other primitive quantum gates.
Otherwise, ǫ < ∆/8. In this case, we need to first run BASIC GSEE (w/2, δ/3, η, 2,m + 2),

where

w ≥ 2σ = Ω

(

∆
√

log (η−1∆ǫ−1)

)

. (63)

As a result, BASIC GSEE (w/2, δ/3, η, 2,m + 2) makes use of

Õ(η−1 log
(

w−1
)

log
(

δ−1
)

) = Õ(η−1 log
(

∆−1 log
(

η−1∆ǫ−1
))

log
(

δ−1
)

)

quantum circuits, where each circuit implements a (2,m+2, 0)-block-encoding of fa,b;ǫ′(H) in which
b− a = Ω(w) and ǫ′ = Ω(

√
η). We can construct this circuit by using

O
(

log (1/ǫ′)
b− a

)

= O(w−1 log
(

η−1
)

) = O(∆−1
√

log (η−1∆ǫ−1) log
(

η−1
)

)

queries of U and U †, and

O
(

(m+ 1) log (1/ǫ′)
b− a

)

= O((m+ 1)w−1 log
(

η−1
)

) = O((m+ 1)∆−1
√

log (η−1∆ǫ−1) log
(

η−1
)

)

other primitive quantum gates. Moreover, we also need to run

M = Õ(η−1∆2ǫ−2 log
(

δ−1
)

) (64)

quantum circuits in the for-loop, where each circuit implements a (2,m + 2, 0)-block-encoding of
gσ,ξ;ǫ′′(H) in which σ−1 = O(∆−1

√

log (η−1∆ǫ−1)) and (ǫ′′)−1 = Õ(η−1∆ǫ−1). We can build each
of these circuits by using

O(max(σ−1
√

log (1/ǫ′′), log
(

1/ǫ′′
)

)) = Õ(∆−1 log(η−1∆ǫ−1))

queries of U and U †, and

O((m+ 1)max(σ−1
√

log (1/ǫ′′), log
(

1/ǫ′′
)

)) = Õ((m+ 1)∆−1 log(η−1∆ǫ−1))

other primitive quantum gates.
Overall, regardless of the value of ǫ, Algorithm 2 always makes use of

Õ(η−1(∆2ǫ−2 + log
(

∆−1
)

) log
(

δ−1
)

)

quantum circuits, where each circuit uses

Õ(∆−1 log(η−1∆ǫ−1))

queries of U and U †, and
Õ((m+ 1)∆−1 log(η−1∆ǫ−1))

other primitive quantum gates, as claimed.
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Note that in Theorem 4.7, ∆ is merely a lower bound on the true spectral gap ∆true := E1−E0

of the Hamiltonian H. In fact, we can tune it between Θ(ǫ) and Θ(∆true), and doing so leads
to a smooth interpolation between an algorithm with low circuit depth and an algorithm with
Heisenberg-limit scaling of runtime with respect to ǫ:

Corollary 4.8. Suppose H is an n-qubit Hamiltonian with unknown spectral decomposition H =
∑N−1

j=0 Ej |Ej〉 〈Ej |, where N = 2n, −1 ≤ E0 < E1 ≤ E2 ≤ ... ≤ EN−1 ≤ 1, ∆true = E1 − E0 is
the spectral gap of H, and the |Ej〉’s are orthonormal eigenstates of H. Moreover, suppose we can

prepare an n-qubit state |ψ〉 = ∑N−1
j=0 γj |Ej〉 such that |γ0|2 ≥ η for known η ∈ (0, 1). Finally,

suppose U is a (1,m, 0)-block-encoding of H. Then for every β ∈ [0, 1], there exists an algorithm
that, for any given ǫ > 0 and δ ∈ (0, 1), estimates E0 within additive error ǫ with probability at
least 1− δ by making use of

Õ
(

η−1
(

ǫ−2+2β∆2−2β
true + log

(

ǫ−β∆β−1
true

))

log
(

δ−1
)

)

quantum circuits, where each circuit uses

Õ(ǫ−β∆β−1
true log(η

−1∆1−β
true ǫ

β−1))

queries of U and U †, and

Õ((m+ 1)ǫ−β∆β−1
true log(η

−1∆1−β
true ǫ

β−1))

other primitive quantum gates.

Proof. This corollary is the direct consequence of setting ∆ = Θ(ǫβ∆1−β
true ) for β ∈ [0, 1] in Theorem

4.7.

In particular, setting β = 0 or 1 in Corollary 4.8 yields:

• ∆ = Θ(∆true), for which we get an algorithm that makes use of

Õ
(

η−1
(

ǫ−2∆2
true + log

(

∆−1
true

))

log
(

δ−1
))

quantum circuits, where each circuit uses

Õ(∆−1
true log(η

−1∆trueǫ
−1))

queries of U and U †, and

Õ((m+ 1)∆−1
true log(η

−1∆trueǫ
−1))

other primitive quantum gates; or

• ∆ = Θ(ǫ), for which we get an algorithm that makes use of

Õ
(

η−1 log
(

ǫ−1
)

log
(

δ−1
))

quantum circuits, where each circuit uses

Õ(ǫ−1 log(η−1))

queries of U and U †, and
Õ((m+ 1)ǫ−1 log(η−1))

other primitive quantum gates.
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5 GSEE in the Hamiltonian-evolution model

In this section, we focus on GSEE in the Hamiltonian-evolution model. That is, we assume that
there exists a method to implement the controlled time evolution of H, i.e. the unitary operation
controlled-eiHt := |0〉〈0| ⊗ I + |1〉〈1| ⊗ eiHt. Each of our quantum circuits will consist of multiple
queries to controlled-eiHt and controlled-e−iHt for some t = Θ(1) and other primitive quantum
gates, and act on

∣

∣0k
〉

|ψ〉 for some k ≥ 1.
We will develop a full-fledged version of Algorithm 2 in the Hamiltonian-evolution model.

This means that we need to give concrete implementation of the block-encodings of fa,b;ǫ′(H)
and gσ,ξ;ǫ′′(H) in Theorem 3.6 in this input model. To this end, we will utilize the technique of
quantum eigenvalue transformation of unitary matrices with real polynomials (QET-U) [14]. This
technique allows us to implement certain low-degree trigonometric polynomials of H/2 by using
controlled-eiH and controlled-e−iH a small number of times. Specifically, we will invoke Theorem
1 of Ref. [14] which states that:

Lemma 5.1. For every even real polynomial F (x) of degree d satisfying |F (x)| ≤ 1 for all x ∈
[−1, 1], we can implement a (1, 1, 0)-block-encoding of F (cos(H/2)) with O(d) queries of controlled-
eiH and controlled-e−iH , and O(d) other primitive quantum gates.

It turns out that both the threshold and Gaussian functions can be approximated by such
trigonometric polynomials. Specifically, for the threshold functions, Lemma 6 of Ref. [15] implies:

Lemma 5.2. For every a, b ∈ [0, 1], a < b and ǫ′ ∈ (0, 1), there exists an efficiently-computable

even real polynomial Fa,b;ǫ′(x) of degree Õ
(

log(1/ǫ′)
b−a

)

such that 1− ǫ′ ≤ Fa,b;ǫ′(cos(x/2)) ≤ 1 for all

x ∈ [0, a], |Fa,b;ǫ′(cos(x/2))| ≤ 1 for all x ∈ [a, b], and |Fa,b;ǫ′(cos(x/2))| ≤ ǫ′ for all x ∈ [b, 1].

Combining Lemma 5.1 and Lemma 5.2 yields:

Corollary 5.3. For every a, b ∈ [0, 1], a < b and ǫ′ ∈ (0, 1), let Fa,b;ǫ′(x) be the polynomial in

Lemma 5.2. Then we can implement a (1, 1, 0)-block-encoding of Fa,b;ǫ′(cos(H/2)) with Õ
(

log(1/ǫ′)
b−a

)

queries of controlled-eiH and controlled-e−iH , and O
(

log(1/ǫ′)
b−a

)

other primitive quantum gates.

Meanwhile, for the Gaussian functions, we have the following result:

Lemma 5.4. For every σ, ǫ′′ ∈ (0, 1), there exist an efficiently-computable even real polyno-
mial Gσ;ǫ′′(x) of degree O(σ−1T

√

log (1/ǫ′′)), where T = max(2π,Θ(σ
√

log (1/ǫ′′))), such that

|Gσ;ǫ′′(cos(πx/T ))| ≤ 1 and |Gσ;ǫ′′(cos(πx/T )) − e−x2/(2σ2)| ≤ ǫ′′ for all x ∈ [−π, π].

The proof of Lemma 5.4 is given in Appendix C. Combining Lemma 5.1 and Lemma 5.4 yields:

Corollary 5.5. For every σ, ǫ′′ ∈ (0, 1), let T and Gσ,ǫ′′(x) be defined as in Lemma 5.4. Then

we can implement a (1, 1, 0)-block-encoding of Gσ;ǫ′′(cos(πH/T )) with O(σ−1T
√

log (1/ǫ′′)) queries
of controlled-ei2πH/T and controlled-e−i2πH/T , and O(σ−1T

√

log (1/ǫ′′)) other primitive quantum
gates.

Note that for any ξ, t ∈ R, we can implement controlled-e−i(H−ξI)t by using one controlled-eiHt

and one Z-rotation gate on the control qubit. Combining this fact and Corollary 5.5, we conclude
that:
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Corollary 5.6. For every σ, ǫ′′ ∈ (0, 1), let T and Gσ,ǫ′′(x) be defined as in Lemma 5.4. Then
for every ξ ∈ [−2, 2], we can implement a (1, 1, 0)-block-encoding of Gσ;ǫ′′(cos(π(H − ξI)/T )) with

O(σ−1T
√

log (1/ǫ′′)) queries of controlled-ei2πH/T and controlled-e−i2πH/T , and O(σ−1T
√

log (1/ǫ′′))
other primitive quantum gates.

Corollaries 5.3 and 5.6 provide the methods to approximately implement the threshold functions
and Gaussian functions of H. This enables us to obtain the following result about GSEE in the
Hamiltonian-evolution model:

Theorem 5.7. Suppose H is an n-qubit Hamiltonian with unknown spectral decomposition H =
∑N−1

j=0 Ej |Ej〉 〈Ej |, where N = 2n, 0 ≤ E0 < E1 ≤ E2 ≤ ... ≤ EN−1 ≤ 1, E1 − E0 ≥ ∆ for known
∆ > 0, and the |Ej〉’s are orthonormal eigenstates of H. Moreover, suppose we can prepare an

n-qubit state |ψ〉 = ∑N−1
j=0 γj |Ej〉 such that |γ0|2 ≥ η for known η ∈ (0, 1). Then there exists a

quantum algorithm that, for any given ǫ > 0 and δ ∈ (0, 1), estimates E0 within additive error ǫ
with probability at least 1− δ by making use of

Õ(η−1(∆2ǫ−2 + log
(

∆−1
)

) log
(

δ−1
)

)

quantum circuits, where each circuit uses

Õ(∆−1 log(η−1∆ǫ−1))

queries of controlled-eiHt and controlled-e−iHt for some t = Θ(1), and

Õ(∆−1 log(η−1∆ǫ−1))

other primitive quantum gates.

Proof. We estimate the ground state energy of H by running Algorithm 2 with appropriate pa-
rameters. Specifically, Corollary 5.3 implies that for arbitrary a, b ∈ [0, 1], a < b, and ǫ′ ≥ 0,

a (1, 1, 0)-block-encoding of fa,b;ǫ′(H) := Fa,b;ǫ′(cos(H/2)) can be implemented with Õ
(

log(1/ǫ′)
b−a

)

queries of controlled-eiH and controlled-e−iH , and Õ( log(1/ǫ′)b−a ) other primitive quantum gates, where
fa,b;ǫ′ satisfies that 1 − ǫ′ ≤ fa,b;ǫ′(x) ≤ 1 for all x ∈ [0, a], |fa,b;ǫ′(x)| ≤ 1 for all x ∈ [a, b], and
|fa,b;ǫ′(x)| ≤ ǫ′ for all x ∈ [b, 1]. Moreover, Corollary 5.6 implies that for arbitrary σ, ǫ′′ ∈ (0, 1)

and ξ ∈ [−2, 2], there exists T = max(2π,Θ(σ
√

log (1/ǫ′′))) such that a (1, 1, 0)-block-encoding of
gσ,ξ;ǫ′′(H) := Gσ,ǫ′′(cos(π(H − ξI)/T )) can be implemented with O(σ−1T

√

log (1/ǫ′′)) queries of

controlled-ei2πH/T , controlled-e−i2πH/T , and O(σ−1T
√

log (1/ǫ′′)) other primitive quantum gates,

where gσ,ξ;ǫ′′ satisfies that |gσ,ξ;ǫ′′(x)| ≤ 1 and |gσ,ξ;ǫ′′(x) − e−(x−ξ)2/(2σ2)| ≤ ǫ′′ for all x ∈ [−1, 1].
Consequently, we can run Algorithm 2 with parameters (ǫ, δ,∆, η, 1, 1, 1, 1), and by Theorem 3.6,
its output is ǫ-close to E0 with probability at least 1− δ, as desired.

It remains to analyze the resource cost of ADV GSEE(ǫ, δ,∆, η, 1, 1, 1, 1). If ǫ ≥ ∆/8, then we
only need to run BASIC GSEE (ǫ, δ, η, 1, 1). This procedure makes use of

Õ(η−1 log
(

ǫ−1
)

log
(

δ−1
)

) = Õ(η−1 log
(

∆−1
)

log
(

δ−1
)

)

quantum circuits, where each circuit implements a (1, 1, 0)-block-encoding of fa,b;ǫ′(H) in which
b− a = Ω(ǫ) and ǫ′ = Ω(

√
η). We can build this circuit by using

Õ
(

log (1/ǫ′)
b− a

)

= Õ(ǫ−1 log
(

η−1
)

) = Õ(∆−1 log
(

η−1
)

)
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queries of controlled-eiH and controlled-e−iH , and

Õ
(

log (1/ǫ′)
b− a

)

= Õ(ǫ−1 log
(

η−1
)

) = Õ(∆−1 log
(

η−1
)

)

other primitive quantum gates.
Otherwise, ǫ < ∆/8. In this case, we need to first run BASIC GSEE (w/2, δ/3, η, 1, 1), where

w ≥ 2σ = Ω

(

∆
√

log (η−1∆ǫ−1)

)

. (65)

As a result, BASIC GSEE (w/2, δ/3, η, 1, 1) makes use of

Õ(η−1 log
(

w−1
)

log
(

δ−1
)

) = Õ(η−1 log
(

∆−1 log
(

η−1∆ǫ−1
))

log
(

δ−1
)

)

quantum circuits, where each circuit implements a (1, 1, 0)-block-encoding of fa,b;ǫ′(H) in which
b− a = Ω(w) and ǫ′ = Ω(

√
η). We can build this circuit by using

Õ
(

log (1/ǫ′)
b− a

)

= Õ(w−1 log
(

η−1
)

) = Õ(∆−1
√

log (η−1∆ǫ−1) log
(

η−1
)

)

queries of controlled-eiH and controlled-e−iH , and

Õ
(

log (1/ǫ′)
b− a

)

= Õ(w−1 log
(

η−1
)

) = Õ(∆−1
√

log (η−1∆ǫ−1) log
(

η−1
)

)

other primitive quantum gates. Moreover, we also need to run

M = Õ(η−1∆2ǫ−2 log
(

δ−1
)

) (66)

quantum circuits in the for-loop, where each circuit implements a (1, 1, 0)-block-encoding of gσ,ξ;ǫ′′(H)

in which σ−1 = O(∆−1
√

log (η−1∆ǫ−1)) and (ǫ′′)−1 = Õ(η−1∆ǫ−1). Furthermore, one can verify
that σ

√

log (1/ǫ′′) = O(∆) = O(1) by our choice of parameters. This implies that we can construct
each circuit in the for-loop by using

O(σ−1T
√

log (1/ǫ′′)) = Õ(∆−1 log(η−1∆ǫ−1))

queries of controlled-ei2πH/T and controlled-e−i2πH/T for T = max(2π,Θ(σ
√

log (1/ǫ′′))) = Θ(1),
and

O(σ−1T
√

log (1/ǫ′′)) = Õ(∆−1 log(η−1∆ǫ−1))

other primitive quantum gates.
Overall, regardless of the value of ǫ, Algorithm 2 always makes use of

Õ(η−1(∆2ǫ−2 + log
(

∆−1
)

) log
(

δ−1
)

)

quantum circuits, where each circuit uses

Õ(∆−1 log(η−1∆ǫ−1))

queries of controlled-eiHt and controlled-e−iHt for some t = Θ(1), and

Õ(∆−1 log(η−1∆ǫ−1))

other primitive quantum gates, as claimed.

24



Note again that ∆ in Theorem 5.7 is just a lower bound on the true spectral gap ∆true =
E1 − E0 of the Hamiltonian H. By tuning it between Θ(ǫ) and Θ(∆true), we obtain a class of
GSEE algorithms that smoothly transition from having low circuit depth to having Heisenberg-
limit scaling of runtime with respect to ǫ:

Corollary 5.8. Suppose H is an n-qubit Hamiltonian with unknown spectral decomposition H =
∑N−1

j=0 Ej |Ej〉 〈Ej |, where N = 2n, 0 ≤ E0 < E1 ≤ E2 ≤ ... ≤ EN−1 ≤ 1, ∆true = E1 − E0 is
the spectral gap of H, and the |Ej〉’s are orthonormal eigenstates of H. Moreover, suppose we can

prepare an n-qubit state |ψ〉 = ∑N−1
j=0 γj |Ej〉 such that |γ0|2 ≥ η for known η ∈ (0, 1). Then for

every β ∈ [0, 1], there exists an algorithm that, for any given ǫ > 0 and δ ∈ (0, 1), estimates E0

within additive error ǫ with probability at least 1− δ by making use of

Õ
(

η−1
(

ǫ−2+2β∆2−2β
true + log

(

ǫ−β∆β−1
true

))

log
(

δ−1
)

)

quantum circuits, where each circuit uses

Õ(ǫ−β∆−1+β
true log(η−1∆1−β

true ǫ
β−1))

queries of controlled-eiHt and controlled-e−iHt for some t = Θ(1), and

Õ(ǫ−β∆−1+β
true log(η−1∆1−β

true ǫ
β−1))

other primitive quantum gates.

Proof. This corollary is the direct consequence of setting ∆ = Θ(ǫβ∆1−β
true ) for β ∈ [0, 1] in Theorem

5.7.

In particular, setting β = 0 or 1 yields:

• ∆ = Θ(∆true), for which we get an algorithm that makes use of Õ(η−1ǫ−2∆2
true log

(

δ−1
)

)

quantum circuits, where each circuit uses Õ(∆−1
true log(η

−1∆trueǫ
−1)) queries of controlled-

eiHt and controlled-e−iHt for some t = Θ(1), and Õ(∆−1
true log(η

−1∆trueǫ
−1)) other primitive

quantum gates; or

• ∆ = Θ(ǫ), for which we get an algorithm that makes use of Õ(η−1 log
(

ǫ−1
)

log
(

δ−1
)

) quantum

circuits, where each circuit uses Õ(ǫ−1 log(η−1)) queries of controlled-eiHt and controlled-
e−iHt for some t = Θ(1), and Õ(ǫ−1 log(η−1)) other primitive quantum gates.

6 Certifying the correctness of the energy estimate

In this section we introduce a method for certifying that the energy estimate output by Algorithm
2 is correct. This may be favorable in cases where we are not confident in the correctness of ∆,
the lower bound on the energy gap. Furthermore, in the case that the input state has additional
structure (i.e. has sufficiently small weight on low energy excited states) our algorithm can provide a
correct estimate for evolution times that are arbitrarily smaller than the spectral gap. To illustrate
this point, consider that the input state is given by the ground state. In this case, any constant
evolution time can be used to obtain a reliable estimate. In both of these cases, it may be desirable
to assume that the algorithm settings are correct, run Algorithm 2, and then certify the result.
This way we do not need to necessarily trust our estimate of the spectral gap and can profit from
better input states.
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We describe a procedure that achieves exactly that. That is, given a lower-bound on the overlap
of the input state with the ground state, access to samples from the distribution p ∗ nσ, an error
tolerance ǫ > 0 and an estimate of the ground state Ê0, we will be able to certify that |E0−Ê0| ≤ ǫ.
It is also important to stress once more what our test will not achieve, namely certifying a spectral
gap estimate. It only certifies the ground state energy estimate. However, we will show that if the
evolution time is proportional to the inverse of the spectral gap, our test will accept the estimate
with high probability. It is also worth mentioning that our test comes at the cost of a higher sample
complexity than the estimation procedure itself, namely Õ(ǫ−4η−3).

We give an intuitive explanation of how the verification works in Fig. 6 and explain the protocol
in detail in Appendix D. But it essentially relies on two observations. The first, formalized in
Lemma D.3, is that if the density of p ∗ nσ has a well-defined peak around our ground state energy
estimate, then p∗nσ conditioned on an interval of size ∼ σ around Ê0 will again approximately have
the moments of a convex combination of Gaussians. Furthermore, we then show that the variance
of the random variable conditioned on this interval will exceed a given threshold if the estimate is
incorrect. Finally, we show that if we evolve by a time proportional to the inverse of the spectral
gap, the test will accept with high probability. We summarize the certification algorithm below:

Theorem 6.1. Under the same conditions as Theorem 3.6, there exists an algorithm that, given
arbitrary σ > 0 and Ê0 ∈ [E0 − σ,E0 + σ] (but no bound on the spectral gap ∆true), makes

Õ(η−3ǫ−4 log
(

δ−1
)

) (67)

uses of the block-encoding of gσ,ξ;ǫ′′(H) in expectation and generates a new estimate Ê′
0 of E0. If

|Ê′
0 − E0| ≥ 4ǫ, it and rejects Ê′

0 with probability at least 1 − δ. If it accepts, then |Ê′
0 − E0| ≤ ǫ,

with probability of incorrect acceptance at most δ. Furthermore, there exists some

σ0 = Ω

(

∆true

log (ǫ−1η−1)

)

(68)

such that if σ ≤ σ0, then this algorithm outputs an estimate Ê′
0 that it accepts with probability 1− δ

and is such that |Ê′
0 − E0| ≤ ǫ.

We defer all the proofs and descriptions of the algorithm to Appendix D. Note that the minimal
time for which the test accepts, in Eq. (68), is of the same order as when our algorithm is guaranteed
to succeed. Unfortunately, the sample complexity of the test is higher than that of the algorithm
at this depth. Thus, the test is only advantageous when we do not wish to trust our estimate of the
spectral gap or have reasons to believe that the input is such that we can obtain a good estimate
with smaller circuit depths. Our algorithm will be based on empirically estimating the variance
of a random variable up to a certain precision. As is common with such protocols, depending on
the number of samples the empirical estimate will have a tolerated error up to a certain failure
probability. It is noteworthy that our protocol consistently provides accurate rejections when given
variance estimates within the tolerated error. Therefore, the parameter δ quantifies the probability
of the estimates deviating beyond the acceptable threshold for verification, and as a result, we
cannot give guarantees on its performance when given wrong estimates.

Furthermore, the test can be combined with a binary search procedure to determine σ0, the
largest σ for which the test accepts. Although this would yield reliable ground state energy estimates
at depths that are potentially ≪ ∆true, the sample complexity of such an algorithm would be
Õ(ǫ−4η−3). However, this might still be advantageous if we wish to optimize the maximal circuit
depth.
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Figure 2: Example of density of
mixture of Gaussians. In this
case, the density quickly goes to 0
around our estimate Ê0. We then
continue to check the variance con-
ditioned around Ê0 to see if we ac-
cept the estimate.
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Ê0

Not peaked

Reject

Figure 3: Example of density of
mixture of Gaussians. In this case,
the density quickly does not go to
0 quickly around Ê0. We reject the
estimate.
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Ê0

Condition
around peak

Figure 4: As the distribution is
peaked around Ê0, we condition
around it in the next step of the
verification.

x

Ê0

Estimate
variance

σ2

Figure 5: We estimate the variance
of the random variable conditioned
around Ê0. If it is close to σ2, we
accept it. If it differs from σ2 by
∼ ηǫ2, we reject it.

7 Conclusion and outlook

To summarize, we have introduced a quantum algorithm for estimating the ground state energy of
a Hamiltonian using fewer operations per circuit than previous methods. This makes the algorithm
more suitable for early fault-tolerant quantum computation. This algorithm relies on a new way
to perform rejection sampling on quantum computers. We have shown how it works with both
the block-encoding and Hamiltonian-evolution input models of the Hamiltonian. The circuit depth
required by our algorithm is governed by the spectral gap of the Hamiltonian rather than the target
accuracy, and the runtime of our algorithm is smaller than that of previous algorithms with similar
circuit depths. Furthermore, this algorithm can be tuned to trade circuit depth for runtime, and its
runtime can be also reduced by parallelizing the sample collection across multiple quantum devices
(i.e. trading time resources for space resources). All of these features make our algorithm a great
candidate for realizing quantum advantage for industrially-relevant problems on early fault-tolerant
quantum computers [33, 25, 15, 14, 39, 47, 40, 48].

In addition, we also devised the first method for certifying ground state energy estimates in the
regime of circuit depth Õ(∆−1

true). Although the sample complexity of the current method is high,
it can provide certifiably correct estimates of the ground state energy from arbitrarily small circuit
depth depending on the properties of the initial state.

There are several related research directions that are worth further exploration:
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• In this work, we have focused on GSEE in the regime of circuit depth ≥ 1/∆true (recall that
∆true is the spectral gap of H around E0). It remains unclear how hard this problem is
to solve when the circuit depth (accounting for both the state preparation and estimation
subroutines) is≪ 1/∆true? Is it possible to devise an algorithm with reasonable runtime (e.g.
poly (1/ǫ, 1/p0)) in this setting?

• In many applications, one needs to estimate ground state properties beyond their energies.
So far, this problem was not extensively studied in the low-depth regime. One exception
is Ref. [39] which develops a low-depth algorithm for estimating the expectation value of
an observable O with respect to the ground state of a Hamiltonian H. This problem is
referred to as ground state property estimation (GSPE). In order to estimate 〈E0|O |E0〉
within additive error ǫ with high probability, the algorithm of Ref. [39] requires circuit depth
Õ(∆−1 polylog

(

ǫ−1p−1
0

)

) and runtime Õ(∆−1ǫ−2p−2
0 ) (where ∆ and p0 are defined as before).

Note that this runtime is worse than our runtime for ground state energy estimation. Since
GSEE can be viewed as a special case of GSPE in which O = H, can we apply the techniques
in this paper to improve the efficiency of the latter?

• Can we design more efficient methods for certifying the correctness of ground state energy es-
timates? Our current certifcation method has a quadratically worse sample complexity than
our GSEE algorithm. If we could devise a certification method with the same sample com-
plexity as the GSEE algorithm, we could run binary search to find the minimal evolution time
required to obtain reliable estimates on the ground state energy without extra assumptions.

• Finally, we expect that our rejection sampling method could find more applications beyond
GSEE. In many applications, one needs to generate samples from a continuous distribution
X with probability density ν(x). The traditional approach is to prepare a quantum state
that approximates

∫

Ω

√

ν(x) |x〉 dx and then to measure it. But this approach has two short-
comings. First, the quantum circuit for creating this state might be difficult to implement.
Second, one needs to discretize the target distribution, and the number of grid points (=
the dimension of the resulting system) depends on the desired accuracy. On the other hand,
our approach does not rely on this discretization, as the sample value is encoded into the
circuit parameter. Furthermore, our circuit might be easier to implement than the one in the
direct approach and might require O(1) qubits regardless of the target accuracy. Provided
that rejection sampling is efficient (i.e. not too many raw samples are discarded), our method
could accelerate this central component of many algorithms or make it more amenable to
near-term implementation.

We have contributed to the growing body of work developing quantum algorithms for early
fault-tolerant quantum computers. Our hope is that these results will inspire further exploration
to discover the quantum algorithms that will deliver advantage first.
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A Proofs of Lemma 3.2 and Lemma 3.3

Proof of Lemma 3.2. Let us focus on the case s ≥ 0 here. The other case s < 0 can be handled
similarly.

We will use the following bound on the complementary error function (erfc). For any z > 0,

erfc z =
2√
π

∫ ∞

z
e−t2dt =

2

π

∫ π/2

0
e−z2/ sin2 θdθ ≤ 2

π

∫ π/2

0
e−z2dθ = e−z2 . (69)

It implies that

∫ z

0
e−t2dt =

∫ ∞

0
e−t2dt−

∫ ∞

z
e−t2dt ≥

√
π

2

(

1− e−z2
)

. (70)

Now by the definition of w and the assumption 0 ≤ s ≤ w/2, we have w+ s ≥ w− s ≥ w/2 > 0.
Consequently, we get

∫ s+w

s−w
e−x2/σ2

dx ≥ 2

∫ w−s

0
e−x2/σ2

dx (71)

= 2σ

∫ (w−s)/σ

0
e−t2dt (72)

≥ √πσ
(

1− e−(w−s)2/σ2
)

(73)

≥ √πσ
(

1− e−w2/(4σ2)
)

(74)

≥ √πσ
(

1− ǫ

eσ

)

(75)

≥ √πσ
(

1− e−1
)

(76)

≥ 1.12σ, (77)

where the sixth step follows from 0 < ǫ ≤ σ. Meanwhile, a direct calculation indicates

∫ s+w

s−w
xe−x2/σ2

dx =
σ2

2

(

e−(w−s)2/σ2 − e−(w+s)2/σ2
)

(78)

≤ σ2

2
e−(w−s)2/σ2

(79)

=
σ2

2
e−w2/(4σ2) (80)

≤ σǫ

2e
. (81)

The lemma is thus proved.
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Proof of Lemma 3.3. As in the proof of Lemma 3.2, we will focus on the case s ≥ 0 here, and the
other case s < 0 can be handled similarly.

On one hand, we have
∫ s+w

s−w
g(x)dx ≥

∫ s+w

s−w
e−x2/σ2

dx−
∫ s+w

s−w
|e−x2/σ2 − g(x)|dx (82)

≥ 1.12σ − 2w · 0.03ǫ

σ ln (eσ/ǫ)
(83)

= 1.12σ − 0.12ǫ
√

ln (eσ/ǫ)
(84)

≥ 1.12σ − 0.12ǫ (85)

≥ σ, (86)

where the first step follows from triangle inequality, the second step follows from Lemma 3.2 and
the assumption on g(x), the third step follows from the definition of w, and the fourth and fifth
steps follow from 0 < ǫ ≤ σ.

On the other hand, we also have
∣

∣

∣

∣

∫ s+w

s−w
xg(x)dx

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ s+w

s−w
xe−x2/σ2

dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ s+w

s−w
x(e−x2/σ2 − g(x))dx

∣

∣

∣

∣

(87)

≤ σǫ

2e
+ 2w · 3w

2
· 0.03ǫ

σ ln (eσ/ǫ)
(88)

≤ σǫ

2e
+ 0.36σǫ (89)

≤ 0.55σǫ, (90)

where the first step follows from triangle inequality, the second step follows from Lemma 3.2, the
assumption on g(x) and the fact that |x| ≤ w+ s ≤ 3w/2 for all x ∈ [s−w, s+w], the fourth step
follows from the definition of w.

The lemma is thus proved.

B Proof of Eq. (46)

We continue to use the notation in the proof of Theorem 3.6. Recall that E0 − ξ ∈ [−3w/2, 3w/2]
and Ej − E0 ≥ ∆ for all j ≥ 1. So we have

Ej − ξ = (Ej − E0) + (E0 − ξ) (91)

≥ ∆− 3w

2
(92)

= ∆− 3σ
√

ln (eσ/ǫ1) (93)

= ∆

(

1− 3
√

ln (eσ/ǫ1)

5
√

ln (ec2)
√

ln (eη−1∆ǫ−1)

)

. (94)

Meanwhile, by the definition of σ and ǫ′′, we have

σ
√

ln
(

0.5c22/ǫ
′′) =

∆
√

ln
(

200c22σ ln (eσ/ǫ1) /(3ǫ1η)
)

5
√

ln (ec2)
√

ln (eη−1∆ǫ−1)
. (95)
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Therefore, in order to prove Eq. (46), it is sufficient to show that

5
√

ln (ec2)
√

ln (eη−1∆ǫ−1) ≥ 3
√

ln (eσ/ǫ1) +
√

ln
(

200c22σ ln (eσ/ǫ1) /(3ǫ1η)
)

. (96)

To achieve this, we consider two cases separately:

• Case 1: ǫ1 = σ. In this case, we have

3
√

ln (eσ/ǫ1) +
√

ln
(

200c22σ ln (eσ/ǫ1) /(3ǫ1η)
)

= 3 +
√

ln
(

200c22/(3η)
)

(97)

≤ 5
√

ln
(

3ec22η
−1
)

(98)

≤ 5
√

ln (ec2)
√

ln (3eη−1) (99)

≤ 5
√

ln (ec2)
√

ln (eη−1∆ǫ−1), (100)

where the second step follows from the facts that c2, η
−1 ≥ 1 and 3 +

√

ln (200t/3) ≤
5
√

ln (3et) for all t ≥ 1, the third step follows from the facts that c2, η
−1 ≥ 1 and ln

(

a2t
)

≤
ln (ea) · ln (t) for all a ≥ 1 and t ≥ 3e, and the last step follow from the assumption ∆ǫ−1 > 8.
So Eq. (96) holds.

• Case 2: ǫ1 =
ǫ
1.1 < σ. In this case, let A := η−1∆ǫ−1 ≥ ∆ǫ−1 ≥ 8. Then we have

ln (eσ/ǫ1) = ln
(

e0.22∆ǫ−1/(
√

ln (ec2)
√

ln (eA))
)

≤ ln
(

e0.22A/
√

ln (eA)
)

, (101)

where the second step follows from ∆ǫ−1 ≤ A and c2 ≥ 1, and

ln
(

200c22σ ln (eσ/ǫ1) /(3ǫ1η)
)

≤ ln
(

200c22σ
2/(3ǫ21η)

)

(102)

≤ ln
(

200c22σ
2/(3ǫ21η

2)
)

(103)

≤ ln
(

67c22
)

+ 2 ln
(

η−1σǫ−1
1 )
)

(104)

= ln
(

67c22
)

+ 2 ln
(

0.22A/(
√

ln (ec2)
√

ln (eA))
)

(105)

≤ ln
(

67c22
)

+ 2 ln
(

0.22A/
√

ln (eA)
)

(106)

where the first step follows from ln (eσ/ǫ1) ≤ σ/ǫ1, the second step follows from η−1 ≥ 1, the
fourth step follows from the definition of σ, ǫ1 and A, and the last step follows from c2 ≥ 1.
Now we combine Eqs. (101), (106) and the fact that

5
√

ln (ce)
√

ln (et) ≥ 3

√

ln
(

e0.22t/
√

ln (et)
)

+

√

ln (67c2) + 2 ln
(

0.22t/
√

ln (et)
)

(107)

for all c ≥ 1 and t ≥ 8, and obtain Eq. (96).

C Polynomial and trigonometric approximations of Gaussian func-

tions

In this appendix, we prove Lemma 4.4 and Lemma 5.4 which state that there exist low-degree
polynomial and trigonometric approximations of Gaussian functions, respectively.
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Proof of Lemma 4.4. By Theorem 4.1 of Ref. [49], for every b > 0 and γ ∈ (0, 1), there exists a
real polynomial Rb,γ(x) of degree O(

√

max(b, log (1/γ)) · log (1/γ)) such that |e−x − Rb,γ(x)| ≤ γ
for all x ∈ [0, b]. Furthermore, Ref. [49] also gives an explicit construction of Rb,γ(x).

Now we replace x with x2/(2σ2) and set b = π2/(2σ2), γ = ǫ′′/3 in the above result, and obtain
that: for every σ > 0 and ǫ′′ ∈ (0, 1), there exists an efficiently-computable real polynomial P̃σ;ǫ′′(x)

of degree O(max(σ−1,
√

log (1/ǫ′′)) ·
√

log (1/ǫ′′)) such that |e−x2/(2σ2) − P̃σ;ǫ′′(x)| ≤ ǫ′′/3 for all
x ∈ [−π, π]. Note that this implies |P̃σ;ǫ′′(x)| ≤ 1 + ǫ′′/3 for all x ∈ [−π, π].

Now let Pσ;ǫ′′(x) := (1− ǫ′′/3)P̃σ;ǫ′′(x). Then we have that for every x ∈ [−π, π],

|Pσ;ǫ′′(x)| = (1− ǫ′′/3)|P̃σ;ǫ′′(x)| ≤ (1− ǫ′′/3)(1 + ǫ′′/3) ≤ 1, (108)

and
∣

∣

∣
P (x)− e−x2/(2σ2)

∣

∣

∣
≤
∣

∣

∣
P (x)− P̃ (x)

∣

∣

∣
+
∣

∣

∣
P̃ (x)− e−x2/(2σ2)

∣

∣

∣
(109)

≤ ǫ′′

3
· |P̃ (x)|+ ǫ′′

3
(110)

≤ ǫ′′

3

(

1 +
ǫ′′

3

)

+
ǫ′′

3
(111)

≤ ǫ′′. (112)

Thus Pσ;ǫ′′(x) satisfies all the requirements of Lemma 4.4.

Proof of Lemma 5.4. We claim that for every σ, ǫ′′ ∈ (0, 1), there exist T = max(2π,Θ(σ
√

log (1/ǫ′′)))
and N = O(σ−1T

√

log (1/ǫ′′)) and a0, a1, . . . , aN ∈ R+ such that
∑N

j=0 aj ≤ 1 and

∣

∣

∣

∣

∣

∣

N
∑

j=0

aj cos(2πjx/T ) − e−x2/(2σ2)

∣

∣

∣

∣

∣

∣

≤ ǫ′′, ∀x ∈ [−π, π]. (113)

If this claim holds, then since cos(2πjx/T ) = T2j(cos(πx/T )), where T2j(x) is the 2j-th Cheby-

shev polynomial of the first kind,
∑N

j=0 aj cos(2πjx/T ) can be written as Gσ;ǫ′′(cos(πx/T )) for

some even real polynomial Gσ;ǫ(x) of degree 2N = O(σ−1T
√

log (1/ǫ′′)). So we get

∣

∣

∣
Gσ;ǫ′(cos(πx/T ))− e−x2/(2σ2)

∣

∣

∣
≤ ǫ′′, ∀x ∈ [−π, π]. (114)

Furthermore, since a0, a1, . . . , aN ≥ 0, we have

Gσ;ǫ′′(cos(πx/T )) =
N
∑

j=0

aj cos(2πjx/T ) ≤
N
∑

j=0

aj ≤ 1, ∀x ∈ R. (115)

Therefore Gσ;ǫ′′(x) satisfies all the requirements of Lemma 5.4.
The proof of the above claim is inspired by the Nyquist–Shannon sampling theorem. Specifically,

let f(x) :=
∑∞

k=−∞ δ(x − kT ) be the Dirac comb with period T . It has Fourier transform f̂(ξ) =
1
T

∑∞
n=−∞ δ(ξ−n/T ). Meanwhile, let g(x) := e−x2/(2σ2) be Gaussian with mean 0 and variance σ2.

It has Fourier transform ĝ(ξ) =
√
2πσe−2π2σ2ξ2 . Convolving f and g yields

(f ∗ g)(x) =
∞
∑

k=−∞
g(x− kT ). (116)
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On the other hand, the Fourier transform of f ∗ g is

f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ) =
1

T

∞
∑

n=−∞
ĝ(n/T )δ(ξ − n/T ). (117)

Applying inverse Fourier transform to both sides of this equation leads to

(f ∗ g)(x) = 1

T

∞
∑

n=−∞
ĝ(n/T )ei2πxn/T . (118)

Comparison of Eqs. (116) and (118) indicates that

∞
∑

k=−∞
g(x − kT ) = 1

T

∞
∑

n=−∞
ĝ(n/T )ei2πxn/T . (119)

Now we claim that for some T = max(2π,Θ(σ
√

log (1/ǫ′′))) and N = O(σ−1T
√

log (1/ǫ′′)),

−1
∑

k=−∞
g(x− kT ) +

∞
∑

k=1

g(x− kT ) ≤ ǫ′′

6
, ∀x ∈ [−π, π], (120)

and
∣

∣

∣

∣

∣

1

T

−N−1
∑

n=−∞
ĝ(n/T )ei2πxn/T +

1

T

∞
∑

n=N+1

ĝ(n/T )ei2πxn/T

∣

∣

∣

∣

∣

≤ ǫ′′

6
, ∀x ∈ R. (121)

If these claims are true, then combining them and Eq. (119) yields

∣

∣

∣

∣

∣

g(x) − 1

T

N
∑

n=−N

ĝ(n/T )ei2πxn/T

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

g(x) − ĝ(0) − 2

T

N
∑

n=1

ĝ(n/T ) cos(2πxn/T )

∣

∣

∣

∣

∣

≤ ǫ′′

3
, ∀x ∈ [−π, π].

(122)

This also implies that

ĝ(0) +
2

T

N
∑

n=1

ĝ(n/T ) ≤ 1 +
ǫ′′

3
. (123)

Now let a0 = (1 − ǫ′′/3)ĝ(0) and aj = 2T−1(1 − ǫ′′/3)ĝ(j/T ) for j = 1, 2, . . . , N . Then we have
a0, a1, . . . , aN > 0 and

N
∑

j=0

aj = (1− ǫ′′/3)
(

ĝ(0) +
2

T

N
∑

n=1

ĝ(n/T )

)

≤ (1− ǫ′′/3)(1 + ǫ′′/3) < 1, (124)
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and for any x ∈ [−π, π],
∣

∣

∣

∣

∣

∣

N
∑

j=0

aj cos(2πjx/T ) − g(x)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

N
∑

j=0

aj cos(2πjx/T ) − ĝ(0) −
2

T

N
∑

n=1

ĝ(n/T ) cos(2πxn/T )

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

ĝ(0) +
2

T

N
∑

n=1

ĝ(n/T ) cos(2πxn/T )− g(x)
∣

∣

∣

∣

∣

(125)

≤ ǫ′′

3
·
∣

∣

∣

∣

∣

ĝ(0) +
2

T

N
∑

n=1

ĝ(n/T ) cos(2πxn/T )

∣

∣

∣

∣

∣

+
ǫ′′

3
(126)

≤ ǫ′′

3

(

ĝ(0) +
2

T

N
∑

n=1

ĝ(n/T )

)

+
ǫ′′

3
(127)

≤ ǫ′′

3

(

1 +
ǫ′′

3

)

+
ǫ′′

3
(128)

≤ ǫ′′, (129)

as desired.
It remains to prove Eqs. (120) and (121). To prove the former, we impose the constraint T ≥ 2π.

This means that |x| ≤ T/2 for all x ∈ [−π, π]. Then it follows that

−1
∑

k=−∞
g(x− kT ) +

∞
∑

k=1

g(x − kT ) ≤ 2

∞
∑

l=0

g((l + 1/2)T ) (130)

= 2
∞
∑

l=0

exp
(

−(l + 1/2)2T 2/(2σ2)
)

(131)

= 2 exp
(

−T 2/(8σ2)
)

∞
∑

l=0

exp
(

−(l2 + l)T 2/(2σ2)
)

(132)

≤ 2 exp
(

−T 2/(8σ2)
)

∞
∑

l=0

exp
(

−lT 2/σ2
)

(133)

=
2 exp

(

−T 2/(8σ2)
)

1− exp (−T 2/σ2)
. (134)

By picking some T = Θ(σ
√

log (1/ǫ′′)), we can ensure that the RHS of Eq. (134) is at most ǫ′′/6.
Overall, Eqs. (120) holds as long as we pick some T = max(2π,Θ(σ

√

log (1/ǫ′′))).
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To prove Eq. (121), we note that
∣

∣

∣

∣

∣

1

T

−N−1
∑

n=−∞
ĝ(n/T )ei2πxn/T +

1

T

∞
∑

n=N+1

ĝ(n/T )ei2πxn/T

∣

∣

∣

∣

∣

≤ 1

T

−N−1
∑

n=−∞
ĝ(n/T ) +

1

T

∞
∑

n=N+1

ĝ(n/T ) (135)

=
2

T

∞
∑

n=N+1

ĝ(n/T ) (136)

=
2
√
2πσ

T

∞
∑

n=N+1

exp
(

−2π2σ2n2/T 2
)

(137)

≤ 2
√
2πσ

T

∫ ∞

N
exp

(

−2π2σ2y2/T 2
)

dy (138)

=
2√
π

∫ ∞

√
2πσN/T

exp
(

−z2
)

dz (139)

= erfc(
√
2πσN/T ) (140)

≤ exp
(

−2π2σ2N2/T 2
)

. (141)

By picking some N = O(σ−1T
√

log (1/ǫ′′)), we can guarantee that exp
(

−2π2σ2N2/T 2
)

≤ ǫ′′/6
and hence Eq. (121) holds for all x ∈ R.

The lemma is thus proved.

D Certification of the ground state energy estimate

Our algorithm has the desirable feature that it only requires us to consider circuit depths that are
proportional to the spectral gap of the Hamiltonian. However, in many applications of practical
interest we may not know the spectral gap in advance and would like to check if the output of the
algorithm was correct.

Furthermore, as we will explain soon, depending on the initial state, it might be the case that
the algorithm still outputs the right estimate even if we evolve for times that are smaller than the
spectral gap. If we suspect we have such a structured initial state, it is desirable to be able to verify
that the output was correct.

We will now outline a test such that, given σ > 0, an estimate Ê0 of the ground state energy E0

up to σ, a precision tolerance ǫ, a failure probability δ > 0 and a lower bound on the overlap p0 ≥ η,
accepts only if the estimate satisfies |Ê0 −E0| ≤ ǫ, with a failure probability of wrong certification
at most δ. The quantum circuits required to run the algorithm are of depth O(σ−1). Furthermore,
we will also show that if σ is proportional to the spectral gap ∆true, it is guaranteed to accept with
probability at least 1− δ (although it might also accept at a larger value of σ/smaller circuit depth
for more structured states).

Note that we will not certify that the spectral gap of the Hamiltonian is at least some ∆, but
only that the ground state energy estimate is correct up to ǫ under the promise that the initial
state had an overlap with the ground space of at least η > 0. Certifying the spectral gap would
require additional assumptions on the initial state and its support on the first excited state. To
make this point clear, consider the case in which the initial state is ρ = |E0〉〈E0|, i.e. the ground
state. In this case, it is not difficult to see that our algorithm already outputs the correct estimate
with access to controlled evolution times of order O(1), as E0 will be the maximum of p ∗nσ for all
σ > 0, where nσ is again a Gaussian with standard deviation σ. Thus, given such an initial state
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and enough samples, our algorithm will always output the correct estimate regardless of the circuit
depth. On the other hand, it is clear that the state ρ cannot give us any information about the
spectral gap of the Hamiltonian. In short, our test will only certify that the estimate of the energy
was within a tolerated error.

Intuitively speaking, our algorithm outputs a correct estimate whenever σ is small enough to
make sure that the contribution of the other energies in nσ at E0 is sufficiently suppressed to make
sure that we have a peak close to the ground state. If we have pollution from other energies, then
they will make the peak around E0 wider than if not. Thus, our test will consist on first making
sure that we have a peak close to E0 and then measuring the width of the peak.

We will first collect an auxilliary result about mixtures of Gaussians, as p ∗ nσ is a mixture of
Gaussians, i.e. a convex combination of Gaussian random variables. The Lemma below formalizes
the idea that if we have pollution from other energies, then the peak around E0 will be wider than
it should be, where we measure the width by the variance.

Lemma D.1. Let X =
∑

i piNi, where Ni ∼ N (Ei, σ
2) are normal random variables with the same

variance σ2 but different means Ei. Furthermore, assume E0 < E1 < · · · < Em and that p0 ≥ η. If
|E(X)− E0| ≥ cǫ for some constants c > 1, ǫ > 0, then:

E(|X − E(X)|2) ≥ σ2 + ηc2ǫ2 (142)

Proof. Recall the standard identity E(|X − E(X)|2) = E(X2) − E(X)2. Let us compute these
expectation values. Clearly, E(X) =

∑

i piEi. Furthermore,

E(X2) =
∑

i

piE(N
2
i ) =

∑

i

pi(σ
2 + E2

i ). (143)

Thus,

E(X2)− E(X)2 = σ2 +
∑

i

piE
2
i − (

∑

i

piEi)
2.

Now note that
∑

i piE
2
i − (

∑

i piEi)
2 is nothing but the variance of a discrete random variable Y

that takes value Ei with probability pi and E(Y ) = E(X). Then

E(|Y − E(Y )|2) ≥ ηc2ǫ2. (144)

To see this, note that by our assumption that |E(X)− E0| ≥ cǫ, with probability p0 the difference
|Y − E(Y )|2 will be at least c2ǫ2, which yields the claim.

The result above shows that if the mean of a Gaussian mixture deviates significantly from
the minimum mean of its components, then this will result in a variance that is larger than their
individual variances σ2.

Our test will be based on “zooming into” the peak around the estimate we found with our
sampling algorithm and testing whether the variance is larger than expected. That is, we will
condition the distribution around Ê0 and estimate its variance.

But it is not a given that conditioning around Ê0 will also yield a distribution that is a mixture
of Gaussians. Thus, we will show that this is approximately the case if we have a well-defined peak
in the distribution.

Before we prove our theorem showing how conditioning on an interval yields another mixture
of Gaussians, let us again give some intuition. Given some peak Ê0 that we identified, we will
truncate to some interval [Ê0 − L, Ê0 + L], with

L =
√

2c log (σ−1τ−1)σ (145)
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for some constants c > 1, 1 > τ > 0 to be specified later. The mass of energies that are located to
the right of E0 +3L is negligible on the interval [Ê0 −L, Ê0 +L], as it is at most O(Lτ2c). We see
that we can safely discard these random variables when truncating to the interval. Furthermore,
we will also approximate well all Gaussians whose means are located in [Ê0 − L/2, Ê0 + L/2], as

their mass outside this interval is O(τ
c
4 ).

Thus, the only energies that “pose a threat” of pollution are those that have substantial weight
on the edge of our interval [Ê0 −L, Ê0 + L]. This is where we use the assumption that we found a
peak: we will impose that the mass going around the edges of the intervals is small. Note that only
the right edge of the interval has to be considered, as we assume in our algorithm that we know
the ground state energy up to σ and, thus, there are no energies to the left of the interval. More
formally, we want:

∫ Ê0+2L

Ê0+
L
2

(p ∗ nσ)(x)dx ≤ c′ǫ2η2. (146)

for some constant c′ we will choose later. We will call distributions that satisfy this property peaked
around Ê0.

Definition D.2 (Distribution peaked around value). Given a point distribution p on R, ǫ > 0,
η > 0 and nσ the probability density function of a Gaussian random variable with standard deviation
σ, we say that p ∗ nσ is peaked around a point Ê0 up to ǫ with parameters c, c′, τ > 0 if for
L = σ

√

2c log (σ−1τ−1) we have that:

∫ Ê0+2L

Ê0+
L
2

(p ∗ nσ)(x)dx ≤ c′ǫ2η2. (147)

To further simplify notation we will define nσ,i to be the density of the random variable
N (Ei, σ

2). We will start by proving that whenever Eq. (146) holds, the mass on [Ê0 − L, Ê0 + L]
is mostly given by energies in the interval [Ê0 − L/2, Ê0 + L/2].

Lemma D.3. Let X =
∑

i piNi, where Ni ∼ N (Ei, σ
2) are normal random variables with the same

variance σ2 but different means Ei and L be defined as in Eq. (145). For some Ê0 that is whithin
σ of E0, group the means of the Ni into three subsets:

G = {i : |Ei − Ê0| ≤ L
2 }, (148)

B = {i : L
2 ≤ |Ei − Ê0| ≤ 2L}, (149)

F = {i : 2L ≤ |Ei − Ê0|}. (150)

If p ∗ nσ is peaked around Ê0 with c = 4 and τ = c′ǫ2η2

4 then:

∣

∣

∣

∣

∣

∫ Ê0+L

Ê0−L
(p ∗ nσ)(x)dx−

∑

i∈G
pi

∣

∣

∣

∣

∣

≤ 4c′ǫ2η2. (151)

Proof. Clearly:

∫ Ê0+L

Ê0−L
(p ∗ nσ)(x)dx =

∑

i∈G
pi

∫ Ê0+L

Ê0−L
nσ,i(x)dx+

∑

i∈B
pi

∫ Ê0+L

Ê0−L
nσ,i(x)dx+

∑

i∈F
pi

∫ Ê0+L

Ê0−L
nσ,i(x)dx.

(152)
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We will estimate each term in the sum separately. Let us start with energies in F . As, by definition,
all energies in that set are at least 2L away from Ẽ0, they are at least L away from the upper end
of the integration limits. Thus, by our choice of L we have for i ∈ F :

∫ Ê0+L

Ê0−L
nσ,i(x)dx ≤ 2L

ec log(τσ)

σ
√
2π

= O(τ c log
(

τ−1
)

) (153)

and so

∑

i∈F
pi

∫ Ê0+L

Ê0−L
nσ,i(x)dx = O(τ c log

(

τ−1
)

). (154)

Let us now estimate the contribution of terms in G. We have for i ∈ G:
∫ Ê0+L

Ê0−L
nσ,i(x)dx = 1−

∫ Ê0−L

−∞
nσ,i(x)dx−

∫ +∞

Ê0+L
nσ,i(x)dx. (155)

By the property that all energies in G are L
2 away from Ê0, we see that both integrals above are

at most O(τ
c
2 ). Thus:

∣

∣

∣

∣

∣

∑

i∈G
pi

∫ Ê0+L

Ê0−L
nσ,i(x)dx−

∑

i∈G
pi

∣

∣

∣

∣

∣

= O(τ
c
2 ). (156)

By our choice of L we have τ
c
2 =

(

c′ǫ2η2

4

)2
. Thus, both Eq. (156) and Eq. (154) are bounded by

c′ǫ2η2.
To finish the proof, we need to consider the contribution of the energies in B. Note that for

i ∈ B:

∑

i∈B
pi

∫ Ê0+L

Ê0−L
nσ,i(x)dx ≤ 2

∑

i∈B
pi

∫ Ê0+2L

Ê0+
L
2

nσ,i(x)dx ≤
∑

i

2pi

∫ Ê0+2L

Ê0+
L
2

nσ,i(x)dx ≤ 2c′ǫ2η2. (157)

To see this, note that by definition of B the mean of these Gaussians are greater than Ê0 +
L
2 and

the integral on the r.h.s. is over a larger interval that is closer to their mean. Thus, as the mass of
the Gaussian is maximal around the mean, the inequality follows. By our assumption in Eq. (146)
we conclude that:

∑

i∈B
pi

∫ Ê0+L

Ê0−L
nσ,i(x)dx ≤ 2c′ǫ2η2. (158)

Putting together inequalities in Eqs. (154), (156) and (158), Eq. (151) follows.

We can show in a similar fashion that the following holds:

Corollary D.4. Under the same conditions as Lemma D.3, assume further that σ is small enough

to ensure that |Ê0 ± L| ≤ 1. If p ∗ nσ is peaked around Ê0 with c = 4 and τ = c′ǫ2η2

4 then:

∣

∣

∣

∣

∣

∫ Ê0+L

Ê0−L
x(p ∗ nσ)(x)dx −

∑

i∈G
piEi

∣

∣

∣

∣

∣

≤ 4c′ǫ2η2. (159)
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and
∣

∣

∣

∣

∣

∫ Ê0+L

Ê0−L
x2(p ∗ nσ)(x)dx−

∑

i∈G
pi(σ

2 + E2
i )

∣

∣

∣

∣

∣

≤ 4c′ǫ2η2. (160)

Proof. We can apply the same estimates as we used to show Lemma D.3 to show that the contribu-
tions from energies in B and F are small. This is because we assume that [Ê0−L, Ê0+L] ⊂ [−1, 1]
and for x ∈ [−1, 1]:

|xnσ,i| ≤ nσ,i, x2nσ,i ≤ nσ,i (161)

Furthermore, it is also not difficult to show that for i ∈ G the value of the first two moments are
approximated if we integrate over [Ê0 − L, Ê0 + L].

This shows that under Eq. (146) the moments of the random variable conditioned on the
interval [Ê0 − L, Ê0 + L] are indeed well-approximated by those of the energies in the interval
[Ê0 − L/2, Ê0 + L/2]. Thus, if we check that Eq. (146) holds and we estimate the moments
conditioned on the interval, then we can approximate the quantity in Eq. (142) and check that the
variance is larger than expected if we got the energy right up to cǫ.

D.1 Certification algorithm and its correctness

With these technical results at hand, let us give a description of our energy certification in Algo-
rithm 3, which we refer to as GSEE CERT . We deliberately formulated it in a way independent

Algorithm 3 Energy certification algorithm algorithm GSEE CERT .

1: procedure GSEE CERT(ǫ, Ê0, σ, η,p)

2: τ ← ǫ2η
160

3: Let X ∼∑i piN(Ei, σ
2) with pdf p ∗ nσ

4: L =
√

8 log (τ−1)σ

5: τ ← estimate of
∫ Ê0+2L

Ê0+
L
2

p ∗ nσ(x)dx up to ǫ2η
160 .

6: if τ < ǫ2η
80 then

7: M ← estimate E(X|X ∈ [Ê0 − L, Ê0 − L]) up to ǫ2η
160

8: S ← estimate E((X −M)2|X ∈ [Ê0 − L, Ê0 − L]) up to ǫ2η
160 .

9: if |S − σ2| ≤ 2ǫ2η then

10: return Accept estimate and return M .
11: else

12: return Reject estimate.
13: end if

14: else

15: return Reject estimate.
16: end if

17: end procedure

of how we obtained the estimates for the relevant quantities. This is because different algorithms
for GSEE have different access models to the function p ∗ nσ, be it samples, as in this work, or to
estimates of the density, as in Ref. [40]. Furthermore, we assume that we are certain about the
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correctness of the estimates used in the algorithm for simplicity. But it is straightforward to extend
the analysis to the case were the estimates are only correct up to some given failure probability.
We then have:

Theorem D.5. If Ê0 is such that |Ê0 − E0| ≤ σ, Algorithm 3 accepts, and all the estimates used
were correct, then we have:

|M − E0| ≤ 4ǫ. (162)

Proof. If the algorithm accepted, then we already know that the density p ∗ nσ is peaked around
Ê0. Otherwise we would have already rejected in the first at Line 15. Let us assume that

|Ê0 − E0| > 4ǫ. (163)

We will now show that the test will reject. As before, let X =
∑

i piN(E,σ
2) and X̃ be the same

random variable conditioned on the interval [Ê0−L, Ê0 −L]. Furthermore, also let as before G be
the set of energies Ei ∈ [Ê0−L/2, Ê0−L/2]. By Lemma D.3 and Cor. D.4, we have that the variance

of X̃ approximates up to ǫ2η
160 that of the random variable Y =

(
∑

i∈G piN(Ei, σ
2)
)

/
(
∑

i∈G pi
)

.

By Lemma D.1, if Eq. (163) holds, then the variance of X conditioned on [Ê0−L, Ê0+L] must
exceed

E(|X − Ê0|2|X ∈ [Ê0 − L, Ê0 − L]) ≥ σ2 + 16ηǫ2 − ηǫ2

160
> σ2 + 2ǫ2η, (164)

which means that the test will have rejected. Thus, if we accept, then Eq. (162) must hold.

Let us now show that the test will always accept if we evolve for a time proportional to the gap
over the precision:

Lemma D.6. Let ∆true be the spectral gap of H, p0 ≥ η, a desired precision ǫ > 0 and |Ê0−E0| ≤ σ.
Let σ0 be the minimal σ > 0 such that Algorithm 3 accepts for a given p. Then:

σ0 ≤
∆true

10
√

log (2η−1ǫ−1)
. (165)

Proof. Let us first show that for our value of σ0 in Eq. (165), the distribution will be peaked
around E0. By our choice of σ0, it is easy to see that the contribution of the other energies on
[E0 − 2L,E0 + 2L] will be of order O((ǫη)50), which immediately implies that the distribution
is peaked. Furthermore, the probability distribution on [E0 − 2L,E0 + 2L] is well-approximated
by a single Gaussian up to corrections of order O((ǫη)50). Thus, the variance conditioned on
[E0 − L,E0 + L] will deviate from σ by less than ǫ2η. As our estimate S of the variance deviates

from the true one by at most ǫ2η
160 , we have |S − σ2| ≤ 2ǫ2η, which means we will accept.

We conclude that the test is sound: in the worst case, if we pick σ of similar magnitude as the
spectral gap, we are guaranteed to accept. But it can be the case that σ0 ≪ ∆true depending on
the initial state. To illustrate this, take once again the case where p0 = 1. Then the test will always
accept, irrespective of the value of the gap. This is because we will always only have one Gaussian
component in nσ and, thus, the variance will always be σ2.
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D.2 Sample complexity of GSEE CERT with rejection sampling

Let us analyze the sample complexity of the test above with access to samples and with a success
probability of correct verification of 1− δ.

Corollary D.7. Under the same conditions as Theorem 3.6, assume further that |E0 − Ê0| ≤ σ.
Then we can perform the run Algorithm 3 with probability of correct rejection or acceptance 1 − δ
with access to

Õ(ǫ−4η−3 log
(

δ−1
)

) (166)

uses of the block-encoding of gσ,ξ;ǫ′′(H).

Proof. There are two steps that need to be performed for running Algorithm 3. First, we need to
determine if the distribution is peaked around Ê0. If it is peaked, we need to determine the variance
up to an error ηǫ2 on the interval [Ê0−L, Ê0+L]. Let us start by showing how to determine if the
distribution is peaked. For that we will perform rejection sampling with the Gaussian condtioned
on [Ê0+

L
2 , Ê0+2L]. As explained in Section 3 in Eq. (15), the probability of accepting is given by

σ
√
2π

3L
∫ Ê0+2L

Ê0+
L
2

(p ∗ nσ)(x)dx
=

c log
(

τ−1
)

∫ Ê0+2L

Ê0+
L
2

(p ∗ nσ)(x)dx
, (167)

for an explicitly known constant c. Thus, by running O(ǫ−2η−1) rounds of the rejection sampling,
we can decide if the distribution is peaked around Ê0 or not with probability of failure at most δ

2
by checking how many times we accepted the sample.

If it is peaked, then we can perform rejection sampling again, but now on the interval [Ê0 −
L, Ê0 + L]. With access to O(η−2ǫ−4 log

(

δ−1
)

) samples from the conditioned distribution, we can
estimate the variance of the conditioned random variable up to a precision of O(ǫ2η) up to a failure
probability of at most δ

2 .
The probability of accepting a sample from the interval is given by

σ
√
2π

2L
∫ Ê0+L

Ê0−L
(p ∗ nσ)(x)dx

. (168)

As before, note that for our choice of L we have that this is lower-bounded by

C log
(

τ−1
)

∫ Ê0+L

Ê0−L
(p ∗ nσ)(x)dx

(169)

for some constant C > 0. Now, as E0 ∈ [Ê0 − L, Ê0 + L] by our choice of L and the assumption

that |E0 − Ê0| ≤ σ, we have that
∫ Ê0+L

Ê0−L
(p ∗ nσ)(x)dx = Ω(η). Thus, we need to run the rejection

sampling an expected Õ(η−1) number of times to accept a sample. This gives a total complexity for
this step of Õ(η−3ǫ−4 log

(

δ−1
)

), which dominates the overall sample complexity of the certification
algorithm. Furthermore, we see that the probability of obtaining wrong estimates is at most δ. As
the algorithm always outputs the correct answer if given correct estimates, this gives the claim.

Note that the assumption that we are given an estimate that satisfies |E0 − Ê0| ≤ σ does not
increase the overall depth of circuits required for the certification method. This is because we can
always obtain such an estimate with circuits of depth O(σ−1) using e.g. Algorithm 1.
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