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Quantum Differential Privacy:
An Information Theory Perspective

Christoph Hirche, Cambyse Rouzé, Daniel Stilck França

Abstract—Differential privacy has been an exceptionally
successful concept when it comes to providing provable se-
curity guarantees for classical computations. More recently,
the concept was generalized to quantum computations.
While classical computations are essentially noiseless and
differential privacy is often achieved by artificially adding
noise, near-term quantum computers are inherently noisy
and it was observed that this leads to natural differential
privacy as a feature.

In this work we discuss quantum differential privacy
in an information theoretic framework by casting it as a
quantum divergence. A main advantage of this approach is
that differential privacy becomes a property solely based on
the output states of the computation, without the need to
check it for every measurement. This leads to simpler proofs
and generalized statements of its properties as well as several
new bounds for both, general and specific, noise models. In
particular, these include common representations of quan-
tum circuits and quantum machine learning concepts. Here,
we focus on the difference in the amount of noise required
to achieve certain levels of differential privacy versus the
amount that would make any computation useless. Finally,
we also generalize the classical concepts of local differential
privacy, Rényi differential privacy and the hypothesis testing
interpretation to the quantum setting, providing several new
properties and insights.

I. INTRODUCTION

PROCESSING data in some form is the core concept
of most computational tasks. Nowadays, large data

sets are being collected and processed for a variety of
tasks ranging from medical studies to machine learning
applications. With the accumulation of information al-
ways also come security concerns. If one presents the
results of a study, will that allow the audience to conclude
on the health of a particular individual? Social media
companies constantly process our data using machine
learning for advertisement purposes. How much do the
results reveal about the underlying data set?
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Differential privacy [16], [15] is a concept introduced
in the classical computation setting to address these con-
cerns. Vaguely speaking, differential privacy guarantees
that the probability of an algorithm giving a certain
outcome is roughly the same for any sufficiently similar
input. This implies that good differential privacy makes it
difficult for an observer to make precise statements about
the data used.

With the growing interest in large-scale quantum com-
putations and quantum machine learning applications,
naturally, also security requirements are desired there. To
that end, the concept of quantum differential privacy was
introduced in [40] in the setting of quantum computing.
That work was the starting point of a series of results
connecting quantum differential privacy to gentle mea-
surements [1], distributed quantum computing [23] and
quantum machine learning [4], [32], [36], [12], [2], [3],
[13]. Other authors also studied differential privacy in the
classical to quantum regime [39].

In quantum differential privacy, we are interested in
the properties of a quantum algorithm A represented by
a general quantum channel. The input data is a quantum
state ρ and someone observing the output should not be
able to determine whether the input state was indeed
ρ or a similar state σ. Similarity is usually defined via
neighbouring states, denoted ρ ∼ σ, according to some
rule. Different notions of similarity have been proposed
in the literature. For instance, a small trace distance [40]
or convertibility by a local quantum channel [1]. For most
of our discussion we will keep the definition unspecified
and only sometimes fix it for examples. Now, a quantum
algorithm A is (ϵ, δ)-differentially private, if for all mea-
surements M and all neighbouring quantum states ρ ∼ σ
we have

Tr(MA(ρ)) ≤ eϵ Tr(MA(σ)) + δ, (I.1)

see Definition III.1 for full details. In the classical setting,
one way to achieve differential privacy is by taking an
algorithm and adding noise to the output to obscure the
input [17]. This idea was transferred to the quantum set-
ting in [40], showing that concatenating an algorithm with
sufficiently strong noise in form of a different quantum
channel makes the algorithm differentially private. This



was further explored in [12] for layered algorithms that
are affected by noise at every step, a model that describes
many common scenarios such as quantum circuits and
quantum machine learning algorithms implemented on
noisy quantum computers. An interesting proposition
following from [12] is that the noise present in near-
term quantum devices, while presenting a computational
difficulty, induces an inherent advantage by naturally
making the computation differentially private. On the
other hand it is of course also well known that such
noise can make it impossible to run long computations,
somewhat limiting the computational usefulness of near-
term devices. One of the main goals of this work is to give
upper bounds on the depth required to reach differential
privacy and contrasting it to the computational limitations
imposed by the noise. As we will see, differential privacy
can be reached at a significantly shorter depth than that
at which computationally prohibitive noise occurs.

To this end, we introduce an information theoretic
approach to quantum differential privacy that allows us to
cast the requirement in terms of a quantum divergence.
This in turn lets us make several observations that are
solely based on the properties of the divergence, giving a
fruitful new approach to discussing quantum differential
privacy. The divergence of choice is the quantum hockey-
stick divergence introduced in [33] and the general
framework follows classical work presented among others
in [6], [5] using tools such as contraction coefficients to
bound differential privacy in iterative algorithms.

The outline and main contributions of this work are as
follows.

• In Section II we revisit the quantum hockey-stick di-
vergence and show several new properties. In partic-
ular we consider its associated contraction coefficient
and give a simple expression for it that significantly
reduces its computational complexity. These results
lay the foundation for what follows, but should also
be of independent interest.

• In Section III we discuss quantum differential pri-
vacy and how to cast it in terms of the hockey-
stick divergence and a variation of the smooth
max-relative entropy. Based on this we then give
properties and implications of quantum differential
privacy including a general bound showing exponen-
tial decay of δ with the algorithm depth. This also
gives an operational interpretation of the hockey-
stick divergence.

• In Section IV we discuss specific noise models
including global and local depolarizing noise which
we contrast with each other but also with the induced
computational limitations. In particular, we get a
separation for depolarizing noise where the trace
distance decays exponentially, but good differential

privacy is reached after a finite number of steps.
Furthermore we discuss more general models such
as arbitrary qubit noise.

• In Section V We introduce quantum generalisations
of local differential privacy and Rényi differential
privacy: two often discussed extensions of the stan-
dard differential privacy definition. Finally, we dis-
cuss the hypothesis testing interpretation of quantum
differential privacy and derive a useful trade-off
between ϵ and δ from it.

Notations: A (classical or quantum) system R is asso-
ciated with a finite-dimensional Hilbert space HR. Let
P(HR) be the set of positive semidefinite linear operators
acting on HR. A quantum state ρR on R is a positive
semidefinite linear operator with unit trace acting on HR,
denoted ρR ∈ S=(HR). The set of subnormalized states
is denoted S≤(HR). A state ρR of rank 1 is called pure,
and we may choose a normalized vector |ψ⟩R ∈ HR

satisfying ρR = |ψ⟩⟨ψ|R. Otherwise, ρR is called a mixed
state. By the spectral theorem, every mixed state can be
written as a convex combination of pure states. For a
pure state |ϕ⟩ we may use the shorthand ϕ ≡ |ϕ⟩⟨ϕ|. For
a classical system X there is a distinguished orthonormal
basis {|x⟩}dimHX

x=1 of HX diagonalizing every state on X .
A quantum channel N : A→ B is a linear completely

positive and trace-preserving map from the operators on
HA to the operators on HB . Given a quantum channel
M with input and output dimension d, its Choi matrix is
defined as

CM :=
∑
i,j∈[d]

M(|i⟩⟨j|)⊗ |i⟩⟨j| ,

where {|i⟩ : i ∈ [d]} is the standard basis of Cd. In the
following we will usually drop the indices as the systems
are clear from context. A measurement is an operator
0 ≤ M ≤ 1 and a collection of measurements such that∑
iMi = 1 is called a POVM.

II. THE QUANTUM HOCKEY-STICK DIVERGENCE

In this section we discuss the main technical tools
needed for our investigation of quantum differential pri-
vacy. The quantum hockey-stick divergence was first
introduced in [33], in the context of exploring strong
converse bounds for the quantum capacity, as

Eγ(ρ∥σ) := Tr(ρ− γσ)+, (II.1)

for γ ≥ 1. Here X+ denotes the positive part of eigen-
decomposition of a hermitian matrix X = X+ − X−.
In [33] it was noted that this quantity is closely related
to the trace norm via

Eγ(ρ∥σ) =
1

2
∥ρ− γσ∥1 +

1

2
(Tr(ρ)− γ Tr(σ)), (II.2)
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so, if ρ, σ ∈ S=(H), E1(ρ∥σ) = 1
2∥ρ − σ∥1 equals the

trace distance. As the trace distance has many desirable
properties, we are tempted to hope that similar properties
also hold for the quantum hockey-stick divergence. For
instance, the trace distance is invariant under unitaries and
Eq. (II.2) immediately implies that the same holds true
for the hockey-stick divergence.

Another important example will be the following, relat-
ing the divergence to a maximization over measurements.

Lemma II.1. An alternative expression for the hockey-
stick divergence for ρ, σ ∈ P(H) is given by

Eγ(ρ∥σ) = max
0≤Λ≤1

Tr{Λ(ρ− γσ)}. (II.3)

Proof. The proof is similar to the standard argument for
the trace distance. Let X = ρ − γσ and (X+, X−) its
decomposition into positive and negative parts such that
X = X+ −X−. For a general operator 0 ≤ Λ ≤ 1 one
easily sees

Tr{Λ(ρ− γσ)} = Tr{Λ(X+ −X−)}
≤ Tr{ΛX+} ≤ TrX+ = Eγ(ρ∥σ).

It remains to show that equality in the above can be
achieved by some measurement. For that simply pick
ΠX+ , the projector onto the support of X+ and observe
that

Tr{ΠX+(ρ− γσ)} = Tr{ΠX+(X+ −X−)}
= Tr{ΠX+X+} = TrX+ = Eγ(ρ∥σ).

This concludes the proof.

A property that was already shown in [33] is that Eγ ,
like any good divergence, obeys data-processing, meaning
for any quantum channel N we have

Eγ(N (ρ)∥N (σ)) ≤ Eγ(ρ∥σ) ,

which even holds for any ρ, σ ∈ P(H), see [33, Lemma
4]. This makes it meaningful to define its contraction
coefficient as

ηγ(N ) := sup
ρ,σ∈S=(H)

Eγ(N (ρ)∥N (σ))

Eγ(ρ∥σ)
, (II.4)

where the optimization is over ρ, σ ∈ S=(H), and
obviously 0 ≤ ηγ(N ) ≤ 1. For a recent overview over
contraction coefficients and their properties see [20].

Interestingly, the contraction coefficient for the trace
distance simplifies significantly. Instead of having to
optimize over arbitrary initial states ρ, σ, it suffices to
only consider orthogonal pure states [30]. We will prove
now that an analogous result holds also for the hockey-
stick divergence. This generalizes both the proof for the
trace distance in [30] and that for the classical hockey-
stick divergence in [6, Theorem 3].

Theorem II.2. The hockey-stick divergence contraction
coefficient can be equivalently expressed as

ηγ(N ) = sup
|φ⟩⊥|ψ⟩

Eγ(N (|φ⟩⟨φ|)∥N (|ψ⟩⟨ψ|)). (II.5)

Proof. Let X = ρ−γσ and (X+, X−) its decomposition
into positive and negative parts such that X = X+−X−.
Note that by definition and Equation (II.2) we have

Eγ(ρ∥σ) = TrX+ =
1

2
∥X∥1 +

1

2
(1− γ),

Eγ(N (ρ)∥N (σ)) =
1

2
∥N (X)∥1 +

1

2
(1− γ). (II.6)

Further, define X̂+ = X+

TrX+ and X̂− = X−

TrX− with
spectral decompositions

X̂+ =
∑
m

pm|m⟩⟨m|,

X̂− =
∑
n

qn|n⟩⟨n|.

With these definitions, we observe

∥N (X)∥1 (II.7)

= ∥N (X+)−N (X−)∥1
= ∥Tr(X+)N (X̂+)− Tr(X−)N (X̂−)∥1

=

∥∥∥∥∥Tr(X+)N (
∑
m

pm|m⟩⟨m|)

−Tr(X−)N (
∑
n

qn|n⟩⟨n|)

∥∥∥∥∥
1

=

∥∥∥∥∥∑
m,n

pmqn
(
Tr(X+)N (|m⟩⟨m|)

− Tr(X−)N (|n⟩⟨n|)
)∥∥∥∥∥

1

≤
∑
m,n

pmqn
∥∥Tr(X+)N (|m⟩⟨m|)

− Tr(X−)N (|n⟩⟨n|)
∥∥
1

≤ sup
m,n

∥Tr(X+)N (|m⟩⟨m|)− Tr(X−)N (|n⟩⟨n|)∥1.

(II.8)

We continue with

∥Tr(X+)N (|m⟩⟨m|)− Tr(X−)N (|n⟩⟨n|)∥1
≤∥Tr(X+)N (|m⟩⟨m|)− γ Tr(X+)N (|n⟩⟨n|)∥1
+ ∥γ Tr(X+)N (|n⟩⟨n|)− Tr(X−)N (|n⟩⟨n|)∥1

=Tr(X+)∥N (|m⟩⟨m|)− γN (|n⟩⟨n|)∥1
+ ∥((γ − 1)Tr(X+) + (1− γ))N (|n⟩⟨n|)∥1

=Tr(X+)∥N (|m⟩⟨m|)− γN (|n⟩⟨n|)∥1
− ((γ − 1)Tr(X+) + (1− γ))

3



=Tr(X+)(∥N (|m⟩⟨m|)− γN (|n⟩⟨n|)∥1
− (γ − 1))− (1− γ)

=2Tr(X+)Eγ(N (|m⟩⟨m|)∥N (|n⟩⟨n|))− (1− γ)

=2Eγ(ρ∥σ)Eγ(N (|m⟩⟨m|)∥N (|n⟩⟨n|))− (1− γ),

where the first inequality is by triangle inequality, the first
equality because Tr(X+) ≥ 0 and the second because
((γ − 1)Tr(X+) + (1 − γ)) ≤ 0 since Tr(X+) =
Eγ(ρ∥σ) ≤ 1. The remaining steps consist of shuffling
terms and applying definitions. Plugging this back into
Equation (II.8), we get

∥N (X)∥1
≤ sup

m,n
2Eγ(ρ∥σ)Eγ(N (|m⟩⟨m|)∥N (|n⟩⟨n|))− (1− γ)

and again plugging this into Equation (II.6), we have

Eγ(N (ρ)∥N (σ))

≤ 1

2

{
sup
m,n

2Eγ(ρ∥σ)Eγ(N (|m⟩⟨m|)∥N (|n⟩⟨n|))

− (1− γ)

}
+

1

2
(1− γ)

= Eγ(ρ∥σ) sup
m,n

Eγ(N (|m⟩⟨m|)∥N (|n⟩⟨n|)).

From here it follows directly that

ηγ(N ) ≤ sup
|φ⟩⊥|ψ⟩

Eγ(N (|φ⟩⟨φ|)∥N (|ψ⟩⟨ψ|)).

It remains to show that the inequality is indeed achieved.
For that simply note that for all orthogonal |φ⟩, |ψ⟩, we
have

Eγ(|φ⟩⟨φ|∥|ψ⟩⟨ψ|) = 1

and therefore

ηγ(N ) ≥ sup
|φ⟩⊥|ψ⟩

Eγ(N (|φ⟩⟨φ|)∥N (|ψ⟩⟨ψ|))
Eγ(|φ⟩⟨φ|∥|ψ⟩⟨ψ|)

= sup
|φ⟩⊥|ψ⟩

Eγ(N (|φ⟩⟨φ|)∥N (|ψ⟩⟨ψ|)),

where the lower bound follows from the fact that we
are restricting the supremum to a smaller set than in
the definition of the contraction coefficient. Further-
more, for orthogonal pure states one can check that
Eγ(|φ⟩⟨φ|∥|ψ⟩⟨ψ|) = 1. This concludes the proof.

Next we prove a Fuchs-van-de-Graaf type inequality
that reduces to the well-known

1

2
∥ρ− σ∥1 ≤

√
1− F (ρ, σ)

for γ = 1, where F (ρ, σ) := ∥√ρ
√
σ∥21 is the quantum

fidelity.

Lemma II.3. For γ ≥ 1 and ρ, σ ∈ P(H), we have

Eγ(ρ∥σ) (II.9)

≤ 1

2

√
(Tr(ρ+ γσ))2 − 4γ(Tr ρ)2(Trσ)2F (ρ̂, σ̂)

+
Tr(ρ− γσ)

2
, (II.10)

where ρ̂ = ρ
Tr ρ and σ̂ = σ

Trσ . For ρ, σ ∈ S=(H) this
simplifies to

Eγ(ρ∥σ) ≤
1

2

√
(1 + γ)2 − 4γF (ρ, σ) +

(1− γ)

2
.

(II.11)

Proof. Using [9, Supplementary Lemma 3] as stated in
Lemma A.1 we get

∥ρ− γσ∥21 + 4∥√ρ√γσ∥21 ≤ (Tr[ρ+ γσ])2,

which immediately implies

∥ρ− γσ∥1
≤
√
(Tr(ρ+ γσ))2 − 4γ(Tr ρ)2(Trσ)2F (ρ̂, σ̂) .

Plugging this into Equation (II.2) gives the desired result.

This also gives us a bound on the contraction coeffi-
cient as

ηγ(N ) (II.12)

≤ sup
|φ⟩⊥|ψ⟩

1

2

√
(1 + γ)2 − 4γF (N (|φ⟩⟨φ|),N (|ψ⟩⟨ψ|))

+
(1− γ)

2
. (II.13)

We can also bound the hockey-stick divergence for
any γ ≥ 1 directly by the trace-distance, leading to an
alternative way of bounding the contraction coefficients.
This generalizes the analog classical result in [5].

Lemma II.4. For γ ≥ 1 and ρ, σ ∈ S=(H), we have

1− γ(1− 1

2
∥ρ− σ∥1) ≤ Eγ(ρ∥σ) ≤

1

2
∥ρ− σ∥1,

(II.14)

implying

1− γ(1− η1(N )) ≤ ηγ(N ) ≤ η1(N ), (II.15)

Proof. The only thing needed to prove is the first inequal-
ity and the remaining statement follows easily. To that end

4



we observe

γ
1

2
∥ρ− σ∥1

= γ max
0≤Λ≤1

TrΛ(ρ− σ)

= max
0≤Λ≤1

TrΛ(γρ− γσ + ρ− ρ)

≤ max
0≤Λ≤1

TrΛ(ρ− γσ) + max
0≤Λ≤1

TrΛ(γρ− ρ)

= Eγ(ρ∥σ) + γ − 1.

The second inequality of the statement follows by def-
inition and the third and fourth by using the simpli-
fied expression for the contraction coefficients in The-
orem II.2.

Finally, we list some potentially useful properties of
Eγ . Some of these are generalizations of classical results
proven in [24].

Proposition II.5. We have the following properties:

• (Triangle inequality) For γ1, γ2 ≥ 1 and ρ, σ ∈
P(H), we have

Eγ1γ2(ρ∥σ) ≤ Eγ1(ρ∥τ) + γ1Eγ2(τ∥σ). (II.16)

• (Strong convexity) Let γ1, γ2 ≥ 1, ρ =
∑
x p(x)ρx

and σ =
∑
x q(x)σx with ρx, σx ∈ P(H), we have

Eγ1γ2(ρ∥σ) ≤
∑
x

p(x)Eγ1(ρx∥σx) + γ1Eγ2(p̃∥q̃),

(II.17)

where p̃ and q̃ are non-normalized distributions
p̃(x) = p(x) Trσx and q̃(x) = q(x) Trσx, respec-
tively. This also implies convexity and joint convexity.

• (Stability) For γ ≥ 1 and ρ, σ, τ ∈ P(H), τ ̸= 0 ,
we have

Eγ(ρ⊗ τ∥σ ⊗ τ) = Tr [τ ]Eγ(ρ∥σ). (II.18)

• (Subadditivity) For γ1, γ2 ≥ 1 and ρ1, σ1 ∈ P(H1),
ρ2, σ2 ∈ P(H2), we have

Eγ1γ2(ρ1 ⊗ ρ2∥σ1 ⊗ σ2)

≤ Tr[ρ2]Eγ1(ρ1∥σ1) + Tr[σ1]γ1Eγ2(ρ2∥σ2),
(II.19)

Eγ1γ2(ρ1 ⊗ ρ2∥σ1 ⊗ σ2)

≤ Tr[ρ1]Eγ1(ρ2∥σ2) + Tr[σ2]γ1Eγ2(ρ1∥σ1).
(II.20)

• (Symmetry) For γ ≥ 1 and ρ, σ ∈ P(H), we have

Eγ(ρ∥σ) = γE 1
γ
(σ∥ρ) + (Tr(ρ)− γ Tr(σ)).

(II.21)

• (Trace bound) For γ ≥ 1 and ρ, σ, τ ∈ P(H), we

have

Eγ(ρ∥σ) + Eγ(ρ∥τ) (II.22)

≥ γ

2
∥τ − σ∥1 + (Tr(ρ)− γ Tr(τ)). (II.23)

Proof. The first statement is easily seen as follows,

Eγ1γ2(ρ∥σ)
= max

0≤Λ≤1
TrΛ(ρ− γ1γ2σ)

= max
0≤Λ≤1

TrΛ(ρ− γ1τ + γ1τ − γ1γ2σ)

≤ max
0≤Λ≤1

TrΛ(ρ− γ1τ) + max
0≤Λ≤1

TrΛ(γ1τ − γ1γ2σ)

≤ Eγ1(ρ∥τ) + γ1Eγ2(τ∥σ).

The strong convexity follows similarly by considering
τ =

∑
x p(x)σx. Stability follows by first considering

the statement for the state τ ′ = τ/Tr [τ ]. Applying data-
processing twice, once for the partial trace and once
for N (ρ) = ρ ⊗ τ ′ gives the statement for states. The
generalization then follows by noting that the underlying
quantity is absolutely homogeneous in τ . Subadditivity
follows by triangle inequality and stability, picking first
τ = σ1⊗ρ2 and then τ = ρ1⊗σ2. For the last two items
we need the observation that

max
0≤Λ≤1

TrΛ(ρ− γσ) = max
0≤Λ≤1

Tr(1− Λ)(ρ− γσ).

From this symmetry follows immediately and the trace
bound by observing

Eγ(ρ∥σ) + Eγ(ρ∥τ)
= max

0≤Λ≤1
TrΛ(ρ− γσ) + max

0≤Λ≤1
Tr(1− Λ)(ρ− γτ)

≥ max
0≤Λ≤1

TrΛ(ρ− γσ − ρ+ γτ) + (Tr(ρ)− γ Tr(τ))

=
γ

2
∥τ − σ∥1 + (Tr(ρ)− γ Tr(τ)).

Next we connect the hockey-stick divergence to the
smooth max-relative entropy. This is similar to [40,
Lemma 1], however based on different definitions. Also,
besides avoiding explicit use of measurements, we pro-
vide a considerably simpler proof. For a classical ana-
logue of both results, see [17], [24].

Lemma II.6. For γ ≥ 1 we have,

Dϵ
max(ρ∥σ) ≤ log γ ⇔ Eγ(ρ∥σ) ≤ ϵ, (II.24)

where Dϵ
max(ρ∥σ) = inf ρ̄∈Bϵ(ρ)Dmax(ρ̄∥σ) is the

smooth max-relative entropy with Dmax(ρ∥σ) = inf{λ :
ρ ≤ eλσ} and Bϵ(ρ) = {ρ̄ : ρ̄ ∈ P(H) ∧ E1(ρ, ρ̄) ≤ ϵ}.

Proof. First, we show the ⇒ direction. Assume that
Dϵ

max(ρ∥σ) ≤ log γ, this implies that there exists a ρ̄

5



such that E1(ρ, ρ̄) ≤ ϵ and ρ̄ ≤ γσ. From this and the
triangle inequality in Proposition II.5 we immediately get

Eγ(ρ∥σ) ≤ E1(ρ∥ρ̄) + Eγ(ρ̄∥σ)
≤ ϵ+ 0.

We now show the ⇐ direction. Fix ρ̄ = γσ. As γ ≥ 1
and σ is a positive operator, this is a positive operator.
Furthermore, we have that

E1(ρ, ρ̄) = Tr(ρ− ρ̄)+

= Tr(ρ− γσ)+

= Eγ(ρ, σ) ≤ ϵ ,

where in the last inequality we used our hypothesis. Thus,
ρ̄ ∈ Bϵ(ρ). Now observe that Dmax(ρ̄∥σ) = log γ by
construction, from which it follows that Dϵ

max(ρ∥σ) ≤
log γ. We therefore see that Eγ(ρ, σ) ≤ ϵ implies
Dϵ

max(ρ∥σ) ≤ log γ.

Note that Dϵ
max does not correspond to the usual

definition of the smooth max-relative entropy, as we do
not constrain the optimization to normalized or subnor-
malized operators and use E1 as our distance measure
of choice. It does however generalize the definition used
in the proof of the analog classical lemma, see [24,
Definition 8]. Also, [40, Lemma 1] proves a similar
statement optimizing over normalized operators that are
however not necessarily positive. It remains open for now
whether both conditions can be achieved simultaneously
in the above proof.

In the next section, we will proceed to apply the above
results to quantum differential privacy.

III. QUANTUM DIFFERENTIAL PRIVACY

There are several similar definitions of quantum dif-
ferential privacy in the literature that apply to different
settings. Following [40], we will formulate ours in a way
that it applies to an arbitrary quantum algorithm A, i.e.
a completely positive, trace-preserving map. The general
idea is that if we apply the algorithm to a state from
a fixed database, say D, then a malicious party gaining
access to the output should not be able to distinguish by
any measurement whether the used input was a certain
state or one of its immediate neighbors in the database.
Classically the motivation is usually to consider a set of
databases that are neighbors if they differ in only one
entry, e.g. an observer of a medical trial should not be
able to determine the results of an individual participant.

In the quantum literature, several definitions of the
neighboring status are used, e.g. closeness in trace dis-
tance or reachability by a single local operation. Leaving
the exact choice of definition open for now, we denote

two states being neighbors by σ ∼ ρ. We can now state
the definition of quantum differential privacy.

Definition III.1. Let D be a set of quantum states and
A be a quantum algorithm (i.e. a CPTP map). We call
A (ϵ, δ)-differentially private if for all measurements 0 ≤
M ≤ 1 and all ρ, σ ∈ D such that ρ ∼ σ, we have

Tr(MA(ρ)) ≤ eϵ Tr(MA(σ)) + δ. (III.1)

We simply call A ϵ-differentially private if A is (ϵ, 0)-
differentially private.

This definition is a rather direct generalization of
classical differential privacy. Indeed, if we only consider
diagonal states and projectors P in the computational ba-
sis in the definition above and interpret Tr(PA(σ)) as the
probability of the measurement outcome lying in a given
set, we obtain exactly the definition in [15, Definition
2.4]. But for quantum states we need to optimize over all
possible basis and can even consider POVMs. However,
we will now use the tools from the previous section to
see that it can indeed be checked as a property of the
quantum states themselves without explicitly considering
the measurements.

Lemma III.2. The following three statements are equiv-
alent,

A is (ϵ, δ)-differentially private (III.2)
⇔ sup

ρ∼σ
Eeϵ(A(ρ)∥A(σ)) ≤ δ (III.3)

⇔ sup
ρ∼σ

Dδ
max(A(ρ)∥A(σ)) ≤ ϵ. (III.4)

Proof. Note that we can rewrite the condition in Equa-
tion (III.1) as

Tr (M(A(ρ)− eϵA(σ))) ≤ δ.

Since this has to hold for all measurements and all neigh-
boring input states we can use Lemma II.1 to conclude
the first equivalence. The second then follows directly
from Lemma II.6.

Note that Lemma III.2 implies that if all the outputs of
an algorithm are diagonal in the same basis, then quantum
DP is equivalent to classical DP. This is because for two
states that commute, Eγ is the same for the states and the
corresponding probability distributions. Note that in the
case of ϵ = 0 we have a condition on the trace distance.
This is also known as local sensitivity as e.g. defined
in [17, Definition 7.1], which in turn is closely related to
the stability of an algorithm, see [17, Section 7.3]. For
recent quantum generalization of the latter concept see
also [4].

The above allows us to immediately conclude some
well known properties, however with remarkably simple
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proofs solely based on properties of the divergences.

Corollary III.3. The following properties hold.

• (Post-processing) Let A be (ϵ, δ)-differentially pri-
vate and N be an arbitrary quantum channel, then
N ◦ A is also (ϵ, δ)-differentially private.

• (Parallel composition) Let A1 be (ϵ1, δ1)-
differentially private and A2 be (ϵ2, δ2)-differentially
private. Define that ρ1 ⊗ ρ2 ∼ σ1 ⊗ σ2 if ρ1 ∼ σ1
and ρ2 ∼ σ2. Then A1 ⊗ A2 is (ϵ1 + ϵ2, δ̄)-
differentially private on such product states, with
δ̄ = min{δ1 + eϵ1δ2, e

ϵ2δ1 + δ2}.

Proof. The post-processing property was first shown
in [40, Proposition 1] and composition in [40, Theorem 4]
for δ1 = δ2 = 0 and for the general case in [40, Theorem
4], although the latter relied on a erroneous assumption
in [40, Lemma 1], see below. Now, post-processing
simply follows by data-processing of the hockey-stick
divergence. Composition for δ1 = δ2 = 0 is of course
implied by the general case, however also follows easily
by subadditivity of the hockey-stick divergence which we
showed in Lemma II.5. The general case can be seen from
the differential privacy formulation in Equation (III.4).
Let ρ̄1 and ρ̄2 be the optimizers in the smooth max-
relative entropies implied by the differential privacy as-
sumption. One easily sees that

ρ̄1 ⊗ ρ̄2 ≤ eϵ1+ϵ2A1(σ1)⊗A2(σ2) (III.5)

and

E1(A1(ρ1)⊗A2(ρ2)∥ρ̄1 ⊗ ρ̄2)

≤ Tr[ρ̄2]E1(A1(ρ1)∥ρ̄1) + Tr[A1(ρ1)]E1(A2(ρ2)∥ρ̄2)
≤ eε2δ1 + δ2,

which follows from the subadditivity property in Propo-
sition II.5 and similarly,

E1(A1(ρ1)⊗A2(ρ2)∥ρ̄1 ⊗ ρ̄2) ≤ δ1 + eε1δ2.

This makes ρ̄ = ρ̄1 ⊗ ρ̄2 a valid choice to prove the
claim.

We note that the parallel composition property was also
claimed in [40, Theorem 5]. However, note that in their
analogue of Eq. (II.24) in [40, Lemma 1] their definition
of Dϵ

max requires an optimization over states which are
not necessarily positive. As Eq. (III.5) does not hold for
operators that are not positive (i.e. A1 ≤ B1, A2 ≤
B2 ⇏ A1 ⊗ A2 ≤ B1 ⊗ B2 in general), the parallel
decomposition does not follow. Thus, to the best of our
knowledge, Corollary III.3 is the first to establish parallel
composition property for quantum differential privacy.

The implementation of many near-term quantum algo-
rithms on noisy devices can be modelled by layers of

intended channels Ci, e.g. gates in a circuit or layers of
a quantum neural network, directly followed by interme-
diate noise Ni, i.e.

A = ⃝n
i Ni ◦ Ci. (III.6)

These types of algorithms are predestined to applying an
approach based on contraction coefficients. Doing so, we
get the following result.

Proposition III.4. For an algorithm A of the form in
Equation (III.6) we have

Eeϵ(A(ρ)∥A(σ)) ≤

(∏
i

ηeϵ(Ni)

)
Eeϵ(ρ∥σ) . (III.7)

Proof. The proof follows by alternatingly using the defi-
nition of the contraction coefficient to shell off the noise
and using data processing to remove the computational
layers.

This directly implies a decay in the δ parameter for
differential privacy based on the contraction coefficient
of the noise channels. This intuition becomes even more
transparent when we consider a special case.

Corollary III.5. For an algorithm A of the form in
Equation (III.6) with all Ni = N identical and ρ ∼ σ
if 1

2∥ρ − σ∥1 ≤ κ, then A is (ϵ, δ)-differentially private
with

δ = (ηeϵ(N ))
n
κ. (III.8)

Proof. The corollary is a direct application of Proposi-
tion III.4.

This implies in particular an exponential decay of δ
with the length of the algorithm, i.e. every such algorithm
with ηeϵ(N ) < 1 will eventually become differentially
private with vanishing δ for large enough n. Note that
generally ηeϵ(N ) is a function of the channel but also ϵ
allowing for a certain trade-off between ϵ and δ. Finally,
we remark that thanks to Theorem II.2 in the previous
section, ηeϵ(N ) is more easily computable and can be
controlled analytically or numerically for many noise
models. Before moving to more specific models, we give
a simple bound on the measured relative entropy, defined
as

DM (ρ∥σ) = sup
{Mx}

D(Tr(Mxρ)∥Tr(Mxσ)), (III.9)

of a differentially private channel. The relative entropy
is a common tool when comparing quantum states and
therefore the result might be of independent interest.
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Lemma III.6. Let A be ϵ-differentially private. Then for
all ρ ∼ σ,

DM (A(ρ)∥A(σ)) ≤ 2ϵE1(A(ρ)∥A(σ)) ≤ 2ϵ(1− e−ϵ).
(III.10)

Proof. Let {Mx} be the POVM that achieves the maxi-
mum in DM (A(ρ)∥A(σ)) and let px = TrMxA(ρ) and
qx = TrMxA(σ). Then,

DM (A(ρ)∥A(σ)) =
∑
x

px log
px
qx

≤
∑
x

px log
px
qx

+
∑
x

qx log
qx
px

=
∑
x

(px − qx) log
px
qx

≤
∑
x

(px − qx)ϵ

= ϵ
∑
x

TrMx(A(ρ)−A(σ))

≤ 2ϵE1(A(ρ)∥A(σ))

≤ 2ϵ (1− e−ϵ) ,

where the first equality is by definition and the second
and third obvious. The first inequality follows because
the relative entropy is non-negative, the second by ϵ-DP,
the third by a property of the trace distance and the final
one by Lemma II.4 and again ϵ-DP.

This lemma gives a quantum version of several similar
relations for classical differential privacy. We remark that
it might be possible to find tighter bounds along the lines
of the classical [14, Theorem 1]. We leave investigating
non-measured quantities for future work, however remark
here that because

D(A(ρ)∥A(σ)) ≤ Dmax(A(ρ)∥A(σ)),

ϵ-differential privacy always also implies small relative
entropy for neighbouring input states and refer to Sec-
tion V-B for relaxations involving Rényi relative en-
tropies.

IV. APPLICATIONS TO SPECIFIC NOISE MODELS

In the remainder of this section we will discuss par-
ticular examples and implications of the above results,
including global and local depolarizing noise as well as
arbitrary local qubit noise.

A. Global depolarizing noise

A typical noise channel is the depolarizing channel
defined as

Dp(ρ) = (1− p)ρ+ p
1

D
, (IV.1)

with 0 ≤ p ≤ 1 and D the dimension of the system. In
this case we can easily bound the contraction coefficient.

Lemma IV.1. For 0 ≤ p ≤ 1 and γ ≥ 1 we have

Eγ(Dp(ρ)∥Dp(σ)) (IV.2)

≤ max{0, (1− γ)
p

D
+ (1− p)Eγ(ρ∥σ)} (IV.3)

and

ηγ(Dp) = max{0, (1− γ)
p

D
+ (1− p)}. (IV.4)

Proof. Note that

Eγ(Dp(ρ)∥Dp(σ))

= Tr((1− γ)p
1

D
+ (1− p)(ρ− γσ))+

= TrP+((1− γ)p
1

D
+ (1− p)(ρ− γσ)),

where P+ is the projector onto the positive subspace of
(1− γ)p 1

D + (1− p)(ρ− γσ). Observe that

Eγ(Dp(ρ)∥Dp(σ)) > 0 ⇒ TrP+ ≥ 1.

Considering this case we get

Eγ(Dp(ρ)∥Dp(σ))

= (1− γ)
p

D
TrP+ + (1− p)(TrP+(ρ− γσ))

≤ (1− γ)
p

D
+ (1− p)Eγ(ρ∥σ)

≤ (1− γ)
p

D
+ (1− p).

Note that for sufficiently large γ the upper bound could
become negative, but one can easily check that in this
case Eγ(Dp(ρ)∥Dp(σ)) = 0 implying that we are in the
other case. It remains to show that this is optimal but
this is easy to see by picking any two orthogonal pure
states.

In Figure 1 we show an example of the contraction
coefficient for the depolarizing channel and examples
for the exponential decay of δ in Equation (III.8) for
different values of ϵ using the contraction coefficient
in Equation IV.4. It becomes clear that while iterative
algorithms with depolarizing layers lead to strong privacy,
using the contraction coefficient bound, there is only little
space before the output states also become mostly useless
(the case ϵ = 0).

However, if we know more about the structure of the
channel, we can give significantly better bounds. We will
do this here using Equation (IV.3).

Lemma IV.2. Say, ρ ∼ σ if 1
2∥ρ− σ∥1 ≤ κ, then Dp is

(ϵ, δ)-differentially private with

δ = max{0, (1− eϵ)
p

D
+ (1− p)κ}. (IV.5)
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Fig. 1: Left: the contraction coefficient ηeϵ(Dp) for D = 2 and different values of p plotted against ϵ. Right: the
exponential decay given in Equation (III.8) for a depolarizing channel with p = 0.3, κ = 0.1 and different values of
ϵ plotted against n, the number of layers with the given depolarizing noise.

For an algorithm A of the form in Equation (III.6) with
all Ni = Dpi and ρ ∼ σ if 1

2∥ρ − σ∥1 ≤ κ, then A is
(ϵ, δ)-differentially private with

δ = max{0, (1− eϵ)
p⋆
D

+ (1− p⋆)κ}, (IV.6)

where p⋆ = 1−
∏
i(1− pi).

Proof. The first statement follows directly from Equa-
tion (IV.3). The second statement can be proven by
induction. Recall that n is the number of steps in the
algorithm, i.e. the number of depolarizing layers. For
n = 1 the statement follows from (IV.3). Now, assuming
the results holds for n − 1 layers, for the n-th layer we
have

(1− γ)
p⋆
D

+ (1− p⋆)Eγ(Dp(ρ)∥Dp(σ))

≤ (1− γ)
p⋆
D

+ (1− p⋆)
(
(1− γ)

pn
D

+ (1− pn)Eγ(ρ∥σ)
)

= (1− γ)
1− (1− p⋆)(1− pn)

D
+ (1− p⋆)(1− pn)Eγ(ρ∥σ)

from which the claim follows directly.

The above bound is compared to the direct contraction
coefficient bound from Equation (III.8) in Figure 2.
As can be seen, the improvement is significant. While
contraction coefficients give an exponential decay of δ
with n, the bound in Equation (IV.6) shows that δ = 0
is sufficient already for n ≥ 3 if p = 0.3 and n ≥ 10 if
p = 0.1. We remark that for ϵ = 0 the two bounds give the
same result, i.e. in case of the trace distance Lemma IV.2
does not lead to an improvement over the contraction
bound. In fact, for the trace distance this simple bound is

tight in some cases, because

∥Dp(ρ)−Dp(σ)∥1 = ∥(1− p)(ρ− σ)∥1 (IV.7)
= (1− p)∥ρ− σ∥1 , (IV.8)

implying that the decrease in trace distance is always
exactly (1 − p) for a layer of global depolarizing noise.
This easily extends to algorithms A of the form in
Equation (III.6) when all computational layers Ci are
unitary, i.e. don’t introduce any noise themselves. These
observations lead to a provable separation in n between
good privacy and useless algorithm outputs.

Alternatively we can also state a similar result deter-
mining a bound on ϵ as a simple corollary.

Corollary IV.3. Say, ρ ∼ σ if 1
2∥ρ − σ∥1 ≤ κ. For a

fixed δ ≥ 0, Dp is (ϵ, δ)-differentially private with

ϵ ≥ max{0, log
(
D

p
((1− p)κ− δ) + 1

)
}. (IV.9)

For an algorithm A of the form in Equation (III.6), for a
fixed δ ≥ 0, A is (ϵ, δ)-differentially private with

ϵ ≥ max{0, log
(
D

p⋆
((1− p⋆)κ− δ) + 1

)
}. (IV.10)

where p⋆ = 1−
∏
i(1− pi).

This generalizes some results in the literature, namely,
for δ = 0 the first statement reduces to [40, Theorem 3]
and the second to [12, Lemma 2]. We present examples
of the above bound in Figure 3, showcasing the trade-off
between ϵ and δ and the decay of ϵ with growing n.

B. Local depolarizing noise

Previously we have seen how quantum algorithms are
affected by global depolarizing noise. However, in a
quantum computing device we would rather expect each
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Fig. 2: Comparison of bounds on δ for ϵ = 0.1, κ = 0.1 and D = 2 plotted against n. The top function is the
contraction coefficient bound in Equation (III.8) and below the improved bound in Equation (IV.6). Left: p = 0.1.
Right: p = 0.3.
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Fig. 3: Bound on ϵ in Equation (IV.10) for D = 2 and κ = 0.1 for different values of pi = p. Left: plotted for n = 2
against δ. Right: plotted for δ = 0.01 against n.

qubit to be affected by local noise. In this section we
will discus depolarizing noise of the form D⊗k

p where k
is the number of qubits a quantum algorithm acts on at
any given layer. To investigate this setting we first need
an equivalent of Lemma IV.1 for local depolarizing noise.

Lemma IV.4. For 0 ≤ p ≤ 1 and γ ≥ 1 we have

Eγ(D⊗k
p (ρ)∥D⊗k

p (σ)) (IV.11)

≤ max{0, (1− γ)
pk

Dk
+ (1− pk)Eγ(ρ∥σ)} (IV.12)

and

ηγ(D⊗k
p ) ≤ max{0, (1− γ)

pk

Dk
+ (1− pk)}. (IV.13)

Proof. The proof is similar to Lemma IV.1 but requires
one more main ingredient. Note that we can always write
local depolarizing noise as

D⊗k
p (ρ) = pk

1⊗k

Dk
+ (1− pk)M(ρ),

where M is some CPTP map. This can be checked by

direct calculation. With this we have

Eγ(Dp(ρ)∥Dp(σ))

= Tr((1− γ)pk
1⊗k

Dk
+ (1− pk)M((ρ− γσ)))+

= TrP+((1− γ)pk
1⊗k

Dk
+ (1− pk)M((ρ− γσ))),

where P+ is the projector onto the positive subspace of
((1− γ)pk 1

⊗k

Dk + (1− pk)M((ρ− γσ))). Observe that

Eγ(D⊗k
p (ρ)∥D⊗k

p (σ)) > 0 ⇒ TrP+ ≥ 1.
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Considering this case we get

Eγ(Dp(ρ)∥Dp(σ))

= (1− γ)
pk

Dk
TrP+ + (1− pk)(TrP+(M(ρ− γσ)))

≤ (1− γ)
pk

Dk
+ (1− pk)Eγ(M(ρ)∥M(σ))

≤ (1− γ)
pk

Dk
+ (1− pk)Eγ(ρ∥σ)

≤ (1− γ)
pk

Dk
+ (1− pk).

Note that for sufficiently large γ the upper bound could
become negative, but one can easily check that in this
case Eγ(D⊗k

p (ρ)∥D⊗k
p (σ)) = 0 implying that we are in

the other case.

Note that in this case we provide only an upper bound
on the contraction coefficient and determining its exact
value remains open. Nevertheless, with the above tool at
hand, we can easily generalize Lemma IV.2.

Lemma IV.5. Say, ρ ∼ σ if 1
2∥ρ − σ∥1 ≤ κ, then D⊗k

p

is (ϵ, δ)-differentially private with

δ = max{0, (1− eϵ)
pk

Dk
+ (1− pk)κ}. (IV.14)

For an algorithm A of the form in Equation (III.6) with
all Ni = D⊗k

p and ρ ∼ σ if 1
2∥ρ − σ∥1 ≤ κ, then A is

(ϵ, δ)-differentially private with

δ = max{0, (1− eϵ)
p⋆
Dk

+ (1− p⋆)κ}, (IV.15)

where p⋆ = 1− (1− pk)n.

Proof. The proof is identical to that of Lemma IV.2.

The bounds on δ are illustrated in Figure 4. On the
left we see that for values ϵ > 0, δ is eventually going to
reach 0, while for ϵ = 0 i.e. the case of the trace distance,
δ decays exponentially but always stays strictly positive.
This is the same as for global depolarizing noise. On the
right, we compare local and global depolarizing noise.
For that we fix a total dimension of 8 at each layer and
consider different dimension of the depolarizing noise,
from a single global depolarizing channel to 4 local qubit
depolarizing channels. From the plot it becomes evident
that our bounds guarantee much faster decay of δ for
global than for local noise.

Finally, we can also adapt Corollary IV.3 to local noise.

Corollary IV.6. Say, ρ ∼ σ if 1
2∥ρ − σ∥1 ≤ κ. For a

fixed δ ≥ 0, Dp is (ϵ, δ)-differentially private with

ϵ ≥ max{0, log
(
Dk

pk
((1− pk)κ− δ) + 1

)
}. (IV.16)

For an algorithm A of the form in Equation (III.6) with
all Ni = Dk

p . For a fixed δ ≥ 0, A is (ϵ, δ)-differentially
private with

ϵ ≥ max{0, log
(
Dk

p⋆
((1− p⋆)κ− δ) + 1

)
}. (IV.17)

where p⋆ = 1− (1− pk)n.

We end this section by providing a lower bound on
the trace distance for local depolarizing noise that will
demonstrate the substantial difference between decaying
computational accuracy and good differential privacy. The
bound takes a similar role to the observation around
Equation (IV.8) in the previous section.

Proposition IV.7. For any two states ρ, σ and local
depolarizing parameter 0 ≤ p ≤ 1 such that p < 1

2 ,

∥ρ− σ∥1 ≤
( 1

1− 2p

)k
∥D⊗k

p (ρ− σ)∥1 .

Therefore, for the noisy circuit A where all the gates Ci
are chosen to be unitary, and where Ni = D⊗k

p , we have
that

E1(A(ρ)∥A(σ)) ≥ 1

2

(
1− 2p

)kn
∥ρ− σ∥1 . (IV.18)

Proof. We start by inverting the depolarizing noise acting
on qubit i as:

ρ =
Dp(ρ)− p

D Tri(ρ)⊗ 1i

1− p

Hence, we have

∥ρ− σ∥1 =
1

1− p
∥Dp(ρ− σ)− p

D
Tri(ρ− σ)⊗ 1i∥1

≤ 1

1− p
∥Dp(ρ− σ)∥1 +

p

(1− p)
∥ρ− σ∥1 .

Therefore, whenever p < 1
2 , we have that

∥ρ− σ∥1 ≤ 1

1− 2p
∥Dp(ρ− σ)∥1 .

The result arises from repeating the above step for all the
qubits.

We compare the above lower bound to our previous
upper bounds in Figure 5. It can be seen that there is
a clear separation between the worst case decay of the
trace distance and the depth required to reach differential
privacy. It should however be noted that this bound seems
to be useful only for small k.

The previous results suggest that the local noise chan-
nels do not contract too fast at small enough noise. Here,
we prove that the trace distance, and hence also any
hockey stick divergence, will converge exponentially fast
in the number of layers as soon as a critical local noise
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Fig. 4: Left: The bound in Equation (IV.15) on δ for p = 0.3, k = 3, D = 2, κ = 0.1 plotted against n for different
ϵ. Right: The same bound for p = 0.4, ϵ = 0.1, κ = 0.1 for different values of k and D, such that the total dimension
at each layer is always 8, plotted against n.
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Fig. 5: Comparison of the bound in Equation (IV.15), solid lines for different ϵ, with the lower bound in
Equation (IV.18), dotted line. Plotted for D = 2, k = 1 and 1

2∥ρ − σ∥1 = 0.1 against n, with p = 0.1 on the
left and p = 0.2 on the right.

is attained. Our result can be compared to earlier upper
bounds on the noise threshold for fault-tolerant quantum
computing as in [22], [29]. However, as we will see, our
bound comes as a simple corollary of basic properties
of a recently introduced quantum Wasserstein distance
in [11]. Although the argument can be generalized to
other Pauli noisy channels (see e.g. [19]), we restrict once
again our analysis to the simple depolarizing channel.
Here, given a quantum channel Φ acting on k qubits,
we define its light-cone as follows: first, for any qubit i,
we denote by Ii the minimal subset of qubits such that
TrIi(Φ(ρ)) = TrIi(Φ(σ)) for any two k-qubit states ρ
and σ such that Tri(ρ) = Tri(σ). Then, the light-cone of
Φ is defined as

|I| := max
i∈[k]

|Ii| .

Proposition IV.8. Given the noisy circuit A in Equa-
tion (III.6) with n layers, k qubits and local depolarizing
noise of parameter 0 ≤ p ≤ 1, we assume that each
layer of the circuit is a quantum channel of light-cone

|I|. Then, we have that for any two input states ρ, σ

∥A(ρ)−A(σ)∥1 ≤ 2k
(
2|I| (1− p)

)n
.

In other words, the trace distance between any two output
states vanishes in logarithmic depth as soon as p satisfies
2|I|(1− p) < 1.

Proof. We will use the Wasserstein distance introduced
in [11] as follows:

W1(ρ, σ) := sup
∥O∥L≤1

Tr(O(ρ− σ)) ,

where

∥H∥L := 2 max
i∈[k]

min
H(i)

∥H −H(i)∥∞ ,

where the mininmum is over all self-adjoint operators
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H(i) which do not act on qubit i. Next, we have

1

2
∥A(ρ− σ)∥1 ≤W1(A(ρ),A(σ))

≤ (2|I|(1− p))nW1(ρ, σ)

≤ k

2
(2|I|(1− p))n ∥ρ− σ∥1

Above, the first and last inequalities follow from [11,
Proposition 2], whereas the second inequality comes from
an alternating use of [11, Propositions 12 and 13]. The
result follows.

Compared to our earlier results this bounds dependence
on k is weaker and we recover the (1 − p)n scaling,
previously seen for the global depolarizing noise, when-
ever p is large enough to overpower the, possibly error-
correcting, properties of the computational layers.

C. Arbitrary local qubit noise channels

In this section we will give a bound for the contraction
of arbitrary local qubit channels based on recent work
in [18]. In particular we will see that any non-unital local
qubit noise leads to good differential privacy eventually.
The main result is the following lemma that general-
izes [18, Lemma 7] by combining their proof with our
generalized Fuchs-van-de-Graaf inequality.

Lemma IV.9. Let T = N⊗k and N some qubit channel,
then

ηγ(T )

≤ 1

2

√
(1 + γ)2 − 4γ

(
λmin(CN †◦N )

4

)k
+

(1− γ)

2
,

(IV.19)

where CN †◦N is the Choi matrix of N † ◦ N and
λmin(CN †◦N ) its smallest eigenvalue. If N is also non-
unital then

λmin(CN †◦N ) > 0. (IV.20)

Proof. We begin by applying the generalized Fuchs-van-
de-Graaf inequality from Lemma II.3 to the simplified
expression of the contraction coefficient in Theorem II.2
as previously stated in Equation (II.12). We then apply a
bound on the fidelity shown in [18] that states

F (N⊗k(Ψ),N⊗k(Φ)) ≥
(
λmin(CN †◦N )

4

)k
,

see Appendix A for the details. The final statement about
non-unital qubit channels was also argued in [18].

This bound applies directly to differential privacy via
Corollary III.5. Let A be of the form in Equation (III.6)
with all Ni = N⊗k identical and ρ ∼ σ if 1

2∥ρ− σ∥1 ≤

κ. Let λmin(CN †◦N ) = λ, then A is (ϵ, δ)-differentially
private with

δ =

1

2

√
(1 + eϵ)2 − 4eϵ

(
λ

4

)k
+

(1− eϵ)

2

n

κ.

(IV.21)

We observe that for growing ϵ we get smaller δ, a
natural trade-off between the two security parameters,
also implying that δ always decays faster than the trace
distance (ϵ = 0). Also for any channel with λ > 0, which
is the case for every non-unital channel as shown above,
good differential privacy will be eventually reached for
large enough n. We give some numerical examples in
Figure 6.

V. EXTENSIONS

A. Local quantum differential privacy

Local differential privacy (LDP) was defined in the
classical setting for the scenario in which a database is
collected from many clients and each of them demands
differential privacy to hold for their individual contribu-
tion. In this case the client applies an algorithm A to
mask their contribution to the database and the priority
is not to make neighboring states look similar but to hide
the general information they are sending. The definition
of (ϵ, δ)-LDP therefore coincides with that (ϵ, δ)-DP but
with a more general set of possible input states. In the
extreme setting one could even consider the set of all
possible input states, implying that A is (ϵ, δ)-LDP if

sup
ρ,σ

Eeϵ(A(ρ)∥A(σ)) ≤ δ , (V.1)

based on Lemma III.2. Clearly this is a much stronger
requirement than what is required for (ϵ, δ)-DP. In fact
from the properties of Eγ one can see that this condition
is restrictive enough to imply a bound on the trace dis-
tance contraction coefficient. This generalizes a classical
result in [5].

Corollary V.1. Let A be (ϵ, δ)-LDP and φ(ϵ, δ) = 1 −
e−ϵ(1− δ). Then

η1(A) ≤ φ(ϵ, δ). (V.2)

Proof. Clearly, by definition of LDP and Theorem II.2
we have

ηeϵ(A) ≤ δ.

Now the corollary follows because from Lemma II.4 we
get

η1(A) ≤ 1− 1− ηγ(A)

γ
,
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Fig. 6: Guaranteed δ for some local noise channel based on Equation (IV.21) with κ = 0.1, k = 2 and different
values of ϵ. Left: plotted for n = 10 against λ. Right: plotted for λ = 0.2 against n.

which together with the definition of (ϵ, δ)-LDP con-
cludes the proof.

In particular, this implies that requiring A to be (ϵ, δ)-
LDP can strongly limit the usefulness of the output
states. In particular applying A iteratively will lead to
very strong privacy guarantees but also make the output
states indistinguishable and therefore useless for further
computations, compare Proposition III.4.

Note that the above argument also works the same
with somewhat less restrictive definitions. In particular,
we get the following equivalence, which is similar to an
observation in [1].

Corollary V.2. A being (ϵ, δ)-LDP with respect to the
set of all states is equivalent to A being (ϵ, δ)-LDP with
respect to the set of all pure states.

Proof. This follows directly from the convexity of Eγ .

In principle, Corollary V.1 also holds for (ϵ, δ)-LDP
with respect to any set of states that includes all or-
thogonal pure states. For the minimal such set, (ϵ, δ)-
LDP would not just imply but indeed be equivalent to
ηeϵ(A) ≤ δ as observed in the classical setting [5].

B. Rényi quantum differential privacy

In many practical settings ϵ-differential privacy can
be too strong of a criteria. On the other hand, (ϵ, δ)-
differential privacy allows for rare events that leak a
significant amount of information and its composition
theorem requires adding the δ’s of each algorithm. As
an intermediate privacy requirement Mironov proposed
Rényi differential privacy [26] and proved that it has
several desirable properties. As we have seen in the
previous sections, ϵ-differential privacy can be cast in

terms of the max-relative entropy. Essentially, (ϵ, α)-
Rényi differential privacy is defined by replacing the
max-relative entropy by the general α-Rényi relative en-
tropy. In this section we will propose a quantum extension
of this concept.

The obvious generalization of the classical definition is
to go a similar route to the original quantum differential
privacy definition and define measurement outcomes of
a POVM {Mx} as p(x) = TrMxA(ρ) and q(x) =
TrMxA(σ) and require the classical definition to hold.
This can be cast in terms of the measured Rényi relative
entropy,

sup
ρ∼σ

DM,α(A(ρ)∥A(σ)) = sup
ρ∼σ

sup
{Mx}

Dα(p∥q) ≤ ϵ.

(V.3)

This coincides with ϵ-differential privacy for α → ∞,
however for other values of α there is no known closed
(measurement independent) formula for the measured
Rényi relative entropy and the definition remains classical
at its heart. This also comes with a concrete disadvantage
when considering composition bounds, namely that the
measured Rényi relative entropy is not generally subad-
ditive1. That means there exist examples where

DM,α(A1 ⊗A2(ρ1 ⊗ ρ2)∥A1 ⊗A2(σ1 ⊗ σ2))

> DM,α(A1(ρ1)∥A1(σ1)) +DM,α(A2(ρ2)∥A2(σ2))
(V.4)

implying that, using this quantity, (ϵ, α)-Rényi differential
privacy of A1 and A2 generally does not imply (2ϵ, α)-
Rényi differential privacy for A1 ⊗ A2. In this section,
we want to propose a fully quantum definition of (ϵ, α)-
Rényi differential privacy that avoids this problem.

While in the classical setting there is a uniquely defined

1This follows e.g. because the measured Rényi relative entropy
is strictly smaller than the sandwiched Rényi relative entropy, see
e.g. [8, Theorem 6], however they are equal under regularization, see
Equation (V.8)
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Rényi relative entropy, in the quantum setting, due to
its non-commutative nature, there is an arbitrary number
of generalizations. Here, we will not fix a particular
definition but simply consider an arbitrary family of
Rényi relative entropies Dα as defined in [34] based
on a number of requirements that the quantity needs to
fulfill. For completeness a list of the properties can be
found in Appendix A and we refer to [34] for details.
Here we only note that the list includes several typical
properties such as data-processing, additivity and unitary
invariance. We further note that the commonly used quan-
tum generalizations such as the Petz-Rényi divergence
Dα [28], the sandwiched Rényi divergence D̃α [27],
[38] and the geometric Rényi divergence D̂ [25] are
special instances of Dα for the range of α in which the
mentioned properties hold. Formally, we define quantum
Rényi differential privacy as follows.

Definition V.3. We call a quantum channel A (ϵ, α)-
Rényi differentially private if

sup
ρ∼σ

Dα(A(ρ)∥A(σ)) ≤ ϵ. (V.5)

This generally leaves us with a lot of freedom to pick
our favourite Rényi relative entropy. Note however that
those which include the limit α → ∞ all have the
particular feature that in this limit the above definition
includes ϵ-differential privacy as a special case. The
sandwiched Rényi relative entropy is an example of such
a family. We now state the first property of our definition.

Lemma V.4. If A is ϵ-differentially private then it is
(ϵ, α)-Rényi differentially private.

Proof. The claim is a direct consequence of

Dα(A(ρ)∥A(σ)) ≤ Dmax(A(ρ)∥A(σ)),

which can be seen as follows. We have the following
chain of arguments,

Dα(ρ∥σ) ≤ D̂α(ρ∥σ) ≤ D̂∞(ρ∥σ) = Dmax(ρ∥σ),

where the first inequality is [34, Equation (4.34)], the
second is monotonicity of D̂α in α and the equality is [34,
Equation (4.36)].

The classical Rényi differential privacy is furthermore
known to be stronger than (ϵ, δ)-differential privacy. We
now show that the same holds for our quantum definition.

Lemma V.5. If A is (ϵ, α)-Rényi differentially private
then it is (ϵ + g(δ)

α−1 , δ)-differentially private with g(ϵ) =

− log(1−
√
1− ϵ2).

Proof. The main ingredients are [34, Proposition 6.22]
as stated in the appendix and an auxiliary lemma relating

Dδ
max with a similar quantity more commonly found in

the literature stated in Lemma A.3. From it we have

Dδ
max(ρ∥σ) ≤ Dα(ρ∥σ) +

g(δ)

α− 1
≤ ϵ+

g(δ)

α− 1
,

where the last inequality is by assumption. The proof
follows from Lemma III.2.

This can be relaxed by noting that g(δ) ≤ log 2
δ2 , which

brings it closer to the classical equivalent [26, Proposition
3].

Additionally, we can easily show several desirable
properties.

Corollary V.6. The following properties hold.

• (Post-processing) Let A be (ϵ, α)-Rényi differentially
private and N be an arbitrary quantum channel,
then N ◦A is also (ϵ, α)-Rényi differentially private.

• (Parallel composition) Let A1 be (ϵ1, α)-Rényi dif-
ferentially private and A2 be (ϵ2, α)-Rényi differ-
entially private. Define that ρ1 ⊗ ρ2 ∼ σ1 ⊗ σ2 if
ρ1 ∼ σ1 and ρ2 ∼ σ2. Then A1⊗A2 is (ϵ1+ϵ2, α)-
Rényi differentially private on such product states.

Proof. The first result follows by data-processing and the
second by additivity of Dα.

Finally, we remark that our general quantum definition
of Rényi differential privacy implies Rényi differential
privacy in the semi-classical definition in Equation (V.3)
because

DM,α(A(ρ)∥A(σ)) ≤ Dα(A(ρ)∥A(σ)) (V.6)

which is a simple consequence of data-processing.
We have defined Rényi differential privacy based on the

general Rényi relative entropy Dα and while at this point
any choice of a particular Rényi relative entropy would
seem justified, we will present some brief arguments that
might hint that the sandwiched Rényi relative entropy D̃α

should be the quantity of choice. First, D̃α obeys data-
processing for α ≥ 1

2 , which makes it a valid choice for
this whole range of α, and it is equal to Dmax in the limit
α → ∞. Furthermore, D̃α is the minimal Rényi relative
entropy, which means that

Dα(ρ∥σ) ≥ D̃α(ρ∥σ) , (V.7)

see e.g. [34]. This implies that choosing D̃α is the least
restrictive choice and for a fixed α this Rényi differential
privacy would be implied by any other choice. Lastly,
while we have seen that the measured Rényi relative
entropy has some undesirable properties, the sandwiched
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Rényi relative entropy equals the regularized measured
Rényi relative entropy [34],

D̃α(ρ∥σ) = lim
n→∞

1

n
DM,α(ρ

⊗n∥σ⊗n), (V.8)

giving it a close resemblance to the classical Rényi dif-
ferential privacy.

C. Hypothesis testing

At its core, differential privacy is a requirement on
the probabilities associated to determining a used input
based on the output of some information processing. To
gain a better intuition of the implications of the imposed
restrictions, classical differential privacy can as often be
reinterpreted in terms of hypothesis testing. This was
first considered in [35] for ϵ-differential privacy and then
extended to (ϵ, δ)-differrential privacy in [21]. Here we
will present and discuss a quantum generalization of this
analogy. Besides the intuitive formulation, we will see
that it allows for a convenient graphical representation
of differential privacy and simple proofs of some addi-
tional properties. Before we start, we remark that also
Rényi differential privacy has recently been discussed in
terms of hypothesis testing [7] but we leave its quantum
generalization for future work.

The basic setup we will discuss is binary hypothesis
testing between a state A(ρ), the null hypothesis, and a
state A(σ), the alternative hypothesis. If we were able
to discriminate between the two states, we could infer
which input state was used. We are therefore interested
in the corresponding probabilities of error, which are the
Type I error α = Tr(I −M)A(ρ) of falsely rejecting the
null hypothesis and the Type II error β = TrMA(σ) of
falsely accepting it.

As differential privacy has to hold for all neighbouring
input states and all measurements we get the following
set of restrictions on the Type I end Type II errors,

1− α ≤ eϵβ + δ, (V.9)
1− β ≤ eϵα+ δ (V.10)

β ≤ eϵ(1− α) + δ (V.11)
α ≤ eϵ(1− β) + δ, (V.12)

which follow by exchanging ρ ↔ σ and M ↔ (I −M)
in the definition of differential privacy. Based on these
inequalities we can define the privacy region of (ϵ, δ)-
differential privacy as

R(ϵ, δ) = {(α, β) | Equations (V.9)-(V.12) hold}.
(V.13)

Next we define the privacy region of a quantum algorithm

A as

R(A) =

{(Tr(I −M)A(ρ),TrMA(σ)) | 0 ≤M ≤ I and ρ ∼ σ}.
(V.14)

This allows us to state differential privacy in terms of
privacy regions.

Theorem V.7. A quantum channel A is (ϵ, δ)-
differentially private if and only if

R(A) ⊆ R(ϵ, δ). (V.15)

Proof. The proof is a direct consequence of the above
definitions. Note that we could have equivalently defined
R(ϵ, δ) with any subset of the Equations (V.9)-(V.12),
for example only picking the first one, however this
representation will be beneficial later on.

We continue by stating some properties of the risk
regions.

Lemma V.8. The following holds.

• (Concatenation) For arbitrary quantum algorithms
A and N we have

R(N ◦ A) ⊆ R(A). (V.16)

• (Symmetry) It holds that R(ϵ, δ) is symmetric with
respect to the line α+ β = 1.

Proof. The first statement follows by noting that

R(N ◦ A) ={(Tr(I −N)A(ρ),TrNA(σ)) (V.17)

| N = N †(M) and 0 ≤M ≤ I and ρ ∼ σ}
⊆R(A), (V.18)

which follows because N † is completely positive and uni-
tal. The second statement follows directly from examining
Equations (V.9)-(V.12).

Let us have a look at the graphical representation
implied by the above definitions. In Figure 7 we give
several examples of R(ϵ, δ) that illustrate the risk region
of differential privacy. We also want to give a concrete
numerical example of how the risk region of a channel
contracts. Let’s consider a simple example where only
two qubit input states ρ and σ are available which are
considered neighbouring. The states are chosen such that
E1(ρ, σ) ≤ 1

3 . For simplicity we consider a trivial algo-
rithm to which we now want to add depolarizing noise
such that the outputs become (0.2, 0.01)-differentially
private. From Equation (IV.3) we can estimate that this
should be the case if we choose p ≈ 0.72. To verify our
observation numerically we simulate R(Dp) by drawing
random POVMs and compare the resulting pairs (α, β)
to the desired privacy region. We can observe in Figure 8
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Fig. 7: Examples for R(ϵ, δ). Left: plotted for δ = 0.1 and different values of ϵ. Right: plotted for different values
of δ and ϵ, with ϵ chosen according to Lemma V.9.

that this is indeed consistent with what we expected,
namely that for p = 0.72 all drawn points are within
R(0.2, 0.01) while for smaller values of p the noise is
clearly not sufficient for (0.2, 0.01)-differential privacy.

Finally, we will see that phrasing differential privacy in
terms of hypothesis testing does not only have advantages
in terms of intuition, but also allows us to easily prove
some useful results.

Lemma V.9. If A is (ϵ, δ)-differentially private, then it
is also (ϵ̃, δ̃)-differrentially private with δ̃ ≥ δ and

eϵ̃ ≥ (1− δ̃)

(1− δ)
(1 + eϵ)− 1. (V.19)

Proof. This follows easily from the graphical representa-
tion. We want to prove that

R(ϵ, δ) ⊆ R(ϵ̃, δ̃).

Let us consider the lower bounds on the risk region. It
can easily be checked that they coincide at the point

(α∗, β∗) = (
1− δ

1 + eϵ
,
1− δ

1 + eϵ
),

which gives a corner point of the region. Since we require
δ̃ ≥ δ, it suffices if

1− δ̃

1 + eϵ̃
≤ 1− δ

1 + eϵ
.

This gives the claimed bound on ϵ̃.

This result allows us to observe a certain trade-off
between ϵ and δ, in particular, by raising δ one can get

differential privacy with a better value of ϵ. This is also
illustrated in the right part of Figure 7.

VI. CONCLUSIONS

In this work we gave a new approach to exploring
quantum differential privacy via information theoretic
tools. In particular, we used the quantum hockey-stick
divergence to give a simple framework in which we
can bound differential privacy parameters for practically
relevant noise models such as quantum circuits and quan-
tum neural networks implemented on near-term quan-
tum devices. This includes comparing local and global
depolarizing noise and contrasting achieving differential
privacy with an undesirable decay in trace distance. On
the way we showed several new properties of the said
divergence and gave it a new operational interpretation.

Given that our approach promises to be simpler and
more powerful than the previously used ones we expect
it to play a crucial role going forward when investigating
differential privacy.

Naturally we are left with some open problems. In
Lemma III.6 we showed a bound on the measured rel-
ative entropy of the outputs of a differentially private
algorithm. Classically several such results are known,
including bounds on other entropic quantities such as the
mutual information. An interesting open problem going
forward is to find bounds on fully quantum quantities
such as the quantum relative entropy or quantum mutual
information. This would allow investigating connections
to other privacy related quantities such as the quantum
privacy funnel [10] generalizing work from the classical
setting [31].
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Fig. 8: Numerical values for points in R(Dp) for different values of p. Points are based on two qubit states with
E1(ρ, σ) ≤ 1

3 and 1000 randomly drawn POVMs. The orange region in the background corresponds to R(0.2, 0.01).
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APPENDIX

The following is a generalization of the Fuchs-van-de-
Graaf inequality to general positive semi-definite opera-
tors proven in [9, Supplementary Lemma 3], see also [37,
Appendix B] for an alternative proof.

Lemma A.1 ([9]). For positive semi-definite, trace class
operators A and B acting on a separable Hilbert space,
we have that

∥A−B∥21 + 4
∥∥∥A1/2B1/2

∥∥∥2
1
≤
(
Tr[A+B]

)2
. (A.1)

Recently it was proven in [18] that for any quantum
channel T with d its input and output dimension,

η1(T ) ≤
√

1− λmin(T † ◦ T )

d2
, (A.2)

where λmin(T † ◦ T ) = minΨ,Φ⟨Ψ|(T † ◦ T )(|Φ⟩⟨Φ|)|Ψ⟩.
As we would like to generalize this result to the hockey-
stick divergence, we extract the following lemma from
their proof.

Lemma A.2 ([18]). For any quantum channel T with d
its input and output dimension and pure input states Ψ
and Φ,

F (T (Ψ), T (Φ)) ≥ λmin(T † ◦ T )

d2
. (A.3)

It was furthermore noted that for T = N⊗k with N a
qubit channel, one has

F (T (Ψ), T (Φ)) ≥
(
λmin(CN †◦N )

4

)k
, (A.4)

where CN †◦N is the Choi matrix of N † ◦ N , and if N
is also non-unital one gets

λmin(CN †◦N ) > 0. (A.5)

We also need bounds on Dϵ
max(ρ∥σ). As remarked earlier,

our definition of Dϵ
max is a bit different than the one

usually used in the quantum information literature, as it
uses a different distance measure. However, to apply a
known result we need to compare our definition to the
usual one. The standard smooth max-relative entropy,
Dmax,s, is defined as

Dϵ
max,s(ρ∥σ) = inf

ρ̄∈Bϵ
s(ρ)

Dmax(ρ̄∥σ) (A.6)

and

Bϵs(ρ) = {ρ̄ : ρ̄ ∈ S≤(H) ∧ P (ρ, ρ̄) ≤ ϵ}, (A.7)

where P is the purified distance, i.e. the minimal trace
distance between purifications of the states. See e.g. [34,
Definition 3.15] for a discussion of this quantity. We
prove the following auxiliary lemma.

Lemma A.3. Let ρ, σ ∈ S=(H), then

Dϵ
max(ρ∥σ) ≤ Dϵ

max,s(ρ∥σ) (A.8)

Proof. The claim follows immediately by showing that
Bϵs(ρ) ⊆ Bϵ(ρ). To that end observe,

Bϵs(ρ) = {ρ̄ : ρ̄ ∈ S≤(H) ∧ P (ρ, ρ̄) ≤ ϵ} (A.9)
⊆ {ρ̄ : ρ̄ ∈ S≤(H) ∧ E1(ρ, ρ̄) ≤ ϵ} (A.10)
⊆ {ρ̄ : ρ̄ ∈ P(H) ∧ E1(ρ, ρ̄) ≤ ϵ} (A.11)
= Bϵ(ρ), (A.12)
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where the second inclusion is clear, but the first needs
some justification. Note that

E1(ρ, ρ̄) ≤ max{E1(ρ, ρ̄), E1(ρ̄, ρ)} (A.13)
= ∆(ρ, ρ̄) (A.14)
≤ P (ρ, ρ̄), (A.15)

where ∆ is the generalized trace distance and the equality
holds by its definition. The first inequality is immediate
and the second is a generalized Fuchs-van-de-Graaf type
inequality, see e.g. [34, Lemma 3.17]. This concludes the
proof.

This enables us to use the following result.

Lemma A.4. Let 0 ≤ ϵ ≤ 1 and α ∈ (1,∞), then

Dϵ
max(ρ∥σ) ≤ Dα(ρ∥σ) +

g(ϵ)

α− 1
, (A.16)

where g(ϵ) = − log(1 −
√
1− ϵ2) and Dα any quantum

Rényi divergence.

Proof. The result immediately follows from [34, Proposi-
tion 6.22], which shows the same result for Dϵ

max,s(ρ∥σ),
and the fact that Dϵ

max(ρ∥σ) ≤ Dϵ
max,s(ρ∥σ) proved in

Lemma A.3.

In Section V-B, we introduced the new concept of
Rényi quantum differential privacy and based it on a
very general framework of Rényi relative entropies that
solely have to fulfil certain properties as listed in [34].
For completeness we list those properties here.

A quantum Rényi divergence is a quantity D(·∥·) that
fulfills the following properties:

1) Continuity: D(ρ∥σ) is continuous in ρ and σ,
wherever ρ ̸= 0 and σ >> ρ.

2) Unitary invariance: D(ρ∥σ) = D(UρU†∥UσU†)
for any unitary U .

3) Normalization: D(1∥ 1
2 ) = log 2.

4) Order: If ρ ≥ σ, then D(ρ∥σ) ≥ 0 and if ρ ≤ σ
then D(ρ∥σ) ≤ 0.

5) Additivity: D(ρ⊗ τ∥σ⊗ω) = D(ρ∥σ) +D(τ∥ω).
6) General mean: There exists a continuous and

strictly monotonic function g such that Q := g(D)
satisfies,

Q(ρ⊕ τ∥σ ⊕ ω)

=
Tr(ρ)

Tr(ρ+ τ)
Q(ρ∥σ) + Tr(τ)

Tr(ρ+ τ)
Q(τ∥ω).

7) Positive Definiteness: D(ρ∥σ) ≥ 0 with equality
iff ρ = σ.

8) Data-processing: D(ρ∥σ) ≥ D(N (ρ)∥N (σ)).
9) Either joint convexity or joint concavity of Q.

10) Dominance: For σ ≤ σ′, one has D(ρ∥σ) ≥
D(ρ∥σ′).

In the classical case, properties 1-6 uniquely define the
Rényi relative entropies. This is not the case in the
quantum setting where one additionally requires the op-
erationally motivated properties 7-10.

Finally, a family of quantum Rényi relative entropies
is a one-parameter family α → Dα(·∥·) of quantum
Rényi relative entropies such that for some open interval
containing 1, the family is monotonically increasing in α.
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