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Parameterisation of Reasoning on Temporal Markov
Logic Networks

Victor David1, Raphaël Fournier-S’niehotta 1, and Nicolas Travers1,2

1Conservatoire National des Arts et Métiers
2Léonard de Vinci Pôle Universitaire, Research Center

Abstract. We aim at improving reasoning on inconsistent and uncertain data. We
focus on knowledge-graph data, extended with time intervals to specify their va-
lidity, as regularly found in historical sciences. We propose principles on seman-
tics for efficient Maximum A-Posteriori inference on the new Temporal Markov
Logic Networks (TMLN) which extend the Markov Logic Networks (MLN) by
uncertain temporal facts and rules. We examine total and partial temporal (in)con-
sistency relations between sets of temporal formulae. Then we propose a new
Temporal Parametric Semantics, which may combine several sub-functions, al-
lowing to use different assessment strategies. Finally, we expose the constraints
that semantics must respect to satisfy our principles.

Keywords: Temporal Markov Logic Networks · Temporal Maximum A-Posteriori In-
ference · Temporal Parametric Semantics.

1 Introduction

Reasoning on large data sets to extend knowledge is an open challenge [3,8,13,11].
Most approaches model information with Knowledge Graphs (KGs) [7], and rely on
Ontologies [14], Machine Learning [20] or Neural Networks [12] representations. Then,
Description Logic [10] and Temporal Logic [18] are used for rules satisfiability.

For historians, reasoning under uncertainty and inconsistency is at the basis of
methodology: the validity of any fact remains questionable. Temporal information is
crucial: outside of a temporal interval, a fact becomes false. Using facts, temporal and
uncertainty information, a historian may obtain several consistent levels of knowledge.

Recent works on KG reasoning do not focus on both time and uncertainty. Several
models with Markov Logic Networks (MLN) have been proposed [5,17]. One focused
on reasoning on Uncertain Temporal Knowledge Graphs (UTKG) with specific tempo-
ral inference rules [4]. However, those representations cannot handle a fully uncertain
universe where any fact or rule may be uncertain.

We propose to generalize this approach, by i) introducing a new representation of
knowledge, called temporal MLN (TMLN), built on (a temporal) many-sorted logic,
for reasoning on both time and uncertainty, ii) enlarging the notion of uncertainty to
rules, and iii) adapting reasoning, to deal with both uncertain facts and rules. We define
a new temporal semantics and a temporal extension to Maximum A-Posteriori (MAP)
inference [16]. This MAP inference produces instantiations, i.e., extended sets of facts
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maximizing the score w.r.t. a temporal semantics. Finally, we generalise the temporal
semantics by a Parametric Semantics, which may combine several sub-functions for
various consistency validations.

2 Background

In a seminal work [4], Chekol et al. formalise the UTKG approach, which integrates
both time and uncertainty in Knowledge Graphs to reach a certain world maximisation.
However, they do not take into account the possibility to have uncertain rules. We put
time at the heart of reasoning, and enlarge their vision. Firstly, we formalise the notion
of temporal uncertainty, by combining certain and uncertain formulae. Secondly, our
novel representation of TMLN allows for easier manipulations and better analyses.

2.1 Many-Sorted First Order Logic

We start by presenting what is a Many-Sorted First-Order Logic (introduced in [19]).

Definition 1 (Many-Sorted FOL). Let So = {s1, . . . , sn} be a set of sorts. A Many-
Sorted First-Order Logic MS-FOL, is a set of formulae built up by induction from: a set
C = {a1, . . . , al} of constants, a set V = {xs, ys, zs, . . . | s ∈ So} of variables, a
set P = {P1, . . . , Pm} of predicates, a function ar : P → N which tells the arity of
any predicate, a function sort s.t. for P ∈ P, sort(P ) ∈ Soar(P ), and for c ∈ C,
sort(c) ∈ So, the usual connectives (¬, ∨, ∧,→,↔), Boolean constants (> and ⊥)
and quantifier symbols (∀,∃). A ground formula is a formula without any variable.

Lowercase (resp. uppercase) greek letters like φ, ψ (resp. Φ, Ψ ) denote formulae
(resp. sets of formulae). MS-FOL is the set of all formulae.

Example 1. For instance let So = {s1, s2}, let P1 ∈ P such that sort(P1) = s2 ×
s1 × s1, let a1, a2, t1, t2 ∈ C such that sort(a1) = sort(a2) = s2, sort(t1) =
sort(t2) = s1 and let xs2 ∈ V. We can build then the following MS-FOL formulae:
P1(a1, t1, t2), ∀xs2P1(x

s2 , t1, t2). However, P1(t1, t2, a1) or ∀xs2P1(a1, a2, x
s2) can-

not be built because they do not respect the sorts.

MS-FOL formulae are evaluated via a notion of structure called n-sorted structures [9].
Classical first-order logic formulae are captured as 1-sorted structures.

Definition 2 (Structure). A n-sorted structure is St = ({D1, . . . , Dn}, {R1, . . . , Rm},
{c1, . . . , cl}), where D1, . . . , Dn are the (non-empty) domains, R1, . . . , Rm are rela-
tions between domains’ elements, and c1, . . . , cl are distinct constants in the domains.

Our running example is presented in Example 2. These sentences gather biographi-
cal elements about a French philosopher from the 14th century, Nicole Oresme.

Example 2. Nicole Oresme was a person and a philosopher born in the Middle Ages be-
tween 1320-1382. It would appear that Nicole Oresme attended the College of Navarre
around 1340-1354 and more likely around 1355-1360. Nicole Oresme possibly did not
attend the College of Navarre around 1353-1370. Sometimes, a person who lived in
Middle Ages and studied at College of Navarre came from a peasant family. Usually, a
philosopher born in the Middle Ages did not come from a peasant family.



In MS-FOL, though without uncertainty, we may then define a suitable structure.

Example 3. An example of structure associated with the MS-FOL from Example 2 is
Sthist = ({Time,Concept}, {Person, Philosopher, LivePeriod, PeasantFamily,
Studied}, {tmin, 1300, 1301, 1302, . . . , 1400, tmax, NO,MA,CoN}), in which:

– Time is the set of time points, corresponding to the sort s1 and Concept is the set
of all non-temporal objects, corresponding to the sort s2,

– Person, Philosopher, LivePeriod, etc. are the predicate symbols’ relations (e.g.,
Person ⊆ Concept× Time× Time indicates which elements are a person).

– tmin, 1300, 1301, . . ., 1400, tmax are elements of the domain Time associated with
the sort s1, while NO (Nicolas Oresme), MA (Middle Ages) and CoN (College
of Navarre) are elements of the domain Concept associated with the sort s2.

Now, we show how MS-FOL formulae are interpreted.

Definition 3 (Interpretation). An interpretation ISt over a structure St assigns to ele-
ments of the MS-FOL vocabulary some values in the structure St. Formally,
– ISt(si) = Di, for i ∈ {1, . . . , n} (each sort symbol is assigned to a domain),
– ISt(Pi) = Ri, for i ∈ {1, . . . ,m} (each predicate symbol is assigned to a relation),
– ISt(ai) = ci, for i ∈ {1, . . . , l} (each constant symbol is assigned to a value).
Then, satisfying formulae is recursively defined by:
– ISt |= Pi(a1, . . . , ak) iff (ISt(a1), . . . , ISt(ak)) ∈ Ri,
– ISt |= ∃xsiφ iff ISt,xsi←v |= φ for some v ∈ Di,
– ISt |= ∀xsiφ iff ISt,xsi←v |= φ for each v ∈ Di,
– ISt |= φ ∧ ψ iff ISt |= φ and ISt |= ψ,
– ISt |= φ ∨ ψ iff ISt |= φ or ISt |= ψ,
– ISt |= ¬φ iff ISt 6|= φ.
where ISt,xsi←v is a modified version of ISt s.t. the variable xsi is replaced by a value
v in the domainDi corresponding to the sort symbol si. Finally, if Φ is a set of formulae,
then ISt |= Φ iff ISt |= φ for each φ ∈ Φ.

Definition 3 does not target the satisfaction of implications and equivalences, while
they can be defined by: (φ → ψ) ≡ (¬φ ∨ ψ), and (φ ↔ ψ) ≡ (φ → ψ) ∧ (ψ →
φ). For instance, the set of interpretations of the formula P (a) ∨ P (b) is equal to
{{P (a)}, {P (b)}, {P (a), P (b)}} and for P (a) ∧ P (b) is {{P (a), P (b)}}.

With these notions of structures and interpretations on TMLNs, we may define the
consequence relations and logical consequences over MS-FOL formulae.

Definition 4 (Consequence Relation). Let φ and ψ be two MS-FOL formulae. We say
that ψ is a consequence of φ, denoted by φ ` ψ, if for any structure St, and any
interpretation ISt over St, ISt |= φ implies ISt |= ψ.

Definition 5 (Logical Consequences - Cn). Let φ ∈ MS-FOL. The function Cn(φ) is the
set of all logical consequences of φ, i.e. Cn(φ) = {ψ ∈ MS-FOL | φ ` ψ}.
The function Cn returns an infinite set of formulae, but for clarity we consider only
one formula per equivalent class and only the predicates and constants appearing in the
original formulae. Such as, Cn(P (a) ∨ P (b)) = {P (a) ∨ P (b)} and
Cn(P (a) ∧ P (b)) = {P (a), P (b), P (a) ∧ P (b), P (a) ∨ P (b)}}.



F1 (Person(NO, 1320, 1382) , 1)
F2 (Philosopher(NO, 1320, 1382) , 1)
F3 (LivePeriod(NO,MA, 1320, 1382) , 1)
F4 (Studied(NO,CoN, 1340, 1354) , 0.4)
F5 (Studied(NO,CoN, 1355, 1360) , 0.7)
F6 (¬Studied(NO,CoN, 1353, 1370) , 0.5)
R1 (∀xs2 , ts11 , t

′s1
1 , t

s1
2 , t

′s1
2 , t

s1
3 , t

′s1
3 , (Person(xs2 , t

s1
1 , t

′s1
1 ) ∧ LivePeriod(xs2 ,MA, t

s1
2 , t

′s1
2 )∧

Studied(xs2 , CoN, t
s1
3 , t

′s1
3 ))→ PeasantFamily(xs2 , tmin, tmax) , 0.5)

R2 (∀xs2 , ts11 , t
′s1
1 , t

s1
2 , t

′s1
2 , (Philosopher(xs2 , t

s1
1 , t

′s1
1 ) ∧ LivePeriod(xs2 ,MA, t

s1
2 , t

′s1
2 ))

→ ¬PeasantFamily(xs2 , tmin, tmax) , 0.8)
Table 1: Example of a TMLN for Nicole Oresme.

3 Temporal and Uncertain Knowledge Representation

Markov Logic Networks (MLNs) combine Markov Networks and First-Order Logic
(FOL) by attaching weights to first-order formulae and treating them as feature tem-
plates for Markov Networks [15]. We extend this framework to temporal information
by resorting to Many-Sorted First-Order Logic (MS-FOL).

3.1 Temporal Markov Logic Networks

Let start by defining what we call a Temporal Many-Sorted First-Order Logic TS-FOL.

Definition 6 (Temporal Many-Sorted FOL). A TS-FOL evaluated by a structure St
is a constrained MS-FOL where |So| ≥ 2, for any interpretation ISt(s1) = Time,
any predicate Pi ∈ TS-FOL has ar(Pi) ≥ 3 with the sort of the last two parameters
belonging to s1 and tmin and tmax are time constants indicating the minimum and
maximum time points for any pre-order between the time constants.

Using this constrained MS-FOL accompanied with a temporal domain (named Time)
and temporal predicates (the last two parameters indicate the validity temporal bounds),
we may represent temporal facts and rules. Finally, Temporal Markov Logic Networks
(TMLN) extend TS-FOL (resp. Markov Logic Networks) by associating a degree of
certainty to each formula (resp. by adding a temporal validity to the predicates).

Definition 7 (TMLN). A Temporal Markov Logic Network M = (F,R), based on a
TS-FOL, is a set of weighted temporal facts and rules where F and R are sets of pairs
such that:
– F = {(φ1, w1),. . . , (φn, wn)} with ∀i ∈ {1,. . . , n}, φi ∈ TS-FOL such that it is a
ground formula and wi ∈ [0, 1],
– R = {(φ′1, w′1),. . . , (φ′k, w

′
k)} with ∀i ∈ {1,. . . , k}, φ′i ∈ TS-FOL such that it is not

a ground formula and in the form (premises,conclusion), i.e., (ψ1∧. . .∧ψl) → ψl+1

where ∀j ∈ {1,. . . , l + 1}, ψj ∈ TS-FOL, and wi ∈ [0, 1].
The universe of all TMLNs is denoted by TMLN.

In the rest of the paper, we simplify the example by directly using the structure
defined in Example 3 (c.f. Section 2.1).



GR11 = ((Person(NO, 1320, 1382) ∧ LivePeriod(NO,MA, 1320, 1382)∧
Studied(NO,CoN, 1340, 1354)) → PeasantFamily(NO, tmin, tmax) , 0.4)

GR12 = ((Person(NO, 1320, 1382) ∧ LivePeriod(NO,MA, 1320, 1382)∧
Studied(NO,CoN, 1355, 1360)) → PeasantFamily(NO, tmin, tmax) , 0.5)

GR2 = ((Philosopher(NO, 1320, 1382) ∧ LivePeriod(NO,MA, 1320, 1382))
→ ¬PeasantFamily(NO, tmin, tmax) , 0.8)

Table 2: Ground Rules Instantiating R1 and R2 (from Table 1) for Nicole Oresme.

Example 2 (Continued). The TMLN representation of our running example can be
found in Table 1. We may identify 6 independent facts and 2 rules, each one with tem-
poral validity and certainty weights (arbitrary extracted from Example 2).

In order to select what is the most probable and consistent set of ground formulae
with a MAP inference, we need first to have our data (facts and rules) represented in
a TMLN. Then, we must obtain the ground rules (if possible), by replacing the vari-
ables in the rules by constants (according to our TMLN). We call this second step the
instantiation.

3.2 TMLN Instantiation

Let M be a TMLN, we denote by MI(M) the Maximal TMLN Instantiation of M.
MI(M) contains the set of M’s facts and all ground rules that can be constructed by in-
stantiating all its predicates containing variables by other deductible ground predicates
(with logical consequence, from Definitions 4 and 5). A ground rule’s weight is the
minimum of the weights of the formulae in M used to construct the instantiated rule.

Formally, to define the set of instantiations, we have to define two useful notions.
Firstly, we denote by TF(M) =

⋃
(φ,w)∈M

φ the set of temporal formulae of M ∈ TMLN.

Secondly, we define the function W : TS-FOL × TMLN → [0, 1], returning the maximal
weight of a temporal formula deductible from a TMLN: W(φ,M) = max(minw(M1), . . . ,
minw(Mm)) s.t. {M1, . . . ,Mm} = {Mi ⊆ M | TF(Mi) ` φ and @M′i ⊂ Mi s.t.
TF(M′i) ` φ} and minw(Mi = {(ψ1, w1), . . . , (ψl, wl)}) = min(w1, . . . , wl).

Definition 8 (TMLN Instantiation). Given M = (F,R) ∈ TMLN, the set of instantia-
tions MI of M is defined as follows:

MI(M) = F ∪ {
(
(φ1 ∧ . . . ∧ φk → φk+1)X←C , w

′) | (φ1 ∧ . . . ∧ φk →
φk+1, w) ∈ R, X = {x1, . . . , xn} is the set of variables in φ1∧. . .∧φk → φk+1, C =
〈c1, . . . , cn〉 is a vector of constants replacing each occurrence of the variables,
X ′i ⊆ X is the set of variables in φi, C ′i ⊆ C is the vector of constants replaced in φi
and the instantiated rule satisfies the 2 following conditions:

1. ∀φi ∈ {φ1, . . . , φk}, φiX′
i←C′

i
∈ Cn(TF(M))

2. w′ = min(w, W(φ1X′
1←C′

1
,M), . . . , W(φkX′

k←C
′
k
,M)}

Where φX←C is the formula φ s.t. all the occurrences of the variable xi ∈ X are
replaced by the constant ci ∈ C.

Currently, we only deal with universal (i.e., ∀) rules and no existential one (i.e., ∃),
to simplify the maximal TMLN instantiation. Indeed, with existential rules, we would



have to deal with a set of sets of instantiations, given that we would not know which set
of instantiations would be true. We keep this question for future works.

From Example 2, the instantiation of R1 (resp. R2) are GR11 (from F1, F3 and
F4) and GR12 (from F1, F3 and F5) (resp. GR2 from F2 and F3). Hence GR11 has a
weight of 0.4, GR12 of 0.5 and GR2 of 0.8, see Table 2.

A TMLN instantiation I ⊆ MI(M) is a TMLN only composed of ground formu-
lae, I is also called a state of the TMLN M. The universe of all TMLN instantiations
is denoted by TMLN∗. Note that an instantiation can be inconsistent. In our example,
GR11, F1, F3, F4 imply PeasantFamily(NO, tmin, tmax) while GR2, F2, F3 imply
¬PeasantFamily(NO, tmin, tmax), i.e., they are inconsistent together. Thus, to ob-
tain the most consistent and informative set of instantiations, we have to compute the
Maximum A-Posteriori (MAP) inference [4,16].

4 Temporal and Uncertain Knowledge Reasoning

Computing the MAP inference means “finding the most probable state of the world” [4].
In order to do that, we integrate semantics on TMLN, before examining principles gov-
erning those semantics and (in)consistency relations.

4.1 Temporal MAP Inference

Semantics are methods which compute the strength of a TMLN state. We denote the
universe of all semantics by Sem, such that for any S ∈ Sem, S : TMLN∗ → [0,+∞[.We
compute a strength above 0, instead of a probability between 0 and 1. One semantics
may maximise the amount of information, while another may maximise the quality.
Temporal Maximum A-Posteriori (MAP) Inference in TMLN returns the most prob-
able, temporally consistent, and expanded state w.r.t. a given semantics. Given M ∈
TMLN and S ∈ Sem, a method solving a MAP problem is denoted by:
map : TMLN× Sem→ P(TMLN∗), where P(X) denote the powerset of X, such that:
map(M,S) = {I | I ∈ argmax

I ⊆ MI(M)

S(I) and @I ′ ∈ argmax
I′ ⊆ MI(M)

S(I ′) s.t. I ⊂ I ′}.

To determine a MAP inference we need to define semantics, however not all meth-
ods are desirable. Below we present some principles that a semantics should satisfy.

4.2 Principles for semantics in Temporal MAP Inference

Our first principle states that adding new weightless information does not change the
strength of the MAPs of a TMLN, whatever the temporality is. Given that the same set
of predicates or formulae instantiated on different temporalities are not equivalent, we
homogenises TS-FOL with the maximal time interval to define the information novelty.

For time homogenization, we denote by τ : P(TS-FOL)→ P(TS-FOL), the function
transforming any temporal predicate into the maximal time interval (tmin and tmax).

Principle 1 (Temporal Neutrality) Let M ∈ TMLN, M′ = M∪{(φ,w)} where (φ,w)
is a weighted temporal formula (φ ∈ TS-FOL and w ∈ [0, 1]), such that:



– τ (TF(M)) 6` τ ({φ}), and
– w = 0.

A semantics S ∈ Sem satisfies temporal neutrality iff, ∀I ∈ map(M,S) and ∀I ′ ∈
map(M′,S), S(I) = S(I ′).

The next principle ensures that one cannot decrease the strength of the MAPs of
a TMLN by adding new and consistent information. The temporal consistency Con :
P(TS-FOL)→ {>,⊥} denotes a relation of consistence for a set of temporal formulae.

Principle 2 (Consistency Monotony) Let a relation of consistence Con, M ∈ TMLN

and M′ = M ∪ {(φ,w)} where (φ,w) is a weighted temporal formula such that:
– τ (TF(M)) 6` τ ({φ}), and
– ∀I ∈ map(M,S), Con({φ} ∪ TF(I)) is true and I ⊂ MI({(φ,w)} ∪ I).

A semantics S ∈ Sem satisfies consistency monotony iff: ∀I ∈ map(M,S) and
∀I ′ ∈ map(M′,S), S(I) ≤ S(I ′).

The last principle states that if we add a new temporal fact to a TMLN such that it is
consistent with each instantiation, then the fact will be present in each new instantiation.

Principle 3 (Invariant Consistent Facts) Let a relation of consistence Con, M ∈ TMLN

and M′ = M ∪ {(φ,w)} where (φ,w) is a TMLN fact such that:
– τ (TF(M)) 6` τ ({φ}), and
– ∀I ∈ map(M,S), Con({φ} ∪ TF(I)) is true.

A semantics S ∈ Sem satisfies invariant consistent facts iff, ∀I ∈ map(M,S), I ∪
{(φ,w)} ∈ map(M′,S).

4.3 Temporal Consistency and Inconsistency

We study here new temporal consistency interactions required to define our Temporal
MAP inference. Temporal Consistency relations need to be refined according to the
temporal validity of the predicates.For a predicate and its negation, no clear definition
exists to express the temporal consistencies based on their time intervals. We propose a
temporal consistency with a general case (partial) and a special case (total).

To establish these different temporal consistency relations, we introduce a function
TI to create pre-orders between the temporal constants in the domain Time of a TS-FOL
and which extracts the interval of time points from two constants.

Definition 9 (Temporal (in)consistency). Let a set of formulae Φ ⊆ TS-FOL.
Temporal consistency:

– Φ has a partial temporal consistency denoted by pCon(Φ) iff: ∀φ, ψ ∈ Cn(Φ) s.t.
φ = P (x1,. . . , xk, t1, t′1) and ψ = ¬P (x1,. . . , xk, t2, t′2), (TI(t1, t

′
1) \ TI(t2, t′2)

6= ∅) ∧ (TI(t2, t
′
2) \ TI(t1, t′1) 6= ∅).

Otherwise ¬pCon(Φ) is true.
–Φ has a total temporal consistency denoted by tCon(Φ) iff: ∀φ, ψ ∈ Cn(Φ) s.t. φ =
P (x1,. . . , xk, t1, t′1) and ψ = ¬P (x1,. . . , xk, t2, t′2), (TI(t1, t

′
1) ∩ TI(t2, t′2)=∅).

Otherwise ¬tCon(Φ) is true.
Temporal inconsistency:



– Φ has a partial temporal inconsistency denoted by pInc(Φ) iff: ∃φ, ψ ∈ Cn(Φ) s.t.
φ=P (x1,. . . , xk, t1, t′1), ψ=¬P (x1,. . . , xk, t2, t′2) and TI(t1, t

′
1) ∩ TI(t2, t′2) 6= ∅.

Otherwise ¬pInc(Φ) is true.
– Φ has a total temporal inconsistency denoted by tInc(Φ) iff: ∃φ, ψ ∈ Cn(Φ) s.t.
φ = P (x1,. . . , xk, t1, t′1), ψ = ¬P (x1,. . . , xk, t2, t′2) and (TI(t1, t

′
1) = TI(t2, t

′
2).

Otherwise ¬tInc(Φ) is true.

We now examine the interaction properties between pCon, tCon, pInc and tInc,
such as complementarity, subsumption and inclusion 1.

Definition 10 (Complementarity & Subsumption). ∀Φ ⊆ TS-FOL,∀ relation r1, r2 if:
– r1(Φ)↔ ¬r2(Φ) then r1 and r2 are complementary.
– r1(Φ)→ r2(Φ) then r1 subsume r2.

The next two propositions show that firstly tCon and pInc are complementary;
secondly different subsumption relations exist between the temporal consistencies.

Proposition 1. (Complementarity: temporal consistencies) For any Φ ⊆ TS-FOL:
¬tCon(Φ)↔ pInc(Φ) and tCon(Φ)↔ ¬pInc(Φ).

Proposition 2. (Subsumption: temporal consisencies) For any Φ ⊆ TS-FOL:
pCon(Φ)→ ¬tInc(Φ), tInc(Φ)→ ¬pCon(Φ),

¬pCon(Φ)→ pInc(Φ), and ¬pInc(Φ)→ pCon(Φ).

In the following, for temporal consistency and inconsistency relations, we denote
by {r} = {Φ ⊆ TS-FOL | r(Φ)} their set of sets of formulae respecting their condition,
where r ∈ {pCon, tCon, pInc, tInc,¬pCon,¬tCon,¬pInc,¬tInc}.

Definition 11 (Inclusion). Let two relations of temporal consistency r1, r2 ∈ {pCon,
tCon, pInc, tInc,¬pCon,¬tCon,¬pInc,¬tInc}, r1 is considered included in r2 if:

{r1} ⊆ {r2} iff ∀Φ ⊆ TS-FOL, r1(Φ)→ r2(Φ).

Some inclusions of temporal consistency relations may be defined between the sets
of sets of formulae respecting them.

Proposition 3. (Inclusion: temporal consistencies)
{tCon} = {¬pInc} ⊆ {pCon} ⊆ {¬tInc}
{tInc} ⊆ {¬pCon} ⊆ {pInc} = {¬tCon}

Links between different relations of temporal consistency are illustrated on Figure 1.

4.4 Temporal Parametric Semantics

To avoid defining several different semantics, we decompose the construction of seman-
tics and identify three steps. Then, we propose the definition of Temporal Parametric
Semantics, relying on the combination of three functions: i) a validation function ∆ of
instantiations integrating various consistency relations, ii) a selecting function σ able
to modify the weight of the formulae of an instantiation and iii) an aggregate function
Θ returning the final strength.

1 Proofs are available on https://tinyurl.com/PRICAI22.

https://tinyurl.com/PRICAI22
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Fig. 1: Links between Consistency and Inconsistency

Definition 12 (Temporal Parametric Semantics). A temporal parametric semantics is
a tuple TPS = 〈∆,σ,Θ〉 ∈ Sem, s.t.:

– ∆ : TMLN∗ → {0, 1},
–σ : TMLN∗ →

⋃+∞
k=0[0, 1]

k,
– Θ :

⋃+∞
k=0[0, 1]

k → [0,+∞[,
For any M ∈ TMLN, I ⊆ MI(M), the strength of a temporal parametric semantics

TPS = 〈∆,σ,Θ〉 is computed by: TPS(I) = ∆(I) ·Θ
(
σ(I)

)
.

We propose below key properties that must be satisfied by each of the three func-
tions ∆,σ,Θ of a TPS. Those properties constrain the range of functions to be consid-
ered, and discard those exhibiting undesired behaviours.

Definition 13. A temporal parametric semantics TPS = 〈∆,σ,Θ〉 is well-behaved
according to a temporal consistency relation Con iff the following conditions hold:

∆- (a) ∆(I) = 1 if Con(TF(I)) is true (i.e., I is temporally consistent w.r.t. Con).
Θ- (a) Θ() = 0.

(b) Θ(w) = w.
(c) Θ is symmetric.
(d) Θ(w1,. . . , wk) = Θ(w1,. . . , wk, 0).
(e) Θ(w1,. . . , wk, y) ≤ Θ(w1,. . . , wk, z) if y ≤ z.

σ- (a) σ() = ().
(b) σ({(φ1, w1),. . . , (φk, wk)}) = (w′1,. . . , w′n) such that if k ≥ 1 then n ≥ 1.
(c) σ({(φ1, w1),. . . , (φk, wk), (φk+1, 0)}) = (σ({(φ1, w1),. . . , (φk, wk)}), 0),

if τ (TF({φ1,. . . , φk})) 6` τ ({φ}).
(d) σ({(φ1, w1),. . . , (φk, wk)}) ⊂ σ({(φ1, w1),. . . , (φk, wk), (φk+1, wk+1)})

if φk+1 is a ground temporal formula, τ (TF({φ1,. . . , φk})) 6` τ ({φk+1}) and
Con(TF({(φ1, w1),. . . , (φk, wk), (φk+1, wk+1)})).

(e) Θ
(
σ({(φ1, w1),. . . , (φk, wk)})

)
≤ Θ

(
σ({(φ1, w1),. . . , (φk, wk),

(φk+1, wk+1)})
)

if τ (TF({φ1,. . . , φk})) 6` τ ({φk+1}) and

Con(TF({(φ1, w1),. . . , (φk, wk), (φk+1, wk+1)})).

We also say that ∆ is well-behaved according to Con, and Θ,σ are well-behaved.



Theorem 1. Any temporal parametric semantics well-behaved w.r.t a temporal consis-
tency relation Con satisfies the principles from Section 4.2: Temporal Neutrality, Con-
sistency Monotony and Invariant Consistent Facts (the last two according to Con).

Once temporal consistency relations are defined, we may enhance semantics for
MAP inference with temporal validation functions. One TMLN instantiation can be
valid or not according to different criteria (i.e., accept an instantiation).

Definition 14 (Temporal Consistency Validation Function). Let M ∈ TMLN, an in-
stantiation I ⊆ MI(M) and x ∈ {pCon, tCon, pInc, tInc}. We define ∆x : TMLN∗ →
{0, 1}, a temporal consistency validation function according to x, such that:

∆pCon(I) =

{
1 if pCon(TF(I))
0 if ¬pCon(TF(I)) ∆tCon(I) =

{
1 if tCon(TF(I))
0 if ¬tCon(TF(I))

∆pInc(I) =

{
0 if pInc(TF(I))
1 if ¬pInc(TF(I)) ∆tInc(I) =

{
0 if tInc(TF(I))
1 if ¬tInc(TF(I))

Corollary 1. For any I ⊆ TMLN∗, ∆tCon(I) = ∆pInc(I).

Corollary 2. Let x ∈ {pCon, tCon, pInc, tInc}, each ∆x is well-behaved.

We show next that we can order the value of the ∆x for any instantiation.

Proposition 4. Let M ∈ TMLN and∆x a temporal consistency validation function such
that x ∈ {pCon, tCon, pInc, tInc}. For any instantiation I ⊆ MI(M):

∆tCon(I) = ∆pInc(I) ≤ ∆pCon(I) ≤ ∆tInc(I)

Theorem 2 shows that the strength of the temporal MAP inferences with σ and Θ
on any TMLN is ranked according to the temporal consistency validation functions∆x.

Theorem 2. Let M ∈ TMLN, for anyσ and Θ, we denote by:
– TPStCon = 〈∆tCon,σ,Θ〉, TPSpInc = 〈∆pInc,σ,Θ〉,
– TPSpCon = 〈∆pCon,σ,Θ〉, TPStInc = 〈∆tInc,σ,Θ〉.

Hence: ∀ItCon ∈ map(M, TPStCon), ∀IpInc ∈ map(M, TPSpInc), ∀IpCon ∈
map(M, TPSpCon), ∀ItInc ∈ map(M, TPStInc),

TPStCon(ItCon) = TPSpInc(IpInc) ≤ TPSpCon(IpCon) ≤ TPStInc(ItInc).

We study different instances of the aggregate function, using different sums. This
type of parameters will determine the strength of an instantiation, in various ways.

Definition 15 (Aggregate Functions). Let {w1,. . . , wn} such that n ∈ [0,+∞[ and
∀i ∈ [0, n], wi ∈ [0, 1].

– Θsum(w1,. . . , wn) =
n∑
i=1

wi, if n = 0 then Θsum() = 0.

– Θsum,α(w1,. . . , wn) =
(

n∑
i=1

(wi)
α

) 1
α

s.t. α ≥ 1, if n = 0 then Θsum,α() = 0.

– Θpsum(w1,. . . , wn) = w1	. . .	wn, where w1 	 w2 = w1 + w2 − w1 · w2,
if n = 0 then Θpsum() = 0 and if n = 1 then Θpsum(w) = w.



Those aggregate functions target different kinds of semantics. For instance, Θsum,α
emphasises strong weights for inference, while Θpsum targets more controversial in-
stantiations (mixed weights).

Proposition 5. The three functions Θsum, Θsum,α and Θpsum are well-behaved.

We propose below a selective functionσid which returns all the weights, more com-
plex functions selecting weights with a threshold (σthresh,α) and another one, σrule,
setting the weight of ground rules to 0 when one of their premises is not deductible (i.e.,
the rule is unusable). The latter is interesting to say if unground rules (no deductible
premises – prem & imp) must be kept or not in any instantiation.

Definition 16 (Selective Functions). Let M ∈ TMLN, {(φ1, w1),. . . , (φn, wn)} ⊆ MI(M):

– σid({(φ1, w1),. . . , (φn, wn)}) = (w1,. . . , wn)
– σthresh,α({(φ1, w1),. . . , (φn, wn)}) = (max(w1 − α, 0),. . . , max(wn − α, 0)) s.t.
α ∈ [0, 1[

– • let φ = (ψ1∧. . .∧ψk)→ ψk+1 a rule,
prem(φ) = {ψ1,. . . , ψk}.

• imp((φ,w), {(φ1, w1),. . . , (φn, wn)}) =


0 if φ is a ground rule

s.t. ∃ψi ∈ prem(φ)
s.t. ψi /∈ Cn({φ1,. . . , φn})

w otherwise

• σrule({(φ1, w1),. . . , (φn, wn)}) =
(
imp((φ1, w1), {(φ2, w2),. . . ,

(φn, wn)}),. . . , imp((φn, wn), {(φ1, w1),. . . , (φn−1, wn−1)})
)

Proposition 6. The three functionsσid,σthresh,α andσrule are well-behaved.

In [4], the MAP inference uses a semantics working on Herbrand models (con-
taining temporal formulae, included in TS-FOL) and built from uncertain (w < 1) and
certain (w = 1) temporal facts and with a set of TMLN certain rules. This semantics
also determines the temporal inconsistency by a classical consistency (if there is no
formula ϕ such that Φ ` ϕ and Φ ` ¬ϕ) and by summing all the weights of facts in
the instantiation. Therefore, for TMLNs without any uncertain rule, the MAP inference
will return the same instantiations as ours, using the temporal parametric semantics
〈∆tInc,σid, Θsum〉. Our Temporal MAP inference generalises their work.

4.5 Example of Reasoning on TMLN

Example 2 (Continued). Table 3 illustrates various TPS leading to different instantia-
tions and possible inferences from Example 2. The last column focuses on the Peasant-
Family information which has not been proven yet by Historians. Another interesting
analyse is about ”did Nicole Oresme studied at the College of Navarre and when?”.

Θsum,2 keeps highly weighted facts and rules. Instantiations insist on the conflict
betweenGR11/GR12 andGR2 (PeasantFamily or not), keeping those which maximise
the strength. More precisely, these ground rules are temporally inconsistent depending



Temporal Parametric Semantics Temporal MAP Inferences Example of Conclusion
〈∆tCon,σid, Θsum〉 {{F6, GR11, GR12, GR2}} (¬PeasantFamily(NO, tmin, tmax), 0.8)
〈∆pCon,σid, Θsum〉 {{F4, F6, GR12, GR2}} (¬PeasantFamily(NO, tmin, tmax), 0.8)
〈∆tInc,σid, Θsum〉 {{F4, F5, F6, GR11, GR12}} (PeasantFamily(NO, tmin, tmax), 0.5)

〈∆tCon,σid, Θsum,2〉 {{F6, GR11, GR12, GR2}} (¬PeasantFamily(NO, tmin, tmax), 0.8)
〈∆pCon,σid, Θsum,2〉 {{F4, F6, GR12, GR2}} (¬PeasantFamily(NO, tmin, tmax), 0.8)
〈∆tInc,σid, Θsum,2〉 {{F4, F5, F6, GR2}, (¬PeasantFamily(NO, tmin, tmax), 0.8)

{F5, F6, GR11, GR2}}
〈∆tCon,σrule, Θsum〉 {{F4, F5, GR11, GR12}} (PeasantFamily(NO, tmin, tmax), 0.5)
〈∆pCon,σrule, Θsum〉 {{F4, F6, GR2}} (¬PeasantFamily(NO, tmin, tmax), 0.8)
〈∆tInc,σrule, Θsum〉 {{F4, F5, F6, GR11, GR12}} (PeasantFamily(NO, tmin, tmax), 0.5)

〈∆tCon,σrule, Θsum,2〉 {{F6, GR2}} (¬PeasantFamily(NO, tmin, tmax), 0.8)
〈∆pCon,σrule, Θsum,2〉 {{F4, F6, GR2}} (¬PeasantFamily(NO, tmin, tmax), 0.8)
〈∆tInc,σrule, Θsum,2〉 {{F4, F5, F6, GR2}} (¬PeasantFamily(NO, tmin, tmax), 0.8)

Table 3: TPS example: in each instantiation we omit F1, F2, F3 and formulae with a 0 weight.

on the set of facts in the instantiation. Indeed, if ground rules’ premises are not present
in the instantiation, then they have no conflict, as it appears in the TPS usingσid.
σrule gives an interesting vision on the MAP inference result, since it keeps (i.e.,

w > 0) only useful ground rules, i.e., rules having deductible premises in the instanti-
ation. Hence,σrule never give importance simultaneously to GR11/GR12 with GR2.

Eventually, notice that even if PeasantFamily(NO, tmin, tmax) has a weight of
0.5 and its negation 0.8, or even if in this example we have more inference on the
negation, we cannot conclude that ¬PeasantFamily(NO, tmin, tmax) is more likely.
For instance, 〈∆tInc,σid, Θsum〉 corresponding to Chekol’s semantics, advocates that
Nicole Oresme was a Peasant while the one with ∆pCon (the partial temporal consis-
tency) infers the opposite. The parametric choice of our approach would allow the his-
torian deciding which inference corresponds to their own reasoning.

5 Conclusion

Reasoning on Knowledge Graphs have recently been approached with MLNs, to find
the most probable state of the world. However, they were limited to a strict temporal
inconsistency. We extend UTKGs with a fully-formalized model of TMLN, capable of
combining consistency and inconsistency for facts and rules, allowing to reason with
the MAP inference using new principles and relations between partial and total aspects
of temporal (in-)consistency. Moreover, we introduce temporal parametric semantics
which offer flexibility to tailor semantics reasoning to one’s needs.

As a perspective, we first wish to extend this work to existential rules in order to
capture more real data (see Section 3.2). Secondly, some relationships between for-
mulae in a TMLN are not yet exploited and could be represented with argumentation
graphs (e.g., the notion of support [6] or similarity between pieces of information [1,2]),
to enhance the weight of inferred knowledge. Thirdly, as we can see in Table 3, each
parameter of the TPS have an impact on the temporal MAP inferences and its possible
conclusions. It will be useful to investigate some properties to describe the strategies and
specific behaviours of the parametrisation functions. Finally, implementing our results
and confronting them with real data will likely prove very useful, at least to generate
new research hypotheses in historical science.
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17. Rincé, R., Kervarc, R., Leray, P.: Complex event processing under uncertainty using markov
chains, constraints, and sampling. In: Benzmüller, C., Ricca, F., Parent, X., Roman, D. (eds.)
Rules and Reasoning. pp. 147–163. Springer, Cham (2018)

18. Rodionova, A., Bartocci, E., Nickovic, D., Grosu, R.: Temporal logic as filtering. In: Pro-
ceedings of the 19th International Conference on Hybrid Systems: Computation and Control.
p. 11–20. HSCC ’16, Association for Computing Machinery, New York, NY, USA (2016).
https://doi.org/10.1145/2883817.2883839, https://doi.org/10.1145/2883817.2883839

19. Wang, H.: Logic of many-sorted theories. The Journal of Symbolic Logic 17(2), 105–116
(1952)

20. Zalmout, N., Zhang, C., Li, X., Liang, Y., Dong, X.L.: All You Need to Know to Build a
Product Knowledge Graph, p. 4090–4091. ACM, New York, NY, USA (2021), https://doi.
org/10.1145/3447548.3470825

https://doi.org/10.1145/2883817.2883839
https://doi.org/10.1145/2883817.2883839
https://doi.org/10.1145/2883817.2883839
https://doi.org/10.1145/3447548.3470825
https://doi.org/10.1145/3447548.3470825


Supplementary material for
Parameterisation of Reasoning on
Temporal Markov Logic Networks

A Proofs

Proof (Proposition 1). Let Φ ⊆ TS-FOL such that tCon(Φ), i.e. from Definition 9:

∀φ, ψ ∈ Cn(Φ) s.t. φ = P (x1, · · · , xk, t1, t′1) and

ψ = ¬P (x1, · · · , xk, t2, t′2), (TI(t1, t′1) ∩ TI(t2, t′2) = ∅)
then its negation ¬tCon(Φ) is equivalent to:

¬(¬∃φ, ψ ∈ Cn(Φ) s.t. φ = P (x1, · · · , xk, t1, t′1) and

ψ = ¬P (x1, · · · , xk, t2, t′2) and (TI(t1, t
′
1) ∩ TI(t2, t′2) 6= ∅))

Hence ¬tCon(Φ) is equivalent to pInc(Φ):

∃φ, ψ ∈ Cn(Φ) s.t. φ = P (x1, · · · , xk, t1, t′1) and

ψ = ¬P (x1, · · · , xk, t2, t′2) and (TI(t1, t
′
1) ∩ TI(t2, t′2) 6= ∅)

Moreover its negation, ¬pInc(Φ) is equivalent to:

¬(¬∀φ, ψ ∈ Cn(Φ) s.t. φ = P (x1, · · · , xk, t1, t′1) and

ψ = ¬P (x1, · · · , xk, t2, t′2), (TI(t1, t′1) ∩ TI(t2, t′2) = ∅))
Therefore ¬pInc(Φ) is equivalent to tCon(Φ).

Proof (Proposition 2). Let Φ ⊆ TS-FOL, from Definition 9:

1. pCon(Φ)→ ¬tInc(Φ):
– ¬tInc(Φ) iff,

¬∃φ, ψ ∈ Cn(Φ) s.t. φ = P (x1, · · · , xk, t1, t′1),

ψ = ¬P (x1, · · · , xk, t2, t′2) and (TI(t1, t
′
1) = TI(t2, t

′
2))

– pCon(Φ) iff

∀φ, ψ ∈ Cn(Φ) s.t. φ = P (x1, · · · , xk, t1, t′1) and

ψ = ¬P (x1, · · · , xk, t2, t′2), (TI(t1, t′1)\TI(t2, t′2) 6= ∅)∧(TI(t2, t′2)\TI(t1, t′1) 6= ∅)
which is equivalent to:

¬∃φ, ψ ∈ Cn(Φ) s.t. φ = P (x1, · · · , xk, t1, t′1) and

ψ = ¬P (x1, · · · , xk, t2, t′2) and

(TI(t1, t
′
1) \ TI(t2, t′2) = ∅) ∨ (TI(t2, t

′
2) \ TI(t1, t′1) = ∅)



– If there not exists TI(t1, t′1) \ TI(t2, t′2) = ∅ or TI(t2, t′2) \ TI(t1, t′1) = ∅ then
there not exists TI(t1, t′1) \ TI(t2, t′2) = ∅ and TI(t2, t

′
2) \ TI(t1, t′1) = ∅ (i.e.

TI(t1, t
′
1) = TI(t2, t

′
2)), therefore pCon(Φ)→ ¬tInc(Φ).

2. tInc(Φ)→ ¬pCon(Φ):
– ¬pCon(Φ) iff

¬(¬∃φ, ψ ∈ Cn(Φ) s.t. φ = P (x1, · · · , xk, t1, t′1) and

ψ = ¬P (x1, · · · , xk, t2, t′2) and

(TI(t1, t
′
1) \ TI(t2, t′2) = ∅) ∨ (TI(t2, t

′
2) \ TI(t1, t′1) = ∅))

i.e.,
∃φ, ψ ∈ Cn(Φ) s.t. φ = P (x1, · · · , xk, t1, t′1) and

ψ = ¬P (x1, · · · , xk, t2, t′2) and

(TI(t1, t
′
1) \ TI(t2, t′2) = ∅) ∨ (TI(t2, t

′
2) \ TI(t1, t′1) = ∅)

– tInc(Φ) iff

∃φ, ψ ∈ Cn(Φ) s.t. φ = P (x1, · · · , xk, t1, t′1),

ψ = ¬P (x1, · · · , xk, t2, t′2) and (TI(t1, t
′
1) = TI(t2, t

′
2))

– If there exists TI(t1, t′1)\TI(t2, t′2) = ∅ and TI(t2, t
′
2)\TI(t1, t′1) = ∅ (TI(t1, t′1) =

TI(t2, t
′
2)), then there exists TI(t1, t′1)\TI(t2, t′2) = ∅ or TI(t2, t′2)\TI(t1, t′1) =

∅, therefore tInc(Φ)→ ¬pCon(Φ).

3. ¬pCon(Φ)→ pInc(Φ):
– pInc(Φ) iff

∃φ, ψ ∈ Cn(Φ) s.t. φ = P (x1, · · · , xk, t1, t′1),

ψ = ¬P (x1, · · · , xk, t2, t′2) and (TI(t1, t
′
1) ∩ TI(t2, t′2) 6= ∅)

– If there exists TI(t1, t
′
1) \ TI(t2, t′2) = ∅ or TI(t2, t′2) \ TI(t1, t′1) = ∅ then

there exists TI(t1, t′1) ∩ TI(t2, t′2) 6= ∅, therefore ¬pCon(Φ)→ pInc(Φ).

4. ¬pInc(Φ)→ pCon(Φ):
– ¬pInc(Φ) is equivalent to:

¬(¬∀φ, ψ ∈ Cn(Φ) s.t. φ = P (x1, · · · , xk, t1, t′1) and

ψ = ¬P (x1, · · · , xk, t2, t′2), (TI(t1, t′1) ∩ TI(t2, t′2) = ∅)

– Therefore, for any TI(t1, t
′
1), TI(t2, t

′
2), if TI(t1, t′1) ∩ TI(t2, t

′
2) = ∅ then

TI(t1, t
′
1)\TI(t2, t′2) 6= ∅ and TI(t2, t

′
2)\TI(t1, t′1) 6= ∅, therefore¬pInc(Φ)→

pCon(Φ).



Proof (Proposition 3). From Proposition 1 and 2, we know that for any Φ ⊆ TS-FOL:

tCon(Φ)↔ ¬pInc(Φ)→ pCon(Φ)→ ¬tInc(Φ)

tInc→ ¬pCon(Φ)→ pInc(Φ)↔ ¬tCon(Φ)

Therefore from Proposition 11:

{tCon} = {¬pInc} ⊆ {pCon} ⊆ {¬tInc}

{tInc} ⊆ {¬pCon} ⊆ {pInc} = {¬tCon}

Proof (Theorem 1). .

– Temporal Neutrality.
Let M ∈ TMLN, M′ = M∪ {(φ,w)} where (φ,w) is a weighted temporal formula
such that:
• τ (TF(M)) 6` τ ({φ})
• w = 0.

Given that (φ,w = 0), any new ground formula in the instantiation of M′ has also
a zero weight: ∀(ψ,w) ∈ MI(M′) \ MI(M), w = 0 (because the instantiation take
the minimum weight of the formulae building the ground formula).
If a temporal parametric semantics TPS = 〈∆,σ,Θ〉 is well-behaved according to
a temporal consistency relation Con, then from Definition 13:
• condition 2.(c): Θ(w1, · · · , wk) = Θ(w1, · · · , wk, 0).
• condition 3.(c):σ({(φ1, w1), · · · , (φk, wk),
(φk+1, 0)}) = (σ({(φ1, w1), · · · , (φk, wk)}), 0),
if τ (TF({φ1, · · · , φk})) 6` τ ({φ}).

Therefore, any new ground formula will have no impact in any instantiation, and
so in any MAP inference: ∀I ∈ map(M, TPS) and ∀I ′ ∈ map(M′, TPS), TPS(I) =
TPS(I ′).

– Consistency Monotony.
Let a well-behaved temporal semantics TPS = 〈∆,σ,Θ〉 according to a temporal
consistency relation Con, M ∈ TMLN, M′ = M ∪ {(φ,w)} where (φ,w) is a
weighted temporal formula such that:
1. τ (TF(M)) 6` τ ({φ}), and
2. ∀I ∈ map(M, TPS), Con({φ} ∪ TF(I)) is true and I ⊂ MI({(φ,w)} ∪ I).

From Definition 13:
• condition 1.(a): ∆(I) = 1 if Con(TF(I)) is true.

• condition 3.(e): Θ
(
σ({(φ1, w1), · · · , (φk, wk)})

)
≤ Θ

(
σ({(φ1, w1), · · · , (φk, wk), (φk+1, wk+1)})

)
if τ (TF({φ1, · · · , φk})) 6`

τ ({φk+1}) and Con(TF({(φ1, w1), · · · , (φk, wk), (φk+1, wk+1)})).



Therefore, from item 2 of (φ,w) we know that any new ground formulae are con-
sistent with each MAP, and with condition 1.(a), we know that the strength will not
down to 0 from ∆. Given that we have at least one new ground formula in each
MAP (condition 2 of Consistency Monotony I ⊂ MI({(φ,w)} ∪ I)), with condi-
tion 3.(e) we know that:
∀I ∈ map(M, TPS) and ∀I ′ ∈ map(M′, TPS), TPS(I) ≤ TPS(I ′).

– Invariant Consistent Facts.
Let a well-behaved temporal semantics TPS = 〈∆,σ,Θ〉 according to a temporal
consistency relation Con, M ∈ TMLN, M′ = M∪{(φ,w)}where (φ,w) is a TMLN
fact such that:
• τ (TF(M)) 6` τ ({φ}), and
• ∀I ∈ map(M, TPS), Con({φ} ∪ TF(I)) is true.

From Definition 13:
• condition 1.(a): ∆(I) = 1 if Con(TF(I)) is true.
• condition 3.(d):σ({(φ1, w1), · · · , (φk, wk)})
⊂ σ({(φ1, w1), · · · , (φk, wk), (φk+1, wk+1)}) if φk+1 is a ground temporal
formula, τ (TF({φ1, · · · , φk})) 6` τ ({φk+1}) and
Con(TF({(φ1, w1), · · · , (φk, wk), (φk+1, wk+1)})).

Given that (φ,w) is a TMLN fact, then φ is a ground formula. Moreover, from the
definition of Temporal MAP Inference, we know that each MAP is maximal for set
inclusion (map(M, S) = {I | I ∈ argmax

I ⊆ MI(M)

S(I) and @I ′ ∈ argmax
I′ ⊆ MI(M)

S(I ′) s.t.

I ⊂ I ′}). Therefore the new consistent temporal fact (φ,w) will be add to any
previous MAP: ∀I ∈ map(M, TPS), I ∪ {(φ,w)} ∈ map(M′, TPS).

Proof (Proposition 4). . From Definition 11: Let two relations of temporal consistency
r1, r2 ∈ {pCon, tCon, pInc, tInc,¬pCon,¬tCon, ¬pInc,¬tInc}, r1 is considered
included in r2 if:

{r1} ⊆ {r2} iff ∀Φ ⊆ TS− FOL, r1(Φ)→ r2(Φ)

From Proposition 3:

{tCon} = {¬pInc} ⊆ {pCon} ⊆ {¬tInc}

{tInc} ⊆ {¬pCon} ⊆ {pInc} = {¬tCon}

Hence, for any set of formulae Φ ⊆ TS-FOL:

(tCon(Φ)↔ ¬pInc(Φ))→ ¬pInc(Φ)→ pCon(Φ)→ ¬tInc(Φ)

From Definition 14:
Let M ∈ TMLN, an instantiation I ⊆ MI(M) and x ∈ {pCon, tCon, pInc, tInc}.

∆pCon(I) =

{
1 if pCon(TF(I))
0 if ¬pCon(TF(I)) ∆tCon(I) =

{
1 if tCon(TF(I))
0 if ¬tCon(TF(I))

∆pInc(I) =

{
0 if pInc(TF(I))
1 if ¬pInc(TF(I)) ∆tInc(I) =

{
0 if tInc(TF(I))
1 if ¬tInc(TF(I))



Therefore using the case equal to 1 and given that (tCon(Φ) ↔ ¬pInc(Φ)) →
¬pInc(Φ)→ pCon(Φ)→ ¬tInc(Φ), for any instantiation I ⊆ MI(M):

∆tCon(I) = ∆pInc(I) ≤ ∆pCon(I) ≤ ∆tInc(I)

Proof (Theorem 2). Let x ∈ {pCon, tCon, pInc, tInc}, M ∈ TMLN and ∀I ⊆ MI(M),
we know from Proposition 4 that:

∆tCon(I) = ∆pInc(I) ≤ ∆pCon(I) ≤ ∆tInc(I)

From Definition 12, a temporal parametric semantics is defined as follows:

TPS(I) = ∆(I) ·Θ
(
σ(I)

)
.

Consequently, ∆(I) is a coefficient of the combination of σ and Θ. Thus, for any
I ,σ and Θ, we may order the results according to the ∆(I) coefficient.

Finally, given that the MAP Inference returns the instantiation with the maximum
strength, all strengths of the MAP inferences are equal.

Therefore, if we denote by:

– TPStCon = 〈∆tCon,σ,Θ〉, TPSpInc = 〈∆pInc,σ,Θ〉,
– TPSpCon = 〈∆pCon,σ,Θ〉, TPStInc = 〈∆tInc,σ,Θ〉.

Hence: ∀ItCon ∈ map(M, TPStCon), ∀IpInc ∈ map(M, TPSpInc), ∀IpCon ∈
map(M, TPSpCon), ∀ItInc ∈ map(M, TPStInc),

TPStCon(ItCon) = TPSpInc(IpInc) ≤ TPSpCon(IpCon) ≤ TPStInc(ItInc).

Proof (Proposition 5). Let {w1, · · · , wn} such that n ∈ [0,+∞[ and ∀i ∈ [0, n], wi ∈
[0, 1].

– Θsum(w1, · · · , wn) =
n∑
i=1

wi

(a) Θsum() = 0: by definition.

(b) Θsum(w1) = w1:
1∑
i=1

wi = w1.

(c) Θsum(w1, · · · , wk) = Θsum(w1, · · · , wk, 0): 0 is the identity element of the
addition.

(d) Θsum(w1, · · · , wk, y) ≤ Θsum(w1, · · · , wk, z) if y ≤ z: the addition is mono-
tonic.

(e) Θsum is symmetric: the addition is symmetric.

– Θsum,α(w1, · · · , wn) =
(

n∑
i=1

(wi)
α

) 1
α

s.t. α ≥ 1

(a) Θsum,α() = 0: by definition.



(b) Θsum,α(w1) = w1:
(

1∑
i=1

(wi)
α

) 1
α

= wi.

(c) Θsum,α(w1, · · · , wk) = Θsum,α(w1, · · · , wk, 0): 0 cannot increase with any
power and it is the identity element of the addition.

(d) Θsum,α(w1, · · · , wk, y) ≤ Θsum,α(w1, · · · , wk, z) if y ≤ z: it is a sum of
positive element and the addition is monotonic.

(e) Θsum,α is symmetric: the addition is monotonic.
– Θpsum(w1, · · · , wn) = w1 	 · · · 	 wn,

where w1 	 w2 = w1 + w2 − w1 · w2

(a) Θpsum() = 0: by definition.
(b) Θpsum(w) = w: by definition.
(c) Θpsum(w1, · · · , wk) = Θpsum(w1, · · · , wk, 0): w 	 0 = w + 0− w · 0 = w.
(d) Θpsum(w1, · · · , wk, y) ≤ Θpsum(w1, · · · , wk, z) if y ≤ z: we know that any

wi ∈ [0, 1]. From w1 	w2 = w1 +w2 −w1 ·w2 then the addition of w1 +w2

is greater than the subtraction of the product w1 · w2, i.e. w1 + w2 ≥ w1 · w2.
(e) Θpsum is symmetric: the addition and the product are symmetric.

The three functions Θsum, Θsum,α and Θpsum are well-behaved.

Proof (Proposition 6). Let M ∈ TMLN, {(φ1, w1), · · · , (φn, wn)} ⊆ MI(M).

– σid({(φ1, w1), · · · , (φn, wn)}) = (w1, · · · , wn)
(a) σid() = (): by definition.
(b) σid({(φ1, w1), · · · , (φk, wk)})

= (w′1, · · · , w′n) such that if k ≥ 1 then n ≥ 1: ∀k ≥ 1, n = k.
(c) σid({(φ1, w1), · · · , (φk, wk), (φk+1, 0)}) = (σid({(φ1, w1), · · · , (φk, wk)}), 0),

if τ (TF({φ1, · · · , φk})) 6` τ ({φ}): the function return the initial weight, then
any weight doesn’t change and the 0 is added.

(d) σid({(φ1, w1), · · · , (φk, wk)})⊂ σid({(φ1, w1), · · · , (φk, wk), (φk+1, wk+1)})
if φk+1 is a ground temporal formula, τ (TF({φ1, · · · , φk})) 6` τ ({φk+1}) and
Con(TF({(φ1, w1), · · · , (φk, wk), (φk+1, wk+1)})): same reason as in item (c).

(e) for any well behaved Θ: Θ
(
σid({(φ1, w1), · · · , (φk, wk)})

)
≤ Θ

(
σid({(φ1, w1), · · · , (φk, wk), (φk+1, wk+1)})

)
if τ (TF({φ1, · · · , φk})) 6`

τ ({φk+1}) and Con(TF({(φ1, w1), · · · , (φk, wk), (φk+1, wk+1)})):
same reason as in item (c) and (d).

– σthresh,α({(φ1, w1), · · · , (φn, wn)}) = (max(w1 − α, 0), · · · , max(wn − α, 0))
s.t. α ∈ [0, 1[

(a) σthresh,α() = (): by definition.
(b) σthresh,α({(φ1, w1), · · · , (φk, wk)}) = (w′1, · · · , w′n) such that if k ≥ 1 then

n ≥ 1: : ∀k ≥ 1, n = k.
(c) σthresh,α({(φ1, w1), · · · , (φk, wk), (φk+1, 0)}) =

(σthresh,α({(φ1, w1), · · · , (φk, wk)}), 0), if τ (TF({φ1, · · · , φk})) 6` τ ({φ}):
every 0 still 0 and doesn’t change the rest of the other weights.



(d) σthresh,α({(φ1, w1), · · · , (φk, wk)})⊂ σthresh,α({(φ1, w1), · · · , (φk, wk), (φk+1, wk+1)})
if φk+1 is a grounded temporal formula, τ (TF({φ1, · · · , φk})) 6` τ ({φk+1})
and Con(TF({(φ1, w1), · · · , (φk, wk), (φk+1, wk+1)})).
Any weight is added.

(e) for any well behaved Θ: Θ
(
σthresh,α({(φ1, w1), · · · , (φk, wk)})

)
≤ Θ

(
σthresh,α({(φ1, w1), · · · , (φk, wk), (φk+1, wk+1)})

)
if τ (TF({φ1, · · · , φk})) 6`

τ ({φk+1}) and Con(TF({(φ1, w1), · · · , (φk, wk), (φk+1, wk+1)})).
Any weight is added and the previous weights are independent to new weight
then the aggregation cannot decrease.

– • let φ = (ψ1 ∧ · · · ∧ ψk)→ ψk+1 a rule,
prem(φ) = {ψ1, · · · , ψk}.

• imp((φ,w), {(φ1, w1), · · · , (φn, wn)}) =

0 if φ is a ground rule s.t. ∃ψi ∈ prem(φ)
s.t. ψi /∈ Cn({φ1, · · · , φn})

w otherwise

• σrule({(φ1, w1), · · · , (φn, wn)}) =
(
imp((φ1, w1), {(φ2, w2), · · · , (φn, wn)}), · · · ,

imp((φn, wn), {(φ1, w1), · · · , (φn−1, wn−1)})
)

(a) σrule() = (): by definition.
(b) σrule({(φ1, w1), · · · , (φk, wk)}) = (w′1, · · · , w′n) such that if k ≥ 1 then

n ≥ 1. Any new weight is either added with its weight or with 0 but it is added
then ∀k ≥ 1, n = k.

(c) σrule({(φ1, w1), · · · , (φk, wk), (φk+1, 0)}) = (σrule({(φ1, w1), · · · , (φk, wk)}), 0),
if τ (TF({φ1, · · · , φk})) 6` τ ({φ}).
Add a weighted temporal formula with a weight of 0 will still be 0 in any case.

(d) σrule({(φ1, w1), · · · , (φk, wk)})⊂ σrule({(φ1, w1), · · · , (φk, wk), (φk+1, wk+1)})
if φk+1 is a ground temporal formula, τ (TF({φ1, · · · , φk})) 6` τ ({φk+1}) and
Con(TF({(φ1, w1), · · · , (φk, wk), (φk+1, wk+1)})).
Add any new consistent information doesn’t change the other information then
we have a strict inclusion.

(e) for any well behaved Θ: Θ
(
σrule({(φ1, w1), · · · , (φk, wk)})

)
≤ Θ

(
σrule({(φ1, w1), · · · , (φk, wk), (φk+1, wk+1)})

)
if τ (TF({φ1, · · · , φk})) 6`

τ ({φk+1}) and Con(TF({(φ1, w1), · · · , (φk, wk), (φk+1, wk+1)})).
Add a new information has a weight belonging to 0 and 1, it cannot decrease
the aggregation.

The three functionsσid,σthresh,α andσrule are well-behaved.
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