
HAL Id: hal-04386485
https://hal.science/hal-04386485v1

Submitted on 12 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Similarity Measures between Order-Sorted Logical
Arguments

Victor David, Jérôme Delobelle, Jean-Guy Mailly

To cite this version:
Victor David, Jérôme Delobelle, Jean-Guy Mailly. Similarity Measures between Order-Sorted Log-
ical Arguments. Journées d’Intelligence Artificielle Fondamentale, 2023, Strasbourg, France. �hal-
04386485�

https://hal.science/hal-04386485v1
https://hal.archives-ouvertes.fr

Actes JIAF-JFPDA 2023

Similarity Measures between Order-Sorted Logical Arguments

Victor David1 Jérôme Delobelle2 Jean-Guy Mailly2

1 Department of Mathematics and Computer Science University of Perugia, Italy
2 Université Paris Cité, LIPADE, F-75006 Paris, France

victor.david@unipg.it
jerome.delobelle@u-paris.fr
jean-guy.mailly@u-paris.fr

Abstract

Similarity in formal argumentation has received some
attention recently, since one can argue that, in some context,
using similar arguments to reach a conclusion is not the
same as using dissimilar ones. While existing work consider
arguments built from propositional logic, in this work we
adapt the notion of similarity measures to arguments built
from Order-Sorted First Order Logic, an extension of First
Order Logic which allows to represent complex information,
considering the type of the data. We study and evaluate
our approach with respect to an adaptation of axioms from
the literature. This paves the way to new reasoning modes
taking into account similarity between arguments in complex
settings like ontologies.

1 Introduction

Formal argumentation has become a major topic in
Knowledge Representation and Reasoning (KRR), with va-
rious applications like decision making [29], defeasible
reasoning [16], dealing with inconsistent knowledge bases
[12], as well as in multi-agent systems [23]. So, when
agents use logic-based information for reasoning, it is pos-
sible to build arguments from this information, where ty-
pically an argument is a pair made of a set of formulae
(called support) and a single formula (called conclusion).
The conclusion should be a logical consequence of the sup-
port. Examples of arguments are 𝐴 = ⟨{𝑝 ∧ 𝑞 ∧ 𝑟}, 𝑝 ∧ 𝑞⟩,
𝐵 = ⟨{𝑝 ∧ 𝑞}, 𝑝 ∧ 𝑞⟩ and 𝐶 = ⟨{𝑝, 𝑞}, 𝑝 ∧ 𝑞⟩. From the
definition of arguments, one can identify attacks between
them, and then use a semantics to evaluate the arguments.
Finally, conclusions of the “strong” arguments are inferred
from the base. In the literature, there exist several families of
semantics (e.g. extension-based, ranking-based or gradual
semantics) to determine which arguments are “strong”. We

refer the reader to [1] for a recent overview of the exis-
ting families of semantics in abstract argumentation and the
differences between these approaches (e.g., definition, out-
come, application). Among the existing gradual semantics,
like ℎ-Categorizer [12], some of them satisfy the Counting
(or Strict Monotony) principle defined in [2]. This prin-
ciple states that each attacker of an argument contributes
to weakening the argument. For instance, if the argument
𝐷 = ⟨{¬𝑝 ∨ ¬𝑞},¬𝑝 ∨ ¬𝑞⟩ is attacked by 𝐴, 𝐵, 𝐶, then
each of the three arguments will decrease the strength of
𝐷. However, the three attackers are somehow similar, thus
𝐷 will lose more than necessary. Consequently, the authors
in [4] have motivated the need for investigating the notion
of similarity between pairs of such logical arguments. They
introduced a set of principles that a reasonable similarity
measure should satisfy, and provided several measures that
satisfy them. In [3, 5, 6] several extensions of ℎ-Categorizer
that take into account similarities between arguments have
been proposed. All these works consider propositional lo-
gic. In this paper, we suggest to adapt the principles be-
hind similarity measures for logical arguments to a much
more expressive framework, namely Order-Sorted First Or-
der Logic (OS − FOL) [24], a formalism which generalizes
(standard) First Order Logic (FOL) . Fragments of OS− FOL
have been used for reasoning in various domains (e.g. [17]
uses FOL for reasoning about policies, and [22] proposes
an architecture for building cognitive agents capable of de-
duction on facts and rules inferred directly from natural
language). More generally, many KRR formalisms can be
captured through OS − FOL, like Description Logics [11].
While FOL has already interesting modelling capabilities,
OS − FOL allows to naturally model situations where va-
riables belong to a given domain, and there can be relations
between the domains of the variables (e.g., the domains
made of all the penguins is a subset of the domain contai-

ning all the birds). So, by studying logical arguments built
from OS − FOL, we are able to apply our work to existing
argumentation frameworks based on FOL [13, 10], but also
other rich frameworks like Description Logics [11]. This
paves the way to applications of argumentation (and simila-
rity measures) to inconsistent knowledge expressed in these
rich structured frameworks.

2 Background

2.1 Logic and Arguments

We assume that the reader is familiar with propositio-
nal logic and First Order Logic (FOL). First Order Lo-
gic is a rich framework that develops information about
the objects and can also express the relationship bet-
ween them (using predicates). An example is “Tweety
is a penguin, all penguins are birds and all birds have
wings, so Tweety has wings” which can be expressed as
𝑝𝑒𝑛𝑔𝑢𝑖𝑛(𝑇𝑤𝑒𝑒𝑡𝑦) ∧ (∀𝑥, 𝑝𝑒𝑛𝑔𝑢𝑖𝑛(𝑥) → 𝑏𝑖𝑟𝑑 (𝑥)) ∧
(∀𝑥, 𝑏𝑖𝑟𝑑 (𝑥) → ℎ𝑎𝑣𝑒𝑊𝑖𝑛𝑔𝑠(𝑥)) for the premises, and
ℎ𝑎𝑣𝑒𝑊𝑖𝑛𝑔𝑠(𝑇𝑤𝑒𝑒𝑡𝑦) as the consequence. However, this
framework does not allow to distinguish between various
types of objects. This means that it would be possible to
write a FOL formula like ℎ𝑎𝑠𝑅𝑜𝑜𝑡𝑠(𝑇𝑤𝑒𝑒𝑡𝑦), which does
not make sense since Tweety is a bird, not a plant. Since
we want to apply our method to contexts where data can
have a specific type, we use Order-Sorted FOL [24], a ge-
neralization of (standard) FOL where all the variables are
associated with a sort (as well as the parameters of the pre-
dicates). 1 Then, when interpreting a formula, the domain of
variables is constrained by its sort. An additional constraint
can be added to these sorts, as a partial order over them,
corresponding to inclusion relations between the domains
associated to the sorts.

Definition 1 (Order-Sorted FOL) Let So = {𝑠1, . . . , 𝑠𝑛}
be a set of sorts, and ≺ ⊆ So × So a partial order over So.
An Order-Sorted First Order Language OS− FOL, is a set of
formulae built up by induction from :
– a set C of constants (C = {𝑎1, . . . , 𝑎𝑙}),
– a set V of variables (V = {𝑥𝑠 , 𝑦𝑠 , 𝑧𝑠 , . . . | 𝑠 ∈ So}),
– a set P of predicates (P = {𝑃1, . . . , 𝑃𝑚}),
– a function ar : P→ Nwhich gives the arity of predicates,
– a function sort s.t. for 𝑃 ∈ P, sort(𝑃) ∈ Soar(𝑃) , and
for 𝑐 ∈ C, sort(𝑐) ∈ So,
– the usual connectives (¬,∨,∧,→,↔), Boolean constants
⊤ (true) and ⊥ (false) and quantifier symbols (∀, ∃).
A grounded formula is a formula without any variable.

We use lowercase greek letters (e.g. 𝜙, 𝜓) to denote for-
mulae, and uppercase ones (e.g. Φ,Ψ) to denote sets of for-
mulae. The set of all Order-Sorted FOL formulae is denoted

1. In this paper, we restrict ourselves to formulae without functions.

by OS − FOL. We assume formulae to be prenex, i.e. writ-
ten as Q1𝑥1, . . . ,Q𝑘𝑥𝑘𝜙 where Q𝑖 is a quantifier (for each
𝑖 ∈ {1, . . . , 𝑘}) and 𝜙 is a non-quantified formula. A formula
𝜙 is in negation normal form (NNF) if and only if it does
not contain implication or equivalence symbols, and every
negation symbol occurs directly in front of an atom. Follo-
wing [21], we slightly abuse words and denote by NNF(𝜙)
the formula in NNF obtained from 𝜙 by “pushing down”
every occurrence of ¬ (using De Morgan’s law) and eli-
minating double negations. For instance, NNF(¬((𝑃(𝑎) →
𝑄(𝑎)) ∨¬𝑄(𝑏))) = 𝑃(𝑎) ∧¬𝑄(𝑎) ∧𝑄(𝑏). In that case, we
call literal either an atom (i.e. a predicate with its parame-
ters) or the negation of an atom. The set of grounded atoms is
denoted by A. We denote by Lit(𝜙) the set of literals occur-
ring in NNF(𝜙), hence Lit(¬((𝑃(𝑎) → 𝑄(𝑎))∨¬𝑄(𝑏))) =
{𝑃(𝑎),¬𝑄(𝑎), 𝑄(𝑏)}. For a given set of predicates P,
we define L = {𝑃(𝑥𝑠1

1 , . . . , 𝑥
𝑠𝑘
𝑘
),¬𝑃(𝑥𝑠1

1 , . . . , 𝑥
𝑠𝑘
𝑘
) | 𝑃 ∈

P, sort(𝑃) = (𝑠1, . . . , 𝑠𝑘)} the set of literals. We say that a
literal 𝐿 is negative when it starts with a negation, denoted
by Pol(𝐿) = −. Otherwise we say that it is positive, deno-
ted by Pol(𝐿) = +. And we say that two literals have the
same polarity if they are either both positive or both nega-
tive. Finally, given a grounded literal 𝐿 = ±𝑃(𝑎1, . . . , 𝑎𝑘)
where ± indicates the polarity of 𝐿, Pred(𝐿) = 𝑃 cor-
responds to the name of the predicate underlying 𝐿, and
Para(𝐿) = ⟨𝑎1, . . . , 𝑎𝑘⟩.

Consider 𝜙 ∈ OS − FOL, 𝜙 is in a conjunctive normal
form (CNF) if it is a conjunction of clauses

∧
𝑖 𝑐𝑙𝑖 where

each clause 𝑐𝑙𝑖 is a disjunction of literals
∨

𝑗 𝑙 𝑗 . For instance
𝑃(𝑎)∧(𝑄(𝑎)∨𝑄(𝑏)) is in CNF while (𝑃(𝑎)∧𝑄(𝑎))∨𝑄(𝑏)
is not. CNF formulae are particular NNF formulae. Clauses
are also usually represented as sets of literals, and CNF
formulae as sets of clauses.

In OS − FOL, the partial order ≺ represents “sub-type”
relations between groups of entities. For instance, the fact
that dogs are a special type of mammals can be represented
by such a sub-type relation. In the case where 𝑠1 ≺ 𝑠2,
a predicate which expects a parameter of type 𝑠2 can be
applied to a constant or variable of type 𝑠1 (for instance, a
predicate about mammals can be applied to dogs).

𝑙
𝑎 𝑝𝑙𝑚 𝑏

𝑑 𝑐 𝑝 𝑐ℎ

Figure 1 – Hierarchy of sorts from Example 1. An arrow
from 𝑠1 to 𝑠2 means 𝑠1 ≺ 𝑠2.

Example 1 OS−FOL formulae can be used to reason about
ontological information. Assume that we have the following
information : mammals and birds are animals, dogs and
cats are mammals, penguins and chickens are birds. Mo-
reover, Zazu is a bird, Tweety is a penguin, and Dogmatix
is a dog. Finally, animals are living beings, as well as

plants. This can be represented by the following sorts and
constants :
– So = {𝑚, 𝑏, 𝑎, 𝑑, 𝑐, 𝑝, 𝑐ℎ, 𝑙, 𝑝𝑙} with 𝑚 ≺ 𝑎, 𝑏 ≺ 𝑎,
𝑑 ≺ 𝑚, 𝑐 ≺ 𝑚, 𝑝 ≺ 𝑏, 𝑐ℎ ≺ 𝑏, 𝑎 ≺ 𝑙, 𝑝𝑙 ≺ 𝑙 (see Figure 1),
– 𝑍 ∈ C with sort(𝑍) = 𝑏 is a constant for Zazu,
– 𝑇 ∈ C with sort(𝑇) = 𝑝 is a constant for Tweety,
– 𝐷 ∈ C with sort(𝐷) = 𝑑 is a constant for Dogmatix.

We know that all birds have wings, and both mammals
and birds are warm-blooded. Also, some birds and some
mammals fly, but not all of them. If a bird is wounded,
then it cannot fly. If a bird is penguin, then it cannot
fly. Some birds are wounded. Finally, Tweety is a pen-
guin. This information can be represented by the predicates
P = {ℎ𝑊, 𝑤𝐵, 𝑓 , 𝑤, 𝑝}, standing respectively for “have-
Wings”, “warmBlooded”, “fly”, “wounded” and “pen-
guin” s.t. ar(𝑃𝑖) = 1 and sort(𝑃𝑖) = 𝑎 for each 𝑃𝑖 ∈ P.

We can build, e.g. the formula ∀𝑥𝑏, ℎ𝑊 (𝑥𝑏) meaning
that all birds have wings (because the variable 𝑥𝑏 has the
sort 𝑏). The other pieces of information are represented by
∀𝑥𝑏𝑤𝐵(𝑥𝑏) ∀𝑥𝑚𝑤𝐵(𝑥𝑚)
∃𝑥𝑏1 , 𝑥

𝑏
2 𝑓 (𝑥𝑏1) ∧ ¬ 𝑓 (𝑥

𝑏
2) ∃𝑥𝑚1 , 𝑥𝑚2 𝑓 (𝑥𝑚1) ∧ ¬ 𝑓 (𝑥

𝑚
2)

∀𝑥𝑏𝑤(𝑥𝑏) → ¬ 𝑓 (𝑥𝑏) ∀𝑥𝑏𝑝(𝑥𝑏) → ¬ 𝑓 (𝑥𝑏)
∃𝑥𝑏𝑤(𝑥𝑏) 𝑝(𝑇)
However formulae like ∃𝑥𝑙 , 𝑓 (𝑥𝑙) or ∀𝑥𝑝𝑙 , 𝑤𝐵(𝑥𝑝𝑙) are

not well-formed, since the predicates 𝑓 𝑙𝑦 and 𝑤𝐵 cannot
be applied to living beings or plants.

OS−FOL formulae are evaluated via a notion of structure :

Definition 2 (Structure) Given 𝑛 ∈ N, a 𝑛-sorted structure
is St = (𝐷𝑜𝑚, 𝑅𝑒𝑙, 𝐶𝑜𝑛𝑠) where :
– 𝐷𝑜𝑚 = {𝐷1, . . . , 𝐷𝑛} are the (non-empty) domains,
– 𝑅𝑒𝑙 = {𝑅1, . . . , 𝑅𝑚} are relations over the domains,
– 𝐶𝑜𝑛𝑠 = {𝑐1, . . . , 𝑐𝑙} are constants in the domains.

Example 2 A structure associated with the OS − FOL from
Example 1 is St = (𝐷𝑜𝑚, 𝑅𝑒𝑙, 𝐶𝑜𝑛𝑠) where
– 𝐷𝑜𝑚 = {𝐷1 . . . 𝐷9} are the sets of all individuals of the
various types (e.g. 𝐷1 is the set of mammals, corresponding
to the sort symbol 𝑚 ; 𝐷2 is the set of birds, corresponding
to the sort symbol 𝑏 ; etc),
– 𝑅𝑒𝑙 = {𝑅1, . . . , 𝑅5} are the relations corresponding to the
predicate symbols (e.g. 𝑅1 identifies winged animals,. . .)
– 𝐶𝑜𝑛𝑠 = {𝑍𝑎𝑧𝑢, 𝑇𝑤𝑒𝑒𝑡𝑦, 𝐷𝑜𝑔𝑚𝑎𝑡𝑖𝑥} are respectively a
particular bird (an element of the domain 𝐷2 associated
with the sort 𝑏), a particular penguin (an element of 𝐷6
associated with the sort 𝑝) and a particular dog (an element
of 𝐷4 associated with the sort 𝑑).

Classical first order logic formulae can be evaluated via
1-sorted structures. For this reason, any fragment of first
order logic is captured by OS − FOL. Now, we show how
OS − FOL formulae are interpreted.

Definition 3 (Interpretation) An interpretation ISt over a
structure St assigns to elements of the OS−FOL vocabulary

some values in the structure St. Formally,
– ISt (𝑠𝑖) = 𝐷𝑖 , for 𝑖 ∈ {1, . . . , 𝑛} s.t. for each 𝑠𝑖 , 𝑠 𝑗 ∈ So, if
𝑠𝑖 ⪯ 𝑠 𝑗 then ISt (𝑠𝑖) ⊆ ISt (𝑠 𝑗) (each sort symbol is assigned
to a domain s.t. the sub-type relations are respected),
– ISt (𝑃𝑖) = 𝑅𝑖 , for 𝑖 ∈ {1, . . . , 𝑚} (each predicate symbol
is assigned to a relation),
– ISt (𝑎𝑖) = 𝑐𝑖 , for 𝑖 ∈ {1, . . . , 𝑙} (each constant symbol
is assigned to a constant value). As a shorthand, we write
ISt ((𝑠1, . . . , 𝑠𝑘)) = ISt (𝑠1) × · · ·×ISt (𝑠𝑘). Then satisfaction
of formulae is recursively defined by :
– ISt |= 𝑃𝑖 (𝑥1, . . . , 𝑥𝑘), where (𝑥1, . . . , 𝑥𝑘) ∈
ISt ((𝑠1, . . . , 𝑠𝑘)) with sort(𝑥𝑖) = 𝑠𝑖 for each 𝑖 ∈
{1, . . . , 𝑘}, iff (𝑥1, . . . , 𝑥𝑘) ∈ 𝑅𝑖 ,
– ISt |= ∃𝑥𝑠𝑖𝜙 iff ISt,𝑥𝑠𝑖←𝑣 |= 𝜙 for some 𝑣 ∈ 𝐷𝑖 ,
– ISt |= ∀𝑥𝑠𝑖𝜙 iff ISt,𝑥𝑠𝑖←𝑣 |= 𝜙 for each 𝑣 ∈ 𝐷𝑖 ,
– ISt |= 𝜙 ∧ 𝜓 iff ISt |= 𝜙 and ISt |= 𝜓,
– ISt |= 𝜙 ∨ 𝜓 iff ISt |= 𝜙 or ISt |= 𝜓,
– ISt |= ¬𝜙 iff ISt ̸ |= 𝜙,
where ISt,𝑥𝑠𝑖←𝑣 is a modified version of ISt s.t. the variable
𝑥𝑠𝑖 is replaced by a value 𝑣 in the domain 𝐷𝑖 corresponding
to the sort symbol 𝑠𝑖 . Finally, if Φ is a set of formulae, then
ISt |= Φ iff ISt |= 𝜙 for each 𝜙 ∈ Φ.

Observe that Definition 3 does not specify the satis-
faction of implications and equivalences, but they can
be defined as usual by (𝜙 → 𝜓) ≡ (¬𝜙 ∨ 𝜓), and
(𝜙 ↔ 𝜓) ≡ (𝜙 → 𝜓) ∧ (𝜓 → 𝜙). We use Mod(Φ) to
denote the set of interpretations satisfying a set of formulae
Φ, and we call Φ consistent if Mod(Φ) ≠ ∅.

Example 3 Continuing Example 1, we define ISt by :
– ISt (𝑚) = 𝐷1, ISt (𝑏) = 𝐷2, . . . , ISt (𝑝𝑙) = 𝐷9,
– ISt (ℎ𝑊) = 𝑅1, . . . , ISt (𝑝) = 𝑅5,
– ISt (𝑍) = 𝑍𝑎𝑧𝑢, ISt (𝑇) = 𝑇𝑤𝑒𝑒𝑡𝑦, ISt (𝐷) = 𝐷𝑜𝑔𝑚𝑎𝑡𝑖𝑥.
The formula 𝜙 = ∀𝑥𝑏ℎ𝑊 (𝑥𝑏) is satisfied by ISt,
since all elements of the domain 𝐷2 associated with
the sort symbol 𝑏 actually have wings. On the
contrary, consider the set of formulae Φ = {∀𝑥𝑏 𝑓 (𝑥𝑏),
∀𝑥𝑝¬ 𝑓 (𝑥𝑝)}. This set of formulae is not satisfied, because
𝑝 ≺ 𝑏, and so the domains satisfy 𝐷6 ⊂ 𝐷2, meaning that
all penguins are birds. Then, from Φ we can deduce that
any penguin can fly (because of the first formula) and can-
not fly (because of the second formula) at the same time.
So, this formula is not satisfied by ISt. Notice that we could
not define an interpretation I′St s.t. I′St (𝑍) = 𝑇𝑤𝑒𝑒𝑡𝑦 and
I′St (𝑇) = 𝑍𝑎𝑧𝑢, since 𝑍𝑎𝑧𝑢 is a bird, and 𝑇 has the sort 𝑝
(i.e. it can only be a penguin, not any kind of bird).

Now we introduce the concept of instantiation, i.e. groun-
ded formulae which are compatible with a given OS − FOL
formula.

Definition 4 (Instantiation) GivenΦ a set of OS−FOL for-
mulae and ISt an interpretation over a structure St, the set
of instantiations of Φ is defined recursively by :

– InstISt (Φ) = {Φ} if Φ = {𝜙}, where 𝜙 is a grounded
formula s.t. ISt |= 𝜙,
– InstISt (Φ) = {InstISt ({𝜙𝑥𝑠←𝑣 | ISt |= 𝜙𝑥𝑠←𝑣 , 𝑣 ∈
ISt (𝑠)})} if Φ = {∀𝑥𝑠𝜙},
– InstISt (Φ) = {InstISt ({𝜙𝑥𝑠←𝑣 | ISt |= 𝜙𝑥𝑠←𝑣 , 𝑣 ∈ 𝑉}) |
∅ ⊂ 𝑉 ⊆ ISt (𝑠)} if Φ = {∃𝑥𝑠𝜙},
– InstISt (Φ) = {𝐼1 ∪ 𝐼2 | 𝐼1 ∈ InstISt ({𝜙1}), 𝐼2 ∈
InstISt (Φ2), ISt |= 𝐼1 ∪ 𝐼2} if Φ = {𝜙1} ∪Φ2 with 𝜙1 ∉ Φ2,
where 𝜙𝑥𝑠←𝑣 is the formula 𝜙 s.t. all the occurrences of the
variable 𝑥𝑠 are replaced by the value 𝑣 (from the domain
associated with the sort 𝑠).

The idea is that formulae with quantified variables may
be instanciated in various ways. Assuming that the do-
main of a variable 𝑥 is {𝐴, 𝐵}, then the formula ∃𝑥𝑃(𝑥)
means that either 𝑃(𝐴) is true, or 𝑃(𝐵), or both at the
same time. And ∀𝑥𝑃(𝑥) means that 𝑃(𝐴) and 𝑃(𝐵) are
both true. This is what is captured by the notion of instan-
tiation. Moreover, an instantiation is consistent because of
the constraint ISt |= 𝐼1 ∪ 𝐼2 in the last part of the definition.
This constraint means that, if e.g. we consider the set of for-
mulae {∃𝑥𝑃(𝑥), ∃𝑥¬𝑃(𝑥)}, then we keep the instantiations
where 𝑃(𝐴) is true and 𝑃(𝐵) is false, or the opposite. But
we exclude situations where 𝑃(𝐴) is both true (because of
the first formula) and false (because of the second formula)
at the same time.

Example 4 Consider the set of formulae Φ = {𝜙1 =

∃𝑥𝑏𝑤(𝑥𝑏), 𝜙2 = ∀𝑥𝑏𝑤(𝑥𝑏) → ¬ 𝑓 (𝑥𝑏)}. We as-
sume here that the domain associated with the sort
𝑏 is the set {𝑇𝑤𝑒𝑒𝑡𝑦, 𝑍𝑎𝑧𝑢}. Applying Definition 4,
InstISt (Φ) = {𝐼1 ∪ 𝐼2 | 𝐼1 ∈ InstISt ({∃𝑥𝑏𝑤(𝑥𝑏)}), 𝐼2 ∈
InstISt ({∀𝑥𝑏𝑤(𝑥𝑏) → ¬ 𝑓 (𝑥𝑏)}), ISt |= 𝐼1 ∪ 𝐼2}.

We start with the first formula, i.e. 𝜙1 = ∃𝑥𝑏𝑤(𝑥𝑏).
InstISt ({𝜙1}) = {{𝑤(𝑇𝑤𝑒𝑒𝑡𝑦)}, {𝑤(𝑍𝑎𝑧𝑢)},
{𝑤(𝑇𝑤𝑒𝑒𝑡𝑦), 𝑤(𝑍𝑎𝑧𝑢)}}. For 𝜙2 = ∀𝑥𝑏𝑤(𝑥𝑏) →
¬ 𝑓 (𝑥𝑏), there is only one possible instantiation :
InstISt ({𝜙2}) = {{𝑤(𝑇𝑤𝑒𝑒𝑡𝑦) → ¬ 𝑓 (𝑇𝑤𝑒𝑒𝑡𝑦),
𝑤(𝑍𝑎𝑧𝑢) → ¬ 𝑓 (𝑍𝑎𝑧𝑢)}}.
We conclude that InstISt (Φ) =
{{𝑤(𝑇𝑤𝑒𝑒𝑡𝑦), 𝑤(𝑇𝑤𝑒𝑒𝑡𝑦) → ¬ 𝑓 (𝑇𝑤𝑒𝑒𝑡𝑦), 𝑤(𝑍𝑎𝑧𝑢)
→ ¬ 𝑓 (𝑍𝑎𝑧𝑢)}, {𝑤(𝑍𝑎𝑧𝑢), 𝑤(𝑇𝑤𝑒𝑒𝑡𝑦) → ¬ 𝑓 (𝑇𝑤𝑒𝑒𝑡𝑦),
𝑤(𝑍𝑎𝑧𝑢) → ¬ 𝑓 (𝑍𝑎𝑧𝑢)}, {𝑤(𝑇𝑤𝑒𝑒𝑡𝑦), 𝑤(𝑍𝑎𝑧𝑢),
𝑤(𝑇𝑤𝑒𝑒𝑡𝑦) → ¬ 𝑓 (𝑇𝑤𝑒𝑒𝑡𝑦), 𝑤(𝑍𝑎𝑧𝑢) → ¬ 𝑓 (𝑍𝑎𝑧𝑢)}}

From the notions of structure and interpretation, we can
define the consequence relation over OS − FOL formulae.

Definition 5 (Consequence Relation) Let 𝜙 and 𝜓 be two
OS − FOL formulae. We say that 𝜓 is a consequence of 𝜙,
denoted by 𝜙 ⊢ 𝜓, if for any structure St, and any interpre-
tation ISt over St, ISt |= 𝜙 implies ISt |= 𝜓. Two formulae
𝜙, 𝜓 are equivalent (denoted 𝜙 ≡ 𝜓) iff 𝜙 ⊢ 𝜓 and 𝜓 ⊢ 𝜙.

A logic is a pair (𝐿, |∼) where 𝐿 is a set of formulae
(i.e. a language) and |∼⊆ 𝐿 × 𝐿 is a consequence relation.

We can lift the consequence relation to sets of formulae
by {𝜓1, . . . , 𝜓𝑛}|∼ 𝜙 if 𝜓1 ∧ · · · ∧ 𝜓𝑛 |∼ 𝜙. An example of
logic consists of (L, ⊢) where L is an OS − FOL language
following Definition 1 and ⊢ is the consequence relation
from Definition 5. Classical logic can be used to define
arguments, i.e. logic-based representation of reasons sup-
porting a specific conclusion. Logical arguments usually
need to satisfy some constraints [12] :

Definition 6 (Logical Argument) An argument built un-
der a logic (𝐿, |∼) is a pair ⟨Φ, 𝜙⟩, where 2 Φ ⊆ 𝑓 𝐿 and
𝜙 ∈ 𝐿, s.t. Φ is consistent, Φ|∼ 𝜙, and �Φ′ ⊂ Φ s.t. Φ′ |∼ 𝜙.
An argument 𝐴 = ⟨Φ, 𝜙⟩ is trivial iff Φ = ∅ and 𝜙 ≡ ⊤. Φ
is called the support of the argument (Supp(𝐴) = Φ) and
𝜙 its conclusion (Conc(𝐴) = 𝜙). The set of all arguments
built under (𝐿, |∼) is denoted Arg(𝐿).

In the rest of this paper, we assume a OS − FOL language
L, and we focus on the set of arguments Arg(L) built under
the logic (L, ⊢) as defined previously.

Example 5 Let 𝐴1 and 𝐴2 be two examples of arguments :
𝐴1 = ⟨{∃𝑥𝑏𝑤(𝑥𝑏),∀𝑥𝑏𝑤(𝑥𝑏) → ¬ 𝑓 (𝑥𝑏)}, ∃𝑥𝑏¬ 𝑓 (𝑥𝑏)⟩
𝐴2 = ⟨{𝑝(𝑇𝑤𝑒𝑒𝑡𝑦),∀𝑥𝑏𝑝(𝑥𝑏) → ¬ 𝑓 (𝑥𝑏)},¬ 𝑓 (𝑇𝑤𝑒𝑒𝑡𝑦)⟩

Note that two sets of formulae Φ,Ψ ⊆ 𝑓 L are equi-
valent, denoted by Φ � Ψ, iff there is a bĳection
𝑓 : Φ → Ψ s.t. ∀𝜙 ∈ Φ, 𝜙 ≡ 𝑓 (𝜙). We use this
restricted equivalence notion to avoid equivalences that
could be false due to incorrect information. For example
the sets {𝑆𝑞𝑢𝑎𝑟𝑒(𝑎), 𝑆𝑞𝑢𝑎𝑟𝑒(𝑎) → 𝑅𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒(𝑎)} and
{𝑅𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒(𝑎), 𝑅𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒(𝑎) → 𝑆𝑞𝑢𝑎𝑟𝑒(𝑎)} should not
be equivalent. However, we may want to consider that a
set of formulae is equivalent with the conjunction of its
elements (e.g. {𝑃(𝑎), 𝑄(𝑎)} and {𝑃(𝑎) ∧ 𝑄(𝑎)} are equi-
valent). To make them equivalent, we borrow the method
used in [7]. We transform every formula into a CNF, then
we split it into a set containing its clauses. In our approach,
we consider one CNF per formula. For that purpose, we
will use a finite sub-language F that contains one formula
per equivalent class and the formula should be in CNF.

Definition 7 (Finite CNF over Language F)
Let F ⊂ 𝑓 L s.t. ∀𝜙 ∈ L, there is a unique 𝜓 ∈ F s.t.
𝜙 ≡ 𝜓, Lit(𝜙) = Lit(𝜓) and 𝜓 is a CNF formula. We
define CNF(𝜙) = 𝜓.

While we do not specify the elements of F , we use
concrete formulae in the examples, and they are assumed to
belong to F .

Now we introduce UC(Φ) as the representation of the for-
mulae in Φ as one set of clauses. Intuitively, recall that any
formula can be seen as a set of clauses, associated with a
sequence of quantifiers. A set of formulae can then be seen

2. 𝑋 ⊆ 𝑓 𝑌 means 𝑋 is a finite subset of 𝑌

as set of clauses and a sequence of quantifiers, such that
variables are renamed to avoid ambiguities. As an example,
assume 𝜙1 = ∃𝑥𝑃(𝑥) ∧𝑄(𝑥) and 𝜙2 = ∃𝑥𝑄(𝑥) ∨ 𝑅(𝑥). We
have UC({𝜙1, 𝜙2}) = ∃𝑥, 𝑥′{𝑃(𝑥), 𝑄(𝑥), 𝑄(𝑥′) ∨ 𝑅(𝑥′)}.
Formally, for Φ = {Q𝜙𝑖

𝜙𝑖 | 𝑖 ∈ N} ⊆ 𝑓 F , where 𝜙𝑖
is a non-quantified CNF formula (i.e. a set of clauses
CNF(𝜓) for some 𝜓 ∈ F), and Q𝜙𝑖

is the sequence
of quantifiers associated with 𝜙𝑖 , we define UC(Φ) =

(Q∗
𝜙1

. . .Q∗
𝜙𝑛
,
⋃
𝜙∈Φ

⋃
𝛿∈𝜙

𝛿∗), where a renaming is applied to

each clause (𝛿∗) and each sequence of quantifiers (Q∗
𝜙𝑖

) in
order to guarantee that no variable is shared between quan-
tifiers Q∗

𝜙𝑖
and Q∗

𝜙 𝑗
(with 𝑖 ≠ 𝑗) or between clauses coming

from different formulae 𝜙𝑖 and 𝜙 𝑗 (with 𝑖 ≠ 𝑗). We simply
write UC(𝜙) instead of UC({𝜙}), for 𝜙 ∈ F .

Implicitly, in the rest of the paper, we consider UC(Φ)
as the set made of a single formula such that the sequence
of quantifiers is the concatenation of Q∗

𝜙1
. . .Q∗

𝜙𝑛
and the

non-quantified part is the CNF formula corresponding to
the set of clauses

⋃
𝜙∈Φ

⋃
𝛿∈𝜙

𝛿∗.

Note that UC({𝑃(𝑎), 𝑄(𝑎)}) = UC({𝑃(𝑎) ∧
𝑄(𝑎)}) = {𝑃(𝑎), 𝑄(𝑎)} or with some quanti-
fiers UC({∀𝑥∃𝑦 𝑃(𝑥, 𝑦),∀𝑥 𝑄1 (𝑥) ∨ 𝑄2 (𝑥)}) =

UC({∀𝑥1∃𝑥2 𝑃(𝑥1, 𝑥2) ∧ ∀𝑥3 𝑄1 (𝑥3) ∨ 𝑄2 (𝑥3)}) =

{∀𝑥1∃𝑥2 𝑃(𝑥1, 𝑥2),∀𝑥3 𝑄1 (𝑥3) ∨𝑄2 (𝑥3)} .

Let us now introduce the notion of compiled argument.

Definition 8 (Compiled Argument) The compilation of
𝐴 ∈ Arg(L) is 𝐴∗ = ⟨UC(Supp(𝐴)), Conc(𝐴)⟩.

Example 6 Consider 𝐴, 𝐵, 𝐶 ∈ Arg(L) such that
𝐴 = ⟨{𝑃(𝑎) ∧𝑄(𝑎) ∧𝑄(𝑏)}, 𝑃(𝑎) ∧𝑄(𝑎)⟩,
𝐵 = ⟨{𝑃(𝑎) ∧𝑄(𝑎)}, 𝑃(𝑎) ∧𝑄(𝑎)⟩, and
𝐶 = ⟨{𝑃(𝑎), 𝑄(𝑎)}, 𝑃(𝑎) ∧𝑄(𝑎)⟩.
The compilations of the three arguments 𝐴, 𝐵, 𝐶 are :
𝐴∗ = ⟨{𝑃(𝑎), 𝑄(𝑎), 𝑄(𝑏)}, 𝑃(𝑎) ∧𝑄(𝑎)⟩,
𝐵∗ = ⟨{𝑃(𝑎), 𝑄(𝑎)}, 𝑃(𝑎) ∧𝑄(𝑎)⟩, and
𝐶∗ = ⟨{𝑃(𝑎), 𝑄(𝑎)}, 𝑃(𝑎) ∧𝑄(𝑎)⟩.

We can see in Example 6 that argument 𝐴 is not concise,
meaning that it has irrelevant information (𝑄(𝑏)) for im-
plying its conclusion. As it was shown in [7], using clausal
arguments ensure that the arguments are concise.

Definition 9 (Equivalent Arguments) Two arguments
𝐴, 𝐵 ∈ Arg(L) are equivalent, denoted by 𝐴 ≈ 𝐵,
iff UC(Supp(𝐴)) = UC(Supp(𝐵)) and UC(Conc(𝐴)) =

UC(Conc(𝐵)). We denote by 𝐴 0 𝐵 when 𝐴 and 𝐵 are not
equivalent.

Definition 10 (Sub-argument) Given two arguments 𝐴 =

⟨Φ, 𝜙⟩ and 𝐵 = ⟨Ψ, 𝜓⟩, we say that 𝐴 is a sub-argument of
𝐵 if UC(Φ) ⊆ UC(Ψ).

2.2 Binary Similarity Measure between OS − FOL Ar-
gument

A similarity measure is used to indicate whether two ar-
guments are similar or not, i.e. whether they share some
parts of the reasoning mechanism used to build the argu-
ments.

Definition 11 (Similarity Measure) Let X be a set of ob-
jects. A similarity measure on X, denoted by simX, is a
function from X × X to [0, 1].

In this section, we focus on similarity measures over ar-
guments, i.e. X = Arg(L). Intuitively, simArg(L) (𝐴, 𝐵) is
close to 0 if the difference between 𝐴 and 𝐵 is important,
while it is close to 1 if the arguments are similar. Several
principles that similarity measures should satisfy have been
discussed in the literature [4, 8, 7]. Some of the principles
(Maximality, Symmetry, Substitution, and Syntax Indepen-
dence) can be stated exactly as in the literature [7], since
they do not concern the internal structure of the arguments.
Notice that some authors have argued against the fact that
a similarity measures should absolutely satisfy symmetry
[28, 19]. Some of the principles can be stated exactly as
in the literature [7], since they do not concern the internal
structure of the arguments. It is the case of these principles :
Maximality states that the similarity between an argument
and itself should be maximal ; Symmetry states that the si-
milarity measure should be symmetric 3 ; Substitution states
that two fully similar arguments should be equally similar
to any third argument ; and Syntax Independence states that
similarity between arguments should be independent from
the syntax. For the other ones, we may need to adapt them
to our OS − FOL-based arguments.

First, we adapt the Minimality principle. It states that,
if two arguments do not have anything in common in their
content, then their degree of similarity should be minimal.
While, in propositional logic, determining the set of com-
mon propositional variables is enough, here we need to
consider (domains of) predicates and constants. We do not
consider variables here since they are used in the context
of quantifiers : there is no reason to assume that there is
something common between ∀𝑥, 𝑃(𝑥) and ∀𝑥, 𝑄(𝑥).

Before presenting the Minimality principle, let us intro-
duce some useful notations. Given a formula 𝜙, Dom(𝜙) =⋃

𝑃∈Pred(𝜙) sort(𝑃) represents the domains of the pre-
dicates in 𝜙 (or, more precisely, the sort symbols asso-
ciated with these domains). We extend the notation to
Dom(Φ) = ⋃

𝜙∈Φ Dom(𝜙) for Φ a set of formulae.

Principle 1 (Minimality)
A similarity measure simArg(L) satisfies Minimality iff for
all 𝐴, 𝐵 ∈ Arg(L), if

3. Notice that some authors have argued against the fact that a simila-
rity measures should absolutely satisfy symmetry [28, 19].

1. one of 𝐴,𝐵 is not trivial,
2. ∀𝑠𝑖 ∈ Dom(Supp(𝐴)), �𝑠 𝑗 ∈ Dom(Supp(𝐵)) s.t. 𝑠𝑖 ≺ 𝑠 𝑗
or 𝑠 𝑗 ≺ 𝑠𝑖 or 𝑠 𝑗 = 𝑠𝑖 ,
3. ∀𝑠𝑖 ∈ Dom(Conc(𝐴)), �𝑠 𝑗 ∈ Dom(Conc(𝐵)) s.t. 𝑠𝑖 ≺ 𝑠 𝑗
or 𝑠 𝑗 ≺ 𝑠𝑖 or 𝑠 𝑗 = 𝑠𝑖 ,
then simArg(L) (𝐴, 𝐵) = 0.

The first condition excludes the case where the arguments
have no formula in the support and therefore no sort to
compare and the second and third conditions ensure that
each argument has completely different information.

The second (resp. third) principle states that the more
an argument shares formulae in its support (resp. conclu-
sion) with an another one, the higher is their similarity. For
these principles, we need to introduce the notation C which
represents the set of all grounded clauses in OS − FOL.

Notice that we consider in the two next principles only ar-
guments having no irrelevant information (i.e., 𝐴∗, 𝐵∗, 𝐶∗ ∈
Arg(L)) allowing safe handling of their similarity. The first
conditions allow us to isolate the specific behaviours on
second and third conditions. For Principle 2 focusing on
supports we ensure that we have identical or completely
different conclusions such that it does not contradict that
(𝐴, 𝐵) is more similar than (𝐴,𝐶). We cannot, as in Prin-
ciple 3, use the fact that the conclusions of 𝐵 and 𝐶 are
equivalent as this would prevent conditions 2 and 3 from
being satisfied (due to the minimality of the supports of an
argument, e.g. the case of one support included in another is
not possible). Please note that the constraints 𝐶𝐴 \ 𝐵𝐴 ⊆ C
ensure that the distinct elements in𝐶 cannot have similarity
with 𝐴.

Principle 2 (Monotony – Strict Monotony)
A similarity measure simArg(L) satisfies Monotony iff for
all 𝐴, 𝐵, 𝐶, 𝐴∗, 𝐵∗, 𝐶∗ ∈ Arg(L), if
1. UC(Conc(𝐴)) = UC(Conc(𝐵)) or ∀𝑠𝑖 ∈ Dom(Conc(𝐴)),
�𝑠 𝑗 ∈ Dom(Conc(𝐶)) s.t. 𝑠𝑖 ≺ 𝑠 𝑗 or 𝑠 𝑗 ≺ 𝑠𝑖 or 𝑠 𝑗 = 𝑠𝑖 ,
2. UC(Supp(𝐴)) ∩ UC(Supp(𝐶)) ⊆ UC(Supp(𝐴)) ∩
UC(Supp(𝐵)),
3. for 𝐵𝐴 = UC(Supp(𝐵)) \ UC(Supp(𝐴)) and 𝐶𝐴 =

UC(Supp(𝐶)) \ UC(Supp(𝐴)), 𝐵𝐴 ⊆ 𝐶𝐴, 𝐶𝐴 \ 𝐵𝐴 ⊆ C
and ∀𝑠𝑖 ∈ Dom(Supp(𝐴)), �𝑠 𝑗 ∈ Dom(𝐶𝐴 \ 𝐵𝐴) s.t. 𝑠𝑖 ≺ 𝑠 𝑗
or 𝑠 𝑗 ≺ 𝑠𝑖 or 𝑠 𝑗 = 𝑠𝑖 ,
then simArg(L) (𝐴, 𝐵) ≥ simArg(L) (𝐴,𝐶).

(Monotony)
– If the inclusion in condition 2. is strict or, UC(Supp(𝐴)) ∩
UC(Supp(𝐶)) ≠ ∅ and 𝐵𝐴 ⊂ 𝐶𝐴,
then simArg(L) (𝐴, 𝐵) > simArg(L) (𝐴,𝐶).

(Strict Monotony)

Principle 3 (Dominance – Strict Dominance)
A similarity measure simArg(L) satisfies Dominance iff for
all 𝐴, 𝐵, 𝐶, 𝐴∗, 𝐵∗, 𝐶∗ ∈ Arg(L), if
1. UC(Supp(𝐵)) = UC(Supp(𝐶)),
2. UC(Conc(𝐴)) ∩ UC(Conc(𝐶)) ⊆ UC(Conc(𝐴)) ∩

UC(Conc(𝐵)),
3. for 𝐵𝐴 = UC(Conc(𝐵)) \ UC(Conc(𝐴)) and 𝐶𝐴 =

UC(Conc(𝐶)) \ UC(Conc(𝐴)), 𝐵𝐴 ⊆ 𝐶𝐴, 𝐶𝐴 \ 𝐵𝐴 ⊆ C
and ∀𝑠𝑖 ∈ Dom(Conc(𝐴)), �𝑠 𝑗 ∈ Dom(𝐶𝐴 \ 𝐵𝐴) s.t. 𝑠𝑖 ≺ 𝑠 𝑗
or 𝑠 𝑗 ≺ 𝑠𝑖 or 𝑠 𝑗 = 𝑠𝑖 ,
then simArg(L) (𝐴, 𝐵) ≥ simArg(L) (𝐴,𝐶).

(Dominance)
– If the inclusion in cond. 2. is strict or, UC(Conc(𝐴)) ∩
UC(Conc(𝐶)) ≠ ∅ and 𝐵𝐴 ⊂ 𝐶𝐴, then simArg(L) (𝐴, 𝐵) >
simArg(L) (𝐴,𝐶).

(Strict Dominance)

3 Similarity Models

To define the similarity between two arguments, we will
split the reasoning in several steps, corresponding to the
different levels used in the construction of the arguments.
At each level, different similarity measures can be used to
compare the objects, and various aggregation functions can
then be used to go from the comparison of objects to the
comparison of sets of objects (leading to the next level).
This level structure is based on the fact that our arguments
are built from CNF formulae. More precisely,
Level 1 : compute the similarity between two literals, by
combining the similarity between their polarity, the predi-
cate involved, and the predicates parameters (Section 3.1) ;
Level 2 : then we use the previous level and aggregate the
result of comparing literals in order to compare grounded
clauses (Section 3.2) ;
Level 3 : next, we aggregate the similarity between groun-
ded clauses to obtain the similarity between sets of groun-
ded clauses (Section 3.3) ;
Level 4 : finally, we can define the similarity between sets of
instantiations, since each instantiation is a set of grounded
clauses (Section 3.4).
The similarity between two arguments is obtained by com-
puting the similarity between the instantiations of their sup-
ports and the similarity between their conclusions, so Level
4 is the last level of abstraction that we need.

3.1 Similarity between literals

Recall that a literal is a predicate with or without a ne-
gation operator “¬”. To know how similar are two literals,
we compute the similarity between two atoms (i.e. without
the literals’ polarity) and combine these scores according to
the polarity. At the level of atoms, we identify two parame-
ters influencing the similarity : the value of the predicates
and those of their vectors of parameters. Thus the similarity
between two atoms can be seen as a combination of three
functions : 𝑐 to compute the similarity between two vectors
of constants, 𝑝 between two predicates and 𝑔 to aggregate
these scores.

Definition 12 (Similarity between Atoms)
Let c :

⋃+∞
𝑗 ,𝑘=1 C 𝑗 × C𝑘 → [0, 1] be a similarity measure

between a pair of vectors of constants, p : P × P → [0, 1]
be a similarity measure between a pair of predicates and g :
[0, 1] × [0, 1] → [0, 1] be an aggregation function. Given
two atoms 𝐴1 = 𝑃1 (𝑎1, . . . , 𝑎 𝑗) and 𝐴2 = 𝑃2 (𝑏1, . . . , 𝑏𝑘),
to compute the similarity score between 𝐴1 and 𝐴2 we define
simA⟨g,p,c⟩ : A × A → [0, 1] s.t. simA⟨g,p,c⟩ (𝐴1, 𝐴2) =
g
(
p(Pred(𝐴1), Pred(𝐴2)), c

(
Para(𝐴1), Para(𝐴2)

))
.

A possible p is the function returning 1 if the predicates
are the same, 0 otherwise.

Definition 13 (Function Equal) Let 𝑥, 𝑦 be two arbitrary
objects. The function eq : X × X → {0, 1} is defined by
eq(𝑥, 𝑦) = 1 if 𝑥 = 𝑦 ; or eq(𝑥, 𝑦) = 0 otherwise.

We propose an instance of c suited to vectors of objects.
Other methods could be used and are kept for future work.

Definition 14 (Pointwise Similarity)
Let 𝑋 = ⟨𝑥1, . . . , 𝑥 𝑗⟩, 𝑌 = ⟨𝑦1, . . . , 𝑦𝑘⟩ be arbitrary vectors
of objects. The pointwise similarity between 𝑋 and 𝑌 is :

pws(𝑋,𝑌) =
{

1 𝑋 = 𝑌 = ∅∑min(𝑗,𝑘)
𝑖=1 eq(𝑥𝑖 ,𝑦𝑖)
max(𝑗 ,𝑘) otherwise

Having a similarity score between two atoms, we propose
to use the polarities as binary factors of acceptance or not
of the similarity between atoms.

Definition 15 (Similarity between Literals) Consider
two literals 𝑙1, 𝑙2 ∈ L, such that the respective atoms
are 𝐴1 and 𝐴2. We define simL⟨g,p,c⟩ : L × L → [0, 1],
the similarity measure between two literals according
to a similarity measure between atoms simA⟨g,p,c⟩ s.t. :
simL⟨g,p,c⟩ (𝑙1, 𝑙2) ={

simA⟨g,p,c⟩ (𝐴1, 𝐴2) if Pol(𝑙1) = Pol(𝑙2)
0 otherwise

Example 7 simL⟨min,eq,pws⟩ (𝑃(𝐴, 𝐵),¬𝑃(𝐴,𝐶)) = 0 be-
cause the polarity is not the same. Conversely, we
have simL⟨min,eq,pws⟩ (𝑃(𝐴, 𝐵), 𝑃(𝐴,𝐶)) = 1

2 because :
simL⟨min,eq,pws⟩ (𝑃(𝐴, 𝐵), 𝑃(𝐴,𝐶))
= simA⟨min,eq,pws⟩ (𝑃(𝐴, 𝐵), 𝑃(𝐴,𝐶))
= min(eq(𝑃, 𝑃), pws(⟨𝐴, 𝐵⟩, ⟨𝐴,𝐶⟩))
= min(1, eq(𝐴,𝐴)+eq(𝐵,𝐶)2) = min(1, 1

2) =
1
2 .

3.2 Similarity between grounded clauses

From the level two of the definition of our similarity
measures on arguments, we will need several mathematical
tools that can be defined in an abstract way. In this part, we
apply these tools only for level 2 (the comparison of two
CNF formulae), but they will be applicable also at the next
levels. Let us start with the notion of aggregation function.

Definition 16 (Aggregation Function) Let X be a set of
objects and {𝑥1, 𝑥2, . . . } ⊆ X.We say that ⊕ is an aggrega-
tion function if ∀𝑘 ∈ N, ⊕ is a mapping [0, 1]𝑘 → [0, 1]
such that :
– if 𝑥𝑖 ≥ 𝑥′

𝑖
, then ⊕(𝑥1, . . . , 𝑥𝑖 , . . . , 𝑥𝑘) ≥

⊕(𝑥1, . . . , 𝑥
′
𝑖
, . . . , 𝑥𝑘) (non-decreasingness)

– ⊕(0, . . . , 0) = 0 (weak minimality)
– ∀𝑖 ∈ {1, . . . , 𝑘}, ⊕(𝑥𝑖) = 𝑥𝑖 (identity)

These properties are satisfied by e.g. min, max and avg.
Now we introduce the notion of membership function

which expresses how much an object is similar to the ele-
ments of a set.

Definition 17 (Membership Function) Given X a set of
objects, 𝑥 ∈ X an object, 𝑋 ⊆ X, ⊕ an aggregation function
and sim a similarity measure the membership function of 𝑥
in 𝑋 , 𝜀X⊕,sim : X×2X → [0, 1] is defined by : 𝜀X⊕,sim (𝑥, 𝑋) =
⊕𝑥′∈𝑋 (simX (𝑥, 𝑥′)).

Let us note that classical set-membership can be captured
by 𝜀max,eq where eq is the equality function from Defini-
tion 13. Now we can evaluate how much a literal is similar
to a clause, i.e. a set of literals : given 𝑙 ∈ L a literal, 𝐿 ⊆ L a
set of literals and ⊕l an aggregation function, we define the
function sL = 𝜀L

⊕l ,simL⟨g,p,c⟩ . Then, the similarity between

two grounded clauses is computed by simCsL .

Definition 18 (Membership of a literal in a set of literals)
Let 𝑙 ∈ L be a literal, 𝐿 ⊆ L be a set of literals and ⊕l be an
aggregation function. We define the membership of a literal
in a set of literals by the function 𝜀L

⊕l ,sL : L × 2L → [0, 1]
s.t. :

𝜀L
⊕l ,sL (𝑙, 𝐿) = ⊕l𝑙′∈𝐿 (simL

⟨g,p,c⟩ (𝑙, 𝑙′))

Definition 19 (Similarity measure between two clauses)
Let 𝛿1 = 𝑙1 ∨ . . . ∨ 𝑙 𝑗 , 𝛿2 = 𝑙′1 ∨ . . . 𝑙′

𝑘
∈ OS − FOL be two

grounded clauses. The similarity measure between two
grounded clauses, simC𝜀

L
⊕l ,sL : OS − FOL × OS − FOL →

[0, 1].

Roughly speaking, what we mean in Definition 19 (and
subsequent similar definitions) is that the similarity bet-
ween two grounded clauses must be computed using a si-
milarity measure (in the sense of Definition 11), and ideally
this measure should use the membership function 𝜀L

⊕l ,sL

to compare a given literal with a set of literals (i.e. with a
grounded clause). But at this level of abstraction, we do not
explicitly defined one function realizing this computation,
Def. 19 characterizes the general meaning of what a simi-
larity measure between clauses should be. In the rest of this
paper, we will use one concrete approach to define simila-
rity measures, namely Tversky’s ratio model [28], but other
approaches could be used instead as soon as they satisfy the
requirements of Def. 19 (and Def. 11).

Tversky’s ratio model [28] is a general similarity mea-
sure which encompasses different well known similarity
measure as the Jaccard measure [18], Dice measure [15],
Sorensen one [27], Symmetric Anderberg [9] and Sokal and
Sneath 2 [26]. We propose to extend it in two different ways.
Firstly, instead of using the usual operators of membership
of an element to a set, we propose to use our paramete-
risable membership function 𝜀 (see Definition 17). Then
a new parameter 𝛾 allows us to have a lower evaluation
between a set of literals than a set of clauses (or instantia-
tions), i.e. when sets of objects are interpreted disjunctively
or conjunctively.

Definition 20 (Extended Tversky Measure) Let 𝑋,𝑌 ⊆
X be arbitrary sets of objects. Let 𝜀X⊕,sim be a member-
ship function with ⊕ an aggregation function and sim a
similarity measure. We denote by avg the average function.
Let us consider

— 𝑎 = avg
(∑
𝑥∈𝑋

𝜀X⊕,sim (𝑥,𝑌),
∑
𝑦∈𝑌

𝜀X⊕,sim (𝑦, 𝑋)
)
,

— 𝑏 =
∑
𝑥∈𝑋
(1 − 𝜀X⊕,sim (𝑥,𝑌)),

— 𝑐 =
∑
𝑦∈𝑌
(1 − 𝜀X⊕,sim (𝑦, 𝑋)),

— 𝛼, 𝛽 ∈ [0, +∞[and 𝛾 ∈]0, +∞[.
The extended Tversky measure between 𝑋 and 𝑌 is :

Tve𝛼,𝛽,𝛾,𝜀
X
⊕,sim (𝑋,𝑌) =

{
1 if 𝑋 = 𝑌 = ∅(

𝑎
𝑎+𝛼·𝑏+𝛽 ·𝑐

)𝛾
otherwise

Classical similarity measures (see Table 1 in [4] for the
definitions) can be obtained with 𝛼 = 𝛽 = 2−𝑛 and 𝛾 = 1
and the classical set-membership. In particular, the Jaccard
measure (i.e. jac) is obtained with 𝑛 = 0, Dice (i.e. dic)
with 𝑛 = 1, Sorensen (i.e. sor) with 𝑛 = 2, Anderberg
(i.e. adb) with 𝑛 = 3, and Sokal and Sneah 2 (i.e. ss2)
with 𝑛 = −1. Under some reasonable assumptions, Tversky
measure s.t. 𝛼 = 𝛽 are symmetric.

Proposition 1 For any 𝑋,𝑌 ⊆ X, any 𝛾 ∈]0, +∞[,
any membership function 𝜀X𝑚𝑎𝑥,sim s.t. sim is symme-
tric, we have Tve𝛼,𝛼,⊗ (𝑋,𝑌) = Tve𝛼,𝛼,⊗ (𝑌, 𝑋), where
⊗ = 𝛾, 𝜀X𝑚𝑎𝑥,sim.

In the rest of the paper we will focus our study on the
membership function using the aggregator function max.
Table 1 denotes the set of parametric (non-)symmetric ex-
tended versions of the well known similarity measures,
where fixing 𝛼 and 𝛽 corresponds to choosing among Jac-
card, Dice, Sorensen, Anderberg, or Sokal and Sneah.

The other parameters of the different similarity measures
are only the coefficient 𝛾 and the similarity function simX.
Let us prove that any such measure satisfies some intuitive
properties : two sets are maximally similar if they are iden-
tical (in the symmetric case), or at least included in one
another (non-symmetric case).

Symmetric Measures Non-Symmetric Measures

Tve1,1,⊗ (𝑋,𝑌) = jac⊖ (𝑋,𝑌) Tve0,1,⊗ (𝑋,𝑌) = ns-jac⊖ (𝑋,𝑌)
Tve0.5,0.5,⊗ (𝑋,𝑌) = dic⊖ (𝑋,𝑌) Tve0,0.5,⊗ (𝑋,𝑌) = ns-dic⊖ (𝑋,𝑌)
Tve0.25,0.25,⊗ (𝑋,𝑌) = sor⊖ (𝑋,𝑌) Tve0,0.25,⊗ (𝑋,𝑌) = ns-sor⊖ (𝑋,𝑌)
Tve0.125,0.125,⊗ (𝑋,𝑌) = adb⊖ (𝑋,𝑌) Tve0,0.125,⊗ (𝑋,𝑌) = ns-adb⊖ (𝑋,𝑌)
Tve2,2,⊗ (𝑋,𝑌) = ss2⊖ (𝑋,𝑌) Tve0,2,⊗ (𝑋,𝑌) = ns-ss2⊖ (𝑋,𝑌)

Table 1 – Set of parametric (non-)symmetric measures,
where ⊗ is 𝛾, 𝜀Xmax,sim and ⊖ is 𝛾, simX

Proposition 2 If simX satisfies Maximality [4] and ⊗ =

𝛾, 𝜀X𝑚𝑎𝑥,sim, then, for any 𝛾 ∈]0, +∞[, 𝛼 ≠ 0, if
– 𝑌 = 𝑋 then Tve𝛼,𝛼,⊗ (𝑋,𝑌) = 1 (symmetric case),
– 𝑌 ⊆ 𝑋 then Tve0,𝛼,⊗ (𝑋,𝑌) = 1 (non-symmetric case).

Example 8 Consider 𝑃1 = 𝑃(𝐴, 𝐵), 𝑃2 = 𝑃(𝐴,𝐶)
and 𝑃3 = 𝑃(𝐶, 𝐵). Consider sL = simL⟨min,eq,pws⟩ .
simC

𝜀L
max,sL (𝑃1, 𝑃2 ∨ 𝑃3) = Tve

1,1,1, 𝜀L
max,sL (𝑃1, 𝑃2 ∨ 𝑃3) =

𝑎
𝑎+𝑏+𝑐 = 1

3 with :
• 𝑎 = avg(𝜀L

max,sL (𝑃1, 𝑃2 ∨ 𝑃3), 𝜀L
max,sL (𝑃2, 𝑃1)+

𝜀L
max,sL (𝑃3, 𝑃1)) = avg(12 , 1) =

3
4

• 𝑏 = 1 − 𝜀L
max,sL (𝑃1, 𝑃2 ∨ 𝑃3) = 1

2
• 𝑐 = (1 − 𝜀L

max,sL (𝑃2, 𝑃1)) + (1 − 𝜀L
max,sL (𝑃3, 𝑃1)) =

1
2 +

1
2 = 1, with 𝜀L

max,sL (𝑃1, 𝑃2 ∨ 𝑃3) = 1
2 =

max(simL⟨min,eq,pws⟩ (𝑃1, 𝑃2), simL⟨min,eq,pws⟩ (𝑃1, 𝑃3)),
𝜀L
max,sL (𝑃1, 𝑃2) = max(simL⟨min,eq,pws⟩ (𝑃1, 𝑃2)) = 1

2
(idem for 𝜀L

max,sL (𝑃1, 𝑃3)).

3.3 Similarity between sets of grounded clauses

Recall thatC is the set of all grounded clauses in OS−FOL.

Definition 21 (Grounded clause membership) Let 𝛿 ∈ C
be a grounded clause and Δ ⊆ C be a set of grounded
clauses. Let ⊕c and ⊕l be two aggregation functions and
sC = simC

𝜀L
⊕l ,sL be a similarity measure between a pair

of clauses with sL = simL⟨g,p,c⟩ . The membership func-
tion of a grounded clause in a set of grounded clauses,
denoted 𝜀C⊕c ,sC : C × 2C → [0, 1], is 𝜀C⊕c ,sC (𝛿,Δ) =

⊕c
𝛿′∈Δ (s

C (𝛿, 𝛿′)).

Definition 22 (Similarity between sets of grounded clauses)
Let 𝜀C⊕c ,sC be a membership function with sC = simC

𝜀L
⊕l ,sL

and sL = simL⟨g,p,c⟩ . A similarity measure bet-
ween two sets of grounded clauses is defined as
simI

𝜀C
⊕c ,sC : 2C × 2C → [0, 1].

Example 9 Let Δ1 and Δ4 be two sets of grounded clauses.
Δ1 = {𝑤(𝑇),¬𝑤(𝑇) ∨ ¬ 𝑓 (𝑇),¬𝑤(𝑍) ∨ ¬ 𝑓 (𝑍)}
Δ4 = {𝑝(𝑇),¬𝑝(𝑇) ∨ ¬ 𝑓 (𝑇),¬𝑝(𝑍) ∨ ¬ 𝑓 (𝑍)}

simI
𝜀C
max,sC (Δ4,Δ1) = Tve

1,1,1, 𝜀C
max,sC (Δ4,Δ1) = 𝑎

𝑎+𝑏+𝑐 = 1
8

with :
• 𝑎 = avg(𝜀C

max,sC
(𝑝(𝑇),Δ1) + 𝜀C

max,sC
(¬𝑝(𝑇) ∨

¬ 𝑓 (𝑇),Δ1) + 𝜀Cmax,sC (¬𝑝(𝑍) ∨ ¬ 𝑓 (𝑍),Δ1),
𝜀C
max,sC

(𝑤(𝑇),Δ4) + 𝜀C
max,sC

(¬𝑤(𝑇) ∨ ¬ 𝑓 (𝑇),Δ4) +
𝜀C
max,sC

(¬𝑤(𝑍)∨¬ 𝑓 (𝑍),Δ4)) = avg(0+ 1
3+

1
3 , 0+

1
3+

1
3) =

2
3

• 𝑏 = (1 − 𝜀C
max,sC

(𝑝(𝑇),Δ1)) + (1 − 𝜀C
max,sC

(¬𝑝(𝑇) ∨
¬ 𝑓 (𝑇),Δ1)) + (1 − 𝜀C

max,sC
(¬𝑝(𝑍) ∨ ¬ 𝑓 (𝑍),Δ1)) =

1 + 2
3 +

2
3 = 7

3
• 𝑐 = (1 − 𝜀C

max,sC
(𝑤(𝑇),Δ4)) + (1 − 𝜀C

max,sC
(¬𝑤(𝑇) ∨

¬ 𝑓 (𝑇),Δ4)) + (1 − 𝜀C
max,sC

(¬𝑤(𝑍) ∨ ¬ 𝑓 (𝑍),Δ4)) =

1 + 2
3 +

2
3 = 7

3

3.4 Similarity between instantiations

Now, define I the set of all instantiations in OS − FOL.

Definition 23 (Instantiation membership) Consider an
instantiation Δ ∈ I and a set of instantiations 𝐼 ⊆ I.
Let ⊕i, ⊕c and ⊕l be three aggregation functions and
sI = simI

𝜀C
⊕c ,sC be a similarity measure between a pair of

set of clauses with sC = simC
𝜀L
⊕l ,sL and sL = simL⟨g,p,c⟩ .

The membership function of an instantiation in a set of
instantiations, 𝜀I⊕i ,sI : I × 2I → [0, 1], is 𝜀I⊕i ,sI (Δ, 𝐼) =
⊕i
Δ′∈𝐼 (s

I (Δ,Δ′)).

Definition 24 (Similarity between sets of instantiations)
Let 𝜀I⊕i ,sI be a membership function with sI = simI𝜀

C

⊕c ,sC ,

sC = simC
𝜀L
⊕l ,sL and sL = simL⟨g,p,c⟩ . The similarity

measure between two set of instantiations is defined as
simSI

𝜀I
⊕i ,sI : 2I × 2I → [0, 1].

Example 10 Let 𝐼1 and 𝐼2 be two sets of instantiations
s.t. :
𝐼1 = {Δ1,Δ2,Δ3} with
• Δ1 = {𝑤(𝑇),¬𝑤(𝑇) ∨ ¬ 𝑓 (𝑇),¬𝑤(𝑍) ∨ ¬ 𝑓 (𝑍)}
• Δ2 = {𝑤(𝑍),¬𝑤(𝑇) ∨ ¬ 𝑓 (𝑇),¬𝑤(𝑍) ∨ ¬ 𝑓 (𝑍)}
• Δ3 = {𝑤(𝑇), 𝑤(𝑍),¬𝑤(𝑇) ∨ ¬ 𝑓 (𝑇),¬𝑤(𝑍) ∨ ¬ 𝑓 (𝑍)}
𝐼2 = {Δ4} with
• Δ4 = {𝑝(𝑇),¬𝑝(𝑇) ∨ ¬ 𝑓 (𝑇),¬𝑝(𝑍) ∨ ¬ 𝑓 (𝑍)}

simSI
𝜀I
max,sI (𝐼1, 𝐼2) = Tve

1,1,1, 𝜀I
max,sI (𝐼1, 𝐼2) = 𝑎

𝑎+𝑏+𝑐 =
73

1143 ≃ 0.064 with :

• 𝑎 = avg
(∑
𝑥∈𝐼1

𝜀I
max,sI

(𝑥, 𝐼2),
∑
𝑦∈𝐼2

𝜀I
max,sI

(𝑦, 𝐼1)
)

= avg
(
𝜀I
max,sI

(Δ1, 𝐼2) + 𝜀Imax,sI (Δ2, 𝐼2) +

𝜀I
max,sI

(Δ3, 𝐼2), 𝜀Imax,sI (Δ4, 𝐼1)
)

= avg(18 +
1
8 +

2
19 ,

1
8) =

73
304

• 𝑏 =
∑
𝑥∈𝐼1

1 − 𝜀I
max,sI

(𝑥, 𝐼2) = (1 − 𝜀I
max,sI

(Δ1, 𝐼2)) + (1 −

𝜀I
max,sI

(Δ2, 𝐼2)) + (1 − 𝜀Imax,sI (Δ3, 𝐼2)) = 7
8 +

7
8 +

17
19 = 201

76

• 𝑐 =
∑
𝑦∈𝐼2

1 − 𝜀I
max,sI

(𝑦, 𝐼1) = 1 − 𝜀I
max,sI

(Δ4, 𝐼1) = 7
8

Let us now define a similarity measure between sets of
formulae.

Definition 25 (Similarity Models)
A Similarity Model (SM) is a tuple M = ⟨sL =

simL⟨g,p,c⟩ , sC = simC
𝜀L
⊕l ,sL , sI = simI

𝜀C
⊕c ,sC ,

simSI
𝜀I
⊕i ,sI ⟩. Let Φ,Ψ ⊆ OS − FOL be two sets

of formulae and ISt be an interpretation over a
structure St. The similarity between Φ and Ψ is
simOS−FOLM,ISt

(Φ,Ψ) = simSI𝜀
I

⊕i ,sI (InstISt (Φ), InstISt (Ψ)).

Finally, using the measure of similarity between sets of
formulae, we can extend the definition from [4] to asses the
similarity between two OS − FOL arguments.

Definition 26 (Similarity between OS-FOL Arguments)
Consider a coefficient 0 < 𝜂 < 1, a SM M and ISt an
interpretation over a structure St. We define simArg(L)M,ISt ,𝜂

:
Arg(L) × Arg(L) → [0, 1] by simArg(L)M,ISt ,𝜂

(𝐴, 𝐵) =

𝜂 · simOS−FOLM,ISt
(UC(Supp(𝐴)), UC(Supp(𝐵)))

+(1 − 𝜂) · simOS−FOLM,ISt
(UC(Conc(𝐴)), UC(Conc(𝐵))).

Example 11 Let Mjac = ⟨sL = simL⟨min,eq,pws⟩ , sC =

jac2,sL
, sI = jac1,sC , jac1,sI⟩ be a similarity instantiation

model and let 𝐴1 and 𝐴2 be the two OS-FOL arguments
from Example 5. Their respective instantiations are given
in Example 4 for the premises and the conclusions. Let us
compute the similarity between 𝐴1 and 𝐴2 with 𝜂 = 0.5.
simArg(L)Mjac ,ISt ,0.5

(𝐴1, 𝐴2) =
0.5 · simOS−FOLMjac ,ISt

(Supp(𝐴1), Supp(𝐴2))+
0.5 · simOS−FOLMjac ,ISt

(Conc(𝐴1), Conc(𝐴2))
= 0.5 · 73

1143 + 0.5 · 5
11 ≃ 0.2592 where

simOS−FOLMjac ,ISt
(Supp(𝐴1), Supp(𝐴2)) =

jac1,sI (InstISt (Supp(𝐴1)), InstISt (Supp(𝐴2))) = 73
1143 ≃

0.064 and simOS−FOLMjac ,ISt
(Conc(𝐴1), Conc(𝐴2)) =

jac1,sI (InstISt (Conc(𝐴1)), InstISt (Conc(𝐴2))) = 5
11 ≃

0.4545.

4 Axiomatic Evaluation

Before determining the principles satisfied by our simi-
larity measures, we introduce the notion of well-behaved
SM. It is a bridge between the (lower level) properties of the
measures that we use (e.g. the Tversky measures) and the
(higher level) properties of the similarity measure between
arguments defined from such a SM.

Table 2 – Principles satisfaction by similarity measures. • (resp. ◦) means the measure satisfies (resp. violates) the
principle. sim𝑥 is a shorthand for simArg(L)𝑥 .

simjac simdic simsor simadb simss2 simns-jac simns-dic simns-sor simns-adb simns-ss2
Maximality • • • • • • • • • •
Symmetry • • • • • ◦ ◦ ◦ ◦ ◦
Substitution • • • • • ◦ ◦ ◦ ◦ ◦
Syntax Independence • • • • • • • • • •
Minimality • • • • • • • • • •
Monotony • • • • • • • • • •
Strict Monotony • • • • • ◦ ◦ ◦ ◦ ◦
Dominance • • • • • • • • • •
Strict Dominance • • • • • ◦ ◦ ◦ ◦ ◦

Definition 27 (Well-Behaved SM)
A SM M = ⟨sL = simL⟨g,p,c⟩ , sC = simC

𝜀L
⊕l ,sL , sI =

simI
𝜀C
⊕c ,sC , simSI

𝜀I
⊕i ,sI ⟩ is well-behaved iff :

1. (a) i. g(1, 1) = 1,
ii. g(0, 0) = 0,

(b) i. p(𝑃, 𝑃) = 1,
ii. p(𝑃,𝑄) = 0 iff 𝑃 ≠ 𝑄,

(c) i. c(⟨𝑎1, . . . , 𝑎𝑘⟩, ⟨𝑎1, . . . , 𝑎𝑘⟩) = 1,
ii. if ∀𝑖 ∈ {1, . . . , 𝑘}, � 𝑗 ∈
{1, . . . , 𝑛} s.t. 𝑎𝑖 = 𝑏 𝑗 then
c(⟨𝑎1, . . . , 𝑎𝑘⟩, ⟨𝑏1, . . . , 𝑏𝑛⟩) = 0,

2. Given X a set of objects,
(a) sim𝜀,s (𝑋, 𝑋) = 1 for any set of objects 𝑋 ⊆ X,
(b) if ∀𝑥 ∈ 𝑋 , ∀𝑥′ ∈ 𝑋 ′, s(𝑥, 𝑥′) = 0 then
sim𝜀,s (𝑋, 𝑋 ′) = 0,

(c) consider 𝑋0, 𝑋1, 𝑋2 ⊆ X s.t. 𝑋1 ⊂ 𝑋2
and 𝑋2 \ 𝑋1 = {𝑥2}. If ∃𝑥0 ∈ 𝑋0 s.t.
s(𝑥0, 𝑥2) = s(𝑥2, 𝑥0) = 1 then sim𝜀,s (𝑋0, 𝑋2) ≥
sim𝜀,s (𝑋0, 𝑋1),

(d) consider 𝑋0, 𝑋1, 𝑋2 ⊆ X s.t. 𝑋1 ⊂ 𝑋2 and 𝑋2 \
𝑋1 = {𝑥2}. If ∀𝑥0 ∈ 𝑋0, s(𝑥0, 𝑥2) = s(𝑥2, 𝑥0) = 0
then sim𝜀,s (𝑋0, 𝑋1) ≥ sim𝜀,s (𝑋0, 𝑋2).

In the last item, X can be the set of all literals (for cha-
racterizing simC𝜀

L
⊕l ,sL), the set of all grounded clauses (for

characterizing simI𝜀
C

⊕c ,sC) or the set of instantiations (for
characterizing simSI𝜀

I

⊕i ,sI). Now we can show that a well-
behaved SM guarantees that the corresponding similarity
measure satisfies some principles. Let us recall that the set
of principles can be found in Section 2.2.

Theorem 1 For any M ∈ SM, if M is well-behaved then
simArg(L)M,ISt ,𝜂

satisfies the following principles : Maximality,
Minimality, Monotony and Dominance.

To satisfy other principles we propose additional
constraints.

Theorem 2 Let M ∈ SM be a well-behaved and simArg(L)M,ISt ,𝜂
be a similarity based on M.
– simArg(L)M,ISt ,𝜂

satisfies Symmetry (resp. Syntax Indepen-
dence) if all the functions in M are symmetric (resp. syntax
independent).
– simArg(L)M,ISt ,𝜂

satisfies Strict Monotony and Strict Dominance
if it satisfies condition 2.(c’) : consider 𝑋0, 𝑋1, 𝑋2 ⊆ X
s.t. 𝑋1 ⊂ 𝑋2 and 𝑋2 \ 𝑋1 = {𝑥2}. If sim𝜀,s (𝑋0, 𝑋1) <

1 and ∃𝑥0 ∈ 𝑋0 s.t. s(𝑥0, 𝑥2) = s(𝑥2, 𝑥0) = 1 then
sim𝜀,s (𝑋0, 𝑋2) > sim𝜀,s (𝑋0, 𝑋1).

We extend some results from [4].

Proposition 3 Let simArg(L) be a similarity measure.
– Consider 𝐴, 𝐵 ∈ Arg(L). If simArg(L) satisfies Maxima-
lity, Monotony, Strict Monotony and Strict Dominance then
𝐴 ≈ 𝐵 iff simArg(L) (𝐴, 𝐵) = 1.
– If simArg(L) satisfies Symmetry, Maximality, Strict Mo-
notony, Dominance, and Strict Dominance then simArg(L)
satisfies Substitution.

Let us prove that the functions g, p and c used in the paper
satisfy the expected properties of a well-behaved SM.

Lemma 1 For g ∈ {min, avg}, p = eq and c = pws,
⟨g, p, c⟩ satisfies item 1. of Def. 27.

We can show similar results for the Tversky measures that
we use to definesimC𝜀

L
⊕l ,sL ,simI𝜀

C

⊕c ,sC andsimSI𝜀
I

⊕i ,sI . We
consider the measures described in Table 1.

Lemma 2 If Tve𝛼,𝛽,𝛾,𝜀
X
⊕,sim is a Tversky measure, with ⊕ =

max, and sim is
– either simL⟨g,p,c⟩ (from Definition 15) s.t. ⟨g, p, c⟩ satis-
fies item 1. of Def. 27,
– or a similarity measure satisfying the item 2. of Def. 27,
then Tve𝛼,𝛽,𝛾,𝜀

X
⊕,sim satisfies the item 2. of Def. 27.

Proposition 4 For 𝑥 ∈ {jac, dic, sor, adb, ss2, ns-jac,
ns-dic, ns-sor, ns-adb, ns-ss2}, define simArg(L)𝑥 .
Then define the similarity model SM M𝑥 =

⟨simL⟨min,eq,pws⟩ , 𝑥2,simL
, 𝑥1,simC , 𝑥1,simI⟩. The satisfaction

of principles by the measures is given in Table 2.

Notice that Proposition 4 implies that all the principles
are compatible. Moreover with the result of item 1 of Pro-
position 3, we can deduce that our 5 symmetric extended
Tversky measures satisfying a stronger form of maxima-
lity, since equivalent arguments are maximally similar. For
non-symmetric measures, we show that they can obtain full
similarity in a particular case of sub-argument.

Proposition 5 Let 𝐴, 𝐵 ∈ Arg(L) be two arguments.
Assume that M is a SM s.t. simC𝜀

L
⊕l ,sL , simI𝜀

C

⊕c ,sC

and simSI𝜀
I

⊕i ,sI are Tversky measures s.t. 𝛼 ≠ 𝛽

for at least one of them (i.e. it is non-symmetric).
If 𝐵 is a sub-argument of 𝐴, then simArg(L)M,ISt ,𝜂

(𝐴, 𝐵)
≥ 𝜂. Moreover, if UC(Conc(𝐵)) ⊆ UC(Conc(𝐴)), then
simArg(L)M,ISt ,𝜂

(𝐴, 𝐵) = 1.

5 Conclusion

In this paper, we have proposed the rich methodology of
similarity models which are able to express large families
of similarity measures between Order-Sorted First Order
Logic (OS − FOL) arguments, thanks to various parameters
which allow to define generalized versions of similarity
measures from the literature. For the first time in the logical
argumentation literature, we define non-symmetric simila-
rity measures. A set of nine principles for these OS − FOL
arguments has been proposed with a set of well-behaved
properties ensuring some principles. We have shown that
our symmetric measures satisfy all the principles, while
their non-symmetric counterparts only satisfy a subset.

This work paves the way to several interesting research
questions. First of all, we can consider additional measures
(e.g. Ochiai [25], Kulczynski [20]) and principles (e.g. tri-
angular inequality, non-zero, independent distribution [14])
to allow a more accurate comparison of similarity measures.
Another research line could be to consider situations where
different predicates are partially similar. For instance, one
can consider that 𝑔𝑟𝑒𝑎𝑡𝑒𝑟𝑂𝑟𝐸𝑞𝑢𝑎𝑙 (𝐴, 𝐵) is somehow si-
milar to 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦𝐺𝑟𝑒𝑎𝑡𝑒𝑟 (𝐴, 𝐵). Following the same idea
as in [6], we also plan to use our similarity measures as
a parameter of acceptability semantics. Finally, we want
to apply our work on real data expressed in fragments of
OS − FOL.

6 Acknowledgement

This work benefited from the support of the project AG-
GREEY ANR-22-CE23-0005 of the French National Re-
search Agency (ANR) and the Project GIUSTIZIA AGILE,
CUP J89J22000900005.

Références

[1] Amgoud, L.: A Replication Study of Semantics in Ar-
gumentation. Dans ĲCAI’19, pages 6260–6266, 2019.

[2] Amgoud, L. et J. Ben-Naim: Axiomatic Foundations
of Acceptability Semantics. Dans KR’16, pages 2–11,
2016.

[3] Amgoud, L., E. Bonzon, J. Delobelle, D. Doder, S.
Konieczny et N. Maudet: Gradual Semantics Accoun-
ting for Similarity between Arguments. Dans KR’18,
pages 88–97, 2018.

[4] Amgoud, L. et V. David: Measuring Similarity bet-
ween Logical Arguments. Dans KR’18, pages 98–107,
2018.

[5] Amgoud, L. et V. David: An Adjustment Function for
Dealing with Similarities. Dans COMMA’20, pages
79–90, 2020.

[6] Amgoud, L. et V. David: A General Setting for
Gradual Semantics Dealing with Similarity. Dans
AAAI’21, 2021.

[7] Amgoud, L. et V. David: Similarity Measures Based
on Compiled Arguments. Dans ECSQARU’21, pages
32–44, 2021.

[8] Amgoud, L., V. David et D. Doder: Similarity Mea-
sures Between Arguments Revisited. Dans ECSQA-
RU’19, pages 3–13, 2019.

[9] Anderberg, M.: Cluster analysis for applications. Mo-
nographs and textbooks on probability and mathema-
tical statistics, 1973.

[10] Arioua, A., M. Croitoru et S. Vesic: Logic-based ar-
gumentation with existential rules. Int. J. Approx.
Reason., 90 :76–106, 2017.

[11] Baader, F., D. Calvanese, D. L. McGuinness, D. Nardi
et P. F. Patel-Schneider (rédacteurs): The Description
Logic Handbook : Theory, Implementation, Applica-
tions. 2003.

[12] Besnard, P. et A. Hunter: A logic-based theory of
deductive arguments. Artificial Intelligence, 128(1-
2) :203–235, 2001.

[13] Besnard, P. et A. Hunter: Practical first-order argu-
mentation. Dans AAAI’05, pages 590–595, 2005.

[14] David, V.: Dealing with Similarity in Argumentation.
Thèse de doctorat, Univ. Toulouse III, 2021.

[15] Dice, L.: Measures of the amount of ecologic asso-
ciation between species. Ecology, 26(3) :297–302,
1945.

[16] Governatori, G., M. Maher, G. Antoniou et D. Billing-
ton: Argumentation Semantics for Defeasible Logic. J.
Log. Comput., 14(5) :675–702, 2004.

[17] Halpern, J. et V. Weissman: Using first-order logic to
reason about policies. TISSEC, 11(4) :1–41, 2008.

[18] Jaccard, P.: Nouvelles recherches sur la distributions
florale. Bulletin de la societe Vaudoise des sciences
naturelles, 37 :223–270, 1901.

[19] Jantke, K. P.: Nonstandard Concepts of Similarity in
Case-Based Reasoning. Dans Information Systems in
Data Analysis : Prospects – Foundations – Applica-
tions, pages 28–43, 1994.

[20] Kulczynski, S.: Classe des sciences mathématiques et
naturelles. Bull. Internat. de l’Academie Polonaise
des Sciences et des Lettres, pages 57–203, 1927.

[21] Lang, J., P. Liberatore et P. Marquis: Proposi-
tional independence-formula-variable independence
and forgetting. J. Artif. Intell. Res., 18 :391–443,
2003.

[22] Longo, C., F. Longo et C. Santoro: CASPAR : Towards
decision making helpers agents for IoT, based on na-
tural language and first order logic reasoning. Eng.
Appl. Artif. Intell., 104 :104269, 2021.

[23] McBurney, Peter, Simon Parsons et Iyad Rahwan (ré-
dacteurs): Proc. ArgMAS’11, 2012.

[24] Oberschelp, Arnold: Order sorted predicate lo-
gic. Dans Bläsius, Karl Hans, Ulrich Hedtstück
et Claus Rainer Rollinger (rédacteurs) : Sorts and
Types in Artificial Intelligence, pages 7–17, Ber-
lin, Heidelberg, 1990. Springer Berlin Heidelberg,
ISBN 978-3-540-46965-0.

[25] Ochiai, A.: Zoogeographical studies on the Soleoid
fishes found in Japan and its neighbouring regions.
Bull. Jpn. Soc. scient. Fish., 22 :526–530, 1957.

[26] Sneath, P. et R. Sokal: Numerical taxonomy. The prin-
ciples and practice of numerical classification. 1973.

[27] Sørensen, T.: A method of establishing groups of equal
amplitude in plant sociology based on similarity of
species and its application to analyses of the vegeta-
tion on Danish commons. Biol. Skr., 5 :1–34, 1948.

[28] Tversky, A.: Features of Similarity. Psychological
Review, 84(4) :327–352, 1977.

[29] Zhong, Q., X. Fan, X. Luo et F. Toni: An explainable
multi-attribute decision model based on argumenta-
tion. Expert Sys. and Appl., 117 :42–61, 2019.

	Introduction
	Background
	Logic and Arguments
	Binary Similarity Measure between OS-FOL Argument

	Similarity Models
	Similarity between literals
	Similarity between grounded clauses
	Similarity between sets of grounded clauses
	Similarity between instantiations

	Axiomatic Evaluation
	Conclusion
	Acknowledgement

