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ABBA Neural Networks: Coping with Positivity, Expressivity, and Robustness ∗

Ana Neacs,u † , Jean-Christophe Pesquet ‡ , Vlad Vasilescu † , and Corneliu Burileanu †

Abstract. We introduce ABBA networks, a novel class of (almost) non-negative neural networks, which are shown to
possess a series of appealing properties. In particular, we demonstrate that these networks are universal
approximators while enjoying the advantages of non-negative weighted networks. We derive tight
Lipschitz bounds both in the fully connected and convolutional cases. We propose a strategy for designing
ABBA nets that are robust against adversarial attacks, by finely controlling the Lipschitz constant of the
network during the training phase. We show that our method outperforms other state-of-the-art defenses
against adversarial white-box attackers. Experiments are performed on image classification tasks on four
benchmark datasets.
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1. Introduction. Deep learning methods based on neural network models have received increas-
ing attention in the scientific community, because of their stunning abilities to solve a variety of
complex tasks. These powerful systems excel at learning intricate mappings and, in some cases, even
surpass human performance. However, deep architectures usually lack interpretability and they may
lead to over-parameterized models [13, 37]. Additionally, their robustness is not well-controlled,
leaving them exposed to potential adversarial attacks. For instance, [49] demonstrated that by
introducing carefully-crafted, low-magnitude adversarial perturbations, neural classifiers could be
easily fooled [17]. A way of overcoming the aforementioned challenges consists in introducing some
specific constraints in the neural network design. In this article, we are interested in nonnegativity
and stability constraints on the network weights.

It is widely accepted that humans possess the innate ability to decompose complex interactions
into discrete, intuitive hierarchical categories before analyzing them [26]. Conceptually, this evolution
towards part-based representation in human cognition can be linked to non-negativity restrictions on
the network weights [7]. This idea, along with other factors, has sparked interest in neural networks
with non-negative weights. These networks have drawn attention for several reasons. Firstly, they
align with human understandability, making them more interpretable. Secondly, the non-negativity
constraint can act as beneficial regularization, effectively reducing overfitting issues. Moreover, recent
studies have demonstrated that it is possible to derive a tight Lipschitz bound for such networks.
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This Lipschitz constant serves as a valuable metric for quantifying the robustness of the network,
enabling us to design networks with enhanced resilience to adversarial perturbations during the
training process. Despite their advantages, one significant drawback of networks with non-negative
weights is that they might be less expressive than networks with arbitrary signed weights. In [54], it
is shown that standard non-negative networks are not universal approximators [54], a limitation that
our work overcomes.

Approach. In this work, we are interested in neural networks having non-negative weights,
except for the first and last linear layers. This class of networks obviously constitutes an extension of
those having all their linear layers non-negative-valued. We focus on a particular subclass of these
networks for which the weight matrices have a structure of the form[

A B

B A

]
,

thus enjoying a number of algebraic properties. The corresponding networks are subsequently called
ABBA networks. Note that weight matrices A and B are duplicated in ABBA networks, thus allowing
us to limit the number of parameters.

Contributions. This paper makes several key contributions, which are as follows:
• We show that we can put any arbitrary signed network in an ABBA form. This property holds

for fully connected as well as for convolutional neural networks.
• Universal approximation theorems are derived for networks featuring non-negatively weigh-

ted layers.
• We present a method for effectively controlling the Lipschitz constant of ABBA networks1. The

resulting training strategy applies to both fully connected and convolutional cases. Precise
Lipschitz bounds are typically NP hard to compute for arbitrary signed networks, but our
framework allows us to derive such bounds that are easy to compute.

• Numerical experiments conducted on standard image datasets showcase the excellent perfor-
mance of ABBA networks for small models. Notably, they exhibit substantial improvements
in both performance and robustness compared to networks with exclusively non-negative
weights. Moreover, we demonstrate that ABBA networks are competitive with robust networks
featuring arbitrarily signed weights, trained using state-of-the-art techniques.

Outline. The rest of the paper is organized as follows. Section 2 offers an overview of the related
literature, while in Section 3 our main contributions concerning ABBA architectures are introduced,
alongside a list of fundamental properties. Section 4 extends our results to the case of convolutional
neural networks and two Lipschitz constant expressions are derived. Section 5 describes the training
strategy we employ to generate robust models with respect to adversarial perturbations. Section 6
details the results obtained for different image classification tasks, while Section 7 is dedicated to
concluding remarks.

2. Related work. Non-negative neural networks. Inspired by non-negative matrix factorization
(NMF) techniques, the work of [7] introduces non-negative restrictions on the weights to create neural
networks in which the hidden units correspond to identifiable concepts. [4] showed that Autoencoders
(AE) trained under non-negativity constraints are able to derive meaningful representations that

1A full PyTorch implementation of our framework will be made available at https://github.com/Vladimirescu/
ABBA-Neural-Networks-torch.

https://github.com/Vladimirescu/ABBA-Neural-Networks-torch
https://github.com/Vladimirescu/ABBA-Neural-Networks-torch
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unearth the hidden structure of high-dimensional data. Their method showed promising results from
both performance and feature interpretation viewpoints on four different classification tasks. [12]
presented the first polynomial-time algorithm for Probably Approximately Correct (PAC) learning 1-
layer neural networks with positive coefficients. Moreover, ensuring non-negativity has been shown to
have a regularization effect, reducing feature overfitting, which is a very common problem, especially
for tasks where the available training data is scarce [35]. Neural networks defining convex functions
of their inputs [1] also constitute a subclass of networks with non-negative weights.

Link with other networks. From another perspective, the idea of using redundant weights is
reminiscent of siamese networks [6]. These architectures are successfully used to handle similarity
learning tasks, such as face verification [50], character recognition [23], and object tracking [19].
Siamese networks compute a similarity metric on the representations of the inputs, after applying the
same transformation to each one. Apart from the proven efficiency on solving computer vision tasks,
they have lately been employed in NLP problems, e.g., computational argumentation. In [14], it is
shown that siamese architectures outperform other baselines trained on convincingness datasets.

Robustness. The robustness of neural networks against possible adversarial attacks is a topic that
has received increasing attention since nowadays AI-based solutions are ubiquitous [3, 36]. A sizable
body of literature on adversarial attacks and different defense strategies have emerged in recent
years as a result of the work in [49]), which revealed the alluring susceptibility of neural networks to
adversarial perturbations and proposed a box-constrained L-BFGS algorithm for finding adversarial
examples. [15] introduced the FGSM attack as a one-step modification of the input image, following
the direction of loss maximization, while [24] incorporated this step into an iterative method known
as PGD, seen as an improvement over basic FGSM. DeepFool [33] iteratively searches for the closest
adversarial point that directs the optimization towards crossing the decision boundary. DDN [42] and
FMN [39] attacks fall into the category of projected-gradient methods, using iterative updates of the
perturbation vector towards the minimization of its magnitude.

Defensive strategies have been developed to alleviate this robustness issue. [47] divides adver-
sarial defense methods into three categories: adversarial detection, gradient masking, and robust
optimization. Adversarial Training (AT) was first introduced by [15] and later improved by [32].
Recent works on AT [48, 55] have successfully analyzed and refined training techniques, however,
no theoretical certificates regarding their behavior in the presence of different adversaries have
been established yet. Regularization-based methods, such as [30, 46, 59], include additional terms
in their objective, steering the learning process in a direction that leads to better generalization.
[40] provides robustness certificates for neural networks with one hidden layer, yielding an upper
bound of the error in the presence of any adversary (see [11, 16, 41] for more advanced methods.
Randomized smoothing [9, 25, 29, 44, 57] certifies the robustness of a classifier around an input
point by measuring the most-likely prediction over Gaussian-corrupted versions of the point.

Lipschitz properties of neural networks. As highlighted by [49], the Lipschitz behavior of a
neural model is closely correlated with its robustness against adversarial attacks, providing an upper
bound on the response given input perturbations. Controlling the Lipschitz behavior of the network
thus offers theoretical stability guarantees. However, computing the exact constant, even for small
networks is an NP-hard problem [20], and finding a good approximation in a reasonable time is
an open challenge. Several solutions have been proposed lately (see for example: [5, 18, 21, 58]).
[45] introduced deel-lip, a framework to control the Lipschitz constant of each layer individually,
while [2] propose GroupSort networks to ensure robustness. [38] proposed a framework for training
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fully-connected neural networks using Lipschitz regularized and constrained techniques, proving their
effectiveness in the scenario of Gaussian-added perturbation noise. A recent result in [10] showed
that in the case of models with non-negative weights a tight Lipschitz bound can be established,
making possible the training of neural network models with certified robustness guarantees.

3. ABBA Neural Networks.

3.1. Problem formulation. In the remainder of this paper, ∥ · ∥ will denote the ℓ2-norm when
dealing with a vector, and the spectral norm when dealing with a matrix.
An m-layer feedforward neural network can be described by the following model.

Model 3.1. T is feedforward neural network if there exists (Ni)1⩽i⩽m ∈ (N \ {0})m such that

(3.1) T = Tm ◦ · · · ◦ T1

where, for every layer index i ∈ {1, . . . ,m}, Ti = Ri(Wi ·+bi), Wi ∈ RNi×Ni−1 is the weight matrix,
bi ∈ RNi the bias vector, and Ri : RNi → RNi the activation operator. Ni corresponds to the number
of inputs at the i-th layer. Such a layer is convolutive if it corresponds to a weight matrix Wi having
some Toeplitz (or block Toeplitz) structure.
We will say that the activation operator Ri is symmetric, if there exists (ci, di) ∈ (RNi)2 such that

(3.2) (∀x ∈ RNi) Ri(x)− di = −Ri(−x+ ci).

In other words, (ci, di)/2 is a symmetry center of the graph of Ri.
For example, if Ri is squashing function used in CapsNets [43], it is such that

(3.3) (∀x ∈ RNi) Ri(x) =
µ∥x∥

1 + ∥x∥2
x.

with µ = 8/(3
√
3). It thus satisfies the symmetry property (3.2) with ci = di = 0. In addition, Ri

is nonexpansive, i.e. it has a Lipschitz constant equal to 1 [10]. Other examples of symmetric and
nonexpansive activation operators are presented in Appendix SM1 2 .

3.2. ABBA Matrices. We first define ABBA matrices which will be the main algebraic tool
throughout this article.

Definition 3.2. Let (N1, N2) ∈ (N\{0})2. AN1,N2
is the space of ABBA matrices of size (2N2)× (2N1),

that is M ∈ AN1,N2
if there exist matrices A ∈ RN2×N1 and B ∈ RN2×N1 such that

(3.4) M =

[
A B

B A

]
.

The sum matrix associated with M is then defined as S(M) = A+B.

We give some of the most relevant properties of these matrices. In particular, we will see that the
ABBA structure is stable under standard matrix operations.

Proposition 3.3. Let (N1, N2, N3) ∈ (N \ {0})3.

2Appendices with number of the form SMx can be found in the supplementary materials.
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(i). If M ∈ AN2,N1
, then its transpose M⊤ ∈ AN1,N2

and S(M⊤) = S(M)⊤.
(ii). If (M1,M2) ∈ (AN2,N1)

2, then M1 +M2 ∈ AN2,N1 and S(M1 +M2) = S(M1) +S(M2).
(iii). If M1 ∈ AN2,N1 and M2 ∈ AN3,N2 , then M2M1 ∈ AN3,N1 and

S(M2M1) = S(M2)S(M1).
(iv). AN1,N1

is a ring when equipped with the standard matrix addition and product.

(v). If A and B are two square matrices of the same size, the eigenvalues of
[
A B

B A

]
are those of

A+B and A−B.

(vi). If A and B are two matrices having the same dimensions, the spectral norm of
[
A B

B A

]
is equal

to max{∥A+B∥, ∥A−B∥}.
(vii). If M ∈ AN2,N1 has non-negative elements, the spectral norm of M is ∥S(M)∥.

(viii). Let A ∈ RN2×N1 and B ∈ RN2×N1 , and let K = min{N1, N2}. Let (λk)1⩽k⩽K (resp. (µk)1⩽k⩽K)
be the singular values of A+B (resp. A−B) and let {uk}1⩽k⩽K / {vk}1⩽k⩽K (resp {tk}1⩽k⩽K

/ {wk}1⩽k⩽K) be associated orthonormal families of left/right singular vectors in RN2 / RN1 .3

Then, the singular values of
[
A B

B A

]
are (λk, µk)1⩽k⩽K and associated orthonormal families of

left/right singular vectors are

{
1√
2

[
uk

uk

]
,
1√
2

[
tk
−tk

]}
1⩽k⩽K

/ {
1√
2

[
vk
vk

]
,
1√
2

[
wk

−wk

]}
1⩽k⩽K

.

(ix). If A and B are two matrices having the same dimensions,

(3.5) rank

([
A B

B A

])
= rank(A+B) + rank(A−B).

(x). Let f be a function from R(2N2)×(2N1) to R(2N2)×(2N1). Assume that either f operates elementwise
or it is a spectral function in the sense that there exists a function φ : R+ → R+ such that

(3.6) (∀M ∈ R(2N2)×(2N1)) f(M) =

2K∑
k=1

φ(λ̃k)ũkṽ
⊤
k

where K = min{N1, N2}, (λ̃k)1⩽k⩽2K are the singular values of M , and {ũk}1⩽k⩽2K /
{ṽk}1⩽k⩽2K are associated orthonormal families of left / right singular vectors in R2N2 /
R2N1 . Then f maps any matrix in AN2,N1 to a matrix in AN2,N1 .

(xi). The best approximation of maximum rank R < min{N1, N2} (in the sense of the Frobenius
norm) to a matrix in AN2,N1

belongs to AN2,N1
.

(xii). The projection onto the spectral ball of center 0 and radius ρ ∈ ]0,+∞[ of an ABBA matrix is an
ABBA matrix.

The proofs of these properties are provided in Appendix SM2.

3This means that (SM2.11) and (SM2.12) hold.
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3.3. Extension to feedforward networks. We will now extend the previous algebraic concepts
by introducing the class of ABBA feedforward neural networks. In the following, the structure of an
ABBA fully-connected network will be presented from the perspective of investigating its links with
standard networks. Such networks make use of weights that respect the structure of ABBA matrices,
except for the first and the last layers. More precisely, the first layer maps the input to a twice-higher
dimensional space, while the last layer performs a dimension reduction by a factor of 2.

Definition 3.4. Let m ∈ N \ {0}. T̃ is an m-layer ABBA network if

(3.7) T̃ = (W̃m+1 ·+b̃m+1)T̃m · · · T̃1W̃0

with W̃0 ∈ R(2N0)×N0 , W̃m+1 ∈ RNm×(2Nm), b̃m+1 ∈ RNm , and

(∀i ∈ {1, . . . ,m}) T̃i = R̃i(W̃i ·+b̃i)(3.8)

R̃i : R2Ni → R2Ni ,(3.9)

b̃i ∈ R2Ni ,(3.10)

W̃i ∈ ANi,Ni−1 ,(3.11)

for given positive integers (Ni)0⩽i⩽m. T̃ is an m-layer non-negative ABBA network if it is an m-layer
ABBA network as defined above and, for every i ∈ {1, . . . ,m}, the elements of W̃i are non-negative.

In the remainder of this paper, Nm,A will designate the class of m-layer ABBA networks and N+
m,A

will designate the subclass of m-layer non-negative ABBA networks. This latter subclass will be the
main topic of investigation in this work. We will also use the notation N+

m,A(ρ) to designate the set of
neural networks in N+

m,A where all the activation operators operate componentwise using the same
function ρ : R → R.

3.4. Link with standard neural networks. In this section, we show that we can reshape Model 3.1
as a special case of a non-negative ABBA network. At each layer i ∈ {1, . . . ,m} of this model, let W+

i =

(W+
i,k,ℓ)1⩽k⩽Ni,1⩽ℓ⩽Ni−1

∈ [0,+∞[
Ni×Ni−1 be the positive part of matrix Wi = (Wi,k,ℓ)1⩽k⩽Ni,1⩽ℓ⩽Ni−1

,
i.e.

(3.12) (∀k ∈ {1, . . . , Ni})(∀ℓ ∈ {1, . . . , Ni−1}) W+
i,k,ℓ =

{
Wi,k,ℓ if Wi,k,ℓ > 0

0 otherwise.

Let W−
i = W+

i −Wi ∈ [0,+∞[
Ni×Ni−1 be the negative part of Wi, where all the positive elements

of Wi have been discarded. Let us now define a non-negative ABBA neural network by using these
quantities.

Definition 3.5. Let m ∈ N\{0}. Let T be the feedforward neural defined in Model 3.1. T̃ is a network
in N+

m,A associated with T if it satisfies relations (3.7)-(3.11) with

(3.13) W̃0 =

[
IN0

−IN0

]
, W̃m+1 =

1

2
[INm − INm ],
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Figure 1: Equivalence between a standard fully-connected layer and its ABBA correspondent.

and

(∀i ∈ {1, . . . ,m}) R̃i :

[
x

z

]
7→
[
Ri(x)

Ri(z)

]
,(3.14)

W̃i =

[
W+

i W−
i

W−
i W+

i

]
.(3.15)

Note that a weight parametrization similar to (3.15) was used in [56] for computing lower and upper
bounds on the output of a deep equilibrium layer, but in this article W−

i has negative values.
As we will show next, the main result is that, if the activation functions are symmetric, network T̃

defined above is identical to network T in terms of input-output relation, for judicious choices of the
biases of T̃ .

Proposition 3.6. Let T be the m-layer feedforward network in Model 3.1. Assume that, for every
i ∈ {1, . . . ,m}, the activation operator Ri in the i-th layer of T satisfies the symmetry relation (3.2)
where ci ∈ RNi and di ∈ RNi . Let T̃ be the neural network of N+

m,A associated with T whose bias vectors
(̃bi)1⩽i⩽m are linked to those (bi)1⩽i⩽m of T by the relations

(∀i ∈ {1, . . . ,m}) b̃i =

[
bi −W−

i di−1

ci − bi −W+
i di−1

]
,(3.16)

b̃m+1 = −dm
2

,(3.17)

with d0 = 0. Then, for every input, T̃ delivers the same output as T .
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The proof of this proposition is provided in Appendix A. An illustration of the link between
fully-connected layers and ABBA matrices is shown in Figure 1.

3.5. Expressivity of non-negative ABBA networks. One of the main advantages of non-negative
ABBA networks with respect to standard networks with non-negative weights is that they are universal
approximators. More specifically, we have the following result.

Proposition 3.7. Let (ne, nr) ∈ (N \ {0})2. Let f : Rne → Rnr be a continuous function. Let K be any
nonempty compact subset of Rne and let ϵ ∈ ]0,+∞[.

(i). Let ρ : R → R be a symmetric non polynomial activation function. There exists a network
T̃ ∈ N+

1,A(ρ) with N0 = ne inputs and N2 = nr outputs such that

(3.18) (∀x ∈ K) ∥T̃ (x)− f(x)∥ < ϵ.

(ii). Let ρ : R → R be a symmetric continuous activation function that is continuously differentiable
around at least one point where its derivative is nonzero. Then there exists m ⩾ 3 and
T̃ ∈ N+

m,A(ρ) with N0 = ne inputs, Nm+1 = nr outputs, and 2Ni = 2(ne + nr + 2) neurons in
every layer i ∈ {1, . . . ,m} such that (3.18) holds.

Proof. Proposition 3.6 shows that non-negative ABBA networks can be as expressive as signed
networks. Combining this fact with existing universal approximation results for signed networks (see
[28] for (i) and [22] for (ii)) allows us to deduce these results.

(i) addresses the case of shallow wide networks where the number of neurons in the hidden layer
can be arbitrarily large, while (ii) corresponds to the case of deep networks having a limited number
of neurons per layer. An illustration of these results is provided in Appendix SM7.

3.6. Lipschitz bounds for ABBA fully-connected networks. As mentioned in the previous sections,
the robustness of neural networks with respect to adversarial perturbations can be evaluated through
their Lipschitz constant. However, most of the existing techniques for computing a tight estimate
of the constant have a high computational complexity for deep or wide networks, whereas simpler
upper bounds may turn out to be over-pessimistic.

Nevertheless, in the context of non-negative weighted neural networks [10] proved that tight
approximations to the Lipschitz constant can be achieved. In the following, we extend this result and
show that we can derive a simple expression for the Lipschitz constant, using a separable bound, for
non-negative ABBA networks.

Proposition 3.8. Let m ∈ N \ {0} and let T̃ ∈ N+
m,A be given by (3.7)-(3.11). Assume that, for every

i ∈ {1, . . . ,m}, R̃i is a nonexpansive operator operating componentwise. A Lipschitz constant of T̃ is

(3.19) θm = ∥W̃m+1∥ ∥S(W̃m) · · ·S(W̃1)∥ ∥W̃0∥.

The proof of this result is detailed in Appendix B. Note that this bound expression could be easily
extended to other norms based on the results in [10].

A standard separable upper bound for the Lipschitz constant [49] for the ABBA network T̃

considered in the previous proposition is

(3.20) θm = ∥W̃m+1∥ ∥W̃m∥ · · · ∥W̃1∥ ∥W̃0∥.
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According to Proposition 3.3(vii), this bound reads also

(3.21) θm = ∥W̃m+1∥ ∥S(W̃m)∥ · · · ∥S(W̃1)∥ ∥W̃0∥,

which, by simple norm inequalities, is looser than θm.
If T is the feedforward network defined in Model 3.1 and we apply Proposition 3.8 to the

associated non-negative ABBA network T̃ of Definition 3.5. We have

(3.22) ∥W̃0∥ = ∥W̃⊤
0 W̃0∥1/2 = ∥2 IN0∥1/2 =

√
2

and

(3.23) ∥W̃m+1∥ = ∥W̃m+1W̃
⊤
m+1∥1/2 =

1√
2
.

In turn, for every i ∈ {1, . . . ,m},

(3.24) S(W̃i) = W+
i +W−

i = |Wi|.

where |Wi| is the matrix whose elements are the absolute values of Wi. Hence the Lipschitz constant
of T̃ in (3.19) reduces to

(3.25) θm = ∥|Wm| . . . |W1|∥.

It then follows from Proposition 3.6 that θm is also a Lipschitz constant of T when using symmetric
activation functions. Note that this bound was actually already derived in [10, Proposition 5.12].

4. Convolutional networks. We will now extend the results presented in Section 3 to convolutional
layers.

4.1. ABBA convolutional layers. For any i ∈ {1, . . . ,m}, Wi is a convolutional layer with
ζi−1 ∈ N\{0} input channels, ζi output channels, kernels (wi,q,p)1⩽p⩽ζi−1,1⩽q⩽ζi , and stride si ∈ N\{0}.
The output (yq)1⩽q⩽ζi of this layer (prior applying any activation operation) is linked to its input
(xp)1⩽p⩽ζi−1

by

(∀q ∈ {1, . . . , ζi}) uq =

ζi−1∑
p=1

wi,q,p ∗ xp(4.1)

yq = (uq)↓si
.

Hereabove, for every p ∈ {1, . . . , ζi−1}, xp =
(
xp(n)

)
n∈Zd designates a d-dimensional discrete signal.

Dimension d = 1 corresponds to 1D signals and d = 2 to images. A similar notation is used for other
signals, in particular uq and wi,q,p with q ∈ {1, . . . , ζi}. The d-dimensional discrete convolution is
denoted by ∗ and (·) ↓si is the decimation (or subsampling) by a factor si.

The ABBA convolutional layer W̃i associated with Wi has twice the number of input channels
and twice the number of output ones. More specifically, its input consists of ζi−1 signals (x̃+

p )1⩽p⩽ζi−1

and ζi−1 signals (x̃−
p )1⩽p⩽ζi−1

. Similarly, its output consists of ζi signals (ỹ+q )1⩽q⩽ζi and ζi signals
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(ỹ−q )1⩽q⩽ζi . To make the input-output relations more explicit, let us define the kernels w+
i,q,p and w−

i,q,p

analogously to the fully connected case:

(∀n ∈ Zd) w+
i,q,p(n) =

{
wi,p,q(n) if wi,p,q(n) > 0

0 otherwise,

w−
i,q,p(n) = w+

i,q,p(n)− wi,p,q(n).(4.2)

Then the outputs of the ABBA layer are linked to its inputs by the following relations

(∀q ∈ {1, . . . , ζi}) ũ+
q =

ζi−1∑
p=1

w+
i,q,p ∗ x̃

+
p +

ζi−1∑
p=1

w−
i,q,p ∗ x̃

−
p

ũ−
q =

ζi−1∑
p=1

w−
i,q,p ∗ x̃

+
p +

ζi−1∑
p=1

w+
i,q,p ∗ x̃

−
p(4.3)

ỹ+q = (ũ+
q )↓si

ỹ−q = (ũ−
q )↓si

.

The above equations provide the general form of a convolutional ABBA layer when relaxing (4.2).
An alternative formulation of convolutional layers in a matrix form, along with its correspondent

d-dimensional spectral representation, is possible (see Appendix SM3). This basically amounts to
characterize layer (4.1) by the following matrices

(4.4) (∀n ∈ Zd) W i(n) =

wi,1,1(n) . . . wi,1,ζi−1
(n)

...
...

wi,ζi,1(n) . . . wi,ζi,ζi−1
(n)

 ∈ Rζi×ζi−1 ,

defining the so-called MIMO impulse response of Wi, which plays a prominent role in dynamical
system theory [52]. The MIMO impulse response of the ABBA layer W̃i is then characterized by ABBA
matrices:

(4.5) (∀n ∈ Zd) W̃ i(n) =

[
W+

i (n) W−
i (n)

W−
i (n) W+

i (n)

]
∈ [0,+∞[

(2ζi)×(2ζi−1) ,

where W+
i (n) = (w+

i,q,p(n))1⩽q⩽ζi,1⩽p⩽ζi−1
∈ [0,+∞[

ζi×ζi−1 and W−
i (n) =

(w−
i,q,p(n))1⩽q⩽ζi,1⩽p⩽ζi−1

∈ [0,+∞[
ζi×ζi−1 . This alternative view will be useful in the following

sections.

4.2. Lipschitz bounds for convolutional networks. In this section, we establish bounds on
the Lipschitz constant of an m-layer convolutional neural network T . Each linear operator Wi

corresponding to layer i ∈ {1, . . . ,m} will be defined by (4.1). We also define a variable

(4.6) σi =

i∏
l=1

sl

aggregating strides from layer 1 to layer i. Subsequently, we will assume that, for every i ∈ {1, . . . ,m},
the activation operators (Ri)1⩽i⩽m are nonexpansive operators. Moreover, these operators are applied
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componentwise (see Appendix SM1). This means that, for every i ∈ {1, . . . ,m − 1}, there exists a
function ρi from R to R such that

(∀x ∈ Hi) y = Ri(x)

⇔ (∀p ∈ {1, . . . , ci})(∀n ∈ Zd) yp(n) = ρi
(
xp(n)

)
.(4.7)

In Appendix SM4, we derive frequency-based expressions allowing us to calculate bounds on
the Lipschitz constant of T . For accurate numerical evaluations, the frequency transform in these
expressions has to be replaced by a Discrete Fourier Transform involving a significant number of
frequency bins (e.g., 128d). Due to this fact, a computation bottleneck occurs when MIMO filters
are characterized by a large number of input/output channels (e.g., for 2D applications). In the
following, we provide an alternative lower-complexity formulation for computing bounds of the
Lipschitz constant. In the case of non-negative kernels, we show that this bound is tight.

Theorem 4.1. Let (σi)1⩽i⩽m be the aggregated stride factors of network T , as defined by (4.6), and
let

(4.8) W = (Wm)↑σm−1
∗ · · · ∗ (W 2)↑σ1

∗W 1

where (W i)1⩽i⩽m are the MIMO impulse responses of each layer of network T and, for every i ∈
{2, . . . ,m}, (W i)↑σi−1 is the interpolated sequence by a factor σi−1 of W i (see (SM3.9)). For every
j ∈ S(σm) = {0, . . . , σm − 1}d, we define the following matrix:

(4.9) W
(j)

=
∑
n∈Zd

W (σmn+ j) ∈ [0,+∞[
ζm×ζ0 .

Then

(4.10) θm =
∥∥∥ ∑

j∈S(σm)

W
(j)(

W
(j))⊤∥∥∥1/2

is a lower bound on the Lipschitz constant estimate of network T . In addition, if for every i ∈ {1, . . . ,m},
p ∈ {1, . . . , ζi−1}, and q ∈ {1, . . . , ζi}, wi,q,p = (wi,q,p(n))n∈Zd is a non-negative kernel, then θm is a
Lipschitz constant of T .

The proof of Theorem 4.1 is given in Appendix C.
The constant θm in (D.4) is actually equal to the one calculated in Appendix SM4. The following

majorization if thus obtained (see (SM4.4)):

(4.11) θm ⩽ θm = ∥Wm∥ · · · ∥W1∥.

By applying Theorem 4.1 to each individual layer (Wi)1⩽i⩽m assumed to be with non-negative kernels,
we get the following expression for the upper-bound:

(4.12) θm =

m∏
i=1

∥∥∥ ∑
j∈S(si)

W
(j)

i

(
W

(j)

i

)⊤∥∥∥1/2,
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where

(4.13) (∀i ∈ {1, . . . ,m})(∀j ∈ S(si)) W
(j)

i =
∑
n∈Zd

W i(sin+ j).

The bound θm is generally more tractable than θm since it separates the influence of each layer and
does not require to compute the global matrix sequence W as expressed by (4.8). However, such
separable bounds are usually loose. According to our observations, it turns out that, in the special
case of convolutional layers with non-negative kernels, θm and θm are quite close (see numerical tests
in Appendix SM5).

To illustrate these results, the computation of the Lipschitz bound of a layer corresponding to an
average pooling is presented as an example in Appendix SM6.

4.3. Bounds for ABBA convolutional networks. Let us extend the previous results to the ABBA
context. The linear operators of the considered ABBA network T̃ are denoted by (W̃i)0⩽i⩽m+1. The
weights in W̃0 and W̃m+1 are signed, whereas (W̃i)1⩽i⩽m are convolutional layers with d-dimensional
non-negative kernels. More precisely, we assume that, for every i ∈ {1, . . . ,m}, the i-th layer of
the ABBA network has 2ζi−1 input channels, 2ζi output channels, and stride si ∈ N \ {0}. The
MIMO impulse response of such a layer is of the form (4.5). We make the same assumptions of
nonexpansiveness and separability for the activation operators as in the previous section. We recall that
(W )↑σ denotes the interpolated version by a factor σ of a MIMO impulse response W =

(
W (n)

)
n∈Zd .

The following result is then established in Appendix D :

Theorem 4.2. Under the above assumptions on the convolutional ABBA network T̃ , let

(4.14) (∀i ∈ {1, . . . ,m})(∀j ∈ S(si)) Ω
(j)
i =

∑
n∈Zd

S(W̃ i(sin+ j)) ∈ [0,+∞[
ζi×ζi−1 ,

where (W̃ i(n))n∈Z is the MIMO impulse response of the ABBA layer of index i. Then a Lipschitz constant
of T̃ is

(4.15) θm = ∥W̃m+1∥
( m∏

i=1

∥∥∥ ∑
j∈S(si)

Ω
(j)
i

(
Ω

(j)
i

)⊤∥∥∥)1/2∥W̃0∥,

where ∥W̃m+1∥ (resp. ∥W̃0∥) is the spectral norm of the linear operator employed in the last (resp. first
layer).

The bound (4.15) will be subsequently used to control the Lipschitz constant of non-negative ABBA
networks during their training.

5. Lipschitz-constrained training. The theoretical bounds established in the previous sections
provide a relatively easy way of computing a tight estimate of the global Lipschitz constant. We
propose a simple approach to control it during the training phase. Since our networks contain mostly
layers having non-negative weights and a few layers having arbitrary-signed weights, their Lipschitz
constant will be controlled separately and different constraint sets will be handled for each case.

To train a robust ABBA network, we employ a projected version of the well-known ADAM
optimizer. Each layer i is parameterized by a vector Ψi. In the case of a dense layer, Ψi is a vector
gathering the elements of weight matrix W̃i, the components of the associated bias b̃i, and a possible
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additional parameter that will be introduced hereafter. For an ABBA layer, Ψi is thus a vector of
dimension 2Ni(Ni−1 + 1) or 2Ni(Ni−1 + 1) + 1. In the context of a 2D convolutional layer, an array
wi of scalar convolutional kernels is substituted for the weight matrix. In the ABBA case, we have
2ζiζi−1 such kernels. To ensure nonnegativity (if needed) and Lipschitz bound conditions on the
weight operator, we project Ψi onto a suitable closed and convex constraint set. Considering pairs
(zk)1⩽k⩽K of inputs images and their associated labels, the operations performed at each epoch n > 0

to minimize a loss function ℓ are presented in Algorithm 5.1. After each iteration t of the optimizer, we
perform a projection projSi,t

onto a constraint set Si,t. The definition of this set and the corresponding
method for managing the projection is detailed in the following, according to the network type.

Handling Lipschitz constants for fully-connected layers. Consider the network defined by
Model (3.5). In the case of fully connected networks, the Lipschitz constant is given by Proposition 3.8,
which basically splits the bound into three terms: the first and the last account for the starting and
ending layers, respectively, while the middle one encompasses all the ABBA layers. For the two former
arbitrary-signed layers, we control the Lipschitz constants individually during training, by imposing a
bound on each weight matrix spectral norm. This defines the following two constraints:

(5.1) (∀i ∈ {0,m+ 1}) ∥W̃i∥ ⩽ θm,i,

where θm,i is the imposed Lipschitz bound for the i-th layer. To deal with this constraint, we
decompose the weight matrix as W̃i = θm,iW̃

′
i , which yields the constraint set

(5.2) (∀i ∈ {0,m+ 1}) Si,t = {W̃ ′
i | ∥W̃ ′

i∥ ⩽ 1}.

The projection onto Si,t is performed by clipping the singular values of W̃ ′
i to 1.

In our proposed training procedure, we set θm,0θm,m+1 = 1. This gives the network one degree of
freedom to automatically adapt the value of the Lipschiz constant of these two layers. To do so, we
adopt the following parametrization

(5.3) θm,0 = exp(α), θm,m+1 = exp(−α),

where α ∈ R is a trainable parameter. It constitutes an extra component of the vector Ψi when
i ∈ {0,m+ 1}.

In the case of ABBA dense layers, we need to handle two requirements: ensure that, for every
i ∈ {1, . . . ,m}, W̃i is a non-negative ABBA matrix, and to constrain the product of all the weight
matrices to be such that ∥W̃m · · · W̃1∥ ⩽ θm. Since θm,0θm,m+1 = 1, θm corresponds to the target
Lipschitz bound for the ABBA network.

For every i ∈ {1, . . . ,m}, W̃i is parameterized by W+
i and W−

i . We define the following two
constraint sets:

Di = {(W+
i ,W−

i ) ∈ (RNi×Ni−1)2 | W+
i ⩾ 0 and W−

i ⩾ 0},(5.4)

Ci,t =
{
(W+

i ,W−
i ) ∈ (RNi×Ni−1)2 |

∥∥∥Ai,t

[
W+

i W−
i

W−
i W+

i

]
Bi,t

∥∥∥ ⩽ θm

}
.(5.5)

Here-above, matrix Ai,t (resp. Bi,t) is an ABBA matrix, which is the product of the weight matrices
for the posterior (resp. previous layers). In this case, Si,t = Di ∩ Ci,t. To perform the projection onto
the intersection of these two sets, we use an instance of the proximal algorithm presented in [35],
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which alternates between elementary projections onto Di and projections onto the spectral ball with
center 0 and radius θm. Because of Proposition 3.3(xii), the latter projection allows us to keep the
structure of ABBA matrices.

Handling Lipschitz constants for convolutional layers. In the case of convolutional ABBA
networks, we derived the bound in (4.15) which consists of the product of m+2 terms. The Lipschitz
bound constraint is managed by introducing auxiliary variables (θm,i)0⩽i⩽m+1 defining upper bounds
for each layer. At iteration t of the algorithm estimates (θm,i,t)0⩽i⩽m+1 of the auxiliary bounds are
updated. Similarly to the fully connected case, we use two different types of constraints.
For the i-th ABBA convolutional layer with i ∈ {1, . . . ,m}, we consider the constraint set

(5.6) Ci,t = {Wi |
∥∥∥ ∑

j∈S(si)

Ω
(j)
i

(
Ω

(j)
i

)⊤∥∥∥ ⩽ θ
2

m,i,t}

where matrices (Ω
(j)
i )j∈S(si) are linked to the convolution kernels by the linear relation (4.14). By

concatenating all these sdi matrices horizontally, we obtain a rectangular matrix Ωi which allows us to
reexpress (5.6) in the simpler form:

(5.7) Ci,t = {Wi | ∥Ωi∥ ⩽ θm,i,t}.

We also have to impose the non-negativity of the filters alongside the stability bound. This corresponds
to a constraint set Di. Projecting onto Si,t = Ci,t∩Di is performed by using the same iterative proximal
algorithm as previously.

For the first and the last layers, we impose similarly that ∥Wi∥ ⩽ θm,i,t with i ∈ {0,m+ 1}. Since
the kernels are signed, we resort a frequency formulation (see (SM4.18)) to estimate the spectral
norm of the convolutional operator. The procedure we use is described in Appendix SM8.

Convolutional layers are usually succeeded by an ABBA fully connected network. This part will
be handled as explained previously. However, we need to set the upper bounds (θm,i,t)0⩽i⩽m+1 used
in the convolutional part and the upper bound of the ABBA fully connected part. With a slight abuse
of notation, let us denote this latter bound by θm,m+2,t, while the target Lipschitz constant for the
global network is still denoted by θm. We have to deal with the following constraint:

(5.8)
m+2∏
i=0

θm,i,t = θm.

We proceed by computing the Lipschitz constants (θ̃m,i,t)0⩽i⩽m+2 of the layers after the ADAM update.
Then, we set

(∀i ∈ {0, . . . ,m+ 2}) θm,i,t = θ̃m,i,t

(
θm∏m+2

i′=0 θ̃m,i′,t

) 1
m+3

,(5.9)

which guarantees that (5.8) holds. Update (5.9) can be interpreted as the orthogonal projection onto
the constraint set defined by (5.8) after a logarithmic transform of the auxiliary variables. The benefit
of such a transform is to convexify the constraint.
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Algorithm 5.1 Projected ADAM Algorithm
Ψi,t – weights of layer i at iteration t
(zk)1⩽k⩽K – set of input image-label pairs
β1, β2 – ADAM hyperparameters

Partition {1, . . . ,K} into mini-batches
(Mq,n)1⩽q⩽Q

t = (n− 1)Q+ q
# sweep mini-batches
for q ∈ {1, . . . , Q} do

for layer i do
gi,t =

∑
k∈Mq,n

∇iℓ
(
zk, (Ψi,t

)
1⩽i⩽m

)

µi,t = β1µi,t−1 + (1− β1)gi,t
νi,t = β2νi,t−1 + (1− β2)g

2
i,t

γt = γ
√
1− βt

2/(1− βt
1)

Ψ̃i,t = Ψi,t − γtµi,t/(
√
νi,t + ϵ)

end for
for layer i do

Ψi,t+1 = projSi,t
(Ψ̃i,t)

end for
end for

Dataset Network Architecture Accuracy [%]

MNIST

ABBA
Dense 98.33
Conv 98.70

Non-Negative
Dense 94.95
Conv 93.27

Baseline
Dense 98.35
Conv 98.68

FMNIST

ABBA
Dense 90.02
Conv 90.17

Non-Negative
Dense 84.56
Conv 83.09

Baseline
Dense 90.00
Conv 90.20

RPS

ABBA Conv 99.08

Non-Negative Conv 67.30

Baseline Conv 98.86

CelebA

ABBA Conv 90.21

Non-Negative Conv 61.04

Baseline Conv 90.17

Table 1: Comparison between ABBA, full
non-negative and arbitrary-signed (base-
line) networks.

6. Experiments. In this section, we show the versatility of ABBA neural networks in solving
classification tasks. The objective of our experiments is three-fold:

(i). First, we compare nonnegative ABBA structures with their classic non-negative counterparts
and check that our method yields significantly better results in all considered cases.

(ii). We then train ABBA models constrained to different Lipschitz bound values and evaluate
their robustness against several adversarial attacks.

(iii). Finally, we compare our proposed approach with three other well-established defense strate-
gies, namely Adversarial Training (AT), Trade-off-inspired adversarial defense (TRADES) [59],
Deel-Lip proposed by [45], and orthonormalization [2].

We validate our ABBA networks on four benchmark image classification datasets: MNIST, its more
complex variant Fashion MNIST 4, a variant 5 of the Rock-Paper-Scissors (RPS) dataset [34], and a
binary classification on CelebA [31]. For the last dataset, inspired from [45] where eyeglass detection
is performed, we specialized our models on a different attribute, namely to identify whether a person
is bald or not. To explore the features of different ABBA network topologies, we experiment with two
main types of ABBA architectures: one having only fully-connected layers, further referred to as ABBA
Dense, and another one which includes a convolutional part for feature extraction, followed by a fully
connected classification module, ABBA Conv. Depending on the dataset, the particularities of each
architecture are slightly different. A detailed description of all the small networks employed in this

4https://github.com/zalandoresearch/fashion-mnist
5https://github.com/DrGFreeman/rps-cv

https://github.com/zalandoresearch/fashion-mnist
https://github.com/DrGFreeman/rps-cv


16 A. NEACS, U, J.C. PESQUET, V.VASILESCU, C. BURILEANU

(a) MNIST – DDN attack (b) MNIST – FMN attack (c) MNIST – DeepFool attack

(d) FMNIST – DDN attack (e) FMNIST – FMN attack (f) FMNIST – DeepFool attack

Figure 2: Accuracy vs. Perturbation for different Lipschitz constants – Dense Architecture.

work, as well as other training details, are provided in Appendix SM9. For all experiments, the input
images were scaled in the [−1, 1] interval.

ABBA networks vs. non-negative networks. First, we compare our non-negative ABBA networks
with standard ones trained under non-negativity constraints. We consider standard neural networks
having the same number of parameters as their ABBA equivalent. The results are summarized in Table
1, indicating that ABBA neural networks yield far superior results, in all cases. In the case of fully
connected architectures, the difference in terms of accuracy is around ∼ 3% and ∼ 5% for MNIST
and FMNIST, respectively. The difference is even higher when we consider Conv architectures (e.g.
∼ 5%, ∼ 7%, ∼ 31% and ∼ 32% for MNIST, FMNIST, RPS, and CelebA, respectively). This shows that
standard non-negative convolutional kernels are often suboptimal for extracting relevant information
from image data. On the other hand, training standard neural networks having arbitrary-signed
weights gives results very similar to their ABBA equivalents in all the cases, showing that ABBA
networks do not suffer from these shortcomings. These results are in agreement with Proposition 3.6.

Stability vs. Performance. According to the “no free lunch” theorem [51], stability guarantees
may impact the system performance on clean data. In this work, we train several models by following
the approach described in Section 5. The Lipschitz constant of the network is varied in an effort to
find the optimal trade-off between robustness and classification accuracy. This compromise is usually
use-case specific, depending on the architecture complexity and on the dataset particularities, so the
tightness of the imposed stability bound must be chosen accordingly. In our experiments, we limited
the maximum Lipschitz constant we impose, so that the drop in performance does not exceed 5% of
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(a) MNIST – DDN attack (b) MNIST – FMN attack (c) MNIST – DeepFool attack

(d) FMNIST – DDN attack (e) FMNIST – FMN attack (f) FMNIST – DeepFool attack

Figure 3: Acc. vs. Perturbation for different Lipschitz constants ABBA Conv Architectures – MNIST
and FMNIST.

the baseline model accuracy (i.e., the model trained without robustness constraints).
Adversarial attack validation. We train several robust ABBA models by varying the global

Lipschitz bound θm. We then evaluate their robustness against inputs corrupted with different levels
of adversarial perturbations, by studying their influence on the overall performance of the system.
To create the adversarial perturbations, we use three white-box attackers as described next. DDN
[42] is a gradient-based ℓ2 adversarial attack method that seeks to decouple the direction and norm
of the additive perturbation. By doing so, this attack is able to generate effective examples, while
requiring fewer iterations than other methods. DeepFool [33] considers a linear approximation to the
model and refines the attack sample iteratively, by selecting the point that would cross the decision
boundary with minimal effort in the logit space. The FMN [39] attack improves the approach in
DDN by introducing adaptive norm constraints on the perturbation, in order to balance the trade-off
between the magnitude of the perturbation and the level of miss-classification. This results in a
powerful attack that is able to generate adversarial examples with small perturbation levels.

For a given maximum ℓ2 perturbation norm, we ran each attack for 300 steps, using the default
hyperparameters for each of the three attackers. Although all images are normalized in the [−1, 1]

range, we report the robust accuracy w.r.t. ℓ2 perturbation measured in [0, 1] range, which is the
common practice in the literature.

The results are summarized in Figures 2, 3, and 4 which show the robustness of MNIST, FMNIST,
RPS, and CelebA ABBA models, w.r.t. increasing ℓ2 norm perturbation, generated with DDN, FMN,
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(a) RPS – DDN attack (b) RPS – FMN attack (c) RPS – DeepFool attack

(d) CelebA – DDN attack (e) CelebA – FMN attack (f) CelebA – DeepFool attack

Figure 4: Acc. vs. Perturbation for different Lipschitz constants ABBA Conv Architectures – RPS
and CelebA.

and DeepFool attacks. A baseline model, trained without stability constraints and arbitrary-signed
weights, is provided as a reference. These graphs could be interpreted as the expected performance
of the model if the attack is allowed to influence the input image with an ℓ2-norm less than ϵ, where
the level of perturbation ϵ varies. For a better understanding of the adversarial perturbation effect,
some visual examples of the attacked inputs, for all the datasets, are presented in Appendix SM10.

It can be observed that our robust ABBA models are significantly less affected by adversarial
inputs than the undefended baseline. This demonstrates that carefully controlling the Lipschitz
constant during training improves the network stability against adversarial attacks. Naturally, as the
imposed bound gets lower, the system becomes more robust. Although the difference in robustness
between similar values of the Lipschitz constant depends on the intrinsic structure of the dataset, our
results show that a good trade-off between robustness and performance can be achieved in all cases.

Comparison with other defense strategies. In the following, we compare our method for
training robust models using ABBA networks with other defense strategies. Deel-Lip, developed in
[45], is a popular Lipschitz-based approach, which uses the spectral normalization of each layer to
offer robustness certificates during training. We have also made comparisons with another popular
technique to ensure 1-Lipschitz weights, via orthonormalization [2, 8]. For our experiments, we
trained models from scratch, using the implementation provided by [2] 6, in order to enforce an

6https://github.com/cemanil/LNets/tree/master

https://github.com/cemanil/LNets/tree/master
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(a) MNIST – DDN attack (b) MNIST – FMN attack (c) MNIST – DeepFool attack

(d) FMNIST – DDN attack (e) FMNIST – FMN attack (f) FMNIST – DeepFool attack

Figure 5: Comparisons with other defense techniques Dense Architectures

l2-norm equal to 1 using Bjorck Orthonormalization, while also preserving the gradient norm through
GroupSort. TRADES [59] introduces a robustness regularization term into the training objective.
This regularizer encourages the network to have similar predictions on both the original input and
its adversarial counterparts. On the other hand, Adversarial Training (AT) implies augmenting the
training data with adversarial samples, increasing the network generalization capabilities to different
input alterations. However, this technique offers weak theoretical stability guarantees, as it is mainly
dependent on the strength of the adversary used during training.

For all experiments regarding AT, we used Projected Gradient Descent (PGD) attack to generate
the adversarial samples with a perturbation level ϵ = 0.5 and then employed the scheduling strategy
introduced by [32]. Concerning TRADES, we set λ = 1 for MNIST and FMNIST, and λ = 1/2 for RPS
and CelebA datasets. For all the presented techniques we considered the equivalent baseline to each
ABBA network.

Comparisons, in the same adversarial set-up as before, are depicted in Figures 5, 6, and 7. We
observe that using our theoretically certified Lipschitz bound yields models which are generally more
robust than AT and TRADES. For simple datasets, such as MNIST and FMNIST, robust ABBA and
Deel-lip models exhibit similar behavior for low-magnitude adversarial attacks, but as we increase the
maximum perturbation ϵ, our method performs better. In the case of real-world datasets (RPS and
CelebA), ABBA models exhibit high robustness properties against all the tested attacks, showing that
our approach allows us to train neural models to reach great stability properties, without losing their
generalization power.
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(a) MNIST – DDN attack (b) MNIST – FMN attack (c) MNIST – DeepFool attack

(d) FMNIST – DDN attack (e) FMNIST – FMN attack (f) FMNIST – DeepFool attack

Figure 6: Comparisons with other defense techniques Conv Architectures – MNIST and FMNIST.

Limitations. The main limitation of our method is that non-negative ABBA operators require
more parameters to meet the universal approximation conditions. More precisely, for given depth
m and number of neurons (Ni)0⩽i⩽m per layer, a network T̃ ∈ Nm,A has the same number of inputs
and outputs as the standard feedfoward network T in Model 3.1. All the layers of T̃ , except the
first one, have however twice more inputs than T . Exact training times are showcased in SM11.
Because of the ABBA structure of the weight matrices in (3.11), the maximum number of parameters
of T̃ is 2(N2

0 +
∑m

i=1 Ni(Ni−1 + 1) +N2
m) while the number of parameters of T is

∑m
i=1 Ni(Ni−1 + 1).

By storing W̃ ′
1 = W̃1W̃0 ∈ R(2N1)×N0 instead of W̃1 and W̃0 separately, the maximum number of

parameters is reduced to 2(
∑m

i=1 Ni(Ni−1 + 1) +N2
m). Moreover, since the weights are non-negative,

the model does not necessarily require signed representations storage, so the memory space occupied
by T̃ could also be reduced.

While our method does not provide any certification regarding the accuracy of the classifier in
adversarial environments, it delivers a certified value for the Lipschitz constant of the network.

7. Conclusions. In this paper, we introduce ABBA networks, a novel class of neural networks
where the majority of weights are non-negative. We demonstrate that these networks are universal
approximators, possessing all the expressive properties of conventional signed neural architectures.
Additionally, we unveil their remarkable algebraic characteristics, enabling us to derive precise
Lipschitz bounds for both fully-connected and convolutive operators. Leveraging these bounds, we
construct robust neural networks suitable for various classification tasks.
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(a) RPS – DDN attack (b) RPS – FMN attack (c) RPS – DeepFool attack

(d) CelebA – DDN attack (e) CelebA – FMN attack (f) CelebA – DeepFool attack

Figure 7: Comparisons with other defense techniques Conv Architectures – RPS and CelebA.

The main advantage of ABBA networks is that they enjoy all the properties of non-negative
networks (e.g., they are easier to interpret and less prone to overfitting), without suffering from
the shortcomings of standard ones (e.g., lack of expressivity). Additionally, we showed that ABBA
structures allow tight Lipschitz bounds to be estimated, without requiring to solve an NP-hard problem
as for conventional neural networks.

For future research, it would be intriguing to explore the application of ABBA networks in
regression problems, where controlling the Lipschitz constant may present more challenges. Also,
extending our theoretical bounds to different structures, such as recurrent or attention-based networks,
holds promise for further advancements. Moreover, it would be interesting to study if using Lipschitz-
constrained ABBA neural networks can improve certified robustness strategies like GloRoNets [27].

Finally, we recognize the necessity of investigating the scalability of the proposed training method
to deep architectures. One of the main hurdles in this endeavor is the increased number of parameters
that deep ABBA architectures entail.

Acknowledgments. We would like to thank Dr. Jérôme Rony and Prof. Ismail Ben Ayed from ETS
Montréal for fruitful discussions and insightful suggestions.
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Appendix A. Proof of Proposition 3.6. For every i ∈ {1, . . . ,m}, let xi = Ti(xi−1) where
x0 ∈ RN0 is an arbitrary input of network T and xm ∈ RNm its corresponding output. By using the
symmetry properties of the activation operators, for every i ∈ {1, . . . ,m}, we have

(∀i ∈ {1, . . . ,m}) xi = Ri(Wixi−1 + bi)

= Ri(W
+
i xi−1 −W−

i xi−1 + bi),(A.1)

−xi = −Ri(Wixi−1 + bi)

= Ri(−Wixi−1 − bi + ci)− di

= Ri(W
−
i xi−1 −W+

i xi−1 − bi + ci)− di.(A.2)

By making use of notation (3.14), (A.1) and (A.2) can be rewritten more concisely as

(A.3) (∀i ∈ {1, . . . ,m})
[
xi

−xi

]
= R̃i

([W+
i W−

i

W−
i W+

i

] [
xi−1

−xi−1

]
+

[
bi

ci − bi

])
−
[
0

di

]
.

Let us define, for every i ∈ {0, . . . ,m},

(A.4) x̃i =

[
xi

−xi + di

]
.

Altogether (3.16), (3.11), (3.15), and (A.3) yield

(∀i ∈ {1, . . . ,m}) x̃i = R̃i

([
W+

i W−
i

W−
i W+

i

](
x̃i−1 −

[
0

di−1

])
+

[
bi

ci − bi

])
= R̃i

(
W̃ix̃i−1 + b̃i

)
.(A.5)

This shows that, if (T̃i)1⩽i⩽m are given by (3.8), x̃m = T̃m · · · T̃1(x̃0). By using the forms of W̃0 and
W̃m+1 in (3.13), we deduce that

(A.6) xm = W̃m+1x̃m + b̃m+1 = T̃ (x0).

Appendix B. Proof for Proposition 3.8. According to [53] [10, Proposition 5.5],

(B.1) ϑm = sup
Λ1∈D

2N1
{−1,1}

...
Λm∈D2Nm

{−1,1}

∥W̃m+1ΛmW̃m · · ·Λ1W̃1W̃0∥.

where, for every i ∈ {1, . . . ,m}, D2Ni

{−1,1} designates the space of diagonal matrices of size (2Ni)×(2Ni)

with diagonal entries equal to −1 or 1. For every (Λ1, . . . ,Λm) ∈ D2N1

{−1,1} × · · · × D2Nm

{−1,1},

(B.2) ∥W̃m+1ΛmW̃m · · ·Λ1W̃1W̃0∥ ⩽ ∥W̃m+1∥∥W̃mΛm−1W̃m−1 · · ·Λ2W̃2Λ1W̃1∥∥W̃0∥.

On the other hand, for every i ∈ {1, . . . ,m}, W̃i ∈ [0,+∞[
(2Ni)×(2Ni−1). It then follows from [10,

Proposition 5.10] that

(B.3) sup
Λ1∈D

2N1
{−1,1}

...
Λm−1∈D

2Nm−1
{−1,1}

∥W̃mΛm−1W̃m−1 · · ·Λ2W̃2Λ1W̃1∥ = ∥W̃mW̃m−1 · · · W̃2W̃1∥.
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According to Proposition 3.3(iii), W̃mW̃m−1 · · · W̃2W̃1 ∈ ANm,N0
. Since this matrix has nonnegative

elements, we deduce from Proposition 3.3(vii) that

ϑm ⩽ ∥W̃m+1∥ ∥W̃m · · · W̃1∥ ∥W̃0∥

= ∥W̃m+1∥ ∥S(W̃m · · · W̃1)∥ ∥W̃0∥

= ∥W̃m+1∥ ∥S(W̃m) · · ·S(W̃1)∥ ∥W̃0∥,(B.4)

where the last equality is also a consequence of Proposition 3.3(iii). This leads to the Lipschitz bound
in (3.19).

Appendix C. Proof of Theorem 4.1.
Before giving the proof of our main result, we will introduce a link between the Fourier and the

spatial representations for a nonnegative convolutional kernel.

Lemma C.1. Let (c, c′) ∈ (N \ {0})2 and let

(C.1) (∀n ∈ Zd) H(n) =
(
hq,p(n)

)
1⩽q⩽c′,1⩽p⩽c

∈ [0,+∞[
c′×c

where, for every p ∈ {1, . . . , c} and q ∈ {1, . . . , c′}, hq,p ∈ ℓ1(Zd) 7. Then, the Fourier transform Ĥ of(
H(n)

)
n∈Zd is such that

(C.2) sup
ν∈[0,1]d

∥Ĥ(ν)∥ =
∥∥∥ ∑

n∈Zd

H(n)
∥∥∥.

Proof. For every ν ∈ [0, 1]d,

(C.3) Ĥ(ν) =
∑
n∈Zd

H(n) exp
(
− ı2ππn⊤ν

)
.

For every u = [u1, . . . , uc]
⊤ ∈ Cc, by using the triangle inequality,

∥Ĥ(ν)u∥2 =

c′∑
q=1

∣∣∣ c∑
p=1

[H(ν)]q,pup

∣∣∣2
=

c′∑
q=1

∣∣∣ c∑
p=1

∑
n∈Zd

hq,p(n) exp
(
− ı2πn⊤ν

)
up

∣∣∣2
⩽

c′∑
q=1

( c∑
p=1

∑
n∈Zd

hq,p(n)|up|
)2

=
∥∥∥ ∑

n∈Zd

H(n)|u|
∥∥∥2

⩽
∥∥∥ ∑

n∈Zd

H(n)
∥∥∥2 ∥∥∥|u|∥∥∥2

=
∥∥∥ ∑

n∈Zd

H(n)
∥∥∥2 ∥u∥2,(C.4)

7ℓ1(Zd) is the space of summable d-dimensional sequences
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where |u| denotes the vector of moduli of the components of vector u. This shows that

(C.5) ∥Ĥ(ν)∥ ⩽
∥∥∥ ∑

n∈Zd

H(n)
∥∥∥.

and, consequently,

(C.6) sup
ν∈[0,1]d

∥Ĥ(ν)∥ ⩽
∥∥∥ ∑

n∈Zd

H(n)
∥∥∥.

In addition, the upper bound is attained since

(C.7) Ĥ(0) =
∑
n∈Zd

H(n).

Next, we derive the proof for Theorem 4.1 in light of Lemma C.1.

Proof. W being the impulse response of the MIMO filter with the frequency response given by
(SM4.1), it follows from Noble identities [52] that W is equivalent to a convolution with W followed
by a decimation by a factor σm. Let x ∈ H0. Let the σm-polyphase representation of x (resp. W ) be
defined as (

∀j ∈ S(σm)
)
(∀n ∈ Zd) x(j)(n) = x(σmn− j)(C.8) (

resp. W (j)(n) = W (σmn+ j)
)
.(C.9)

Then, as a result of multirate digital filtering, y = Wx if and only if

(C.10) y =
∑

j∈S(σm)

W (j) ∗ x(j).

This sum of MIMO convolutions can be reformulated as a single one

(C.11) y = H ∗ e,

where H is the cm × σd
mc0 MIMO impulse response obtained by stacking rowwise the polyphase

MIMO impulse responses (W (j))j∈S(σm) and e is the σd
mc0-component d-dimensional signal obtained

by stacking columnwise the polyphase signal components (x(j))j∈S(σm). For example, if d = 2, we
have

(∀n ∈ Z2)

H(n) =[W (0,0)(n), . . . ,W (σm−1,0)(n), . . . ,W (0,σm−1)(n), . . . ,W (σm−1,σm−1)(n)](C.12)

and

(C.13) (∀n ∈ Z2) e(n) =



x(0,σm−1)(n)
...

x(σm−1,σm−1)(n)
...

x(σm−1,σm−1)(n)
...

x(σm−1,σm−1)(n)


.
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Note that, according to (C.8),

∥e∥2 =
∑
n∈Zd

∥e(n)∥2

=
∑
n∈Zd

∑
j∈S(σm)

∥x(j)(n)∥2

=
∑
n∈Zd

∥x(n)∥2

= ∥x∥2.(C.14)

This equality and (C.11) imply that

(C.15) ∥W∥ = sup
ν∈[0,1]d

∥Ĥ(ν)∥.

We thus deduce from Lemma C.1 that

(C.16) ∥W∥ =
∥∥∥ ∑

n∈Zd

H(n)
∥∥∥.

On the other hand, by using (C.9),∥∥∥ ∑
n∈Zd

H(n)
∥∥∥

=

∥∥∥∥∥( ∑
n∈Zd

H(n)
)( ∑

n∈Zd

H(n)
)⊤∥∥∥∥∥

1/2

=

∥∥∥∥∥∥
∑

j∈S(σm)

( ∑
n∈Zd

W (j)(n)
)( ∑

n∈Zd

W (j)(n)
)⊤∥∥∥∥∥∥

1/2

=
∥∥∥ ∑

j∈S(σm)

W
(j)(

W
(j))⊤∥∥∥1/2.(C.17)

Appendix D. Proof of Theorem 4.2.
This result is a consequence of Theorem 4.1, which provides a Lipschitz bound for nonnegative

convolutional neural networks. By following a similar reasoning to Appendix B, a Lipschitz constant
of the ABBA network is

(D.1) θm = ∥W̃m+1∥∥W̃m ◦ . . . ◦ W̃1∥∥∥W̃0∥.

Let

(D.2) W̃ = (W̃m)↑σm−1 ∗ · · · ∗ (W̃ 2)↑σ1 ∗ W̃ 1

and let

(D.3) (∀j ∈ S(σm)) Ω(j) =
∑
n∈Zd

S
(
W̃ (σmn+ j)

)
∈ [0,+∞[

ζm×ζ0 .
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Since (W̃i)1⩽i⩽m are convolutional operators with nonnegative kernels, it follows from Theorem 4.1
that

(D.4) θm = ∥W̃m+1∥
∥∥∥ ∑

j∈S(σm)

W
(j)(

W
(j))⊤∥∥∥1/2∥W̃0∥.

where, for every j ∈ S(σm),

(D.5) W
(j)

=
∑
n∈Zd

W̃ (σmn+ j) ∈ [0,+∞[
(2ζm)×(2ζ0) .

On the other hand, for every n ∈ Zd, W̃ i(n) is an ABBA matrix. Since W̃ (n) is obtained by
multiplication and addition of such matrices, it follows from Proposition 3.3(ii) and (iii) that it is
also an ABBA matrix. We deduce that, for every j ∈ S(σm), W

(j)
is an ABBA matrix and, by using

Proposition 3.3(i), W
(j)(

W
(j))⊤

is ABBA. By invoking now Proposition 3.3(i)-(iii) and (vii), we
deduce that ∥∥∥ ∑

j∈S(σm)

W
(j)(

W
(j))⊤∥∥∥ =

∥∥∥S( ∑
j∈S(σm)

W
(j)(

W
(j))⊤)∥∥∥

=
∥∥∥ ∑

j∈S(σm)

S
(
W

(j)
)
S
(
W

(j)
)⊤∥∥∥

=
∥∥∥ ∑

j∈S(σm)

Ω(j)
(
Ω(j)

)⊤∥∥∥.(D.6)

This shows that a Lipschitz constant of the ABBA network T̃ is

(D.7) θm = ∥W̃m+1∥
∥∥∥ ∑

j∈S(σm)

Ω(j)
(
Ω(j)

)⊤∥∥∥1/2∥W̃0∥,

Similarly to the derivation of (4.12), we deduce that θm ⩽ θm where θm is given by (4.15).
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SUPPLEMENTARY MATERIALS: ABBA Neural Networks: Coping with
Positivity, Expressivity, and Robustness∗

Ana Neacşu† , Jean-Christophe Pesquet‡ , Vlad Vasilescu† , and Corneliu Burileanu†

SM1. Symmetric activation functions. In practice, the activation operator Ri is often
separable, that is it operates componentwise:

(SM1.1)
(
∀x = (ξk)16k6Ni

∈ RNi
)

Rix = (%i(ξk))16k6Ni
,

where, for every k ∈ {1, . . . , Ni}, %i : R→ R. Examples of odd functions allowing us to define
a symmetric separable activation operators Ri with ci = di = 0 are

• the hyperbolic tangent activation function ρi = tanh
• the arctangent activation function ρi = (2/π) arctan
• the inverse square root linear unit function %i : R→ R : ξ 7→ ξ/

√
1 + ξ2

• the Elliot activation function %i : R→ R : ξ 7→ ξ/(1 + |ξ|).
Some examples of separable activation operators which are non-odd are described below. The
capped ReLU function is given by

(SM1.2) (∀ξ ∈ R) ρi(ξ) =


0 if ξ < 0

ξ if 0 6 ξ < χ

χ otherwise,

where χ ∈ ]0,+∞[. We have then ci = di = χ1Ni with 1Ni = [1, . . . , 1]> ∈ RNi . We can also
define a leaky version of this function as

(SM1.3) (∀ξ ∈ R) ρi(ξ) =


αξ if ξ < 0,

ξ if 0 6 ξ < χ,

α(ξ − χ) + χ otherwise,

where α ∈]0, 1[ and χ ∈ ]0,+∞[ are hyper-parameters.

SM2. Proof of the properties of ABBA matrices. (i)–(iii): These properties follow from
basic algebra. We will just detail the proof of the third one. Let

(SM2.1) M1 =

[
A1 B1

B1 A1

]
and M2 =

[
A2 B2

B2 A2

]
,
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where (A1, B1) ∈ RN2×N1 and (A2, B2) ∈ RN3×N2 . Then

(SM2.2) M2M1 =

[
A2A1 +B2B1 A2B1 +B2A1

A2B1 +B2A1 A2A1 +B2B1

]
∈ AN3,N1 .

In addition,

S(M2M1) = A2A1 +B2B1 +A2B1 +B2A1

= (A2 +B2)(A1 +B1)

= S(M2)S(M1).(SM2.3)

(iv): This property is a direct consequence of (ii) and (iii).
(v): Let M = [ A B

B A ] ∈ R(2N1)×(2N1). λ ∈ C is an eigenvalue of M if and only if

(SM2.4) det(M − λ Id ) = 0 ⇔ det

([
A− λ Id B

B A− λ Id

])
= 0.

We have

(SM2.5)

[
A− λ Id B

B A− λ Id

] [
Id − Id
Id Id

]
=

[
A+B − λ Id −A+B + λ Id
A+B − λ Id A−B − λ Id

]
.

Since A−B − λ Id and −A+B + λ Id commute, we have [SM5]

(SM2.6)

det

([
A+B − λ Id −A+B + λ Id
A+B − λ Id A−B − λ Id

])
= 2N det ((A+B − λ Id )(A−B − λ Id )) .

Similarly

(SM2.7) det

([
Id − Id
Id Id

])
= 2N .

We deduce from (SM2.5) that

det

([
A− λ Id B

B A− λ Id

])
= det ((A+B − λ Id )(A−B − λ Id ))

⇔ det(M − λ Id ) = det(A+B − λ Id ) det(A−B − λ Id ).(SM2.8)

So λ is an eigenvalue of M if and only if det(A+B − λ Id ) = 0 or det(A−B − λ Id ) = 0, i.e.,
λ is an eigenvalue of A+B or A−B.
(vi) Let M be defined similarly to previously with (A,B) ∈ (RN2×N1)2. We have

(SM2.9) ‖M‖ = ‖MM>‖1/2 =

∥∥∥∥[AA> +BB> AB> +BA>

AB> +BA> AA> +BB>

]∥∥∥∥1/2
According to (v), the eigenvalues of MM> ∈ AN2,N2 are those of AA>+BB>+AB>+BA> =
(A + B)(A + B)> and AA> + BB> − AB> − BA> = (A − B)(A − B)>. The maximum
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eigenvalues of the two latter matrices are ‖A + B‖2 and ‖A − B‖2, respectively. Therefore
‖M‖ = max{‖A+B‖, ‖A−B‖}.
(vii): In addition, if A and B have nonnegative elements,

‖A−B‖ = sup
x∈RN\{0}

‖Ax−Bx‖
‖x‖

6 sup
x∈RN\{0}

‖A|x|+B|x|‖
‖x‖

= sup
a∈[0,+∞[N\{0}

‖Aa+Ba‖
‖a‖

6 ‖A+B‖,(SM2.10)

where |x| denotes the vector whose components are the absolute values of those of vector x.
We deduce from (vi) that ‖M‖ = ‖A+B‖ = ‖S(M)‖.
(viii): We have

A+B =
K∑
k=1

λkukv
>
k(SM2.11)

A−B =

K∑
k=1

µktkw
>
k .(SM2.12)

Thus

A =
1

2

K∑
k=1

(λkukv
>
k + µktkw

>
k )(SM2.13)

B =
1

2

K∑
k=1

(λkukv
>
k − µktkw>k )(SM2.14)

and we deduce that[
A B
B A

]
=

K∑
k=1

1

2

(
λk

[
ukv

>
k ukv

>
k

ukv
>
k ukv

>
k

]
+ µk

[
tkw

>
k −tkw>k

−tkw>k tkw
>
k

])

=
K∑
k=1

1

2

(
λk

[
uk
uk

] [
vk
vk

]>
+ µk

[
tk
−tk

] [
wk
−wk

]>)
.(SM2.15)

On the other hand, for every (k, `) ∈ {1, . . . ,K}2,[
uk
uk

]> [
u`
u`

]
= 2u>k u` =

{
2 if k = `

0 otherwise,[
tk
−tk

]> [
t`
−t`

]
= 2t>k t` =

{
2 if k = `

0 otherwise,[
uk
uk

]> [
t`
−t`

]
= 0,(SM2.16)
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which shows that { 1√
2
[ ukuk ], 1√

2
[ tk
−tk ]}16k6K is an orthonormal family of R2N2 . For similar

reasons, { 1√
2
[ vkvk ], 1√

2
[
wk
−wk

]}16k6K is an orthonormal family of R2N1 . This allows us to conclude

that (SM2.15) provides a singular value decomposition of [ A B
B A ].

(ix): The rank of [ A B
B A ] is equal to the number of its nonzero singular values. From the previous

result, it is thus equal to the sum of the nonzero values of A+B and those of A−B, that is
the sum of the ranks of matrices A+B and A−B.
(x): The fact that the ABBA structure is kept by matrix mappings operating elementwise is
obvious. Let us thus focus on the case of spectral functions. By using the same notation as in
(viii), it follows from (SM2.15) that

f

([
A B
B A

])
=

K∑
k=1

1

2

(
ϕ(λk)

[
ukv

>
k ukv

>
k

ukv
>
k ukv

>
k

]
+ ϕ(µk)

[
tkw

>
k −tkw>k

−tkw>k tkw
>
k

])
=

[
Ã B̃

B̃ Ã

]
,

(SM2.17)

where

Ã+ B̃ =

N∑
k=1

ϕ(λk)ukv
>
k

Ã− B̃ =
N∑
k=1

ϕ(µk)tkw
>
k .(SM2.18)

(xi): By using the same notation as in (3.6), The best approximation of rank less than or equal
to R to a matrix M0 in R(2N2)×(2N1) is f(M0) where f is given by (3.6) with

(SM2.19) (∀λ ∈ R+) ϕ(λ) =

{
λ if λ 6 λ̃0,[R]

0 otherwise,

and λ̃0,[R] is the R-th eigenvalue of M0 when these are ordered by decreasing value: λ̃0,1 >

. . . > λ̃0,K . It thus follows from (x) that if M0 ∈ AN2,N1 , then f(M0) ∈ AN2,N1 .
(xii): The projection onto the spectral ball of center 0 and and radius ρ ∈ ]0,+∞[ of a matrix
M ∈ AN2,N1 is given by (3.6) where

(∀ξ ∈ R) ϕ(ξ) = min{ξ, ρ}.

The result then follows from Property (x).

Remark SM2.1. The last result can be generalized as follows. Let ψ : R→ ]−∞,+∞] be
a lower-semicontinuous function, which is proper, even, and convex, and let

g : R(2N2)×(2N1) → ]−∞,+∞]

M 7→
2K∑
i=1

ψ(λ̃k)(SM2.20)
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where K = min{N1, N2} and (λ̃k)16k62K are the singular values of M . The proximity operator
of g at M ∈ R(2N2)×(2N1) is [SM1, Proposition 24.68]:

proxg : M 7→ argmin
P∈R(2N2)×(2N1)

1

2
‖P −M‖2F + g(P )

=

2K∑
k=1

proxψ(λ̃k)ũkṽ
>
k ,(SM2.21)

where ‖·‖F denotes the Frobenius norm. It then follows from Property (x) that, if M ∈ AN2,N1 ,
then proxg(M) ∈ AN2,N1 .

SM3. Link between Conv layers and MIMO systems. To be rigorous, let us first define
the space Hi−1 (resp. Hi) in which signals (xp)16p6ζi−1

(resp. (yq)16q6ζi) used in (4.1) live.
Typically, Hi is some finite-dimensional subspace of (`2(Zd))ζi where `2(Zd) denotes the space
of square summable discrete d-dimensional fields. For the discrete convolution ∗ to be properly
defined, kernels (wi,q,p)16p6ζi−1,16q6ζi are then assumed to be summable. In practice, this
assumption is satisfied since these kernels are chosen with finite size.

For x = (x(n))n∈Zd ∈ `2(Zd), the decimation operation (·) ↓si returns the output signal

(SM3.1) (∀n ∈ Zd) y(n) = u(sin).

Eq. (4.1) defines a MIMO (multi-input multi-output) filter that can be rexpressed in a matrix
form as

(∀n ∈ Zd) u(n) =
∑
n∈Zd

W i(n
′)x(n− n′)

= (W i ∗ x)(n),(SM3.2)

where

u(n) =

u1(n)
...

uζi(n)

 ∈ Rζj , x(n) =

 x1(n)
...

xζi−1
(n)

 ∈ Rζi−1 ,(SM3.3)

and W i(n) is given by (4.4). (W i(n))n∈Zd defines the so-called MIMO impulse response of
Wi. The MIMO impulse response of an ABBA layer is similarly given by (4.5).

These relations can also be written more concisely in the d-dimensional frequency domain1

as

(SM3.4) (∀ν ∈ [0, 1]d) û(ν) = Ŵ i(ν) x̂(ν),

where

(SM3.5) x̂(ν) =
∑
n∈Zd

x(n) exp(−ı2πn>ν) ∈ Cζj−1 ,

1Alternatively, we could use the d-dimensional z-transform since we are dealing with discrete-space signals.
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(SM3.6) Ŵ i(ν) =
∑
n∈Zd

W i(n) exp(−ı2πn>ν) ∈ Cζj−1×ζj ,

and Ŵ i is the frequency response of the associated MIMO filter.
Note that

∫
[0,1]d ‖x̂(ν)‖2dν < +∞ , whereas Ŵ i is a continuous (hence bounded) function

on [0, 1]d. Another useful result from sampling theory [SM6] is that the Fourier transform of
y = (yq)16q6ζj in (4.1) is deduced from the Fourier transform of u by the relation

(SM3.7) (∀ν ∈ [0, 1]d) ŷ(ν) =
1

sdi

∑
j∈S(si)

û

(
ν + j

si

)
.

where

(SM3.8) (∀σ ∈ N \ {0}) S(σ) = {0, . . . , σ − 1}d.

It is also worth noting that the interpolation by a factor s of y

(SM3.9) v = y↑s ⇔ (∀n ∈ Zd) v(n) =

{
y
(n
s

)
if n ∈ sZd

0 otherwise,

translates into

(SM3.10) (∀ν ∈ [0, 1]) ŷ↑s(ν) = ŷ(sν),

in the frequency domain.

SM4. Frequency expressions of Lipschitz bounds. In this appendix, we establish
frequency-based bounds of the Lipschitz constant of an m-layer convolutional neural net-
work T .

Based on the MIMO concepts introduced in section SM3, we will introduce the following
global frequency response of the network:

(SM4.1) (∀ν ∈ [0, 1]d) Ŵ (ν) = Ŵm(σm−1ν) · · · Ŵ 2(σ1ν)Ŵ 1(ν) ∈ Cζm×ζ0 ,

where Ŵ i is the frequency response associated to filter W i (see (SM3.6)).
We have then the following result providing a frequency formula for evaluating the Lipschitz

constant of a convolutional network.

Proposition SM4.1. The quantity

(SM4.2) θm =
1

σ
d/2
m

sup
ν∈[0,1/σm]d

∥∥∥∥∥∥
∑

j∈S(σm)

Ŵ

(
ν +

j

σm

)
Ŵ

(
ν +

j

σm

)H
∥∥∥∥∥∥
1/2

.

provides a lower bound on the Lipschitz constant estimate of network T 2. In addition, if
for every i ∈ {1, . . . ,m}, p ∈ {1, . . . , ζi−1}, and q ∈ {1, . . . , ζi}, wi,q,p = (wi,q,p(n))n∈Zd is a
nonnegative kernel i.e.,

(SM4.3) (∀n ∈ Zd) wi,p,q(n) > 0,

then θm is a Lipschitz constant of T .

2(·)H denotes the Hermitian transpose operation.



SUPPLEMENTARY MATERIALS SM7

Proof. In the considered case all activation operators are nonexpansive and they are
assumed separable, except maybe at the last layer. Thus T is a special case of the networks
investigated in [SM3, Section 5] for which a tight estimate of the Lipschitz constant was
provided. It then follows from [SM3, Theorem 5.2] that a lower bound on this Lipschitz
constant estimate is

(SM4.4) θm = ‖Wm ◦ · · · ◦ W1‖.

In addition, under the additional assumption that all the kernels are nonnegative, T is an
instance of the positively weighted networks investigated in [SM3, Section 5.3] and it follows
from [SM3, Proposition 5.10] that θm is then a Lipschitz constant of T .
So the problem is to calculate the norm of the linear operator W = Wm ◦ · · · ◦ W1. Each
operator Wi with i ∈ {1, . . . ,m} is the composition of a d-dimensional MIMO filter with a
decimator. It follows from Noble identities [SM6] that W reduces to cascading a ζm × ζ0
MIMO filter with frequency response W̃ with a decimation of each output by a factor σm.
More precisely, if x ∈ H0 is the input of this linear system and y its output, we have in the
frequency domain:

(∀ν ∈ [0, 1]d) ŷ(ν) =
1

σdm

∑
j∈S(σm)

Ŵ

(
ν + j

σm

)
x̂

(
ν + j

σm

)

=
1

σdm
W̃

(
ν

σm

)
x̃

(
ν

σm

)
,(SM4.5)

where x̃( ν
σm

) is a vector of dimension Cσd
mζ0 where the vectors (x̂((ν+ j)/σm))j∈S(σm) are sta-

cked columnwise and W̃ ( ν
σm

) is a cm×σdmζ0 matrix where the matrices (Ŵ ((ν+j)/σm))j∈S(σm)

are stacked rowwise. For example, when d = 2, we have, for every ν = (ν1, ν2) ∈ [0, 1]2,

x̃(ν) =


x̌(ν1, ν2)

x̌
(
ν1, ν2 + 1

σm

)
...

x̌
(
ν1, ν2 + σm−1

σm

)

 ∈ Cσ
2
mζ0(SM4.6)

x̌(ν) =


x̂(ν1, ν2)

x̂
(
ν1 + 1

σm
, ν2

)
...

x̂
(
ν1 + σm−1

σm
, ν2

)

 ∈ Cσmζ0(SM4.7)

W̃ (ν) =

[
W̌ (ν1, ν2) W̌

(
ν1, ν2 +

1

σm

)
. . . W̌

(
ν1, ν2 +

σm − 1

σm

)]
∈ Cζm×σ

2
mζ0(SM4.8)

W̌ (ν) =

[
Ŵ (ν1, ν2) Ŵ

(
ν1 +

1

σm
, ν2

)
. . . Ŵ

(
ν1 +

σm − 1

σm
, ν2

)]
∈ Cζm×σmζ0 .(SM4.9)
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By using now Parseval’s formula,

‖y‖2 =

∫
[0,1]d

‖ŷ(ν)‖2dν

=
1

σ2dm

∫
[0,1]d

∥∥∥∥W̃ (
ν

σm

)
x̃

(
ν

σm

)∥∥∥∥2 dν
6

1

σdm

∫
[0,1/σm]d

∥∥∥W̃ (ν)
∥∥∥2 ‖x̃(ν)‖2 dν1dν2

6
1

σdm
sup

ν∈[0,1/σm]d

∥∥∥W̃ (ν)
∥∥∥2 ∫

[0,1/σm]d
‖x̃(ν)‖2 dν

=
1

σ2m
sup

ν∈[0,1/σm]d

∥∥∥W̃ (ν)
∥∥∥2 ∑

j∈S(σm)

∫
[0,1/σm]d

∥∥∥∥x̂(ν +
j

σm

)∥∥∥∥2 dν
=

1

σdm
sup

ν∈[0,1/σm]d

∥∥∥W̃ (ν)
∥∥∥2 ∫

[0,1]d
‖x̂(ν)‖2 dν

=
1

σdm
sup

ν∈[0,1/σm]d

∥∥∥W̃ (ν)
∥∥∥2 ‖x‖2.(SM4.10)

This shows that

(SM4.11) θ2m 6
1

σdm
sup

ν∈[0,1/σm]d

∥∥∥W̃ (ν)
∥∥∥2 .

On the other hand since Ŵ is continuous, W̃ is also continuous, and there exists ν̂ ∈ [0, 1/σm]d

such that

(SM4.12) sup
ν∈[0,1/σm]d

∥∥∥W̃ (ν)
∥∥∥ =

∥∥∥W̃ (ν̂)
∥∥∥ .

Let us now choose, for every ν ∈ [0, 1/σm]d, x̃ (ν) = αε(ν)u(ν) where u(ν) is a unit norm

eigenvector associated with the maximum eigenvalue of W̃ (ν)HW̃ (ν), ε ∈ ]0,+∞[, and

(SM4.13) αε(ν) =

{
1
εd/2

if (∃j ∈ {−1, 0, 1}d) ‖ν + j
σm
− ν̂‖∞ 6 ε

2

0 otherwise.

Then we see that when ε→ 0, the upper bound in (SM4.10) is reached. We conclude that

(SM4.14) θm =
1

σ
d/2
m

sup
ν∈[0,1/σm]d

∥∥∥W̃ (ν)
∥∥∥ .

In addition, by using the relation between W̃ and Ŵ (i.e., (SM4.8) and (SM4.9) in the 2D
case), ∥∥∥W̃ (ν)

∥∥∥2 =
∥∥∥W̃ (ν)W̃ (ν)H

∥∥∥
=

∥∥∥∥∥∥
∑

j∈S(σm)

Ŵ

(
ν +

j

σm

)
Ŵ

(
ν +

j

σm

)H
∥∥∥∥∥∥ .(SM4.15)

Gathering the last two equalities yields (SM4.2).
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When there is no decimation, i.e. the strides (si)16i6m are all equal to 1, (SM4.2) reduces
to

(SM4.16) θm = sup
ν∈[0,1]d

‖Ŵm(ν) · · · Ŵ 2(ν)Ŵ 1(ν)‖.

We recall that the following upper bound holds [49]:

(SM4.17) θm 6 θm =

m∏
i=1

‖Wi‖.

Applying our result to the one-layer case shows that, for every i ∈ {1, . . . ,m},

(SM4.18) ‖Wi‖ =
1

s
d/2
i

sup
ν∈[0,1/si]2

∥∥∥∥∥∥
∑

j∈S(si)

Ŵ i

(
ν +

j

si

)
Ŵ i

(
ν +

j

si

)H
∥∥∥∥∥∥
1/2

.

Note that the resulting upper bound in (SM4.17) gives a loose estimate of the Lipschitz
constant, which has however the merit to be valid for convolutional networks having kernels
with an arbitrary sign.

SM5. Numerical evaluation of the Lipschitz constant of nonnegative convolutional
networks. We compare the tight bound θm in Theorem 4.1 with the separable one θm given
by (4.12) for a classic convolutional network using non-negative kernels. The results provided
in Table SM1 correspond to the convolutive part of LeNet-5 [SM4]. In our experiments, we
initialized the networks with randomly sampled weights drawn from a uniform distribution on
[0, 1]. Table SM1 shows the relative difference

εr =
θm − θm
θm

,

for 10 distinct noise realizations. We thus observe that the difference between the two bounds
is small. Similar observations can be made on various convolutive architectures. In contrast,
for fully connected networks, a separable bound is usually overpessimistic.

SM6. Lipschitz constant of average pooling. We consider the case when the i-th layer
is an average pooling where the average is computed on patches of length Li in each dimension
and with stride si. For simplicity, we suppose that Li is a multiple of si. The number of input
and output channels is then equal, i.e. ζi = ζi−1. The average is calculated on each channel

Table SM1
Lipschitz bounds obtained for 10 independent realizations of random positive initialization for LeNet-5.

LeNet-5
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

θm 30302.73 27734.91 30298.73 29374.35 30180.16 28632.60 30615.02 30395.67 34828.90 30097.62

θm 30696.07 28114.29 30860.56 29821.62 30670.05 29298.64 31152.06 30866.87 35220.36 30367.71
εr [%] 1.28 1.35 1.82 1.50 1.60 2.27 1.72 1.53 1.11 0.89
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independently, this operation is a special case of a nonnegative convolutional layer where, for
every n ∈ Zd, W i(n) is a diagonal matrix. The diagonal elements of this matrix are

(SM6.1) (∀p ∈ {1, . . . , ζi})(∀n ∈ Zd) wi,p,p(n) =

{
1
Ld
i

if n ∈ [0, Li − 1]d

0 otherwise.

We deduce that, for every j ∈ S(si), the matrix W
(j)
i is also a diagonal matrix. More precisely,

the sum in (4.13) can be restricted to values of n ∈ {0, . . . , Li/si − 1}d and W
(j)
i = 1

sdi
Id .

We deduce that the Lipschitz constant of the average pooling layer is

(SM6.2) ‖Wi‖ =
∥∥∥ ∑
j∈S(si)

W
(j)
i

(
W

(j)
i

)> ∥∥∥1/2 =
1

s
d/2
i

.

We see that this constant is independent of the patch size and is a decreasing function of the
stride.

SM7. Expressivity of ABBA networks – simulations. For this experiment, we randomly
sampled points from four distinct 2D Gaussian distributions, with different means and covari-
ance matrices, totaling 125 2-dimensional points per class. Figure SM1 shows a comparison
between decision boundaries resulting from training two models: a standard one trained
conventionally and its non-negative ABBA equivalent. The two models reach a similar solution,
showing that the theoretical properties proved in this paper are also observed in practical
simulations.

(a) Standard model (b) ABBA model

Figure SM1. Decision space comparison between fitting an ABBA network and a standard arbitrary-signed
one.
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SM8. Constrained training of signed convolutional layers. The first and the last layers of
an ABBA convolutional network have signed kernels. The norm of these layers is computed by
using (SM4.18) and constrained to be less than θm,i,t with i ∈ {0,m+ 1}. Note that (SM4.18)

makes use of the frequency response Ŵ i of filter Wi. A discrete Fourier transform (DFT) is
actually implemented (using 128× 128 discrete frequencies). In the discrete frequency domain,
the upper bound constraint is thus decomposed into 1282 matrix norm bounds obtained by
summing over s2i frequencies. The projection onto each of these elementary constraint sets is
computed by truncating a singular value decomposition. An additional constraint, however, is
to be addressed, which is related to the fact that the kernels are of finite size. This implicitly
defines a linear constraint. Projecting onto the associated vector space is simply obtained by
truncating the kernel (after inverse DFT) to the desired size. The set Si,t is thus defined as the
intersection of the former matrix norm constraint set and the latter vector space. Projecting
onto this intersection can be achieved by an iterative convex optimization approach. In our
case, we use a Douglas-Rachford algorithm [SM2].

SM9. ABBA architectures. Table SM3 details the ABBA Dense and ABBA Conv ar-
chitectures used for MNIST and FMNIST datasets, while Table SM2 shows our choices for
RPS and CelebA datasets. As the ABBA layers have a specific form, their output size will be
twice the number of filters. The used activation operator is the Capped Leaky ReLu (CLR)
function defined in (SM1.3) for all Dense layers. For convolutional operators we employed a
3× 3 kernel, using the same activation.

We used the official train-test split provided by the Tensorflow framework for both MNIST
and FMNIST datasets and did not employ any augmentation strategy during training. For
RPS and CelebA models, we resized the input images to 150× 150, resp. 128× 128, before
feeding them to the network. In the case of CelebA dataset, we opted for a binary classification
task on the bald feature. We extracted all the images containing the bald attribute, and we

Table SM2
ABBA Conv architectures details for RPS and CelebA datasets.

Layer type RPS stride CelebA stride

Input 150× 150× 3 128× 128× 3
Conv2D 150× 150× 8 1 128× 128× 8 1
ABBA Conv2D + CLR – – 64× 64× 8(×2) 2
ABBA Conv2D + CLR 75× 75× 32(×2) 2 32× 32× 16(×2) 2
ABBA Conv2D + CLR 37× 37× 64(×2) 2 16× 16× 32(×2) 2
ABBA Conv2D + CLR 18× 18× 128(×2) 2 8× 8× 64(×2) 2
Conv2D 18× 18× 128 1 8× 8× 64 1
Global Max-Pooling2D 128(×2) 64(×2)
ABBA Dense + CLR 128(×2) –
ABBA Dense + CLR 64(×2) –
ABBA Dense + CLR 32(×2) –
Dense 3 2
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Table SM3
ABBA Dense and ABBA Conv architecture details for MNIST and FMNIST datasets. For convolutional

layers the stride is set to 1.

Layer type MNIST/FMNIST

Input 28× 28× 1
Conv2D 28× 28× 32
ABBA Conv2D + CLR 28× 28× 16
ABBA Conv2D + CLR 28× 28× 16
Conv2D 28× 28× 1
Dense 256
ABBA Dense + CLR 128
ABBA Dense + CLR 64
Dense 10

Layer type MNIST FMNIST

Input 784 784
Dense 256 256
ABBA Dense + CLR 128 128
ABBA Dense + CLR 64 64
ABBA Dense + CLR – 32
Dense 10 10

Table SM4
Training hyperparameters.

Dataset Optimizer No. Epochs Learning rate Batch size

MNIST projected ADAM 150 10−3 1024
FMNIST projected ADAM 200 10−3 1024
RPS projected ADAM 250 10−4 64
CelebA projected ADAM 100 10−4 128

randomly select the same number of examples from the non-bald class, in order to avoid class
imbalance. Additional information regarding the optimization parameters used during training
is provided in Table SM4.

SM10. Adversarial examples. For all datasets, adversarial examples created by using
DDN attack are displayed in Figures SM2, SM3, SM4, and SM5. We generated adversarial
samples using untargeted DDN attacks, with a budget of 300 iterations and initial parameters
as proposed by the authors. We did not limit the maximum perturbation ε, in order to find the
minimum one allowing us to fool the model. It can be easily seen that for DeelLip and ABBA
networks the required perturbations for misclassification are higher. In particular, we observe
that the perturbations needed to fool ABBA networks lead to severe artifacts in the images.

SM11. Training time. We first compared the average time/epoch for training a standard
network and its ABBA equivalent. Table SM5 reports the average seconds per epoch for both
cases, for different feed-forward architectures. On average, training an ABBA neural network
for 200 epochs on MNIST introduces less than 10% additional training time.

The projection is a costly step, and it is the main contributor to the training overhead. A
comparison of the training time (per-batch) with (green line) and without (dotted green line)
projection is featured in Figures SM6a and SM6b for architectures with an increasing number
of fully connected and convolutional layers, respectively. The average deviation from the



SUPPLEMENTARY MATERIALS SM13

Clean

Baseline
1.94

AT
1.95

TRADES
2.41

DeelLip
3.14

ABBA
3.34

0.63

1.08

1.18

1.82

2.01

1.87

2.43

2.66

3.06

3.26

0.97

1.48

2.42

2.66

3.06

1.22

1.53

1.76

2.29

2.59

1.35

1.63

1.54

1.70

2.18

0.81

1.44

0.72

2.49

2.79

0.97

2.00

2.24

3.11

3.19

1.39

1.77

1.82

2.67

3.07

0.92

1.31

1.33

2.24

2.41

Figure SM2. Adversarial examples with DDN attack for Conv-Dense models, on MNIST dataset. `2
perturbation magnitude is given in the top-left corner.
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Figure SM3. Adversarial examples with DDN attack for Conv-Dense models, on FMNIST dataset. `2
perturbation magnitude is given in the top-left corner.
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Figure SM4. Adversarial examples generated with DDN, on RPS dataset. For each example: first row –
adversarial images; second row – pixel differences between adversarial and clean sample.
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Figure SM5. Adversarial examples with DeepFool attack for CelebA. `2 perturbation magnitude is given in
the top-left corner.
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Table SM5
Comparison of per-epoch training times for various Standard and ABBA architectures, on MNIST. XCYF

corresponds to an architecture with X Convolution layers, followed by Y fully-connected layers.

Model
Architecture

2C2F 2C3F 3C2F 4C2F 4C3F 5C1F

Standard
Acc [%] 95.28 95.80 99.18 99.30 99.26 99.10

Sec./Epoch 4.25 4.29 4.31 4.28 4.37 4.31
Size (MB) 0.09 0.14 0.39 0.53 0.59 0.97

ABBA
Acc [%] 95.54 95.34 98.62 99.12 99.14 98.72

Sec./Epoch 4.52 4.61 4.67 4.68 4.79 4.74
Size (MB) 0.18 0.28 0.78 1.06 1.18 1.94

(a) (b)

Figure SM6. Computation time for the projection step for a variable-length sequence of ABBA SM6a
fully-connected and SM6b convolutional layers. All projections wer computed with a number of 10 iterations,
and the results were averaged over 50 independent simulations.

imposed global bound (red), which was set to 1 in all cases, is also reported. This shows that
we are able to maintain the imposed bounds, given the same number of iterations, irrespective
of the network depth.
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