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SM1. Symmetric activation functions. In practice, the activation operator Ri is often separa-5

ble, that is it operates componentwise:6

(SM1.1)
(
∀x = (ξk)1⩽k⩽Ni

∈ RNi
)

Rix =
(
ϱi(ξk)

)
1⩽k⩽Ni

,7

where, for every k ∈ {1, . . . , Ni}, ϱi : R → R. Examples of odd functions allowing us to define8

a symmetric separable activation operators Ri with ci = di = 0 are9

• the hyperbolic tangent activation function ρi = tanh10

• the arctangent activation function ρi = (2/π) arctan11

• the inverse square root linear unit function ϱi : R → R : ξ 7→ ξ/
√
1 + ξ212

• the Elliot activation function ϱi : R → R : ξ 7→ ξ/(1 + |ξ|).13

Some examples of separable activation operators which are non-odd are described below. The14

capped ReLU function is given by15

(SM1.2) (∀ξ ∈ R) ρi(ξ) =


0 if ξ < 0

ξ if 0 ⩽ ξ < χ

χ otherwise,

16

where χ ∈ ]0,+∞[. We have then ci = di = χ1Ni with 1Ni = [1, . . . , 1]⊤ ∈ RNi . We can also17

define a leaky version of this function as18

(SM1.3) (∀ξ ∈ R) ρi(ξ) =


αξ if ξ < 0,

ξ if 0 ⩽ ξ < χ,

α(ξ − χ) + χ otherwise,

19

where α ∈]0, 1[ and χ ∈ ]0,+∞[ are hyper-parameters.20

SM2. Proof of the properties of ABBA matrices. (i)-(iii): These properties follow from basic21

algebra. We will just detail the proof of the third one. Let22

(SM2.1) M1 =

[
A1 B1

B1 A1

]
and M2 =

[
A2 B2

B2 A2

]
,23

where (A1, B1) ∈ RN2×N1 and (A2, B2) ∈ RN3×N2 . Then24

(SM2.2) M2M1 =

[
A2A1 +B2B1 A2B1 +B2A1

A2B1 +B2A1 A2A1 +B2B1

]
∈ AN3,N1 .25
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In addition,26

S(M2M1) = A2A1 +B2B1 +A2B1 +B2A127

= (A2 +B2)(A1 +B1)28

= S(M2)S(M1).(SM2.3)2930

(iv): This property is a direct consequence of (ii) and (iii).31

(v): Let M =

[
A B
B A

]
∈ R(2N1)×(2N1). λ ∈ C is an eigenvalue of M if and only if32

(SM2.4) det(M − λ Id ) = 0 ⇔ det
([A− λ Id B

B A− λ Id

])
= 0.33

We have34

(SM2.5)
[
A− λ Id B

B A− λ Id

] [
Id − Id
Id Id

]
=

[
A+B − λ Id −A+B + λ Id
A+B − λ Id A−B − λ Id

]
.35

Since A−B − λ Id and −A+B + λ Id commute, we have [SM5]36

(SM2.6) det
([A+B − λ Id −A+B + λ Id
A+B − λ Id A−B − λ Id

])
= 2N det

(
(A+B − λ Id )(A−B − λ Id )

)
.37

Similarly38

(SM2.7) det
([Id − Id

Id Id

])
= 2N .39

We deduce from (SM2.5) that40

det
([A− λ Id B

B A− λ Id

])
= det

(
(A+B − λ Id )(A−B − λ Id )

)
41

⇔ det(M − λ Id ) = det(A+B − λ Id ) det(A−B − λ Id ).(SM2.8)4243

So λ is an eigenvalue of M if and only if det(A+B − λ Id ) = 0 or det(A−B − λ Id ) = 0, i.e.,44

λ is an eigenvalue of A+B or A−B.45

(vi) Let M be defined similarly to previously with (A,B) ∈ (RN2×N1)2. We have46

(SM2.9) ∥M∥ = ∥MM⊤∥1/2 =
∥∥∥∥[AA⊤ +BB⊤ AB⊤ +BA⊤

AB⊤ +BA⊤ AA⊤ +BB⊤

]∥∥∥∥1/247

According to (v), the eigenvalues of MM⊤ ∈ AN2,N2 are those of AA⊤+BB⊤+AB⊤+BA⊤ =48

(A + B)(A + B)⊤ and AA⊤ + BB⊤ − AB⊤ − BA⊤ = (A − B)(A − B)⊤. The maximum49

eigenvalues of the two latter matrices are ∥A + B∥2 and ∥A − B∥2, respectively. Therefore50
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∥M∥ = max{∥A+B∥, ∥A−B∥}.51

(vii): In addition, if A and B have nonnegative elements,52

∥A−B∥ = sup
x∈RN\{0}

∥Ax−Bx∥
∥x∥

53

⩽ sup
x∈RN\{0}

∥A|x|+B|x|∥
∥x∥

54

= sup
a∈[0,+∞[N\{0}

∥Aa+Ba∥
∥a∥

55

⩽ ∥A+B∥,(SM2.10)5657

where |x| denotes the vector whose components are the absolute values of those of vector x.58

We deduce from (vi) that ∥M∥ = ∥A+B∥ = ∥S(M)∥.59

(viii): We have60

A+B =
K∑
k=1

λkukv
⊤
k(SM2.11)61

A−B =

K∑
k=1

µktkw
⊤
k .(SM2.12)62

63

Thus64

A =
1

2

K∑
k=1

(λkukv
⊤
k + µktkw

⊤
k )(SM2.13)65

B =
1

2

K∑
k=1

(λkukv
⊤
k − µktkw

⊤
k )(SM2.14)66

67

and we deduce that68 [
A B
B A

]
=

K∑
k=1

1

2

(
λk

[
ukv

⊤
k ukv

⊤
k

ukv
⊤
k ukv

⊤
k

]
+ µk

[
tkw

⊤
k −tkw⊤

k

−tkw⊤
k tkw

⊤
k

])
69

=

K∑
k=1

1

2

(
λk

[
uk
uk

] [
vk
vk

]⊤
+ µk

[
tk
−tk

] [
wk
−wk

]⊤)
.(SM2.15)70

71

On the other hand, for every (k, ℓ) ∈ {1, . . . ,K}2,72 [
uk
uk

]⊤ [
uℓ
uℓ

]
= 2u⊤k uℓ =

{
2 if k = ℓ

0 otherwise,
73

[
tk
−tk

]⊤ [
tℓ
−tℓ

]
= 2t⊤k tℓ =

{
2 if k = ℓ

0 otherwise,
74

[
uk
uk

]⊤ [
tℓ
−tℓ

]
= 0,(SM2.16)75

76
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which shows that
{

1√
2

[
uk
uk

]
, 1√

2

[
tk
−tk

]}
1⩽k⩽K

is an orthonormal family of R2N2 . For similar77

reasons,
{

1√
2

[
vk
vk

]
, 1√

2

[
wk
−wk

]}
1⩽k⩽K

is an orthonormal family of R2N1 . This allows us to78

conclude that (SM2.15) provides a singular value decomposition of
[
A B
B A

]
.79

(ix): The rank of
[
A B
B A

]
is equal to the number of its nonzero singular values. From the80

previous result, it is thus equal to the sum of the nonzero values of A+B and those of A−B,81

that is the sum of the ranks of matrices A+B and A−B.82

(x): The fact that the ABBA structure is kept by matrix mappings operating elementwise is83

obvious. Let us thus focus on the case of spectral functions. By using the same notation as in84

(viii), it follows from (SM2.15) that85

f
([A B
B A

])
=

K∑
k=1

1

2

(
φ(λk)

[
ukv

⊤
k ukv

⊤
k

ukv
⊤
k ukv

⊤
k

]
+ φ(µk)

[
tkw

⊤
k −tkw⊤

k

−tkw⊤
k tkw

⊤
k

])
=

[
Ã B̃

B̃ Ã

]
,

(SM2.17)

86

87

where88

Ã+ B̃ =
N∑
k=1

φ(λk)ukv
⊤
k89

Ã− B̃ =

N∑
k=1

φ(µk)tkw
⊤
k .(SM2.18)90

91

(xi): By using the same notation as in (3.6), The best approximation of rank less than or equal92

to R to a matrix M0 in R(2N2)×(2N1) is f(M0) where f is given by (3.6) with93

(SM2.19) (∀λ ∈ R+) φ(λ) =

{
λ if λ ⩽ λ̃0,[R]

0 otherwise,
94

and λ̃0,[R] is the R-th eigenvalue of M0 when these are ordered by decreasing value: λ̃0,1 ⩾95

. . . ⩾ λ̃0,K . It thus follows from (x) that if M0 ∈ AN2,N1 , then f(M0) ∈ AN2,N1 .96

(xii): The projection onto the spectral ball of center 0 and and radius ρ ∈ ]0,+∞[ of a matrix97

M ∈ AN2,N1 is given by (3.6) where98

(∀ξ ∈ R) φ(ξ) = min{ξ, ρ}.99

The result then follows from Property (x).100

Remark SM2.1. The last result can be generalized as follows. Let ψ : R → ]−∞,+∞] be a101

lower-semicontinuous function, which is proper, even, and convex, and let102

g : R(2N2)×(2N1) → ]−∞,+∞]103

M 7→
2K∑
i=1

ψ(λ̃k)(SM2.20)104

105
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where K = min{N1, N2} and (λ̃k)1⩽k⩽2K are the singular values of M . The proximity operator106

of g at M ∈ R(2N2)×(2N1) is [SM1, Proposition 24.68]:107

proxg : M 7→ argmin
P∈R(2N2)×(2N1)

1

2
∥P −M∥2F + g(P )108

=
2K∑
k=1

proxψ(λ̃k)ũkṽ
⊤
k ,(SM2.21)109

110

where ∥ · ∥F denotes the Frobenius norm. It then follows from Property (x) that, if M ∈ AN2,N1 ,111

then proxg(M) ∈ AN2,N1 .112

SM3. Link between Conv layers and MIMO systems. To be rigorous, let us first define the113

space Hi−1 (resp. Hi) in which signals (xp)1⩽p⩽ζi−1
(resp. (yq)1⩽q⩽ζi) used in (4.1) live.114

Typically, Hi is some finite-dimensional subspace of (ℓ2(Zd))ζi where ℓ2(Zd) denotes the space115

of square summable discrete d-dimensional fields. For the discrete convolution ∗ to be properly116

defined, kernels (wi,q,p)1⩽p⩽ζi−1,1⩽q⩽ζi are then assumed to be summable. In practice, this117

assumption is satisfied since these kernels are chosen with finite size.118

For x =
(
x(n)

)
n∈Zd ∈ ℓ2(Zd), the decimation operation (·) ↓si returns the output signal119

(SM3.1) (∀n ∈ Zd) y(n) = u(sin).120

Eq. (4.1) defines a MIMO (multi-input multi-output) filter that can be rexpressed in a matrix121

form as122

(∀n ∈ Zd) u(n) =
∑
n∈Zd

W i(n
′)x(n− n′)123

= (W i ∗ x)(n),(SM3.2)124125

where126

u(n) =

u1(n)...
uζi(n)

 ∈ Rζj , x(n) =

 x1(n)
...

xζi−1
(n)

 ∈ Rζi−1 ,(SM3.3)127

128

and W i(n) is given by (4.4). (W i(n))n∈Zd defines the so-called MIMO impulse response of129

Wi. The MIMO impulse response of an ABBA layer is similarly given by (4.5).130

These relations can also be written more concisely in the d-dimensional frequency domain1131

as132

(SM3.4) (∀ν ∈ [0, 1]d) û(ν) = Ŵ i(ν) x̂(ν),133

where134

(SM3.5) x̂(ν) =
∑
n∈Zd

x(n) exp
(
− ı2πn⊤ν

)
∈ Cζj−1 ,135

1Alternatively, we could use the d-dimensional z-transform since we are dealing with discrete-space signals.
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136

(SM3.6) Ŵ i(ν) =
∑
n∈Zd

W i(n) exp
(
− ı2πn⊤ν

)
∈ Cζj−1×ζj ,137

and Ŵ i is the frequency response of the associated MIMO filter.138

Note that
∫
[0,1]d ∥x̂(ν)∥

2dν < +∞ , whereas Ŵ i is a continuous (hence bounded) function139

on [0, 1]d. Another useful result from sampling theory [SM6] is that the Fourier transform of140

y = (yq)1⩽q⩽ζj in (4.1) is deduced from the Fourier transform of u by the relation141

(SM3.7) (∀ν ∈ [0, 1]d) ŷ(ν) =
1

sdi

∑
j∈S(si)

û

(
ν + j

si

)
.142

where143

(SM3.8) (∀σ ∈ N \ {0}) S(σ) = {0, . . . , σ − 1}d.144

It is also worth noting that the interpolation by a factor s of y145

(SM3.9) v = y↑s ⇔ (∀n ∈ Zd) v(n) =

{
y
(n
s

)
if n ∈ sZd

0 otherwise,
146

translates into147

(SM3.10) (∀ν ∈ [0, 1]) ŷ↑s(ν) = ŷ(sν),148

in the frequency domain.149

SM4. Frequency expressions of Lipschitz bounds. In this appendix, we establish frequency-150

based bounds of the Lipschitz constant of an m-layer convolutional neural network T .151

Based on the MIMO concepts introduced in Appendix SM3, we will introduce the following152

global frequency response of the network:153

(SM4.1) (∀ν ∈ [0, 1]d) Ŵ (ν) = Ŵm(σm−1ν) · · · Ŵ 2(σ1ν)Ŵ 1(ν) ∈ Cζm×ζ0 ,154

where Ŵ i is the frequency response associated to filter W i (see (SM3.6)).155

We have then the following result providing a frequency formula for evaluating the Lipschitz156

constant of a convolutional network.157

Proposition SM4.1. The quantity158

(SM4.2) θm =
1

σ
d/2
m

sup
ν∈[0,1/σm]d

∥∥∥∥∥∥
∑

j∈S(σm)

Ŵ

(
ν +

j

σm

)
Ŵ

(
ν +

j

σm

)H
∥∥∥∥∥∥
1/2

.159
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provides a lower bound on the Lipschitz constant estimate of network T 2. In addition, if for every160

i ∈ {1, . . . ,m}, p ∈ {1, . . . , ζi−1}, and q ∈ {1, . . . , ζi}, wi,q,p = (wi,q,p(n))n∈Zd is a nonnegative161

kernel i.e.,162

(SM4.3) (∀n ∈ Zd) wi,p,q(n) ⩾ 0,163

then θm is a Lipschitz constant of T .164

Proof. In the considered case all activation operators are nonexpansive and they are165

assumed separable, except maybe at the last layer. Thus T is a special case of the networks166

investigated in [SM3, Section 5] for which a tight estimate of the Lipschitz constant was167

provided. It then follows from [SM3, Theorem 5.2] that a lower bound on this Lipschitz168

constant estimate is169

(SM4.4) θm = ∥Wm ◦ · · · ◦ W1∥.170

In addition, under the additional assumption that all the kernels are nonnegative, T is an171

instance of the positively weighted networks investigated in [SM3, Section 5.3] and it follows172

from [SM3, Proposition 5.10] that θm is then a Lipschitz constant of T .173

So the problem is to calculate the norm of the linear operator W = Wm ◦ · · · ◦ W1. Each174

operator Wi with i ∈ {1, . . . ,m} is the composition of a d-dimensional MIMO filter with a175

decimator. It follows from Noble identities [SM6] that W reduces to cascading a ζm× ζ0 MIMO176

filter with frequency response W̃ with a decimation of each output by a factor σm. More177

precisely, if x ∈ H0 is the input of this linear system and y its output, we have in the frequency178

domain:179

(∀ν ∈ [0, 1]d) ŷ(ν) =
1

σdm

∑
j∈S(σm)

Ŵ

(
ν + j

σm

)
x̂

(
ν + j

σm

)
180

=
1

σdm
W̃

(
ν

σm

)
x̃

(
ν

σm

)
,(SM4.5)181

182

where x̃
(

ν
σm

)
is a vector of dimension Cσd

mζ0 where the vectors
(
x̂((ν + j)/σm)

)
j∈S(σm)

183

are stacked columnwise and W̃
(

ν
σm

)
is a cm × σdmζ0 matrix where the matrices

(
Ŵ ((ν +184

j)/σm)
)
j∈S(σm)

are stacked rowwise. For example, when d = 2, we have, for every ν =185

2(·)H denotes the Hermitian transpose operation.
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(ν1, ν2) ∈ [0, 1]2,186

x̃(ν) =


x̌(ν1, ν2)

x̌
(
ν1, ν2 +

1
σm

)
...

x̌
(
ν1, ν2 +

σm−1
σm

)

 ∈ Cσ
2
mζ0(SM4.6)187

x̌(ν) =


x̂(ν1, ν2)

x̂
(
ν1 +

1
σm
, ν2

)
...

x̂
(
ν1 +

σm−1
σm

, ν2

)

 ∈ Cσmζ0(SM4.7)188

W̃ (ν) =

[
W̌ (ν1, ν2) W̌

(
ν1, ν2 +

1

σm

)
. . . W̌

(
ν1, ν2 +

σm − 1

σm

)]
∈ Cζm×σ2

mζ0(SM4.8)189

W̌ (ν) =

[
Ŵ (ν1, ν2) Ŵ

(
ν1 +

1

σm
, ν2

)
. . . Ŵ

(
ν1 +

σm − 1

σm
, ν2

)]
∈ Cζm×σmζ0 .(SM4.9)190

191

By using now Parseval’s formula,192

∥y∥2 =
∫
[0,1]d

∥ŷ(ν)∥2dν193

=
1

σ2dm

∫
[0,1]d

∥∥∥∥W̃ (
ν

σm

)
x̃

(
ν

σm

)∥∥∥∥2 dν194

⩽
1

σdm

∫
[0,1/σm]d

∥∥∥W̃ (ν)
∥∥∥2 ∥x̃(ν)∥2 dν1dν2195

⩽
1

σdm
sup

ν∈[0,1/σm]d

∥∥∥W̃ (ν)
∥∥∥2 ∫

[0,1/σm]d
∥x̃(ν)∥2 dν196

=
1

σ2m
sup

ν∈[0,1/σm]d

∥∥∥W̃ (ν)
∥∥∥2 ∑

j∈S(σm)

∫
[0,1/σm]d

∥∥∥∥x̂(ν +
j

σm

)∥∥∥∥2 dν197

=
1

σdm
sup

ν∈[0,1/σm]d

∥∥∥W̃ (ν)
∥∥∥2 ∫

[0,1]d
∥x̂(ν)∥2 dν198

=
1

σdm
sup

ν∈[0,1/σm]d

∥∥∥W̃ (ν)
∥∥∥2 ∥x∥2.(SM4.10)199

200

This shows that201

(SM4.11) θ2m ⩽
1

σdm
sup

ν∈[0,1/σm]d

∥∥∥W̃ (ν)
∥∥∥2 .202

On the other hand since Ŵ is continuous, W̃ is also continuous, and there exists ν̂ ∈ [0, 1/σm]
d203

such that204

(SM4.12) sup
ν∈[0,1/σm]d

∥∥∥W̃ (ν)
∥∥∥ =

∥∥∥W̃ (ν̂)
∥∥∥ .205
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Let us now choose, for every ν ∈ [0, 1/σm]
d, x̃ (ν) = αϵ(ν)u(ν) where u(ν) is a unit norm206

eigenvector associated with the maximum eigenvalue of W̃ (ν)HW̃ (ν), ϵ ∈ ]0,+∞[, and207

(SM4.13) αϵ(ν) =

{
1
ϵd/2

if (∃j ∈ {−1, 0, 1}d) ∥ν + j
σm

− ν̂∥∞ ⩽ ϵ
2

0 otherwise.
208

Then we see that when ϵ→ 0, the upper bound in (SM4.10) is reached. We conclude that209

(SM4.14) θm =
1

σ
d/2
m

sup
ν∈[0,1/σm]d

∥∥∥W̃ (ν)
∥∥∥ .210

In addition, by using the relation between W̃ and Ŵ (i.e., (SM4.8) and (SM4.9) in the 2D211

case),212 ∥∥∥W̃ (ν)
∥∥∥2 = ∥∥∥W̃ (ν)W̃ (ν)H

∥∥∥213

=

∥∥∥∥∥∥
∑

j∈S(σm)

Ŵ

(
ν +

j

σm

)
Ŵ

(
ν +

j

σm

)H
∥∥∥∥∥∥ .(SM4.15)214

215

Gathering the last two equalities yields (SM4.2).216

When there is no decimation, i.e. the strides (si)1⩽i⩽m are all equal to 1, (SM4.2) reduces217

to218

(SM4.16) θm = sup
ν∈[0,1]d

∥Ŵm(ν) · · · Ŵ 2(ν)Ŵ 1(ν)∥.219

We recall that the following upper bound holds [SM49]:220

(SM4.17) θm ⩽ θm =

m∏
i=1

∥Wi∥.221

Applying our result to the one-layer case shows that, for every i ∈ {1, . . . ,m},222

(SM4.18) ∥Wi∥ =
1

s
d/2
i

sup
ν∈[0,1/si]2

∥∥∥∥∥∥
∑

j∈S(si)

Ŵ i

(
ν +

j

si

)
Ŵ i

(
ν +

j

si

)H
∥∥∥∥∥∥
1/2

.223

Note that the resulting upper bound in (SM4.17) gives a loose estimate of the Lipschitz224

constant, which has however the merit to be valid for convolutional networks having kernels225

with an arbitrary sign.226

SM5. Numerical evaluation of the Lipschitz constant of nonnegative convolutional networks.227

We compare the tight bound θm in Theorem 4.1 with the separable one θm given by (4.12) for228

a classic convolutional network using non-negative kernels. The results provided in Table SM1229

correspond to the convolutive part of LeNet-5 [SM4]. In our experiments, we initialized230

This manuscript is for review purposes only.



SM10 A. NEACSU, J.C. PESQUET, V.VASILESCU, C. BURILEANU

the networks with randomly sampled weights drawn from a uniform distribution on [0, 1].231

Table SM1 shows the relative difference232

ϵr =
θm − θm

θm
,233

for 10 distinct noise realizations. We thus observe that the difference between the two bounds234

is small. Similar observations can be made on various convolutive architectures. In contrast,235

for fully connected networks, a separable bound is usually overpessimistic.236

LeNet-5
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

θm 30302.73 27734.91 30298.73 29374.35 30180.16 28632.60 30615.02 30395.67 34828.90 30097.62
θm 30696.07 28114.29 30860.56 29821.62 30670.05 29298.64 31152.06 30866.87 35220.36 30367.71
ϵr [%] 1.28 1.35 1.82 1.50 1.60 2.27 1.72 1.53 1.11 0.89

Table SM1: Lipschitz bounds obtained for 10 independent realizations of random positive
initialization for LeNet-5.

SM6. Lipschitz constant of average pooling. We consider the case when the i-th layer is237

an average pooling where the average is computed on patches of length Li in each dimension238

and with stride si. For simplicity, we suppose that Li is a multiple of si. The number of input239

and output channels is then equal, i.e. ζi = ζi−1. The average is calculated on each channel240

independently, this operation is a special case of a nonnegative convolutional layer where, for241

every n ∈ Zd, W i(n) is a diagonal matrix. The diagonal elements of this matrix are242

(SM6.1) (∀p ∈ {1, . . . , ζi})(∀n ∈ Zd) wi,p,p(n) =

{
1
Ld
i

if n ∈ [0, Li − 1]d

0 otherwise.
243

We deduce that, for every j ∈ S(si), the matrix W
(j)
i is also a diagonal matrix. More precisely,244

the sum in (4.13) can be restricted to values of n ∈ {0, . . . , Li/si − 1}d and W
(j)
i = 1

sdi
Id . We245

deduce that the Lipschitz constant of the average pooling layer is246

(SM6.2) ∥Wi∥ =
∥∥∥ ∑
j∈S(si)

W
(j)
i

(
W

(j)
i

)⊤∥∥∥1/2 = 1

s
d/2
i

.247

We see that this constant is independent of the patch size and is a decreasing function of the248

stride.249

SM7. Expressivity of ABBA networks – simulations. For this experiment, we randomly sam-250

pled points from four distinct 2D Gaussian distributions, with different means and covariance251

matrices, totaling 125 2-dimensional points per class. Figure SM1 shows a comparison between252

decision boundaries resulting from training two models: a standard one trained conventionally253

and its non-negative ABBA equivalent. The two models reach a similar solution, showing that254

the theoretical properties proved in this paper are also observed in practical simulations.255
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(a) Standard model (b) ABBA model

Figure SM1: Decision space comparison between fitting an ABBA network and a standard
arbitrary-signed one.

SM8. Constrained training of signed convolutional layers. The first and the last layers of an256

ABBA convolutional network have signed kernels. The norm of these layers is computed by257

using (SM4.18) and constrained to be less than θm,i,t with i ∈ {0,m+ 1}. Note that (SM4.18)258

makes use of the frequency response Ŵ i of filter Wi. A discrete Fourier transform (DFT) is259

actually implemented (using 128× 128 discrete frequencies). In the discrete frequency domain,260

the upper bound constraint is thus decomposed into 1282 matrix norm bounds obtained by261

summing over s2i frequencies. The projection onto each of these elementary constraint sets is262

computed by truncating a singular value decomposition. An additional constraint, however, is263

to be addressed, which is related to the fact that the kernels are of finite size. This implicitly264

defines a linear constraint. Projecting onto the associated vector space is simply obtained by265

truncating the kernel (after inverse DFT) to the desired size. The set Si,t is thus defined as the266

intersection of the former matrix norm constraint set and the latter vector space. Projecting267

onto this intersection can be achieved by an iterative convex optimization approach. In our268

case, we use a Douglas-Rachford algorithm [SM2].269

SM9. ABBA architectures. Table SM3 details the ABBA Dense and ABBA Conv architectures270

used for MNIST and FMNIST datasets, while Table SM2 shows our choices for RPS and CelebA271

datasets. As the ABBA layers have a specific form, their output size will be twice the number272

of filters. The used activation operator is the Capped Leaky ReLu (CLR) function defined in273

(SM1.3) for all Dense layers. For convolutional operators we employed a 3× 3 kernel, using274

the same activation.275

We used the official train-test split provided by the Tensorflow framework for both MNIST276
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Layer type RPS stride CelebA stride

Input 150× 150× 3 128× 128× 3
Conv2D 150× 150× 8 1 128× 128× 8 1
ABBA Conv2D + CLR – – 64× 64× 8(×2) 2
ABBA Conv2D + CLR 75× 75× 32(×2) 2 32× 32× 16(×2) 2
ABBA Conv2D + CLR 37× 37× 64(×2) 2 16× 16× 32(×2) 2
ABBA Conv2D + CLR 18× 18× 128(×2) 2 8× 8× 64(×2) 2
Conv2D 18× 18× 128 1 8× 8× 64 1
Global Max-Pooling2D 128(×2) 64(×2)
ABBA Dense + CLR 128(×2) –
ABBA Dense + CLR 64(×2) –
ABBA Dense + CLR 32(×2) –
Dense 3 2

Table SM2: ABBA Conv architectures details for RPS and CelebA datasets.

Layer type MNIST/FMNIST

Input 28× 28× 1
Conv2D 28× 28× 32
ABBA Conv2D + CLR 28× 28× 16
ABBA Conv2D + CLR 28× 28× 16
Conv2D 28× 28× 1
Dense 256
ABBA Dense + CLR 128
ABBA Dense + CLR 64
Dense 10

Layer type MNIST FMNIST

Input 784 784
Dense 256 256
ABBA Dense + CLR 128 128
ABBA Dense + CLR 64 64
ABBA Dense + CLR – 32
Dense 10 10

Table SM3: ABBA Dense and ABBA Conv architecture details for MNIST and FMNIST datasets.
For convolutional layers the stride is set to 1.

and FMNIST datasets and did not employ any augmentation strategy during training. For RPS277

and CelebA models, we resized the input images to 150× 150, resp. 128× 128, before feeding278

them to the network. In the case of CelebA dataset, we opted for a binary classification task on279

the bald feature. We extracted all the images containing the bald attribute, and we randomly280

select the same number of examples from the non-bald class, in order to avoid class imbalance.281

Additional information regarding the optimization parameters used during training is provided282

in Table SM4.283

SM10. Adversarial examples. For all datasets, adversarial examples created by using DDN284

attack are displayed in Figures SM2, SM3, SM4, and SM5. We generated adversarial samples285

using untargeted DDN attacks, with a budget of 300 iterations and initial parameters as286

proposed by the authors. We did not limit the maximum perturbation ϵ, in order to find the287

minimum one allowing us to fool the model. It can be easily seen that for DeelLip and ABBA288
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Figure SM2: Adversarial examples with DDN attack for Conv-Dense models, on MNIST dataset.
ℓ2 perturbation magnitude is given in the top-left corner.
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Figure SM3: Adversarial examples with DDN attack for Conv-Dense models, on FMNIST
dataset. ℓ2 perturbation magnitude is given in the top-left corner.
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Clean
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Figure SM4: Adversarial examples generated with DDN, on RPS dataset. For each example:
first row – adversarial images; second row – pixel differences between adversarial and clean
sample.
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Figure SM5: Adversarial examples with DeepFool attack for CelebA. ℓ2 perturbation magnitude
is given in the top-left corner.
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Dataset Optimizer No. Epochs Learning rate Batch size

MNIST projected ADAM 150 10−3 1024
FMNIST projected ADAM 200 10−3 1024
RPS projected ADAM 250 10−4 64
CelebA projected ADAM 100 10−4 128

Table SM4: Training hyperparameters.

networks the required perturbations for misclassification are higher. In particular, we observe289

that the perturbations needed to fool ABBA networks lead to severe artifacts in the images.290

SM11. Training time. We first compared the average time/epoch for training a standard291

network and its ABBA equivalent. Table SM5 reports the average seconds per epoch for both292

cases, for different feed-forward architectures. On average, training an ABBA neural network293

for 200 epochs on MNIST introduces less than 10% additional training time.294

The projection is a costly step, and it is the main contributor to the training overhead. A295

comparison of the training time (per-batch) with (green line) and without (dotted green line)296

projection is featured in Figures SM6a and SM6b for architectures with an increasing number297

of fully connected and convolutional layers, respectively. The average deviation from the298

imposed global bound (red), which was set to 1 in all cases, is also reported. This shows that299

we are able to maintain the imposed bounds, given the same number of iterations, irrespective300

of the network depth.301

Model
Architecture

2C2F 2C3F 3C2F 4C2F 4C3F 5C1F

Standard
Acc [%] 95.28 95.80 99.18 99.30 99.26 99.10

Sec./Epoch 4.25 4.29 4.31 4.28 4.37 4.31
Size (MB) 0.09 0.14 0.39 0.53 0.59 0.97

ABBA
Acc [%] 95.54 95.34 98.62 99.12 99.14 98.72

Sec./Epoch 4.52 4.61 4.67 4.68 4.79 4.74
Size (MB) 0.18 0.28 0.78 1.06 1.18 1.94

Table SM5: Comparison of per-epoch training times for various Standard and ABBA architec-
tures, on MNIST. XCYF corresponds to an architecture with X Convolution layers, followed by
Y fully-connected layers.
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