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ABBA Neural Networks: Coping with Positivity, Expressivity, and Robustness ∗1

Ana Neacs,u † , Jean-Christophe Pesquet ‡ , Vlad Vasilescu † , and Corneliu Burileanu †2

3

Abstract. We introduce ABBA networks, a novel class of (almost) non-negative neural networks, which are shown to4
possess a series of appealing properties. In particular, we demonstrate that these networks are universal5
approximators while enjoying the advantages of non-negative weighted networks. We derive tight6
Lipschitz bounds both in the fully connected and convolutional cases. We propose a strategy for designing7
ABBA nets that are robust against adversarial attacks, by finely controlling the Lipschitz constant of the8
network during the training phase. We show that our method outperforms other state-of-the-art defenses9
against adversarial white-box attackers. Experiments are performed on image classification tasks on four10
benchmark datasets.11
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1. Introduction. Deep learning methods based on neural network models have received increas-14

ing attention in the scientific community, because of their stunning abilities to solve a variety of15

complex tasks. These powerful systems excel at learning intricate mappings and, in some cases, even16

surpass human performance. However, deep architectures usually lack interpretability and they may17

lead to over-parameterized models [13, 37]. Additionally, their robustness is not well-controlled,18

leaving them exposed to potential adversarial attacks. For instance, [49] demonstrated that by19

introducing carefully-crafted, low-magnitude adversarial perturbations, neural classifiers could be20

easily fooled [17]. A way of overcoming the aforementioned challenges consists in introducing some21

specific constraints in the neural network design. In this article, we are interested in nonnegativity22

and stability constraints on the network weights.23

It is widely accepted that humans possess the innate ability to decompose complex interactions24

into discrete, intuitive hierarchical categories before analyzing them [26]. Conceptually, this evolution25

towards part-based representation in human cognition can be linked to non-negativity restrictions on26

the network weights [7]. This idea, along with other factors, has sparked interest in neural networks27

with non-negative weights. These networks have drawn attention for several reasons. Firstly, they28

align with human understandability, making them more interpretable. Secondly, the non-negativity29

constraint can act as beneficial regularization, effectively reducing overfitting issues. Moreover, recent30

studies have demonstrated that it is possible to derive a tight Lipschitz bound for such networks.31

This Lipschitz constant serves as a valuable metric for quantifying the robustness of the network,32

enabling us to design networks with enhanced resilience to adversarial perturbations during the33

training process. Despite their advantages, one significant drawback of networks with non-negative34

weights is that they might be less expressive than networks with arbitrary signed weights. In [54], it35

is shown that standard non-negative networks are not universal approximators [54], a limitation that36
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our work overcomes.37

Approach. In this work, we are interested in neural networks having non-negative weights,38

except for the first and last linear layers. This class of networks obviously constitutes an extension of39

those having all their linear layers non-negative-valued. We focus on a particular subclass of these40

networks for which the weight matrices have a structure of the form41 [
A B

B A

]
,42

thus enjoying a number of algebraic properties. The corresponding networks are subsequently called43

ABBA networks. Note that weight matrices A and B are duplicated in ABBA networks, thus allowing44

us to limit the number of parameters.45

Contributions. This paper makes several key contributions, which are as follows:46

• We show that we can put any arbitrary signed network in an ABBA form. This property holds47

for fully connected as well as for convolutional neural networks.48

• Universal approximation theorems are derived for networks featuring non-negatively weigh-49

ted layers.50

• We present a method for effectively controlling the Lipschitz constant of ABBA networks1. The51

resulting training strategy applies to both fully connected and convolutional cases. Precise52

Lipschitz bounds are typically NP hard to compute for arbitrary signed networks, but our53

framework allows us to derive such bounds that are easy to compute.54

• Numerical experiments conducted on standard image datasets showcase the excellent perfor-55

mance of ABBA networks for small models. Notably, they exhibit substantial improvements56

in both performance and robustness compared to networks with exclusively non-negative57

weights. Moreover, we demonstrate that ABBA networks are competitive with robust networks58

featuring arbitrarily signed weights, trained using state-of-the-art techniques.59

Outline. The rest of the paper is organized as follows. Section 2 offers an overview of the related60

literature, while in Section 3 our main contributions concerning ABBA architectures are introduced,61

alongside a list of fundamental properties. Section 4 extends our results to the case of convolutional62

neural networks and two Lipschitz constant expressions are derived. Section 5 describes the training63

strategy we employ to generate robust models with respect to adversarial perturbations. Section 664

details the results obtained for different image classification tasks, while Section 7 is dedicated to65

concluding remarks.66

2. Related work. Non-negative neural networks. Inspired by non-negative matrix factorization67

(NMF) techniques, the work of [7] introduces non-negative restrictions on the weights to create neural68

networks in which the hidden units correspond to identifiable concepts. [4] showed that Autoencoders69

(AE) trained under non-negativity constraints are able to derive meaningful representations that70

unearth the hidden structure of high-dimensional data. Their method showed promising results from71

both performance and feature interpretation viewpoints on four different classification tasks. [12]72

presented the first polynomial-time algorithm for Probably Approximately Correct (PAC) learning 1-73

layer neural networks with positive coefficients. Moreover, ensuring non-negativity has been shown to74

have a regularization effect, reducing feature overfitting, which is a very common problem, especially75

1A full TensorFlow implementation of our framework can be provided on demand and will be made publicly
available upon paper acceptance.
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ABBA NEURAL NETWORKS 3

for tasks where the available training data is scarce [35]. Neural networks defining convex functions76

of their inputs [1] also constitute a subclass of networks with non-negative weights.77

Link with other networks. From another perspective, the idea of using redundant weights is78

reminiscent of siamese networks [6]. These architectures are successfully used to handle similarity79

learning tasks, such as face verification [50], character recognition [23], and object tracking [19].80

Siamese networks compute a similarity metric on the representations of the inputs, after applying the81

same transformation to each one. Apart from the proven efficiency on solving computer vision tasks,82

they have lately been employed in NLP problems, e.g., computational argumentation. In [14], it is83

shown that siamese architectures outperform other baselines trained on convincingness datasets.84

Robustness. The robustness of neural networks against possible adversarial attacks is a topic that85

has received increasing attention since nowadays AI-based solutions are ubiquitous [3, 36]. A sizable86

body of literature on adversarial attacks and different defense strategies have emerged in recent87

years as a result of the work in [49]), which revealed the alluring susceptibility of neural networks to88

adversarial perturbations and proposed a box-constrained L-BFGS algorithm for finding adversarial89

examples. [15] introduced the FGSM attack as a one-step modification of the input image, following90

the direction of loss maximization, while [24] incorporated this step into an iterative method known91

as PGD, seen as an improvement over basic FGSM. DeepFool [33] iteratively searches for the closest92

adversarial point that directs the optimization towards crossing the decision boundary. DDN [42] and93

FMN [39] attacks fall into the category of projected-gradient methods, using iterative updates of the94

perturbation vector towards the minimization of its magnitude.95

Defensive strategies have been developed to alleviate this robustness issue. [47] divides adver-96

sarial defense methods into three categories: adversarial detection, gradient masking, and robust97

optimization. Adversarial Training (AT) was first introduced by [15] and later improved by [32].98

Recent works on AT [48, 55] have successfully analyzed and refined training techniques, however,99

no theoretical certificates regarding their behavior in the presence of different adversaries have100

been established yet. Regularization-based methods, such as [30, 46, 59], include additional terms101

in their objective, steering the learning process in a direction that leads to better generalization.102

[40] provides robustness certificates for neural networks with one hidden layer, yielding an upper103

bound of the error in the presence of any adversary (see [11, 16, 41] for more advanced methods.104

Randomized smoothing [9, 25, 29, 44, 57] certifies the robustness of a classifier around an input105

point by measuring the most-likely prediction over Gaussian-corrupted versions of the point.106

Lipschitz properties of neural networks. As highlighted by [49], the Lipschitz behavior of a107

neural model is closely correlated with its robustness against adversarial attacks, providing an upper108

bound on the response given input perturbations. Controlling the Lipschitz behavior of the network109

thus offers theoretical stability guarantees. However, computing the exact constant, even for small110

networks is an NP-hard problem [20], and finding a good approximation in a reasonable time is111

an open challenge. Several solutions have been proposed lately (see for example: [5, 18, 21, 58]).112

[45] introduced deel-lip, a framework to control the Lipschitz constant of each layer individually,113

while [2] propose GroupSort networks to ensure robustness. [38] proposed a framework for training114

fully-connected neural networks using Lipschitz regularized and constrained techniques, proving their115

effectiveness in the scenario of Gaussian-added perturbation noise. A recent result in [10] showed116

that in the case of models with non-negative weights a tight Lipschitz bound can be established,117

making possible the training of neural network models with certified robustness guarantees.118

This manuscript is for review purposes only.
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3. ABBA Neural Networks.119

3.1. Problem formulation. In the remainder of this paper, ∥ · ∥ will denote the ℓ2-norm when120

dealing with a vector, and the spectral norm when dealing with a matrix.121

An m-layer feedforward neural network can be described by the following model.122

Model 3.1. T is feedforward neural network if there exists (Ni)1⩽i⩽m ∈ (N \ {0})m such that123

(3.1) T = Tm ◦ · · · ◦ T1124

where, for every layer index i ∈ {1, . . . ,m}, Ti = Ri(Wi ·+bi), Wi ∈ RNi×Ni−1 is the weight matrix,125

bi ∈ RNi the bias vector, and Ri : RNi → RNi the activation operator. Ni corresponds to the number126

of inputs at the i-th layer. Such a layer is convolutive if it corresponds to a weight matrix Wi having127

some Taoeplitz (or block Toeplitz) structure.128

We will say that the activation operator Ri is symmetric, if there exists (ci, di) ∈ (RNi)2 such that129

(3.2) (∀x ∈ RNi) Ri(x)− di = −Ri(−x+ ci).130

In other words, (ci, di)/2 is a symmetry center of the graph of Ri.131

For example, if Ri is squashing function used in CapsNets [43], it is such that132

(3.3) (∀x ∈ RNi) Ri(x) =
µ∥x∥

1 + ∥x∥2
x.133

with µ = 8/(3
√
3). It thus satisfies the symmetry property (3.2) with ci = di = 0. In addition, Ri134

is nonexpansive, i.e. it has a Lipschitz constant equal to 1 [10] Other examples of symmetric and135

nonexpansive activation operators are presented in Appendix SM1 2 .136

137

3.2. ABBA Matrices. We first define ABBA matrices which will be the main algebraic tool138

throughout this article.139

Definition 3.2. Let (N1, N2) ∈ (N \ {0})2. AN1,N2
is the set of ABBA matrices of size (2N2)× (2N1),140

that is M ∈ AN1,N2 if there exist matrices A ∈ RN2×N1 and B ∈ RN2×N1 such that141

(3.4) M =

[
A B

B A

]
.142

The sum matrix associated with M is then defined as S(M) = A+B.143

We give some of the most relevant properties of these matrices. In particular, we will see that the144

ABBA structure is stable under standard matrix operations.145

Proposition 3.3. Let (N1, N2, N3) ∈ (N \ {0})3.146

(i). If M ∈ AN2,N1
, then its transpose M⊤ ∈ AN1,N2

and S(M⊤) = S(M)⊤.147

(ii). If (M1,M2) ∈ (AN2,N1
)2, then M1 +M2 ∈ AN2,N1

and S(M1 +M2) = S(M1) +S(M2).148

(iii). If M1 ∈ AN2,N1 and M2 ∈ AN3,N2 , then M2M1 ∈ AN3,N1 and149

S(M2M1) = S(M2)S(M1).150

2Appendices with number of the form SMx can be found in the supplementary materials.
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(iv). AN1,N1
is a ring when equipped with the standard matrix addition and product.151

(v). If A and B are two square matrices of the same size, the eigenvalues of
[
A B

B A

]
are those of152

A+B and A−B.153

(vi). If A and B are two matrices having the same dimensions, the spectral norm of
[
A B

B A

]
is equal154

to max{∥A+B∥, ∥A−B∥}.155

(vii). If M ∈ AN2,N1
has non-negative elements, the spectral norm of M is ∥S(M)∥.156

(viii). Let A ∈ RN2×N1 and B ∈ RN2×N1 , and let K = min{N1, N2}. Let (λk)1⩽k⩽K (resp. (µk)1⩽k⩽K)157

be the singular values of A+B (resp. A−B) and let {uk}1⩽k⩽K / {vk}1⩽k⩽K (resp {tk}1⩽k⩽K158

/ {wk}1⩽k⩽K) be associated orthonormal families of left/right singular vectors in RN2 / RN1 .3159

Then, the singular values of
[
A B

B A

]
are (λk, µk)1⩽k⩽K and associated orthonormal families of160

left/right singular vectors are161 { 1√
2

[
uk

uk

]
,
1√
2

[
tk
−tk

]}
1⩽k⩽K

/ { 1√
2

[
vk
vk

]
,
1√
2

[
wk

−wk

]}
1⩽k⩽K

.162

(ix). If A and B are two matrices having the same dimensions,163

(3.5) rank

([
A B

B A

])
= rank(A+B) + rank(A−B).164

(x). Let f be a function from R(2N2)×(2N1) to R(2N2)×(2N1). Assume that either f operates elementwise165

or it is a spectral function in the sense that there exists a function φ : R+ → R+ such that166

(3.6) (∀M ∈ R(2N2)×(2N1)) f(M) =

2K∑
k=1

φ(λ̃k)ũkṽ
⊤
k167

where K = min{N1, N2}, (λ̃k)1⩽k⩽2K are the singular values of M , and {ũk}1⩽k⩽2K /168

{ṽk}1⩽k⩽2K are associated orthonormal families of left / right singular vectors in R2N2 /169

R2N1 . Then f maps any matrix in AN2,N1
to a matrix in AN2,N1

.170

(xi). The best approximation of maximum rank R < min{N1, N2} (in the sense of the Frobenius171

norm) to a matrix in AN2,N1 belongs to AN2,N1 .172

(xii). The projection onto the spectral ball of center 0 and radius ρ ∈ ]0,+∞[ of an ABBA matrix is an173

ABBA matrix.174

The proofs of these properties are provided in Appendix SM2.175

3.3. Extension to feedforward networks. We will now extend the previous algebraic concepts176

by introducing the class of ABBA feedforward neural networks. In the following, the structure of an177

ABBA fully-connected network will be presented from the perspective of investigating its links with178

standard networks. Such networks make use of weights that respect the structure of ABBA matrices,179

except for the first and the last layers. More precisely, the first layer maps the input to a twice-higher180

dimensional space, while the last layer performs a dimension reduction by a factor of 2.181

3This means that (SM2.11) and (SM2.12) hold.
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6 A. NEACSU, J.C. PESQUET, V.VASILESCU, C. BURILEANU

Definition 3.4. Let m ∈ N \ {0}. T̃ is an m-layer ABBA network if182

(3.7) T̃ = (W̃m+1 ·+b̃m+1)T̃m · · · T̃1W̃0183

with W̃0 ∈ R(2N0)×N0 , W̃m+1 ∈ RNm×(2Nm), b̃m+1 ∈ RNm , and184

(∀i ∈ {1, . . . ,m}) T̃i = R̃i(W̃i ·+b̃i)(3.8)185

R̃i : R2Ni → R2Ni ,(3.9)186

b̃i ∈ R2Ni ,(3.10)187

W̃i ∈ ANi,Ni−1
,(3.11)188189

for given positive integers (Ni)0⩽i⩽m. T̃ is an m-layer non-negative ABBA network if it is an m-layer190

ABBA network as defined above and, for every i ∈ {1, . . . ,m}, the elements of W̃i are non-negative.191

In the remainder of this paper, Nm,A will designate the class of m-layer ABBA networks and N+
m,A192

will designate the subclass of m-layer non-negative ABBA networks. This latter subclass will be the193

main topic of investigation in this work. We will also use the notation N+
m,A(ρ) to designate the set of194

neural networks in N+
m,A where all the activation operators operate componentwise using the same195

function ρ : R → R.196

3.4. Link with standard neural networks. In this section, we show that we can reshape Model 3.1197

as a special case of a non-negative ABBA network. At each layer i ∈ {1, . . . ,m} of this model, let W+
i =198

(W+
i,k,ℓ)1⩽k⩽Ni,1⩽ℓ⩽Ni−1

∈ [0,+∞[
Ni×Ni−1 be the positive part of matrix Wi = (Wi,k,ℓ)1⩽k⩽Ni,1⩽ℓ⩽Ni−1

,199

i.e.200

(3.12) (∀k ∈ {1, . . . , Ni})(∀ℓ ∈ {1, . . . , Ni−1}) W+
i,k,ℓ =

{
Wi,k,ℓ if Wi,k,ℓ > 0

0 otherwise.
201

Let W−
i = W+

i −Wi ∈ [0,+∞[
Ni×Ni−1 be the negative part of Wi, where all the positive elements202

of Wi have been discarded. Let us now define a non-negative ABBA neural network by using these203

quantities.204

Definition 3.5. Let m ∈ N\{0}. Let T be the feedforward neural defined in Model 3.1. T̃ is a network205

in N+
m,A associated with T if it satisfies relations (3.7)-(3.11) with206

(3.13) W̃0 =

[
IN0

−IN0

]
, W̃m+1 =

1

2
[INm

− INm
],207

and208

(∀i ∈ {1, . . . ,m}) R̃i :

[
x

z

]
7→
[
Ri(x)

Ri(z)

]
,(3.14)209

W̃i =

[
W+

i W−
i

W−
i W+

i

]
.(3.15)210

211

Note that a weight parametrization similar to (3.15) was used in [56] for computing lower and upper212

bounds on the output of a deep equilibrium layer, but in this article W−
i has negative values.213

As we will show next, the main result is that, if the activation functions are symmetric, network T̃214

defined above is identical to network T in terms of input-output relation, for judicious choices of the215

biases of T̃ .216
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Figure 1: Equivalence between a standard fully-connected layer and its ABBA correspondent.

Proposition 3.6. Let T be the m-layer feedforward network in Model 3.1. Assume that, for every217

i ∈ {1, . . . ,m}, the activation operator Ri in the i-th layer of T satisfies the symmetry relation (3.2)218

where ci ∈ RNi and di ∈ RNi . Let T̃ be the neural network of N+
m,A associated with T whose bias vectors219

(̃bi)1⩽i⩽m are linked to those (bi)1⩽i⩽m of T by the relations220

(∀i ∈ {1, . . . ,m}) b̃i =

[
bi −W−

i di−1

ci − bi −W+
i di−1

]
,(3.16)221

b̃m+1 = −dm
2

,(3.17)222
223

with d0 = 0. Then, for every input, T̃ delivers the same output as T .224

The proof of this proposition is provided in Appendix A. An illustration of the link between225

fully-connected layers and ABBA matrices is shown in Figure 1.226

3.5. Expressivity of non-negative ABBA networks. One of the main advantages of non-negative227

ABBA networks with respect to standard networks with non-negative weights is that they are universal228

approximators. More specifically, we have the following result.229

Proposition 3.7. Let (ne, nr) ∈ (N \ {0})2. Let f : Rne → Rnr be a continuous function. Let K be any230

nonempty compact subset of Rne and let ϵ ∈ ]0,+∞[.231

(i). Let ρ : R → R be a symmetric non polynomial activation function. There exists a network232

T̃ ∈ N+
1,A(ρ) with N0 = ne inputs and N2 = nr outputs such that233

(3.18) (∀x ∈ K) ∥T̃ (x)− f(x)∥ < ϵ.234

This manuscript is for review purposes only.



8 A. NEACSU, J.C. PESQUET, V.VASILESCU, C. BURILEANU

(ii). Let ρ : R → R be a symmetric continuous activation function that is continuously differentiable235

around at least one point where its derivative is nonzero. Then there exists m ⩾ 3 and236

T̃ ∈ N+
m,A(ρ) with N0 = ne inputs, Nm+1 = nr outputs, and 2Ni = 2(ne + nr + 2) neurons in237

every layer i ∈ {1, . . . ,m} such that (3.18) holds.238

Proof. Proposition 3.6 shows that non-negative ABBA networks can be as expressive as signed239

networks. Combining this fact with existing universal approximation results for signed networks (see240

[28] for (i) and [22] for (ii)) allows us to deduce these results.241

(i) addresses the case of shallow wide networks where the number of neurons in the hidden layer242

can be arbitrarily large, while (ii) corresponds to the case of deep networks having a limited number243

of neurons per layer. An illustration of these results is provided in Appendix SM7.244

3.6. Lipschitz bounds for ABBA fully-connected networks. As mentioned in the previous sections,245

the robustness of neural networks with respect to adversarial perturbations can be evaluated through246

their Lipschitz constant. However, most of the existing techniques for computing a tight estimate247

of the constant have a high computational complexity for deep or wide networks, whereas simpler248

upper bounds may turn out to be over-pessimistic.249

Nevertheless, in the context of non-negative weighted neural networks [10] proved that tight250

approximations to the Lipschitz constant can be achieved. In the following, we extend this result and251

show that we can derive a simple expression for the Lipschitz constant, using a separable bound, for252

non-negative ABBA networks.253

Proposition 3.8. Let m ∈ N \ {0} and let T̃ ∈ N+
m,A be given by (3.7)-(3.11). Assume that, for every254

i ∈ {1, . . . ,m− 1}, R̃i is a nonexpansive operator operating componentwise. A Lipschitz constant of T̃ is255

(3.19) θm = ∥W̃m+1∥ ∥S(W̃m) · · ·S(W̃1)∥ ∥W̃0∥.256

The proof of this result is detailed in Appendix B. Note that this bound expression could be easily257

extended to other norms based on the results in [10].258

A standard separable upper bound for the Lipschitz constant [49] for the ABBA network T̃259

considered in the previous proposition is260

(3.20) θm = ∥W̃m+1∥ ∥W̃m∥ · · · ∥W̃1∥ ∥W̃0∥.261

According to Proposition 3.3(vii), this bound reads also262

(3.21) θm = ∥W̃m+1∥ ∥S(W̃m)∥ · · · ∥S(W̃1)∥ ∥W̃0∥,263

which, by simple norm inequalities, is looser than θm.264

If T is the feedforward network defined in Model 3.1 and we apply Proposition 3.8 to the265

associated non-negative ABBA network T̃ of Definition 3.5. We have266

(3.22) ∥W̃0∥ = ∥W̃⊤
0 W̃0∥1/2 = ∥2 IN0∥1/2 =

√
2267

and268

(3.23) ∥W̃m+1∥ = ∥W̃m+1W̃
⊤
m+1∥1/2 =

1√
2
.269
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In turn, for every i ∈ {1, . . . ,m},270

(3.24) S(W̃i) = W+
i +W−

i = |Wi|.271

where |Wi| is the matrix whose elements are the absolute values of Wi. Hence the Lipschitz constant272

of T̃ in (3.19) reduces to273

(3.25) θm = ∥|Wm| . . . |W1|∥.274

It then follows from Proposition 3.6 that θm is also a Lipschitz constant of T when using symmetric275

activation functions. Note that this bound was actually already derived in [10, Proposition 5.12].276

4. Convolutional networks. We will now extend the results presented in Section 3 to convolutional277

layers.278

4.1. ABBA convolutional layers. For any i ∈ {1, . . . ,m}, Wi is a convolutional layer with279

ζi−1 ∈ N\{0} input channels, ζi output channels, kernels (wi,q,p)1⩽p⩽ζi−1,1⩽q⩽ζi , and stride si ∈ N\{0}.280

The output (yq)1⩽q⩽ζi of this layer (prior applying any activation operation) is linked to its input281

(xp)1⩽p⩽ζi−1 by282

(∀q ∈ {1, . . . , ζi}) uq =

ζi−1∑
p=1

wi,q,p ∗ xp(4.1)283

yq = (uq)↓si
.284285

Hereabove, for every p ∈ {1, . . . , ζi−1}, xp =
(
xp(n)

)
n∈Zd designates a d-dimensional discrete signal.286

Dimension d = 1 corresponds to 1D signals and d = 2 to images. A similar notation is used for other287

signals, in particular uq and wi,q,p with q ∈ {1, . . . , ζi}. The d-dimensional discrete convolution is288

denoted by ∗ and (·) ↓si is the decimation (or subsampling) by a factor si.289

The ABBA convolutional layer W̃i associated with Wi has twice the number of input channels290

and twice the number of output ones. More specifically, its input consists of ζi−1 signals (x̃+
p )1⩽p⩽ζi−1291

and ζi−1 signals (x̃−
p )1⩽p⩽ζi−1 . Similarly, its output consists of ζi signals (ỹ+q )1⩽q⩽ζi and ζi signals292

(ỹ−q )1⩽q⩽ζi . To make the input-output relations more explicit, let us define the kernels w+
i,q,p and w−

i,q,p293

analogously to the fully connected case:294

(∀n ∈ Zd) w+
i,q,p(n) =

{
wi,p,q(n) if wi,p,q(n) > 0

0 otherwise,
295

w−
i,q,p(n) = w+

i,q,p(n)− wi,p,q(n).(4.2)296297

Then the outputs of the ABBA layer are linked to its inputs by the following relations298

(∀q ∈ {1, . . . , ζi}) ũ+
q =

ζi−1∑
p=1

w+
i,q,p ∗ x̃

+
p +

ζi−1∑
p=1

w−
i,q,p ∗ x̃

−
p299

ũ−
q =

ζi−1∑
p=1

w−
i,q,p ∗ x̃

+
p +

ζi−1∑
p=1

w+
i,q,p ∗ x̃

−
p(4.3)300

ỹ+q = (ũ+
q )↓si

301

ỹ−q = (ũ−
q )↓si

.302303
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The above equations provide the general form of a convolutional ABBA layer when relaxing (4.2).304

An alternative formulation of convolutional layers in a matrix form, along with its correspondent305

d-dimensional spectral representation, is possible (see Appendix SM3). This basically amounts to306

characterize layer (4.1) by the following matrices307

(4.4) (∀n ∈ Zd) W i(n) =

wi,1,1(n) . . . wi,1,ζi−1
(n)

...
...

wi,ζi,1(n) . . . wi,ζi,ci−1(n)

 ∈ Rζi×ζi−1 ,308

defining the so-called MIMO impulse response of Wi, which plays a prominent role in dynamical309

system theory [52]. The MIMO impulse response of the ABBA layer W̃i is then characterized by ABBA310

matrices:311

(4.5) (∀n ∈ Zd) W̃ i(n) =

[
W+

i (n) W−
i (n)

W−
i (n) W+

i (n)

]
∈ [0,+∞[

(2ζi)×(2ζi−1) ,312

where W+
i (n) = (w+

i,q,p(n))1⩽q⩽ζi,1⩽p⩽ζi−1
∈ [0,+∞[

ζi×ζi−1 and W−
i (n) =313

(w−
i,q,p(n))1⩽q⩽ζi,1⩽p⩽ζi−1

∈ [0,+∞[
ζi×ζi−1 . This alternative view will be useful in the following314

sections.315

4.2. Lipschitz bounds for convolutional networks. In this section, we establish bounds on316

the Lipschitz constant of an m-layer convolutional neural network T . Each linear operator Wi317

corresponding to layer i ∈ {1, . . . ,m} will be defined by (4.1). We also define a variable318

(4.6) σi =

i∏
l=1

sl319

aggregating strides from layer 1 to layer i. Subsequently, we will assume that, for every i ∈ {1, . . . ,m},320

the activation operators (Ri)1⩽i⩽m are nonexpansive operators. Moreover, these operators are applied321

componentwise (see Appendix SM1). This means that, for every i ∈ {1, . . . ,m − 1}, there exists a322

function ρi from R to R such that323

(∀x ∈ Hi) y = Ri(x)324

⇔ (∀p ∈ {1, . . . , ci})(∀n ∈ Zd) yp(n) = ρi
(
xp(n)

)
.(4.7)325326

In Appendix SM4, we derive frequency-based expressions allowing us to calculate bounds on327

the Lipschitz constant of T . For accurate numerical evaluations, the frequency transform in these328

expressions has to be replaced by a Discrete Fourier Transform involving a significant number of329

frequency bins (e.g., 128d). Due to this fact, a computation bottleneck occurs when MIMO filters330

are characterized by a large number of input/output channels (e.g., for 2D applications). In the331

following, we provide an alternative lower-complexity formulation for computing bounds of the332

Lipschitz constant. In the case of non-negative kernels, we show that this bound is tight.333

Theorem 4.1. Let (σi)1⩽i⩽m be the aggregated stride factors of network T , as defined by (4.6), and334

let335

(4.8) W = (Wm)↑σm−1
∗ · · · ∗ (W 2)↑σ1

∗W 1336
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where (W i)1⩽i⩽m are the MIMO impulse responses of each layer of network T and, for every i ∈337

{2, . . . ,m}, (W i)↑σi−1
is the interpolated sequence by a factor σi−1 of W i (see (SM3.9)). For every338

j ∈ S(σm) = {0, . . . , σm − 1}d, we define the following matrix:339

(4.9) W
(j)

=
∑
n∈Zd

W (σmn+ j) ∈ [0,+∞[
ζm×ζ0 .340

Then341

(4.10) θm =
∥∥∥ ∑

j∈S(σm)

W
(j)(

W
(j))⊤∥∥∥1/2342

is a lower bound on the Lipschitz constant estimate of network T . In addition, if for every i ∈ {1, . . . ,m},343

p ∈ {1, . . . , ζi−1}, and q ∈ {1, . . . , ζi}, wi,q,p = (wi,q,p(n))n∈Zd is a non-negative kernel, then θm is a344

Lipschitz constant of T .345

The proof of Theorem 4.1 is given in Appendix C.346

The constant θm in (D.4) is actually equal to the one calculated in Appendix SM4. The following347

majorization if thus obtained (see (SM4.4)):348

(4.11) θm ⩽ θm = ∥Wm∥ · · · ∥W1∥.349

By applying Theorem 4.1 to each individual layer (Wi)1⩽i⩽m assumed to be with non-negative kernels,350

we get the following expression for the upper-bound:351

(4.12) θm =

m∏
i=1

∥∥∥ ∑
j∈S(si)

W
(j)

i

(
W

(j)

i

)⊤∥∥∥1/2,352

where353

(4.13) (∀i ∈ {1, . . . ,m})(∀j ∈ S(si)) W
(j)

i =
∑
n∈Zd

W i(sin+ j).354

The bound θm is generally more tractable than θm since it separates the influence of each layer and355

does not require to compute the global matrix sequence W as expressed by (4.8). However, such356

separable bounds are usually loose. According to our observations, it turns out that, in the special357

case of convolutional layers with non-negative kernels, θm and θm are quite close (see numerical tests358

in Appendix SM5).359

To illustrate these results, the computation of the Lipschitz bound of a layer corresponding to an360

average pooling is presented as an example in Appendix SM6.361

4.3. Bounds for ABBA convolutional networks. Let us extend the previous results to the ABBA362

context. The linear operators of the considered ABBA network T̃ are denoted by (W̃i)0⩽i⩽m+1. The363

weights in W̃0 and W̃m+1 are signed, whereas (W̃i)1⩽i⩽m are convolutional layers with d-dimensional364

non-negative kernels. More precisely, we assume that, for every i ∈ {1, . . . ,m}, the i-th layer of365

the ABBA network has 2ζi−1 input channels, 2ζi output channels, and stride si ∈ N \ {0}. The366

MIMO impulse response of such a layer is of the form (4.5). We make the same assumptions of367

nonexpansiveness and separability for the activation operators as in the previous section. We recall that368

(W )↑σ denotes the interpolated version by a factor σ of a MIMO impulse response W =
(
W (n)

)
n∈Zd .369

The following result is then established in Appendix D :370
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Theorem 4.2. Under the above assumptions on the convolutional ABBA network T̃ , let371

(4.14) (∀i ∈ {1, . . . ,m})(∀j ∈ S(si)) Ω
(j)
i =

∑
n∈Zd

S(W̃ i(sin+ j)) ∈ [0,+∞[
ζi×ζi−1 ,372

where (W̃ i(n))n∈Z is the MIMO impulse response of the ABBA layer of index i. Then a Lipschitz constant373

of T̃ is374

(4.15) θm = ∥W̃m+1∥
( m∏

i=1

∥∥∥ ∑
j∈S(si)

Ω
(j)
i

(
Ω

(j)
i

)⊤∥∥∥)1/2∥W̃0∥,375

where ∥W̃m+1∥ (resp. ∥W̃0∥) is the spectral norm of the linear operator employed in the last (resp. first376

layer).377

The bound (4.15) will be subsequently used to control the Lipschitz constant of non-negative ABBA378

networks during their training.379

5. Lipschitz-constrained training. The theoretical bounds established in the previous sections380

provide a relatively easy way of computing a tight estimate of the global Lipschitz constant. We381

propose a simple approach to control it during the training phase. Since our networks contain mostly382

layers having non-negative weights and a few layers having arbitrary-signed weights, their Lipschitz383

constant will be controlled separately and different constraint sets will be handled for each case.384

To train a robust ABBA network, we employ a projected version of the well-known ADAM385

optimizer. Each layer i is parameterized by a vector Ψi. In the case of a dense layer, Ψi is a vector386

gathering the elements of weight matrix W̃i, the components of the associated bias b̃i, and a possible387

additional parameter that will be introduced hereafter. For an ABBA layer, Ψi is thus a vector of388

dimension 2Ni(Ni−1 + 1) or 2Ni(Ni−1 + 1) + 1. In the context of a 2D convolutional layer, an array389

wi of scalar convolutional kernels is substituted for the weight matrix. In the ABBA case, we have390

2ζiζi−1 such kernels. To ensure nonnegativity (if needed) and Lipschitz bound conditions on the391

weight operator, we project Ψi onto a suitable closed and convex constraint set. Considering pairs392

(zk)1⩽k⩽K of inputs images and their associated labels, the operations performed at each epoch n > 0393

to minimize a loss function ℓ are presented in Algorithm 5.1. After each iteration t of the optimizer, we394

perform a projection projSi,t
onto a constraint set Si,t The definition of this set and the corresponding395

method for managing the projection is detailed in the following, according to the network type.396

Handling Lipschitz constants for fully-connected layers. Consider the network defined by397

Model (3.5). In the case of fully connected networks, the Lipschitz constant is given by Proposition398

3.8, which basically splits the bound into three terms: the first and the last account for the starting399

and ending layers, respectively, while the middle one encompasses all the ABBA layers. For the two400

former arbitrary-signed layers, we control the Lipschitz constants individually during training, by401

imposing a bound on each weight matrix spectral norm. This defines the following two constraints:402

(5.1) (∀i ∈ {0,m+ 1}) ∥W̃i∥ ⩽ θm,i,403

where θm,i is the imposed Lipschitz bound for the i-th layer. To deal with this constraint, we404

decompose the weight matrix as W̃i = θm,iW̃
′
i , which yields the constraint set405

(5.2) (∀i ∈ {0,m+ 1}) Si,t = {W̃ ′
i | ∥W̃ ′

i∥ ⩽ 1}.406
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The projection onto Si,t is performed by clipping the singular values of W̃ ′
i to 1.407

In our proposed training procedure, we set θm,0θm,m+1 = 1. This gives the network one degree of408

freedom to automatically adapt the value of the Lipschiz constant of these two layers. To do so, we409

adopt the following parametrization410

(5.3) θm,0 = exp(α), θm,m+1 = exp(−α),411

where α ∈ R is a trainable parameter. It constitutes an extra component of the vector Ψi when412

i ∈ {0,m+ 1}.413

In the case of ABBA dense layers, we need to handle two requirements: ensure that, for every414

i ∈ {1, . . . ,m}, W̃i is a non-negative ABBA matrix, and to constrain the product of all the weight415

matrices to be such that ∥W̃m · · · W̃1∥ ⩽ θm. Since θm,0θm,m+1 = 1, θm corresponds to the target416

Lipschitz bound for the ABBA network.417

For every i ∈ {1, . . . ,m}, W̃i is parameterized by W+
i and W−

i . We define the following two418

constraint sets:419

Di = {(W+
i ,W−

i ) ∈ (RNi×Ni−1)2 | W+
i ⩾ 0 and W−

i ⩾ 0},(5.4)420

Ci,t =
{
(W+

i ,W−
i ) ∈ (RNi×Ni−1)2 |

∥∥∥Ai,t

[
W+

i W−
i

W−
i W+

i

]
Bi,t

∥∥∥ ⩽ θm

}
.(5.5)421

422

Here-above, matrix Ai,t (resp. Bi,t) is an ABBA matrix, which is the product of the weight matrices423

for the posterior (resp. previous layers). In this case, Si,t = Di ∩ Ci,t. To perform the projection onto424

the intersection of these two sets, we use an instance of the proximal algorithm presented in [35],425

which alternates between elementary projections onto Di and projections onto the spectral ball with426

center 0 and radius θm. Because of Proposition 3.3(xii), the latter projection allows us to keep the427

structure of ABBA matrices.428

Handling Lipschitz constants for convolutional layers. In the case of convolutional ABBA429

networks, we derived the bound in (4.15) which consists of the product of m+2 terms. The Lipschitz430

bound constraint is managed by introducing auxiliary variables (θm,i)0⩽i⩽m+1 defining upper bounds431

for each layer. At iteration t of the algorithm estimates (θm,i,t)0⩽i⩽m+1 of the auxiliary bounds are432

updated. Similarly to the fully connected case, we use two different types of constraints.433

For the i-th ABBA convolutional layer with i ∈ {1, . . . ,m}, we consider the constraint set434

(5.6) Ci,t = {Wi |
∥∥∥ ∑

j∈S(si)

Ω
(j)
i

(
Ω

(j)
i

)⊤∥∥∥ ⩽ θ
2

m,i,t}435

where matrices (Ω
(j)
i )j∈S(si) are linked to the convolution kernels by the linear relation (4.14). By436

concatenating all these sdi matrices horizontally, we obtain a rectangular matrix Ωi which allows us to437

reexpress (5.6) in the simpler form:438

(5.7) Ci,t = {Wi | ∥Ωi∥ ⩽ θm,i,t}.439

We also have to impose the non-negativity of the filters alongside the stability bound. This corresponds440

to a constraint set Di. Projecting onto Si,t = Ci,t∩Di is performed by using the same iterative proximal441

algorithm as previously.442
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For the first and the last layers, we impose similarly that ∥Wi∥ ⩽ θm,i,t with i ∈ {0,m+ 1}. Since443

the kernels are signed, we resort a frequency formulation (see (SM4.18)) to estimate the spectral444

norm of the convolutional operator. The procedure we use is described in Appendix SM8.445

Convolutional layers are usually succeeded by an ABBA fully connected network. This part will446

be handled as explained previously. However, we need to set the upper bounds (θm,i,t)0⩽i⩽m+1 used447

in the convolutional part and the upper bound of the ABBA fully connected part. With a slight abuse448

of notation, let us denote this latter bound by θm,m+2,t, while the target Lipschitz constant for the449

global network is still denoted by θm. We have to deal with the following constraint:450

(5.8)
m+2∏
i=0

θm,i,t = θm.451

We proceed by computing the Lipschitz constants (θ̃m,i,t)0⩽i⩽m+2 of the layers after the ADAM update.452

Then, we set453

(∀i ∈ {0, . . . ,m+ 2}) θm,i,t = θ̃m,i,t

(
θm∏m+2

i′=0 θ̃m,i′,t

) 1
m+3

,(5.9)454
455

which guarantees that (5.8) holds. Update (5.9) can be interpreted as the orthogonal projection onto456

the constraint set defined by (5.8) after a logarithmic transform of the auxiliary variables. The benefit457

of such a transform is to convexify the constraint.458

Algorithm 5.1 Projected ADAM Algorithm
Ψi,t – weights of layer i at iteration t
(zk)1⩽k⩽K – set of input image-label pairs
β1, β2 – ADAM hyperparameters

Partition {1, . . . ,K} into mini-batches
(Mq,n)1⩽q⩽Q

t = (n− 1)Q+ q
# sweep mini-batches
for q ∈ {1, . . . , Q} do

for layer i do
gi,t =

∑
k∈Mq,n

∇iℓ
(
zk, (Ψi,t

)
1⩽i⩽m

)

µi,t = β1µi,t−1 + (1− β1)gi,t
νi,t = β2νi,t−1 + (1− β2)g

2
i,t

γt = γ
√
1− βt

2/(1− βt
1)

Ψ̃i,t = Ψi,t − γtµi,t/(
√
νi,t + ϵ)

end for
for layer i do

Ψi,t+1 = projSi,t
(Ψ̃i,t)

end for
end for

Dataset Network Architecture Accuracy [%]

MNIST

ABBA
Dense 98.33
Conv 98.70

Non-Negative
Dense 94.95
Conv 93.27

Baseline
Dense 98.35
Conv 98.68

FMNIST

ABBA
Dense 90.02
Conv 90.17

Non-Negative
Dense 84.56
Conv 83.09

Baseline
Dense 90.00
Conv 90.20

RPS

ABBA Conv 99.08

Non-Negative Conv 67.30

Baseline Conv 98.86

CelebA

ABBA Conv 90.21

Non-Negative Conv 61.04

Baseline Conv 90.17

Table 1: Comparison between ABBA, full
non-negative and arbitrary-signed (base-
line) networks.
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(a) MNIST – DDN attack (b) MNIST – FMN attack (c) MNIST – DeepFool attack

(d) FMNIST – DDN attack (e) FMNIST – FMN attack (f) FMNIST – DeepFool attack

Figure 2: Accuracy vs. Perturbation for different Lipschitz constants – Dense Architecture.

6. Experiments. In this section, we show the versatility of ABBA neural networks in solving459

classification tasks. The objective of our experiments is three-fold:460

(i). First, we compare positive ABBA structures with their classic non-negative counterparts and461

check that our method yields significantly better results in all considered cases.462

(ii). We then train ABBA models constrained to different Lipschitz bound values and evaluate463

their robustness against several adversarial attacks.464

(iii). Finally, we compare our proposed approach with three other well-established defense strate-465

gies, namely Adversarial Training (AT), Trade-off-inspired adversarial defense (TRADES) [59],466

Deel-Lip proposed by [45], and orthonormalization [2].467

We validate our ABBA networks on four benchmark image classification datasets: MNIST, its more468

complex variant Fashion MNIST 4, a variant 5 of the Rock-Paper-Scissors (RPS) dataset [34], and a469

binary classification on CelebA [31]. For the last dataset, inspired from [45] where eyeglass detection470

is performed, we specialized our models on a different attribute, namely to identify whether a person471

is bald or not. To explore the features of different ABBA network topologies, we experiment with two472

main types of ABBA architectures: one having only fully-connected layers, further referred to as ABBA473

Dense, and another one which includes a convolutional part for feature extraction, followed by a fully474

connected classification module, ABBA Conv. Depending on the dataset, the particularities of each475

4https://github.com/zalandoresearch/fashion-mnist
5https://github.com/DrGFreeman/rps-cv
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(a) MNIST – DDN attack (b) MNIST – FMN attack (c) MNIST – DeepFool attack

(d) FMNIST – DDN attack (e) FMNIST – FMN attack (f) FMNIST – DeepFool attack

Figure 3: Acc. vs. Perturbation for different Lipschitz constants ABBA Conv Architectures – MNIST
and FMNIST.

architecture are slightly different. A detailed description of all the small networks employed in this476

work, as well as other training details, are provided in Appendix SM9. For all experiments, the input477

images were scaled in the [−1, 1] interval.478

ABBA networks vs. non-negative networks. First, we compare our non-negative ABBA networks479

with standard ones trained under non-negativity constraints. We consider standard neural networks480

having the same number of parameters as their ABBA equivalent. The results are summarized in Table481

1, indicating that ABBA neural networks yield far superior results, in all cases. In the case of fully482

connected architectures, the difference in terms of accuracy is around ∼ 3% and ∼ 5% for MNIST483

and FMNIST, respectively. The difference is even higher when we consider Conv architectures (e.g.484

∼ 5%, ∼ 7%, ∼ 31% and ∼ 32% for MNIST, FMNIST, RPS, and CelebA, respectively). This shows that485

standard non-negative convolutional kernels are often suboptimal for extracting relevant information486

from image data. On the other hand, training standard neural networks having arbitrary-signed487

weights gives results very similar to their ABBA equivalents in all the cases, showing that ABBA488

networks do not suffer from these shortcomings. These results are in agreement with Proposition 3.6.489

Stability vs. Performance. According to the “no free lunch” theorem [51], stability guarantees490

may impact the system performance on clean data. In this work, we train several models by following491

the approach described in Section 5. The Lipschitz constant of the network is varied in an effort to492

find the optimal trade-off between robustness and classification accuracy. This compromise is usually493

use-case specific, depending on the architecture complexity and on the dataset particularities, so the494
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(a) RPS – DDN attack (b) RPS – FMN attack (c) RPS – DeepFool attack

(d) CelebA – DDN attack (e) CelebA – FMN attack (f) CelebA – DeepFool attack

Figure 4: Acc. vs. Perturbation for different Lipschitz constants ABBA Conv Architectures – RPS
and CelebA.

tightness of the imposed stability bound must be chosen accordingly. In our experiments, we limited495

the maximum Lipschitz constant we impose, so that the drop in performance does not exceed 5% of496

the baseline model accuracy (i.e., the model trained without robustness constraints).497

Adversarial attack validation. We train several robust ABBA models by varying the global498

Lipschitz bound θm. We then evaluate their robustness against inputs corrupted with different levels499

of adversarial perturbations, by studying their influence on the overall performance of the system.500

To create the adversarial perturbations, we use three white-box attackers as described next. DDN501

[42] is a gradient-based ℓ2 adversarial attack method that seeks to decouple the direction and norm502

of the additive perturbation. By doing so, this attack is able to generate effective examples, while503

requiring fewer iterations than other methods. DeepFool [33] considers a linear approximation to the504

model and refines the attack sample iteratively, by selecting the point that would cross the decision505

boundary with minimal effort in the logit space. The FMN [39] attack improves the approach in506

DDN by introducing adaptive norm constraints on the perturbation, in order to balance the trade-off507

between the magnitude of the perturbation and the level of miss-classification. This results in a508

powerful attack that is able to generate adversarial examples with small perturbation levels.509

For a given maximum ℓ2 perturbation norm, we ran each attack for 300 steps, using the default510

hyperparameters for each of the three attackers. Although all images are normalized in the [−1, 1]511

range, we report the robust accuracy w.r.t. ℓ2 perturbation measured in [0, 1] range, which is the512

common practice in the literature.513
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(a) MNIST – DDN attack (b) MNIST – FMN attack (c) MNIST – DeepFool attack

(d) FMNIST – DDN attack (e) FMNIST – FMN attack (f) FMNIST – DeepFool attack

Figure 5: Comparisons with other defense techniques Dense Architectures

The results are summarized in Figures 2, 3, and 4 which show the robustness of MNIST, FMNIST,514

RPS, and CelebA ABBA models, w.r.t. increasing ℓ2 norm perturbation, generated with DDN, FMN,515

and DeepFool attacks. A baseline model, trained without stability constraints and arbitrary-signed516

weights, is provided as a reference. These graphs could be interpreted as the expected performance517

of the model if the attack is allowed to influence the input image with an ℓ2-norm less than ϵ, where518

the level of perturbation ϵ varies. For a better understanding of the adversarial perturbation effect,519

some visual examples of the attacked inputs, for all the datasets, are presented in Appendix SM10.520

It can be observed that our robust ABBA models are significantly less affected by adversarial521

inputs than the undefended baseline. This demonstrates that carefully controlling the Lipschitz522

constant during training improves the network stability against adversarial attacks. Naturally, as the523

imposed bound gets lower, the system becomes more robust. Although the difference in robustness524

between similar values of the Lipschitz constant depends on the intrinsic structure of the dataset, our525

results show that a good trade-off between robustness and performance can be achieved in all cases.526

Comparison with other defense strategies. In the following, we compare our method for527

training robust models using ABBA networks with other defense strategies. Deel-Lip, developed in528

[45], is a popular Lipschitz-based approach, which uses the spectral normalization of each layer to529

offer robustness certificates during training. We have also made comparisons with another popular530

technique to ensure 1-Lipschitz weights, via orthonormalization [2, 8]. For our experiments, we531
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(a) MNIST – DDN attack (b) MNIST – FMN attack (c) MNIST – DeepFool attack

(d) FMNIST – DDN attack (e) FMNIST – FMN attack (f) FMNIST – DeepFool attack

Figure 6: Comparisons with other defense techniques Conv Architectures – MNIST and FMNIST.

trained models from scratch, using the implementation provided by [2] 6, in order to enforce an532

l2-norm equal to 1 using Bjorck Orthonormalization, while also preserving the gradient norm through533

GroupSort. TRADES [59] introduces a robustness regularization term into the training objective.534

This regularizer encourages the network to have similar predictions on both the original input and535

its adversarial counterparts. On the other hand, Adversarial Training (AT) implies augmenting the536

training data with adversarial samples, increasing the network generalization capabilities to different537

input alterations. However, this technique offers weak theoretical stability guarantees, as it is mainly538

dependent on the strength of the adversary used during training.539

For all experiments regarding AT, we used Projected Gradient Descent (PGD) attack to generate540

the adversarial samples with a perturbation level ϵ = 0.5 and then employed the scheduling strategy541

introduced by [32]. Concerning TRADES, we set λ = 1 for MNIST and FMNIST, and λ = 1/2 for RPS542

and CelebA datasets. For all the presented techniques we considered the equivalent baseline to each543

ABBA network.544

Comparisons, in the same adversarial set-up as before, are depicted in Figures 5, 6, and 7. We545

observe that using our theoretically certified Lipschitz bound yields models which are generally more546

robust than AT and TRADES. For simple datasets, such as MNIST and FMNIST, robust ABBA and547

Deel-lip models exhibit similar behavior for low-magnitude adversarial attacks, but as we increase the548

maximum perturbation ϵ, our method performs better. In the case of real-world datasets (RPS and549

6https://github.com/cemanil/LNets/tree/master
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(a) RPS – DDN attack (b) RPS – FMN attack (c) RPS – DeepFool attack

(d) CelebA – DDN attack (e) CelebA – FMN attack (f) CelebA – DeepFool attack

Figure 7: Comparisons with other defense techniques Conv Architectures – RPS and CelebA.

CelebA), ABBA models exhibit high robustness properties against all the tested attacks, showing that550

our approach allows us to train neural models to reach great stability properties, without losing their551

generalization power.552

Limitations. The main limitation of our method is that non-negative ABBA operators require553

more parameters to meet the universal approximation conditions. More precisely, for given depth554

m and number of neurons (Ni)0⩽i⩽m per layer, a network T̃ ∈ Nm,A has the same number of inputs555

and outputs as the standard feedfoward network T in Model 3.1. All the layers of T̃ , except the556

first one, have however twice more inputs than T . Exact training times are showcased in SM11.557

Because of the ABBA structure of the weight matrices in (3.11), the maximum number of parameters558

of T̃ is 2(N2
0 +

∑m
i=1 Ni(Ni−1 + 1) +N2

m) while the number of parameters of T is
∑m

i=1 Ni(Ni−1 + 1).559

By storing W̃ ′
1 = W̃1W̃0 ∈ R(2N1)×N0 instead of W̃1 and W̃0 separately, the maximum number of560

parameters is reduced to 2(
∑m

i=1 Ni(Ni−1 + 1) +N2
m). Moreover, since the weights are non-negative,561

the model does not necessarily require signed representations storage, so the memory space occupied562

by T̃ could also be reduced.563

While our method does not provide any certification regarding the accuracy of the classifier in564

adversarial environments, it delivers a certified value for the Lipschitz constant of the network.565

7. Conclusions. In this paper, we introduce ABBA networks, a novel class of neural networks566

where the majority of weights are non-negative. We demonstrate that these networks are universal567

approximators, possessing all the expressive properties of conventional signed neural architectures.568
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Additionally, we unveil their remarkable algebraic characteristics, enabling us to derive precise569

Lipschitz bounds for both fully-connected and convolutive operators. Leveraging these bounds, we570

construct robust neural networks suitable for various classification tasks.571

The main advantage of ABBA networks is that they enjoy all the properties of non-negative572

networks (e.g., they are easier to interpret and less prone to overfitting), without suffering from573

the shortcomings of standard ones (e.g., lack of expressivity). Additionally, we showed that ABBA574

structures allow tight Lipschitz bounds to be estimated, without requiring to solve an NP-hard problem575

as for conventional neural networks.576

For future research, it would be intriguing to explore the application of ABBA networks in577

regression problems, where controlling the Lipschitz constant may present more challenges. Also,578

extending our theoretical bounds to different structures, such as recurrent or attention-based networks,579

holds promise for further advancements. Moreover, it would be interesting to study if using Lipschitz-580

constrained ABBA neural networks can improve certified robustness strategies like GloRoNets [27].581

Finally, we recognize the necessity of investigating the scalability of the proposed training method582

to deep architectures. One of the main hurdles in this endeavor is the increased number of parameters583

that deep ABBA architectures entail.584

Acknowledgments. We would like to thank Dr. Jérôme Rony and Prof. Ismail Ben Ayed from ETS585

Montréal for fruitful discussions and insightful suggestions.586
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Appendix A. Proof of Proposition 3.6. For every i ∈ {1, . . . ,m}, let xi = Ti(xi−1) where587

x0 ∈ RN0 is an arbitrary input of network T and xm ∈ RNm its corresponding output. By using the588

symmetry properties of the activation operators, for every i ∈ {1, . . . ,m}, we have589

(∀i ∈ {1, . . . ,m}) xi = Ri(Wixi−1 + bi)590

= Ri(W
+
i xi−1 −W−

i xi−1 + bi),(A.1)591

−xi = −Ri(Wixi−1 + bi)592

= Ri(−Wixi−1 − bi + ci)− di593

= Ri(W
−
i xi−1 −W+

i xi−1 − bi + ci)− di.(A.2)594595

By making use of notation (3.14), (A.1) and (A.2) can be rewritten more concisely as596

(A.3) (∀i ∈ {1, . . . ,m})
[
xi

−xi

]
= R̃i

([W+
i W−

i

W−
i W+

i

] [
xi−1

−xi−1

]
+

[
bi

ci − bi

])
−
[
0

di

]
.597

Let us define, for every i ∈ {0, . . . ,m},598

(A.4) x̃i =

[
xi

−xi + di

]
.599

Altogether (3.16), (3.11), (3.15), and (A.3) yield600

(∀i ∈ {1, . . . ,m}) x̃i = R̃i

([
W+

i W−
i

W−
i W+

i

](
x̃i−1 −

[
0

di−1

])
+

[
bi

ci − bi

])
601

= R̃i

(
W̃ix̃i−1 + b̃i

)
.(A.5)602

603

This shows that, if (T̃i)1⩽i⩽m are given by (3.8), x̃m = T̃m · · · T̃1(x̃0). By using the forms of W̃0 and604

W̃m+1 in (3.13), we deduce that605

(A.6) xm = W̃m+1x̃m + b̃m+1 = T̃ (x0).606

Appendix B. Proof for Proposition 3.8. According to [53] [10, Proposition 5.5],607

(B.1) ϑm = sup
Λ1∈D

2N1
{−1,1}

...
Λm∈D2Nm

{−1,1}

∥W̃m+1ΛmW̃m · · ·Λ1W̃1W̃0∥.608

where, for every i ∈ {1, . . . ,m}, D2Ni

{−1,1} designates the space of diagonal matrices of size (2Ni)×(2Ni)609

with diagonal entries equal to −1 or 1. For every (Λ1, . . . ,Λm) ∈ D2N1

{−1,1} × · · · × D2Nm

{−1,1},610

(B.2) ∥W̃m+1ΛmW̃m · · ·Λ1W̃1W̃0∥ ⩽ ∥W̃m+1∥∥W̃mΛm−1W̃m−1 · · ·Λ2W̃2Λ1W̃1∥∥W̃0∥.611

On the other hand, for every i ∈ {1, . . . ,m}, W̃i ∈ [0,+∞[
(2Ni)×(2Ni−1). It then follows from [10,612

Proposition 5.10] that613

(B.3) sup
Λ1∈D

2N1
{−1,1}

...
Λm−1∈D

2Nm−1
{−1,1}

∥W̃mΛm−1W̃m−1 · · ·Λ2W̃2Λ1W̃1∥ = ∥W̃mW̃m−1 · · · W̃2W̃1∥.614
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According to Proposition 3.3(iii), W̃mW̃m−1 · · · W̃2W̃1 ∈ ANm,N0
. Since this matrix has nonnegative615

elements, we deduce from Proposition 3.3(vii) that616

ϑm ⩽ ∥W̃m+1∥ ∥W̃m · · · W̃1∥ ∥W̃0∥617

= ∥W̃m+1∥ ∥S(W̃m · · · W̃1)∥ ∥W̃0∥618

= ∥W̃m+1∥ ∥S(W̃m) · · ·S(W̃1)∥ ∥W̃0∥,(B.4)619620

where the last equality is also a consequence of Proposition 3.3(iii). This leads to the Lipschitz bound621

in (3.19).622

Appendix C. Proof of Theorem 4.1.623

Before giving the proof of our main result, we will introduce a link between the Fourier and the624

spatial representations for a nonnegative convolutional kernel.625

Lemma C.1. Let (c, c′) ∈ (N \ {0})2 and let626

(C.1) (∀n ∈ Zd) H(n) =
(
hq,p(n)

)
1⩽q⩽c′,1⩽p⩽c

∈ [0,+∞[
c′×c627

where, for every p ∈ {1, . . . , c} and q ∈ {1, . . . , c′}, hq,p ∈ ℓ1(Zd) 7. Then, the Fourier transform Ĥ of628 (
H(n)

)
n∈Zd is such that629

(C.2) sup
ν∈[0,1]d

∥Ĥ(ν)∥ =
∥∥∥ ∑

n∈Zd

H(n)
∥∥∥.630

Proof. For every ν ∈ [0, 1]d,631

(C.3) Ĥ(ν) =
∑
n∈Zd

H(n) exp
(
− ı2ππn⊤ν

)
.632

For every u = [u1, . . . , uc]
⊤ ∈ Cc, by using the triangle inequality,633

∥Ĥ(ν)u∥2 =

c′∑
q=1

∣∣∣ c∑
p=1

[H(ν)]q,pup

∣∣∣2634

=

c′∑
q=1

∣∣∣ c∑
p=1

∑
n∈Zd

hq,p(n) exp
(
− ı2πn⊤ν

)
up

∣∣∣2635

⩽
c′∑

q=1

( c∑
p=1

∑
n∈Zd

hq,p(n)|up|
)2

636

=
∥∥∥ ∑

n∈Zd

H(n)|u|
∥∥∥2637

⩽
∥∥∥ ∑

n∈Zd

H(n)
∥∥∥2 ∥∥∥|u|∥∥∥2638

=
∥∥∥ ∑

n∈Zd

H(n)
∥∥∥2 ∥u∥2,(C.4)639

640

7ℓ1(Zd) is the space of summable d-dimensional sequences
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where |u| denotes the vector of moduli of the components of vector u. This shows that641

(C.5) ∥Ĥ(ν)∥ ⩽
∥∥∥ ∑

n∈Zd

H(n)
∥∥∥.642

and, consequently,643

(C.6) sup
ν∈[0,1]d

∥Ĥ(ν)∥ ⩽
∥∥∥ ∑

n∈Zd

H(n)
∥∥∥.644

In addition, the upper bound is attained since645

(C.7) Ĥ(0) =
∑
n∈Zd

H(n).646

Next, we derive the proof for Theorem 4.1 in light of Lemma C.1.647

648

Proof. W being the impulse response of the MIMO filter with the frequency response given by649

(SM4.1), it follows from Noble identities [52] that W is equivalent to a convolution with W followed650

by a decimation by a factor σm. Let x ∈ H0. Let the σm-polyphase representation of x (resp. W ) be651

defined as652 (
∀j ∈ S(σm)

)
(∀n ∈ Zd) x(j)(n) = x(σmn− j)(C.8)653 (

resp. W (j)(n) = W (σmn+ j)
)
.(C.9)654

655

Then, as a result of multirate digital filtering, y = Wx if and only if656

(C.10) y =
∑

j∈S(σm)

W (j) ∗ x(j).657

This sum of MIMO convolutions can be reformulated as a single one658

(C.11) y = H ∗ e,659

where H is the cm × σd
mc0 MIMO impulse response obtained by stacking rowwise the polyphase660

MIMO impulse responses (W (j))j∈S(σm) and e is the σd
mc0-component d-dimensional signal obtained661

by stacking columnwise the polyphase signal components (x(j))j∈S(σm). For example, if d = 2, we662

have663

(∀n ∈ Z2)664

H(n) =[W (0,0)(n), . . . ,W (σm−1,0)(n), . . . ,W (0,σm−1)(n), . . . ,W (σm−1,σm−1)(n)](C.12)665666

and667

(C.13) (∀n ∈ Z2) e(n) =



x(0,σm−1)(n)
...

x(σm−1,σm−1)(n)
...

x(σm−1,σm−1)(n)
...

x(σm−1,σm−1)(n)


.668
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Note that, according to (C.8),669

∥e∥2 =
∑
n∈Zd

∥e(n)∥2670

=
∑
n∈Zd

∑
j∈S(σm)

∥x(j)(n)∥2671

=
∑
n∈Zd

∥x(n)∥2672

= ∥x∥2.(C.14)673674

This equality and (C.11) imply that675

(C.15) ∥W∥ = sup
ν∈[0,1]d

∥Ĥ(ν)∥.676

We thus deduce from Lemma C.1 that677

(C.16) ∥W∥ =
∥∥∥ ∑

n∈Zd

H(n)
∥∥∥.678

On the other hand, by using (C.9),679 ∥∥∥ ∑
n∈Zd

H(n)
∥∥∥680

=

∥∥∥∥∥( ∑
n∈Zd

H(n)
)( ∑

n∈Zd

H(n)
)⊤∥∥∥∥∥

1/2

681

=

∥∥∥∥∥∥
∑

j∈S(σm)

( ∑
n∈Zd

W (j)(n)
)( ∑

n∈Zd

W (j)(n)
)⊤∥∥∥∥∥∥

1/2

682

=
∥∥∥ ∑

j∈S(σm)

W
(j)(

W
(j))⊤∥∥∥1/2.(C.17)683

684

Appendix D. Proof of Theorem 4.2.685

This result is a consequence of Theorem 4.1, which provides a Lipschitz bound for nonnegative686

convolutional neural networks. By following a similar reasoning to Appendix B, a Lipschitz constant687

of the ABBA network is688

(D.1) θm = ∥W̃m+1∥∥W̃m ◦ . . . ◦ W̃1∥∥∥W̃0∥.689

Let690

(D.2) W̃ = (W̃m)↑σm−1 ∗ · · · ∗ (W̃ 2)↑σ1 ∗ W̃ 1691

and let692

(D.3) (∀j ∈ S(σm)) Ω(j) =
∑
n∈Zd

S
(
W̃ (σmn+ j)

)
∈ [0,+∞[

ζm×ζ0 .693
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Since (W̃i)1⩽i⩽m are convolutional operators with nonnegative kernels, it follows from Theorem 4.1694

that695

(D.4) θm = ∥W̃m+1∥
∥∥∥ ∑

j∈S(σm)

W
(j)(

W
(j))⊤∥∥∥1/2∥W̃0∥.696

where, for every j ∈ S(σm),697

(D.5) W
(j)

=
∑
n∈Zd

W̃ (σmn+ j) ∈ [0,+∞[
(2ζm)×(2ζ0) .698

On the other hand, for every n ∈ Zd, W̃ i(n) is an ABBA matrix. Since W̃ (n) is obtained by699

multiplication and addition of such matrices, it follows from Proposition 3.3(ii) and (iii) that it is700

also an ABBA matrix. We deduce that, for every j ∈ S(σm), W
(j)

is an ABBA matrix and, by using701

Proposition 3.3(i), W
(j)(

W
(j))⊤

is ABBA. By invoking now Proposition 3.3(i)-(iii) and (vii), we702

deduce that703 ∥∥∥ ∑
j∈S(σm)

W
(j)(

W
(j))⊤∥∥∥ =

∥∥∥S( ∑
j∈S(σm)

W
(j)(

W
(j))⊤)∥∥∥704

=
∥∥∥ ∑

j∈S(σm)

S
(
W

(j)
)
S
(
W

(j)
)⊤∥∥∥705

=
∥∥∥ ∑

j∈S(σm)

Ω(j)
(
Ω(j)

)⊤∥∥∥.(D.6)706

707

This shows that a Lipschitz constant of the ABBA network T̃ is708

(D.7) θm = ∥W̃m+1∥
∥∥∥ ∑

j∈S(σm)

Ω(j)
(
Ω(j)

)⊤∥∥∥1/2∥W̃0∥,709

Similarly to the derivation of (4.12), we deduce that θm ⩽ θm where θm is given by (4.15).710
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