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Abstract—This paper deals with the autonomous navigation
problem through orchards. It highlights the different challenges
arising in this particular environment and proposes an adequate
framework. This latter relies on a reactive control strategy fed
by visual data provided by a set of RGB-D cameras adequately
positioned to enlarge the field of view. In this work, we show
interest in coupling a deep learning solution for image-based
detection with an existing point cloud processing algorithm to
improve the overall perception. Experimental results validate the
approach.

Index Terms—Agricultural robotics, autonomous navigation.

I. INTRODUCTION

Agriculture in the twenty-first century has to face two main
challenges. The first one is related to the world population
increase [1], which in turn demands to augment production.
However, this augmentation must be done while taking into
account economic and environmental constraints [2]. The sec-
ond challenge concerns farm labor shortages which occur more
and more often and which were highlighted by the CoViD’19
pandemic. They mainly come from socioeconomic, structural,
and political factors, which make agricultural work unattrac-
tive. Agricultural robotics technologies can tackle these two
challenges. Indeed, on the one hand, they provide the neces-
sary tools for allowing precision farming and phytotechnology
(selective plant care). It may then be possible to maximize
production while taking care of the environment [3]. On the
other hand, agricultural robots increase worker’s efficiency and
safety, by helping them to fulfill their tasks or even replacing
them when it comes to tiring or laborious jobs.

This work is part of a project seeking to use robotics
as a tool to develop sustainable agriculture where produc-
tion increase matches environmental and societal concerns.
It aims at developing a framework allowing a mobile robot
to autonomously navigate in commercial orchards. Indeed, a
safe motion through these environments is a prerequisite to
the realization of any treatment or operation in the orchard,
whether it relies on navigation skills only (payload or fruit
transportation, surveillance, . . . ) or it includes manipulation
skills (harvesting, pruning, weeding, . . . ). Thus providing a
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Fig. 1. The CEFEL orchard where we performed the experiment.

safe and efficient navigation strategy is a keystone towards
efficient precision horticulture.

If autonomous navigation has been widely studied in
robotics [4], its application to orchards remains challenging
for two reasons. First of all, because of the canopy or the use
of nets to protect the trees, the GNSS signal cannot be used
to localize the robot, as it is classically done in other outdoor
agricultural environments such as open fields [5], [6]. The
control strategy has then to rely on local information for both
traversing the tree alleys and maneuvering in the headlands
(see Fig. 1). Second, the orchard is a natural environment,
which means that it is subject to large visual variations. Indeed,
its aspect is different according to not only the seasons and the
treatments on the trees (pruning, thinning, harvesting, etc.) but
also to the weather and the daytime. These issues thus require
a particularly efficient and robust perception process in order
to determine consistent and accurate navigation landmarks.

In this paper, we present the framework designed to perform
autonomous navigation in orchards. We first recall some works
related to this problem and introduce the main principles of the
chosen solutions. We then describe the robot and its sensors,
before detailing the control strategy. Finally, we focus on the 2-
D and 3-D visual data-based perception systems, which is the
main paper contribution. To conclude, we show experimental
results highlighting the relevancy of the approach.



II. RELATED WORKS AND ENVISIONED SOLUTION

We first present some of the works dealing with the specific
challenge of navigating in orchards, i.e., outdoor navigation
without GNSS relying on embedded exteroceptive sensors.
Most of the proposed solutions only address the alley crossing
problem. They mainly consist in detecting the tree rows,
computing geometric lines in the robot coordinate frame, and
using them for guidance. The literature proposes a wide variety
of approaches that can be divided according to the space used
to compute the lines. The first class of works estimates the
vehicle heading with respect to the tree lines in the image
space. In [7], the vehicle heading is calculated by extracting
the portion of the sky visible by the camera. In [8], images
are segmented into classes such as terrain, trees, and sky,
before applying a Hough transform to extract the features
required to define the desired central path for the robot. In
[9], a machine vision is designed to determine the path to
follow. The second class of works uses Euclidean space, 2-D
or 3-D, to calculate the tree lines. When using a 2-D Lidar,
they can be calculated using a Hough transform [10], line
regression and filtering [11]–[13], or line-based simultaneous
localization and mapping (SLAM) [14]. More recently, in [15],
the tree rows are computed by extracting lines, segments, and
circles. Regarding 3-D Lidar sensors, [16] and [17] propose
to calculate the 3-D coordinates of points belonging to the
tree trunks, and to estimate the tree lines parameters using an
extended Kalman filter. Finally, in [18], a time of flight camera
is used to compute an occupancy grid of the alley.

However, the solutions mentioned above suffer from two
main problems. First, they only work in one sole space, either
in the image or in the 2-D or 3-D Euclidean space. Yet,
images are highly sensitive to illumination variations when
the detection method is not AI-based and moreover do not
provide Euclidean coordinates. If 3-D approaches appear to
be less sensitive to light but appear to be perturbed by uneven
trunk branches distribution (tall vegetation, branches partially
or totally occluding trunks, . . . ). In this context, developing
solutions able to work both in the image and 3-D Euclidean
space would be highly interesting. The second drawback of
previous approaches lies in the computed visual feature for
navigation. All of them aim to determine a straight line. Such
a feature will not be suitable to follow curved alleys (as
in circular orchards for example), or even perform a U-turn
in the headland. This latter problem is even more difficult
because in this zone it is impossible to detect tree lines. This
is the reason why this problem is generally dealt with through
dead reckoning, which in turn drastically degrades the task
robustness [3]. To overcome this problem, it would be relevant
to design control laws fed using exteroceptive data, as done
in [19] for instance.

This analysis clearly shows the interest in building a reactive
navigation strategy relying on exteroceptive sensors only. To
do so, we have chosen to endow the robot with several RGB-
D cameras to benefit from the two spaces (image and 3-
D Euclidean space). These cameras have been positioned to

enlarge the field of view so that landmarks are visible whether
the robot is in the row or the headland. The path to be
followed is computed at each instant using these landmarks
and avoids the use of artificial landmarks. An enhanced
control strategy based on NMPC (Nonlinear Model Predictive
Control) allows following the reference path while taking into
account constraints such as actuator saturation, field of view
limitations, obstacle collisions, etc. In the sequel, we first
present the robotic system before detailing the control strategy
and focusing on the designed perception solution.

III. THE ROBOTIC SYSTEM

The considered robot is the Hunter 2.0 robot by Agilex (see
Fig. 2(a)). It has been chosen for three main reasons. First,
it is a car-like robot, which appears to be a very interesting
mechanical structure to navigate in the orchard, because it
eases the headland maneuvering and avoids damaging soils.
Second, it can carry up to a 150kg payload, which makes it
versatile in terms of equipment. Third, it is also able to climb
small slopes (less than 10 degrees) and small obstacles (less
than 5cm), which is an interesting feature in an orchard. As a
car-like robot, it has two control inputs, the steering angle, and
the linear velocity. Its minimum turning distance is 1.6m, while
its maximum velocity is fixed at 6 km/h, which is suitable for
our purpose.

As shown in Fig. 2(a), the robot has also been endowed
with two exteroceptive sensors, a laser-rangefinder (Slamtech
RPLIDAR S1), and four RGB-D Intel Real Sense cameras
(two D455 and two D435). These sensors offer a low-cost
solution to sense both 3-D point clouds and 2-D images in
an outdoor environment. The two D455 cameras have been
positioned at the front of the robot, while the D435 have been
fixed on its left and right sides, because of the higher range
of the former with respect to the latter (0.6 – 6m versus 0.3
– 3m). In this way, the view field is enlarged and it becomes
possible to perceive the surrounding trees, whether the robot
is following a row or maneuvering in the headland. This
will allow feeding the U-turn control law with exteroceptive
information, thus avoiding the use of dead reckoning and
improving the task execution robustness.

Fig. 2. The robot (left) and the point clouds expressed in the laser frame
(right).



The perception system has been calibrated using the tech-
nique proposed in [20]. This latter has been proven to be
accurate enough for the targeted application. An example of a
result of this calibration is shown in Fig. 2(b) where the point
clouds provided by the four cameras are expressed in the laser
frame to benefit from a common reference.

IV. THE CONTROL STRATEGY

We have chosen to design a reactive vision-based control
strategy. It relies on the 3-D coordinates of the tree trunks
which will be computed using our perception algorithm (see
Sec. V). In this part, we focus on the definition and the control
of the robot’s motion.

A. Definition of the reference path

The key idea is to use the 3-D coordinates of the trees to
generate at each iteration a path for both the alley crossing
and the headland maneuver. To do so, two steps have been
followed. The first one consists in defining adequate points,
and the second one in computing the path by fitting a suitable
curve. These aspects are targeted here below.

1) Determination of the points: From a motion point of
view, the orchard navigation task mainly consists of se-
quencing alley crossing with U-turns in the headland. The
two corresponding cases are considered. To allow the alley
crossing, the points used to generate the path must be roughly
in the center of the row. To compute these points, a Voronoı̈
diagram is built using the tree coordinates and recomputed
at each step. The diagram vertices thus define the desired
reference points (see Fig. 3, steps 1⃝ and 5⃝). Concerning
the headland navigation, the points used to generate the paths
belong to a particular spiral, such as the one presented in [19].
This spiral is centered around the last detected tree1, and its
position is updated for each new data acquisition (cf. Fig. 3,
step 3⃝). In addition, the shape of the spiral is adapted at
the beginning and the end of the U-turn to connect the first
(respectively, last) point of the spiral to the last (respectively,
first) vertex of the Voronoı̈ diagram (cf. Fig. 3, steps 2⃝ and
4⃝).

2) Curve fitting: Finally, the reference path is computed by
fitting a NURBS (Non-Uniform Rational B-Spline [21]) curve
on these points. It thus allows benefiting from the numerous
parameters of NURBS to deal with both straight lines and
spirals while obtaining a smoother path. Now that the reference
path is available, it remains to follow it.

Several advantages follow from this generation method.
First, the reference path is generated using the sole tree
positions computed from the data. Thus the proposed approach
is fully sensor-based, both in the row and in the headland.
Indeed, thanks to the cameras fixed on the robot side, the
spiral center remains always visible, even during the U-turn.
This latter is thus realized using exteroceptive data and not
odometry, which improves the robustness of the execution.

1In specific cases, the spiral can be centered on an object positioned at the
end of the row, e.g., a bin or a tensioner.

Fig. 3. Examples of path generation. Green circle: tree - Black circle: pivot
point - Orange circle: Voronoi vertex - Dark red circle: Spiral point - Blue
curve: NURBS - Step 1/5: alley crossing - Step 2: path connecting the alley
crossing to the headland maneuver - Step 3: headland maneuver - Step 4: path
connecting the headland maneuver to the alley crossing.

Note also that no instrumentation of the orchard is necessary
thanks to this approach.

B. Computing the control law

Now, it remains to follow the planned reference path. To do
so, we have chosen to impose a geometrical convergence to-
wards the reference path. Therefore, the robot’s linear velocity
has been fixed to a nonzero constant value. To compute the
steering angle, we first express the distance and the orientation
errors of the robot with respect to the reference path. Then,
to vanish them, we use NMPC. We thus minimize a cost
function depending on these errors over a given prediction
horizon under the constraints that the inputs are limited. In
this way, the obtained solution allows for avoiding actuator
saturation.

V. PERCEPTION

The perception system is intended to provide the necessary
data to feed the control strategy. We first present the point
cloud processing that has been used so far to calculate the
position of the trunks with respect to the robot. We list
the different steps involved in the process and then show
the limitations of an approach based solely on point clouds.
Finally, we present how recent progress in image processing
can be used to improve the trunk pose calculation.

A. Point-cloud processing

To detect the trees present in the robot environment and
compute the position of their trunks, we rely on an algorithm
that processes in real-time the range component of the point
cloud [22]. The method consists in detecting the empty spaces
(or shadows), present in the point cloud. Indeed, as it can be
seen in Fig. 4, these shadows indicate the presence of trees.
Thus, the algorithm first looks for the tree shadows (orange
triangles) and then computes their origins (red circles) [22].
This approach offers a high recall rate, i.e., almost all the trees
are detected, but it suffers from a fairly low precision rate, i.e.,



Fig. 4. The orchard point cloud (top view) [22].

many elements are confused with trees. To remove the false
positive, it was proposed in [22] to implement a filter based
on the point cloud density around the estimated tree. Indeed,
there are many points in the vicinity of a trunk while there
are few ones in the case of a branch. Even if this approach
significantly increased the precision rate without degrading the
recall rate, it was not sufficient to perform smooth navigation.
Indeed, each false positive tree is taken into account during
the planning step, leading to inaccurate paths.

B. Image processing

To improve the detection of the trees and the computation
of the trunk positions it is proposed to couple the point
cloud-based algorithm with an image-based object detection
algorithm. In other words, we propose to investigate image-
based algorithms to detect the trees to remove the false
positive trees detected by the point cloud-based algorithm.
Unlike the computation of the position of a given element
which is a specific task and requires a handcrafted algorithm,
the object detection problem can be tackled with general-
purpose algorithms. For this reason, we focus our attention on
the recent Deep-Neural-Network-based algorithms which have
shown excellent performance. Among the most recognized
approaches, we may cite the YOLO (You Only Look Once)
[23], U-net [24], or Detectron2 [25] object detector. In order
to select the most relevant approach, we have considered
the constraints of our navigation framework, i.e., an object
detector running at least at 10 fps on an Nvidia Jetson Xavier
NX. Thus, the Detectron2 detector was discarded due to
its too-small fps rate while the U-net one was not selected
because it is less accurate than the last versions of YOLO.
We have then chosen to perform the object detection using
the YOLO detector, and more specifically to investigate the
performances of the YOLOv8 [26] detector for our specific
problem2. The detector can be used in its nano, small, medium,
large, and extra-large version where the width and depth of
the convolution modules vary to suit specific applications and
hardware requirements. In this work, we focus on the nano
and small versions which are lightweight models targeted for
low-resource devices (see Fig. 5).

In this work, we aim at detecting the tree trunks in
order to navigate in experimental orchards of the ”Centre
Expérimentation Fruits et Légumes” in Montauban, France.

2see [27] for a detailed description of the different version of YOLO.

Fig. 5. Latency vs mean Average Precision for different versions of YOLO
for the COCO data set [https://github.com/ultralytics/ultralytics].

As can be seen in Fig. 1, these orchards are protected with
nets, and tensioners placed at the end of the rows are used to
maintain them. Thus, for these specific orchards, it is necessary
to detect the tree trunks and the tensioners that will be used
as the centers of the spirals when performing the headland
maneuvers. To do so, the YOLO networks were trained with
images from these orchards to detect two classes: trunks and
tensioners. The first set of images was collected on the 30th

of November 2022, at the end of the fall season. This first
data set is made of 600 images (150 images per camera). The
second set of images was collected on the 2nd of June 2023,
at the end of the spring season. For the purpose of the project,
a fifth camera was installed at the front of the robot. The
second data set then contains 900 images (150 images for
the first four cameras and 300 for the front one). Thus, for a
total of 1500 images, half of the images contain only trunks
while the other half contains at least one tensioner (see Fig.
6). In order to train the YOLO network, we have used 80%
of the data set, leading to the labeling of 3500 trunks and
700 tensioners. The remaining 20% was used to evaluate the
performances of the detection process. Regarding the training,
the network was trained using the default parameters, and no
specific tuning was performed.

VI. RESULTS

In this section, we present the detection results obtained
using the YOLOv8n and YOLOv8s detectors trained and
executed on a computer equipped with an Intel i5 9600K CPU,
16 GB of memory, and an Nvidia RTX 2070 GPU.

A. Image-based detection

Figure 7 presents the confusion matrices for both detectors
and the precision and recall rates are presented in table I. Both
versions have similar performance and allow detecting at least
98% of the trees and 99% of the tensioners. Regarding the
precision rate, for both versions, the rate is slightly lower for
the tree class than for the tensioner class. Tensioners being
human-made objects, they share less similitude with the rest
of the environment than the trunks. Moreover, it may happen
that non-labeled trees are detected during the evaluation step
(for example in the second image of the first row in Fig. 8).
This performance rate is perfectly compatible with the needs
of the project and it does not seem necessary to further tune

https://github.com/ultralytics/ultralytics


(a) Fall - Front Right. (b) Fall - Side Left.

(c) Spring - Front Middle. (d) Spring - Front Left.

Fig. 6. Images from the data set

(a) YOLOv8n. (b) YOLOv8s.

Fig. 7. Confusion matrices

the algorithm. Indeed, from a reasonable number of examples,
the YOLO detector is able to identify the trunks for different
seasons. Finally, regarding the processing time, YOLOv8n
version runs at 72 fps while the YOLOv8s one runs at 59
fps. Since the performances are similar, we choose the lightest
version, i.e., YOLOv8n, which will free up computing capacity
for other processes.

TABLE I
PRECISION-RECALL RATES

Tree Tensioner

Precision Recall Precision Recall

YOLOv8n 0.91 0.96 0.98 0.99

YOLOv8s 0.91 0.98 0.99 1

B. Trunk detection

We now provide an example of the use of tree detection in
the image space in order to improve the navigation process.
In Fig. 9, two examples are shown: the first image is from
the fall data set and the second one is from the spring data

set. The yellow and red dots represent the computed position
of the trees detected by the point-cloud-based algorithm. As
previously mentioned, it manages to detect the relevant trees
but also considers some of the environmental elements as
trunks. Thus, using the output of the YOLO detector allows
filtering of the false positive results of the point-cloud-based
algorithm: the red dots are aligned with a red rectangle and
then classified as trees, while the yellow ones do not match
with a rectangle and are considered as false positive. This
improvement in landmarks detection will significantly impact
the path-generation process. Note that image-based detection
is used to filter out false positives from the point cloud-based
algorithm. Thus, the false positives computed in the image are
discarded and have no impact on the final result.

VII. CONCLUSION

This paper has proposed a GNSS-free framework allowing
an agricultural robot to autonomously navigate through or-
chards using embedded exteroceptive sensors. It relies on a
perception system made of four RGB-D cameras adequately
positioned to detect landmarks both in the headland and the
rows. This paper has focused on the evaluation of YOLO,
a deep learning solution for image-based detection aiming
at improving the existing algorithm based on point clouds
only. The obtained results have demonstrated the relevance
of YOLO in our context. For future works, several leads are
currently considered to enhance the perception: (i) adding a
filtering process to track the trees; (ii) improving the detection
of the beginning/end of the row; (iii) training YOLO to detect
obstacles and design an appropriate avoidance approach. It
will then remain to integrate these methods into our robot and
to validate them experimentally in the CEFEL orchards.
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