Some views on the European HEDP-UHI laser and scientific landscape

S. Jacquemot

Laboratoire pour l'Utilisation des Lasers Intenses

- The European key HEDP laser facility: LMJ-PETAL
- The first academic LMJ-PETAL experiments
- Structuring the European laser continuum: LASERLAB-Europe
- Structuring the ICF-related research: EUROfusion
- The Extreme Light Infrastructures
- The APOLLON laser facility and its scientific program

LMJ-PETAL is the European & French flagship for High Energy Density Physics

Laser MegaJoule (LMJ)

progressive ramp-up in energy & in diagnostic capabilities; 150 shots (1/day) on target already delivered

Petawatt Aquitaine Laser (PETAL)

1,2 PW (846J/700fs) obtained in 2015 ~2 PW reachable next year (570fs)

Attractive academic user program

25 proposals submitted through calls of proposals,

6 accepted

a well-attended 1st user meeting in October

next call: 2019

from end 2016 end 2018 5th 6th 2nd config. 4th 4 quads+PW 10 quads+PW 14-18 quads+PW 22-40 quads+PW 44 quads+PW 60 kJ 150 kJ 250 - 320 kJ 0,53 - 1 MJ 1,5 MJ 5+5* 8+5* 15+5*22+5* >22+5*

user guide & information on: http://www-lmj.cea.fr/en/ForUsers.htm

by courtesy of J.-L. Miquel

A first fusion milestone will be reached in 2019

D₂-filled indirectly-driven "symmetric" capsule implosions to be driven in 2019 with 12 quads

high low-mode non-uniformities <a> relevant benchmark for CEA 3D simulations

50 years after the first fusion neutrons produced in 1969 with the CEA L5 laser, D_2 fusion neutrons will be produced on LMJ!

-97

Astrophysically-relevant turbulence & B-field generation

was explored in the first LMJ-PETAL academic experiment

evolution of B fields during flow collision measured thanks to proton radiography magnetic energy power spectrum agrees with supersonic turbulence modeling

by courtesy of G. Gregori

THE UNIVERSITY OF

The 2nd one will tackle IFE-relevant shock ignition physics issues

generation of a strong enough (300-400 Mbars) shock through a large corona?

at the required spike intensity (>10¹⁵ W/cm²), will parametric instabilities and induced hot electron production be detrimental, or not?

CHIC simulations of the planned LMJ experiment show

- w/o SSD: hot electron production from SRS (45 keV) & TPD (90 keV) whose deposition leads to an asymetric shock wave
- with SSD (no hot electrons): ablation pressure is reduced (~ - 40 mbars) as well as the shock velocity

5 diagnostics to be implemented to measure laser energy balance, hot electron temperature distribution & shock strength and velocity

next: April 2019

by courtesy of S. Baton

The success of experiments on Very-Large-Scale Infrastructures

rest on preparatory experiments on mid-scale facilities

The European laser continuum is structured through LASERLAB-Europe

current contract: from the 1st Dec. 2015, for 4 years 22 Access providers at least 3005 access days provided on 289 projects

at least 3005 access days provided on 289 projects and for 676 users, incl. non-EU researchers

19 non-EU projects, representing ~12% of the access provision

Canada, <u>China, India Japan</u>, Russia, USA

next contract under préparation (submission: March 2019)Spiobal collaboration encouraged: Asian Intense Laser Network?

As for MFE, the IFE community is coordinated thanks to () EUROfusion

through keep-in-touch & dedicated projects

Mission 1: acquiring new insights into the basics of ignition physics

- plasma atomic physics ***** & radiation sources
- laser-plasma interaction
- hydrodynamics & implosion

Mission 2: towards demonstration of shock ignition on MJ-class laser facilities **#**

Mission 3: testing the feasibility of other alternative schemes

- electron-driven fast ignition #
- ion-driven fast ignition; impact ignition
- aneutronic fusion
- auxiliary heating

Mission 4: developing key IFE technologies

- laser & target technologies
- diagnostics
- IFE materials & reactor technologies

2019-2020: proposals submitted in August

The Ultra-High-Intensity landscape is also evolving

3 very-large-scale infrastructures to investigate light-matter interactions at highest intensities and shortest time scales

- <u>ELI-NP</u>: an unique combination of very intense laser (I=10²³⁻²⁴ W/cm²) and γ beams \checkmark nuclear physics
- <u>ELI-Beamlines</u>: short-pulse secondary sources of radiation and particles
 W multidisciplinary applications
- ELI-ALPS: ultrashort from THz to x-ray light sources at high repetition rate
 Extremely fast (as) electron dynamics in atoms, molecules, plasmas and solids

a large variety of applications to be prepared on mid-scale facilities

https://eli-laser.eu/

<u>Apollon</u> soon open to the user community within LASERLAB-Europe ...

4 independent laser beams based on an OPCPA front-end and Ti:Sa amplifications stages

* F1: up to 10 PW (150J/15fs)
* F2: 1 PW (15J/15fs)
* creation: up to 250 J uncompressed
* probe: 10 TW (150mJ/15fs)

2 independent radio-protected experimental areas

- HE1 (SFA) for LPI with solid targets at a few 10²¹ W/cm² (f/2.5) for proton, ion and x-ray radiation secondary beam generation
- HE2 (LFA) for particle acceleration (electrons) using long focal length focusing optics

qualification @ 1 PW 🗹 30.5 J / 24.4 fs ±0.5 fs

- 2nd user meeting Spring 2019
- 1st commissioning experiments mid-2019

... on various research topics

Electron acceleration

- single- & multi-stage electron acceleration
- induced x-ray production (FEL-type or betatron)

Ion acceleration

- breaking the 100 MeV limit
- advanced TNSA & radiation pressure acceleration mechanisms
- warm dense matter physics, laboratory relativistic astrophysics

X-ray sources

- plasma mirror & HHG from solid targets

High-field physics

- QED effects in laser-plasma interaction
- high-energy γ & positron generation

Smilei) a multi-physics, collaborative, open-source, HPC-oriented simulation tool

2nd training workshop: early 2019