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Abstract 

This paper presents an experiment that investigates differences in risk attitudes in 

decisions with immediate versus delayed consequences. Our experimental design allows 

to control for the effects of discounting and timing of risk resolution. We show that 

individuals are more risk tolerant in situations involving delayed consequences. 

Investigations based on rank-dependent utility show that this finding is mainly driven by 

probability weighting. More precisely, probability weighting is more elevated for delayed 

consequences. This suggests an overall increase in decision-makers’ optimism regarding 

the chances of success when consequences materialize in the future. 
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1 Introduction 

The literature regarding decision-making under risk generally assumes immediate 

consequences: after making a choice, the decision maker observes risk resolution, learns the 

outcome of the decision, and gets it without any delay. However, real-life risky situations rarely 

correspond to this theoretical setting of immediate consequences. Instead, a delay often 

separates the moment when the decision is made from the moment when consequences 

materialize. This paper presents an empirical investigation of the impact that the delay in the 

materialization of the outcomes has on risk attitudes. 

The delay separating the moment of the decision from the moment of outcome materialization 

may have an important role in explaining the variability of risk attitudes across real-life 

settings. In fact, delayed consequences characterize a wide range of health, political, legal, 

work, or daily-consumption decisions. The outcomes of political elections are known at the 

end of the voting process, while the consequences for voters are, most often, experienced 

with delay. For instance, British citizens voting for Brexit knew that the effective Brexit would 

take place several years after the referendum. One may wonder if they would have made the 

same choice if Brexit had been announced to take place right after voting. The delay in the 

materialization of the consequences is also important for deterrence: law offenders have 

different perceptions of the risk of sanction for fines received long after the reckless behavior 

(Howe and Brandau, 1988). In education or work domains, agents often make decisions such 

as applying to a new program or a job, whose effects materialize in the future (the program/job 

may start several months after receiving an admission letter). Situations with delayed 

consequences are also not uncommon in the health domain. For example, risky sexual 

behavior may result in diseases (e.g. cancer caused by sexually transmitted viruses) which, 

albeit contracted and diagnosed immediately, may have future consequences. Prenatal tests 

and the related possible actions entail medical decisions affecting the future development and 

health of the offspring. In all these examples, the moment of decision-making, and the 
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moment of consequence materialization are different. These decisions, therefore, involve 

both risk and time. 

Risk and time, although often intertwined in real-life decisions, have long been considered as 

two separate research topics in the economic literature. For preferences under risk, the 

rational decision-making model is expected utility (EU). More descriptive extensions account 

for reference dependence (i.e. consequences are perceived as changes from a reference 

point), and non-linear probability weighting, two aspects formalized by Prospect Theory 

(Tversky and Kahneman, 1992). For intertemporal preferences, the rational decision-making 

model is discounted utility (Samuelson, 1937), with more descriptive extensions accounting 

for reference dependence and non-constant impatience (Laibson, 1997; Ebert and Prelec, 

2007). Observing preferences in decisions involving both risk and time opened new 

perspectives in theoretical and empirical research. 

A first stream of research addressing the interaction between risk and time questions whether 

intertemporal preferences are the same when the materialization of future consequences is 

sure or not. Several papers (Weber and Chapman, 2005; Gerber and Rohde, 2010) have 

investigated whether anomalies in intertemporal choice like present bias (i.e., tendency to 

overvalue present rewards and prefer a small gain today to a high gain later) persist when 

future outcomes become uncertain. Halevy (2008) and Baucells and Heukamp (2012) 

proposed models that connect decision biases observed for risky and for intertemporal 

choices. Andreoni and Sprenger (2012) highlighted differences between intertemporal 

preferences under risk and intertemporal preferences under certainty. A key insight from 

these studies is that people discount certain and uncertain future outcomes differently. These 

studies investigate discounting by considering intertemporal tradeoffs. Contrary to these 

studies, our empirical investigation of the interaction between risk and time does not involve 

this kind of tradeoffs. Thus, our protocol allows to study the interaction between risk and time 

without making specific assumptions about the intertemporal preferences of the decision-

maker. 
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A second stream of research connects risk and time by investigating attitudes toward uncertain 

delays of materialization of outcomes (Ebert, 2020; Li et al., 2017). In this context, the outcome 

of the risky decision is the time that the decision maker has to wait before getting the payoff. 

The present study does not belong to this stream. Indeed, in our experiment, the outcomes at 

stake are always received at a fixed (possibly future) date. 

A third stream of research, to which our study directly contributes, focuses on the impact of 

time on risk attitudes (Keren and Roelofsma, 1995; Weber and Chapman, 2005; Noussair and 

Wu, 2006; Coble and Lusk, 2010; Abdellaoui et al., 2011b). Under the rational decision-making 

model, EU, risk attitudes are captured by the utility function, generally characterized in 

empirical applications through a single parameter (reflecting utility curvature). However, 

empirical evidence has highlighted systematic violations of EU raising questions about this 

characterization of risk attitudes through a single dimension. Allais (1953) identified two major 

phenomena that cannot be accommodated by EU: common-consequence1 and common-ratio2 

effects. These violations of EU are accounted for by behavioral models, from which one of the 

most famous is Rank Dependent Utility (RDU), which considers probability weighting (Starmer, 

2000). Several authors analyzed the interaction between risk and time by questioning whether 

EU violations hold in situations involving delays. 

Keren and Roelofsma (1995) investigate empirically whether time delays impact violations of 

EU. These authors considered a series of binary risky choices testing the common-consequence 

effect under two treatments: (1) with consequences received now, and (2) with consequences 

received later. Delay impacted risk preferences but did not modify the common-consequence 

effect. Weber and Chapman (2005) further explored this hypothesis. They also observed no 

effect of time delays (neither for 1 year, nor for 25 years) on the common-consequence effect 

 
1 Let (x,p1;y,p2;z)	refer to the lottery that gives x	with probability p1, y	with probability p2	and z	with 
probability 1−p1−p2. The common-consequence effect states that the preference between two lotteries 
(x,p1;y,p2;z)	and (x0,p1;y,p2;z0), which share a common-consequence y	(with the associated probability 
p2), may depend on the value of y. 
2 Let (x,p;y)	refer to the lottery that gives x	with probability p	and y	with probability 1−p. The common-
ratio effect states that the preference between two lotteries (x,qp1;y)	and (x0,qp2;y)	with 0<q≤1, may 
depend on the value of q. 
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when choice alternatives were evaluated jointly. Nevertheless, the authors captured an effect 

of the time dimension (a 25-year delay in payoffs) on the common-ratio effect when choice 

alternatives were evaluated separately. It is however noteworthy that these pioneer 

investigations did not use real incentives, which are nowadays standard in experimental 

procedures. Moreover, and most importantly, in the presentation of the choice situation, the 

subjects were not informed about when the risk associated with the lottery would be solved 

(now or at payment time). 

One of the first studies investigating the impact of a delay associated with risky lotteries on 

risk preferences using (modern) experimental procedures, with real incentives, was provided 

by Noussair and Wu (2006). These authors observed that delaying the outcomes (up to three 

months) increased risk tolerance. However, their measurement of risk attitudes was based on 

the method popularized by Holt and Laury (2002). This method relies on EU and does not allow 

to account for probability weighting. Coble and Lusk (2010) also used the Holt and Laury 

method in an empirical investigation of risk and time preferences. They observed higher risk 

tolerance when lotteries were delayed (up to 37 weeks). Analyzing risk preferences under EU, 

this higher risk tolerance for future lotteries was attributed to a less concave utility function. 

However, this interpretation may no longer hold when considering a more descriptive non-EU 

behavioral model. 

Abdellaoui et al. (2011b) provided a further analysis of the impact of time on risk attitudes 

relying on a design which allowed to capture violations from EU related to a nonlinear 

probability weighting. Specifically, the study analyzed the impact of delayed consequences on 

risk attitudes under RDU, a model accounting for probability weighting. Consistently with prior 

empirical evidence, the authors also observed more risk tolerance for delayed consequences. 

They could further identify that this effect was captured by a change in probability weighting 

rather than by a change in utility. In their study, probability weighting was more elevated when 

consequences were delayed. 
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Overall, prior literature accords with the fact that more risk tolerance is exhibited towards 

delayed lotteries. However, prior research considered lotteries where both the resolution of 

risk and the materialization of outcomes were delayed. Indeed, in the three previously 

mentioned studies, risk was solved (i.e. the lottery was played to determine the outcome) at 

the time of payoff. Therefore, these experiments study the joint effect of delayed resolution 

of risk and delayed materialization of the payoffs on risk attitudes, without disentangling them. 

The objective of the present paper is to capture the sole impact of the timing of materialization 

of consequences on risk attitudes. To this aim, we consider an experimental design where 

choices vary regarding this sole dimension, while avoiding confounds related to delayed 

resolution of risk. Following Abdellaoui et al. (2011b), we measure preferences under RDU, a 

general model that accounts for probability weighting, and integrates EU as a particular case. 

Our experiment investigates the impact of a time delay before the materialization of the 

outcomes on attitudes towards risk by comparing risk preferences in two situations: (1) 

consequences received "now", and (2) consequences received "later" (in one year from now). 

Our results show that utility of consequences incurred "now" and in "one year for now" is 

similar. However, the probability weighting function is different for delayed consequences, for 

which the decision maker exhibits more optimism. The time dependence of risk attitudes 

appears as the first of the seven key facts3 regarding risk and time listed and studied by Epper 

and Fehr-Duda (2019). This highlights the importance of this fact for the literature on risk and 

time. Nevertheless, the authors note that it “has been documented by a range of papers that 

do not distinguish between the effects of delay on utility and probability weights”. They cite 

Abdellaoui et al. (2011b), in which lotteries were delayed in terms of both payment and 

resolution. More recently Abdellaoui et al. (2022) provide an extensive investigation of the 

 
3 The seven key facts listed by Epper and Fehr-Duda (2019) are the following: observed risk tolerance 
increases with delay (fact #1), is higher for one-shot than for sequential valuation (fact #3), is 
characterized by intrinsic preference for timing of uncertainty resolution (fact #5), and depends on order 
of delay and risk discounting (fact #7), while observed patience increases with delay (fact #2), is higher 
for one-shot than for sequential valuation (fact #4), and is higher for risky payoffs than for certain ones 
(fact #6). 
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attitudes towards the timing of resolution of risk, testing different models on a series of 

experiments where the timing of payment is held constant. Therefore, the literature provides 

prior studies on situations where both resolution and payment are delayed, as well as on 

situations where resolution only is delayed, leaving cases where payment only is delayed, as 

an open research question. Our study fills this gap in prior literature by analyzing the role of 

delayed consequences on risk attitudes when the timing of risk resolution is kept constant. As 

such, we add a missing piece of evidence to the understanding of the role played by probability 

weighting in decisions involving both risk and time. 

The rest of the paper is organized as follows. Section 2 presents the theoretical background 

and the measurement method. The experimental procedure is presented in Section 3. Results 

are reported in Section 4. Section 5 discusses our main findings and Section 6 concludes. 

2 Theory 

2.1 Preliminaries 

We focus on a decision maker confronted with choices between risky lotteries involving non-

negative monetary outcomes. In the present study, only (at most) two-outcome lotteries are 

considered. Therefore, the formal presentation of the model provided in this section is 

restricted only to such lotteries. 

The decision maker chooses between risky lotteries of the type (xt,p;yt), where t	refers to the 

time of materialization of the outcomes and the consequences are such as x>y≥0. More 

precisely, the lottery (xt,p;yt)	yields, at the corresponding time t, either x	with probability p, or 

y	with probability 1−p. The uncertainty associated with the lottery is always solved at time t=0	

(i.e. immediately after choice). Two different times of materialization of the outcomes t∈{0,T}	

are considered in the study: t=0	refers to immediate consequences received “now” and t=T	

refers to delayed consequences received “later”. The decision maker has preferences over 
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lotteries that are captured by a preference relation ≽, with ∼	denoting indifference and ≻

	strict preference. 

 

2.2 Time-dependent Rank-Dependent Utility 

We assume that the decision maker’s preferences follow a time-dependent RDU model. Under 

this model, the value associated with the lottery (xt,p;yt)	is given by 

 RDU(xt,p;yt)=wt(p)ut(x)+(1−wt(p))ut(y),	 (1) 

where ut(x)	 is a strictly increasing utility function, measuring the utility of receiving the 

monetary outcome x	at time t, and wt(p)	is a strictly increasing probability-weighting function 

mapping [0,1]	 to [0,1]	and capturing the perception of probabilities in decisions involving 

outcomes received at time t. Note that EU is a particular case of the RDU model where wt(p)=p	

for all p∈[0,1]. 

For the econometric estimations of the time-dependent RDU model, we assume parametric 

specifications for utility and probability weighting functions. The time dependence of the RDU 

model is captured by the time dependence of the (utility and probability weighting) 

specification parameters. 

Regarding utility, an exponential function is considered. The other most commonly used utility 

specification in the empirical literature is the power function. However, the exponential 

specification was preferred because it accords better with our data (see Section 4.2.2 for 

details). For consequences in the interval [0,M], exponential utility is defined as: 

𝑢!(𝑥) =
"#$!"#$

"#$!"#
.	 	 	 	 	 (2) 
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The parameter αt	measures the curvature of the utility, which is allowed to vary depending on 

the payment time t. αt	equals 0	 for a linear function, and increases (decreases) with the 

concavity (convexity) of the function. 

For probability weighting, we use the two-parameter specification axiomatized by Prelec 

(1998): 

𝑤!(𝑝) = 𝑒#%#(#'()	(+))%#     (3) 

This two-parameter specification, often employed in experimental studies, captures two 

different psychological phenomena related to probability weighting. The parameter βt	

characterizes elevation and reflects the degree of optimism of the decision maker regarding 

probabilities: the lower its value, the more elevated the function, and the more optimistic the 

decision maker. The parameter γt	characterizes the curvature of the function and is generally 

interpreted as measuring sensitivity to changes in probabilities. When γ<1, the function 

exhibits an inverse S-shape, with more sensitivity to changes in low and high probabilities and 

less sensitivity to changes in intermediate probabilities. The subscript t	captures the fact that, 

in our study, these dimensions of probability-weighting can be time-dependent. 

Overall, our econometric analysis consists of estimating the model parameters αt, βt	and γt	for 

each of the two times t=0	and t=T and comparing the estimated parameter values across 

payment times. 

2.3 Method 

Our method is based on the elicitation of certainty equivalents. A set of lotteries (xt,p;yt)	 is 

built by fixing different values for probability p∈]0,1[, and for the monetary outcomes x>y≥0, 

with x,y∈[0,M]. For each lottery, our method consists of measuring the (dated) certainty 

equivalent, i.e. the monetary outcome ct	such that the decision maker is indifferent between 

receiving this amount for sure at time t	or receiving the lottery. Formally, our method consists 

of estimating ct	such as ct	∼(xt,p;yt). In the experiment, the same set of lotteries was presented 
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twice to the subjects, once for consequences paid “now” and once for consequences paid 

“later”. 

The comparison of the two treatments “now” vs. “later” allows to analyze the impact of 

delaying outcomes on risk attitudes. Two approaches are retained in the paper. First, we 

analyze risk attitudes in a model-free setting. Second, we analyze risk attitudes by eliciting 

decision-makers' preferences under RDU. These two approaches are detailed hereafter. 

 

2.3.1 Model-free analysis of risk attitudes 

The standard definition of risk attitudes uses the choice between a lottery and its expected 

value. By definition, a decision-maker is risk averse if she prefers the expected value to the 

lottery; she is risk seeking if she prefers the lottery to the expected value, and she is risk neutral 

if she is indifferent between the lottery and its expected value. Our method based on the 

elicitation of certainty equivalents informs us directly about risk attitudes. Comparing the 

certainty equivalent (CE) associated with a risky lottery to its expected value (EV) allows to 

characterize the risk attitude of the decision maker as risk neutral, risk seeking or risk aversion, 

in a model-free setting. The decision maker is risk averse if CE<EV, risk seeking if CE>EV, and 

risk neutral if CE=EV. Moreover, the lower the CE, the higher the degree of risk aversion of the 

decision maker. 

Our raw data analysis based on the elicited certainty equivalents allows to study risk attitudes 

and how they vary depending on the timing of payment. For example, observing higher 

(lower/equal) CEs for a risky lottery in the treatment “later” than in the treatment “now” 

denotes less (more/equal) risk aversion when consequences are delayed. Note that this 

definition of risk attitude is model-free, which means that the classification of a decision 

maker’s behavior as risk averse, risk neutral or risk seeker in the raw data analysis does not 

depend on the RDU modeling of preferences. 
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2.3.2 Analyzing risk attitudes under RDU 

Modeling the certainty equivalents under time-dependent RDU allows to refine the analysis by 

investigating which aspect of risk preferences, utility or probability weighting, is impacted by 

payment time. Indeed, under RDU, risk attitudes depend both on utility u, which captures 

attitudes towards consequences, and on probability weighting w, which captures attitudes 

towards probabilities (see Wakker 1994 for a detailed discussion of risk attitudes under RDU). 

Thus, a change in risk attitudes depending on payment time may be due to a change in utility4, 

a change in probability weighting function or a change in both. 

From a methodological point of view, we face the challenge of selecting an RDU estimation 

procedure allowing to disentangle utility and probability weighting. To our knowledge, the 

tradeoff method (Wakker and Deneffe, 1996) is the only available method that allows to 

separately identify the utility function (independently from probability weighting). However, 

this method builds on chained measurements that present two disadvantages. First, they 

complicate the implementation of real incentives (i.e. subjects may exploit the chained nature 

of the stimuli and try to increase the amounts at stake in subsequent questions). Second, they 

create a risk of error propagation in the measurements. Therefore, in our study, we followed 

the standard approach in the empirical RDU literature, which consists in estimating all the 

parameters of the RDU specification jointly using likelihood maximization (e.g. Bruhin et al. 

2010; Baillon et al. 2018). The advantage of this joint estimation method is that (1) the 

estimated CEs are independent one from another and can be incentivized, and (2) the quality 

of the identification of the parameters can be assessed by the variance-covariance matrix of 

the estimators. 

Our formal analysis of risk attitudes proceeds as follows. According to equation (1), under time-

dependent RDU, the certainty equivalent ct	of (xt,p;yt)	follows: 

 
4 An observed change in the utility function can, for example, account for a different marginal utility of 
consumption in the future and in the present. 
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 ct	=	ut−1[wt(x)(ut(x)−ut(y))+ut(y)].	 (4) 

Using this equation, we estimate the model parameters αt, βt	and γt	at each time period t	(the 

details regarding the estimation procedure are provided in Appendix A). This allows to 

investigate whether changes in risk attitudes when moving from t=0	 to t=T	 come from a 

change in sensitivity to outcomes (i.e. different αt), a change in optimism (i.e. different βt) or a 

change in sensitivity to probabilities (i.e. different γt). 

Both aggregate and individual-level estimations are performed. Aggregate-level estimations 

assume that all respondents have the same parameters. They provide a global picture of the 

data. In individual-level estimations, the parameters are estimated for each individual, which 

allows to verify that the global pattern applies to a majority of individuals and is not due to 

outliers. 

3 Experiment 

3.1 Procedure 

The experiment was computer-based and took place in the laboratory before the beginning of 

the Covid crisis. The participants were 70 undergraduate students from the University of Paris. 

Such sample size is consistent with prior literature investigating time lotteries in the lab.5 All 

subjects received a flat payment of 10 euros for their participation. Upon arriving in the lab, 

subjects were randomly assigned to two separate groups: a real incentive group and a non-

incentivized group (Etchart-Vincent and L’Haridon, 2011; Abdellaoui et al., 2011a). For the 36 

respondents in the real incentive group, in addition to the fixed fee, a real incentive scheme 

was implemented. The comparison of the real incentive group and hypothetical-choice group 

 
5 Abdellaoui et al. (2011b) based their analysis on 52 subjects, Noussair and Wu (2006) ran their experiment on 63 
subjects, and Coble and Lusk (2010) report results on 47 subjects. 
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allows to investigate whether the incentive mechanism impacts preferences. Indeed, the 

absence of incentives can create a hypothetical bias, but a complex incentive system may also 

distort preferences if subjects do not understand or trust it. A similar between-subject design 

was implemented, for example, by Abdellaoui and Kemel (2013) that did not capture a 

significant impact of the incentive mechanism on preferences. 

Subjects in the real incentive group were informed that, at the end of the experimental session, 

they would be asked to make a draw from an urn containing 20 balls. If a winning ball was 

selected (one ball over 20), they would be allowed to play for real one of the choices made 

during the experiment. For this choice, the option indicated as preferred by the respondent 

during the data collection would be implemented and played to determine the final payoff 

(Baillon et al., 2018). This amount of money would be received by the subject at the 

corresponding due time (Rohde, 2019). 

Two subjects from the real incentive group played choices for real. For one subject, the real 

incentive procedure resulted in a sure gain of 30 euros to be received immediately (treatment 

now). For the other subject, it resulted in a risky lottery from the treatment later. The lottery 

was solved and resulted in a payment of 0. 

The data collection was based on individual interviews. Each experimental session lasted one 

hour on average. Upon arriving in the lab, subjects received the instructions based on a 10-

minute presentation of the experimental tasks (see Appendix B). A training session followed, 

involving several practice questions that allowed to make sure that respondents got familiar 

with the computer-based interface before proceeding with the experiment. The data 

collection was organized in two parts: one part involving decisions with immediate outcomes 

and a second part involving decisions with delayed outcomes. For each subject, the order of 

presentation of the two parts during the experiment, as well as the order of presentation of 

the different experimental tasks in each part were randomized. 
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3.2 Stimuli 

Table 1 presents the lotteries used to measure risk preferences in the study. The experimental 

tasks corresponding to these lotteries were presented twice to the subjects, once with 

immediate consequences, and once with consequences delayed to “one year from now” (see 

Appendix C for an illustration of the displays). Recall that in our experiment, risk was always 

solved “now”, even when the payoffs were received “in one year”. This difference between 

resolution and payment times is the main feature that distinguishes our setup from the one 

studied by Abdellaoui et al. (2011b). 

 xt p yt 

Lottery 1 500 0.1 0 
Lottery 2 500 0.2 0 
Lottery 3 100 0.5 0 
Lottery 4 200 0.5 0 
Lottery 5 400 0.5 200 
Lottery 6 450 0.5 150 
Lottery 7 500 0.5 0 
Lottery 8 500 0.5 100 
Lottery 9 500 0.5 200 
Lottery 10 500 0.8 0 
Lottery 11 500 0.9 0 

Table 1: Risky lotteries (xt,p;yt)	used in the experiment 
 

The experimental tasks involved the elicitation of a total of 24 certainty equivalents for each 

subject, corresponding to 12 certainty equivalents for each condition. Among these 12 CEs, 11 

dealt with the lotteries in Table 1, and one was the repetition of the task corresponding to 

Lottery 7. The CE of Lottery 7 was thus measured twice. This repetition was used as a 

consistency check. Our set of stimuli has been selected with the goal to make utility and 

probability weighting identifiable in joint estimations. In particular, the CEs of the prospects 

(x,p;y)	where x	and y	vary whereas p	 is fixed aim at identifying the utility curvature, while 

controlling for probability weighting (see Abdellaoui et al. 2008). Moreover, the CEs of the 
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prospects (x,p;0)	where x	is fixed and p	varies aim to identify the sensitivity parameter of the 

probability weighting function. 

Only positive outcomes of money were used in the study. The maximum amount was fixed at 

500 euros (M=500). We opted for sizeable amounts of money for two main reasons. First, a 

large range of monetary outcomes must be considered for capturing the shape of the utility 

function (Tversky and Kahneman, 1992), which is one of the components of interest in our 

study. Second, because the experiment involved a treatment with outcomes received one year 

after the date of the experiment, we wanted to make sure that subjects would be interested 

in the amounts at stake despite their delayed payment (Abdellaoui et al., 2019). 

The certainty equivalents were measured using choice lists with a precision of 5 euros. To 

simplify the data collection process and reduce the cognitive effort of the respondents, the 

choice lists were filled using a bisection procedure. Respondents faced several binary choices 

from the choice list that allowed them to pre-fill the entire list. A validation step followed 

where all the choices from the list were reviewed and confirmed. Appendix D gives detailed 

information about these different steps of the elicitation method. Similar approaches based 

on a combined use of choice lists and bisection procedure were also used by Kemel and 

Paraschiv (2018). Once a list was validated by the respondent it was no longer possible to 

modify the recorded answers. 

Regarding the implementation of real incentives, all the lotteries had the same chance to be 

selected for real payment. For a given lottery (xt,p;yt)	subjects were told that all the values 

from the list {y,	y+5,	...,	x−5,	x}	were equally likely to be selected. 
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4 Results 

4.1 Preliminary checks 

Before starting the main analysis of the data with respect to our research goal, we proceeded 

to a series of preliminary investigations regarding the consistency of the responses across the 

repetitions of the experimental tasks and between the incentivized and the non-incentivized 

subgroups. 

4.1.1 Consistency checks 

Our experimental design included a test of the accuracy of respondents’ answers. This 

consistency check took the form of a repetition in the measurements: the experimental tasks 

corresponding to the Lottery 7 (see Table 1) were presented twice to the subjects. More 

precisely, the elicitation of the certainty equivalent for the lottery (500,0.5;0) was performed 

twice for each treatment. Table 2 reports the results regarding the initial and repeated 

measures for the treatments “now” and “later”, as well as the statistical tests assessing the 

consistency of the repetitions of the experimental tasks. The table confirms that the repeated 

measures do not differ from and are highly correlated with the initial measures. This result 

holds for the two treatments (now and later). 

 

 Init. Measure Rep. Measure t-test ks test Correlation 

Now 174.75 (67.73) 174.96 (69.24) p=0.95 p>0.99 0.91	(p<0.001) 
Later 189.25 (61.63) 186.39 (61.26) p=0.51 p>0.99 0.83	(p<0.001) 
Notes. The table reports mean values for the initial and repeated measure of the certainty 
equivalent corresponding to the lottery (500,0.5;0), as well as significance tests of the 
difference between the two measures. Standard deviations are reported in brackets at the 
right of the mean value. The last column reports Person-correlation between the initial and 
the repeated measures, with the corresponding significance level. 

Table 2: Certainty equivalents for the lottery (500,0.5;0) 
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Overall, the analysis of the repeated measures suggests that subjects provided consistent 

answers: for both treatments, the repetitions are highly correlated with the initial measures 

and no bias is detected. We note however that the correlation across measurements is slightly 

lower for delayed consequences. This suggests that, in the context of delayed outcomes, 

subjects’ preferences are more volatile, which leads to slightly more noisy responses. To 

account for this possible effect, the econometric analysis will allow for different error sizes for 

the two treatments. 

4.1.2 Hypothetical choices versus real incentives 

Because our subject pool included two separate groups, one with hypothetical choices and 

another with real incentives (i.e. subjects knew that they were eligible for having a choice 

played for real), it seems important to analyze the role of the incentives by investigating the 

potential differences in behavior between the two groups. To address the impact of real 

incentives, we focus on the two treatments (now and later) separately. For each treatment, a 

12×2 ANOVA was run, with “lottery” as a within-subject factor and “incentives” 

(hypothetical/real) as a between-subject factor. In both treatments, “lottery” was found to 

impact the certainty equivalent (p<0.001), but incentives were not, neither in terms of main 

effect (p=0.35	for “now” and p=0.76	for “later”), nor in terms of interaction with “lottery” 

(p=0.66	 for “now” and p=0.93	 for “later”). Based on this data, we cannot reject the 

assumption that subjects in the two groups provided similar responses. We therefore pool the 

two groups together in the rest of the statistical analysis. 

 

4.2 Raw data 

This section presents a model-free analysis of the data. The main goal is to measure the impact 

of “treatment” (now/later) on the preferences expressed by the decision makers. The model-

free analysis provides results that are insightful on their own, but it is also important because 

it may provide guidance for the modeling choices in the econometric analysis. 
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4.2.1 Investigating Between-Treatment Differences 

The main results for the two treatments are summarized in Table 3 (additional statistics are 

reported in Appendix E). For standard risk (i.e. lotteries solved and paid now), the usual pattern 

of risk attitudes is observed. Risk aversion prevails, except for lotteries involving small 

probabilities. Indeed, we cannot reject the assumption of risk neutrality for the lottery with a 

winning probability of 0.1	and 0.2. Similar patterns are observed when payment is delayed. In 

this case, however, risk seeking is statistically significant for a winning probability of 0.1. Risk 

attitudes are therefore probability dependent in the two contexts. 

We further analyze the impact of treatment (now vs. later) on certainty equivalents. A 

comparison of the certainty equivalent associated to each risky lottery between the two 

experimental conditions shows that subjects provided higher certainty equivalents in the 

treatment where outcomes are delayed (see Table 3). An ANOVA with “lottery” and 

“treatment” (now vs. later) as within-subject factors finds significant effects of “lottery” 

(p<0.001) and “treatment” (p<0.001), but no interaction between these two factors (p=0.23).  
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Lottery EV  Now  Later 

Mean Std Mean Std 
(500,0.1;0) 50 57.86 35.79 78.57*** 48.35 
(500,0.2;0) 100 88.50 58.62 98.86 51.02 
(100,0.5;0) 50 44.36** 13.73 49.64 13.71 
(200,0.5;0) 100 80.71*** 24.15 87.68*** 23.42 
(400,0.5;200) 300 286.71*** 24.30 285.21*** 22.77 
(450,0.5;150) 300 257.43*** 47.54 260.14*** 40.84 
(500,0.5;0) 250 174.75*** 67.73 189.25*** 61.63 
(500,0.5;100) 300 249.86*** 58.56 255.36*** 50.25 
(500,0.5;200) 350 315.43*** 44.66 316.14*** 38.83 
(500,0.8;0) 400 278.07*** 83.77 285.71*** 73.45 
(500,0.9;0) 450 322.29*** 85.01 343.79*** 77.62 
Notes. The table reports means and standard deviations (std) of the elicited certainty 
equivalents for the treatments “now” and “later”. The exponent of the mean reports the 
significance of the difference with the expected value EV. 
*: p<0.05, **: p<0.01, ***: p<0.001 

Table 3: Certainty equivalents for the treatments “now” and “later” 

The increase of the certainty equivalents for delayed consequences may be easily visualized 

when focusing on the lotteries of the type (500,p;0), by looking at the relationship between 

the certainty equivalents and the probability p. As explained by Bouchouicha et al. (2017), this 

relationship captures the overall pattern of risk preferences. Figure 1 (left) displays the 

distribution of CEs for each probability levels, using the expected value of the prospect 

(materialized by the dashed line) as a benchmark. It shows that, for lotteries of type (500,p;0), 

subjects gave larger certainty equivalents on average when outcomes were paid later. This 

result is confirmed by an ANCOVA that detects a significant impact of probability p	and a main 

effect of time treatment (p<0.001). The interaction between “probability” and treatment is 

not found to be significant (p=0.24). These effects are displayed by the regression lines of the 

ANCOVA (cf. plain lines on Figure 1). 
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 Panel left: CEs for lotteries (500,p;0)	 Panel right: CEs for lotteries (x,0.5;0) 

Note. The dashed lines show the expected value of the prospects. The plain lines correspond 
to the regression lines of the ANCOVAS.  

Figure 1: Impact of time treatment on certainty equivalents for various probability and 
outcome levels 

 

A similar analysis was run on lotteries of the type (x,0.5;0)	(see Figure 1, right). These lotteries 

allow to illustrate the effect of the time treatment when the consequences at stake increase. 

The Figure shows that the difference of certainty equivalents across treatments is confirmed 

for the various levels of outcomes. An ANCOVA with outcome x	and treatment as within-

subject factors captures a significant effect of these factors (p<0.001	 and p=0.003	

respectively) but no significant effect of their interaction (p=0.18). The certainty equivalents 

associated to these lotteries were on average larger by 9 euros when the payment occurred 

later. 

4.2.2 Characteristics of risk attitudes: CARA versus CRRA 

The stimuli in our experiment were chosen such as to allow a parameter-free assessment of 

the type of risk preferences, checking consistency with constant absolute risk attitudes (CARA) 
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or constant relative risk attitudes (CRRA). This assessment is based on Lotteries 4, 5 and 7. 

Under CRRA, the (distribution of) certainty equivalents for Lottery 7 (500,0.5;0)	should equal 

2.5	times (the distribution of) the certainty equivalents for Lottery 4 (200,0.5;0). Under CARA, 

the (distribution of) certainty equivalents for the Lottery 5 (400,0.5;200)	should equal 200	

plus (the distribution of) the certainty equivalents for Lottery 4 (200,0.5;0). One can note that 

all these lotteries involve a probability of 0.5. Therefore, our test of utility (CARA vs. CRRA) 

holds independently of the probability weighting function. 

The empirical cumulative functions of the distributions corresponding to the Lotteries 4, 5 and 

7 are reported in Appendix E. A series of Kolmogorov-Smirnov tests was run to test these 

(equal distribution) assumptions, on each treatment. CRRA is rejected for the two treatments 

(p=0.001	for outcomes paid now and p<0.001	for outcomes paid later), whereas CARA is not 

rejected for any of the two treatments (p=0.47	for now and p=0.18	for later). Our data are 

therefore consistent with CARA. CARA can be captured by an exponential specification, 

whereas CRRA can be captured by a power specification. Consistently with these results, an 

exponential functional form for utility will be used in the econometric analysis. 

4.3 Econometric estimations 

Overall, the raw data analysis revealed a clear impact of time treatment on the measured 

certainty equivalents. Subjects exhibited higher certainty equivalents, reflecting more risk 

seeking, when the payment of outcomes was delayed. However, the analysis based on raw 

data did not allow to test whether this change of attitudes derives from a change in probability 

weighting, a change in utility, or both. This aspect will be further investigated hereafter based 

on the econometric analysis. 

According to the series of model-free tests performed in the previous sections, the responses 

were consistent across repetitions and did not differ between the incentivized and the non-

incentivized groups. All these data can therefore be pooled in the econometric analysis. The 

preliminary tests also recommend the use of a CARA utility specification, which was therefore 
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retained for the econometric analysis. Table 4 reports the results of the estimations at 

aggregate and individual level based on the exponential utility function and the Prelec 

probability weighting function. Estimations using the alternative probability weighting 

specification proposed by Goldstein and Einhorn provided similar results, reported in Appendix 

F. 

 

Parameter Aggregate-Level Estimates Individual-Level Estimates 
Now Later Now Later 

Utility αt 
1.160 

(0.129) 
1.112 

(0.115) 
0.985 

[0.490, 2.203] 
1.144 

[0.511 1.962] 

Elevation βt 
0.944 

(0.041) 
0.890 

(0.034) 
0.989 

[0.799 1.128] 
0.873 

[0.760 1.019] 

Sensitivity γt 
0.605 

(0.026) 
0.607 

(0.025) 
0.637 

[0.490 0.858] 
0.655 

[0.525 0.797] 
LL  -6070.103  -4739.714 

Notes. The table reports aggregated and individual estimations of the parameters for utility 
and probability weighting using Prelec specification. For aggregate-level estimations, standard 
errors clustered at individual level are reported between brackets, below the parameter value. 
For individual estimations, median values of individual parameters are reported, with the 
interquartile range between square brackets. 

Table 4: Aggregate and Individual Estimations with Prelec 

4.3.1 Aggregate-level estimations 

Regarding immediate risk (i.e. corresponding to the treatment with consequences paid now), 

our results are consistent with the usual findings reported in the literature. The average 

subject exhibits a concave utility function which contributes to risk aversion, and an inverse S-

shaped probability weighting, which entails less risk aversion for small probabilities than for 

medium and large probabilities. Similar patterns are captured when outcomes are paid later, 

albeit with different parameter values. 
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To derive robust inference on the estimators despite the moderate sample size, we estimated 

the variance-covariance matrix of the estimators from 10,000 bootstrap replications. The 

diagonal elements of this matrix provide (the squared) standard errors, and the off-diagonal 

elements inform on the correlation of estimators. For each of the two time periods, the 

correlations between the utility parameter and the weighting function parameters are lower 

than 0.5 (in absolute value), which corresponds to an acceptable level of correlation6. 

A series of Wald tests are run to compare the aggregate parameters across the treatments 

“now” and “later”. No between-treatment difference (immediate versus delayed payment) is 

captured regarding the utility parameter αt	(p=0.75) and the sensitivity parameter γt	(p=0.93). 

However, results point to a difference between the two time-treatments regarding the 

elevation parameter βt	(p=0.077): the probability weighting function is more elevated when 

consequences are received with delay. This higher elevation can be interpreted as more 

optimism. Indeed, a higher value of this parameter contributes to more risk seeking, consistent 

with what was observed in the raw data analysis. To illustrate this pattern, we picture in Figure 

2 the average utility and probability weighting functions deriving from aggregate-level 

estimations. Panel A shows that the utility function is similar when consequences are 

immediate and when they are delayed. Panel B illustrates the differences in probability 

weighting between the two conditions. We observe that the probability weighting function for 

delayed consequences is above the probability weighting function for immediate 

consequences, consistent with more optimism. 

 
6 For example, in linear regressions, the usual threshold for multicollinearity among two regressors is a VIF of 5, 
corresponding to a correlation of 0.9. 
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Figure 2: Aggregate-Level Estimations: Utility and Probability Weighting 

4.3.2 Individual-level estimations 

Individual level estimations confirm the aggregate patterns. The median and IQR values of the 

individual elevation parameter are lower when consequences are paid now (see Table 4). The 

difference is significant according to a Wilcoxon test (p=0.02). The individual values of the 

elevation parameter across payment times are scatter plotted in Figure 3. Lower parameters 

for delayed payment are observed for 42 subjects (out of 70, binomial test, p=0.11). For the 

other two parameters (utility and sensitivity), neither Wilcoxon, nor binomial test captures 

significant differences. 
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Figure 3: Individual-Level Estimations: Elevation Parameter 

Overall, the econometric analysis recovers the usual patterns observed under the RDU model 

in the condition when consequences are paid now and captures a more elevated probability 

weighting function in the condition when consequences are paid later. Under time-dependent 

RDU, the increase in risk taking observed when consequences are delayed is thus captured by 

a change in probability weighting reflecting a higher level of optimism of the decision maker. 

4.4 Modeling the interaction between risk and time 

The decisions studied in this paper involve either risk (when t=0) or risk and time (when t>0). 

When risk and time are considered jointly, the question of discounting may arise. Our previous 

analysis was based on the assumption of a multiplicatively separable discount factor 

diminishing the utility of future consequences, which corresponds to the standard approach 

in the intertemporal literature. In this section, we discuss in detail this assumption and its 

implications, and investigate alternative approaches to modeling the impact of time, and how 

they may affect the interpretation of our results. 
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4.4.1 The Assumption of Multiplicatively Separable Discounting 

Experimental studies involving intertemporal choices generally assume that people are 

rational in the sense that they prefer (1) to gain more rather than less (i.e. strictly increasing 

utility) and (2) to receive desirable consequences sooner rather than later (especially when 

consequences are monetary and can be saved). This last rule, called preference for present, 

entails that future consequences are discounted. The standard approach to model discounting 

is based on a (multiplicatively) separable discount factor that reduces the utility of a future 

consequence. Formally, the utility of a consequence x	received at time t	is evaluated as δtu(x),	

where u	is a stationary utility and δt	is the discount factor corresponding to time t. The discount 

factor δt	captures intertemporal tradeoffs, like, for instance, preferences between a smaller 

sooner and a larger later outcome. The preference for present implies that δt	<1	for any future 

time t>0. The assumption of multiplicatively separable discounting is standard in economic 

models such as discounted utility or discounted expected utility. It is also common in 

behavioral models of intertemporal preferences (Laibson, 1997; Ebert and Prelec, 2007) and 

in recent models of risk and time preferences (e.g. discounted rank dependent utility model 

used by Abdellaoui et al. 2019). 

Our experiment avoided intertemporal tradeoffs as all choices involved consequences 

received at the same time period (either now, or later). Under the assumption of 

multiplicatively separable discounting, this design neutralizes discounting, meaning that the 

discount factor does not impact the preferences over future lotteries. Indeed, our method 

relied on the elicitation of certainty equivalents ct	 for lotteries of the type (xt,p;yt). With 

multiplicatively separable discounting, the value of the lottery (xt,p;yt)	 is 

wt(p)δtut(x)+(1−wt(p))δtut(y)	 and the value of its certainty equivalent ct	 is δtut(c)	As the 

decision maker is indifferent between the two, this yields: 

 wt(p)δtut(x)+(1−wt(p))δtut(y)=δtut(c).	 (5) 
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One can observe that the discount factor cancels out from the equation of the certainty 

equivalent. This means that the utility estimated for the treatment “later” in our experiment 

corresponds to a stationary utility (not affected by discounting). 7  Therefore, discounting 

cannot explain the difference of risk attitudes observed in our study if the standard approach 

to discounting based on a multiplicative discount factor is retained. 

4.4.2 Complementary Analysis: Utility vs. Probability Approach 

A recent research stream in decision-making literature questions the standard approach to 

discounting, proposing alternative models to capture intertemporal risky choice behavior. In 

this section, we complete our results by considering two recently developed models by 

DeJarnette et al. (2020) and Epper and Fehr-Duda (2019). These two models adopt different 

approaches to integrate risk and time. The first model, called Generalized Expected Discounted 

Utility, is an extension of Discounted Expected Utility that models utility under risk as a 

transformation of intertemporal utility. This utility-based model does not allow for probability 

weighting. The second model is a generalization of RDU where the impact of time is captured 

by probability weighting. Within this probability-based model, time affects the weighting 

function, rather than utility. The technical details regarding the two models and their 

estimation methods are reported in Appendix G. 

The results show that, for aggregated-level estimations, the probability-based model offers a 

better log likelihood than the utility-based model, which indicates a better fit to our data. This 

is confirmed by the individual level analysis: the probability-based model offers a better 

goodness of fit for 50 subjects (out of 70, binomial test, p<0.001). These findings provide 

support to the idea that the increase in risk tolerance for delayed outcomes is best captured 

 
7 One can note that our model is a more general version of the discounted RDU model used by Abdellaoui 
et al. (2019). The discounted RDU model considers that the value of the lottery (xt,p;yt)	 is 
w(p)δtu(x)+(1−w(p))δtu(y). Our model is a generalization that assumes that the probability weighting 
function and the curvature of the utility can vary over time. Under both models the discount factor 
cancels out from the equation of choices considered in our design. 
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by a change of the probability weighing function. This is in line with our main results reported 

in Section 4.3. 

5 Discussion 

Our paper analyzed interactions between risk and time in decision-making by investigating the 

impact of a delay in the materialization of the consequences on risk attitudes. We used an 

experimental design that allowed to neutralize both the effects of discounting and risk 

resolution, to focus on the sole effect of a delayed materialization of consequences. While 

prior research focused either on the impact of delaying both payment and resolution, or on 

the effect of delaying resolution only, our study provides a missing piece of evidence allowing 

to complete the current understanding of attitudes towards delayed lotteries. Hereafter, we 

summarize the main results of our study, discussing their contribution to prior literature. 

5.1 Delayed consequences are associated to more risk tolerance 

Our experimental method allowed for a model free analysis of risk attitudes, based on CEs. 

Descriptive statistics showed that CEs were systematically higher in the condition with delay. 

This result is consistent with the idea that risk tolerance increases when consequences are 

delayed. Higher risk tolerance for delayed lotteries has been already reported in previous 

experiments. However, in these experiments, delayed lotteries involved both delayed 

payment and delayed resolution. Our results showed that delaying the payment only, while 

keeping the resolution of the risk immediate was enough to increase risk tolerance. 

Because previous studies did not isolate the timing of payment from the timing of risk 

resolution, possibilities of direct comparisons with previous studies are limited. We can 

however discuss the direction of the effect that we captured in relation to other effects 

previously investigated in the literature. The studies analyzing risk attitudes towards present 

versus future risks (Noussair and Wu, 2006; Coble and Lusk, 2010; Abdellaoui et al., 2011b) 
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report less risk aversion for future lotteries: lower certainty equivalents should be observed 

for lotteries “solved now and paid now” than for lotteries “solved later and paid later”. This 

pattern could be explained through a preference for later resolution of risk (Coble and Lusk, 

2010). However, this interpretation is in contradiction with empirical findings suggesting that 

preference for early resolution prevails (von Gaudecker et al., 2011). 

Our results solve this contradiction by showing that risk tolerance increases even when future 

lotteries do not imply delayed resolution of risk. It is thus possible that the relative impacts of 

delayed payment and of delayed resolution on certainty equivalents go in opposite directions: 

delaying resolution decreases the certainty equivalents, whereas delaying payment increases 

them. If the latter effect is larger than the former, delayed lotteries may have higher certainty 

equivalents despite a preference for early resolution. 

A recent study by Abdellaoui et al. (2022) gives support to this intuition. Investigating attitudes 

towards the timing of risk resolution, these authors observe that preference towards early 

resolution prevails, except for small probabilities. In other words, the CEs of lotteries “solved 

later and paid later” are lower than the CEs of lotteries “solved now and paid later”. Comparing 

our results to those of Abdellaoui et al. (2022) suggests that delaying resolution and delaying 

payment have indeed opposite effects on CEs. The two studies are thus complementary, 

allowing to isolate and clarify two different phenomena (delayed resolution and delayed 

outcomes), often intertwined in prior research. 

5.2 Delayed consequences lead to more optimism towards probabilities 

Our model-free analysis of risk attitudes captured more risk tolerance when consequences 

were delayed. The complementary analysis under RDU allowed us to investigate whether this 

change was driven by different attitudes towards probabilities or by different attitudes 

towards outcomes. More precisely, a time-dependent version of RDU was considered, allowing 

for utility and probability weighting to change depending on payment time. Our study 

highlighted a significant change regarding probability weighting, and no significant change 
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regarding utility when moving from the treatment “now” to “later”. The assumption of a 

stationary utility when delaying consequences is therefore not rejected. 

At first sight, our finding may be seen as conflicting evidence with respect to the results 

provided by Noussair and Wu (2006) and Coble and Lusk (2010) who report a change in utility 

for future risky lotteries. However, it is important to note that their modeling under EU did not 

provide any other parameter (except utility curvature) for capturing differences in risk 

attitudes. Our result is, instead, consistent with Abdellaoui et al. (2011b) who also observed 

stationary utility under a RDU modeling of decision-making regarding future risks. Our findings 

regarding utility suggest that the marginal utility of consumption does not depend on the 

timing of materialization of consequences, even though subjects facing delayed consequences 

have the possibility to better plan their future consumption. 

The main contribution of our study to behavioral decision-making is to show that interactions 

between risk and time in the context of a delayed materialization of outcomes are captured 

by probability weighting. This finding is consistent with the results reported by Abdellaoui et 

al. (2011b) and Abdellaoui et al. (2022). Like in our research, in both these studies, an 

exploratory approach was used, simply allowing probability weighting functions to be time 

dependent. Yet, the observation that the probability weighting changes over time highlights 

the need for models connecting these probability weighting functions across (resolution and 

payment) time periods. 

Regarding probability weighting, the two-parameter Prelec specification allowed to investigate 

which aspect, optimism/pessimism or sensitivity to probabilities, is responsible for the 

observed behavioral change. We observed more elevation of the probability weighting when 

outcomes were delayed. According to these results, the increase in risk tolerance induced by 

time delays can be explained by more optimism for delayed consequences. Our analysis did 

not capture a difference regarding the sensitivity parameter of the probability weighting 

function. This suggests that the impact of time on risk attitudes is not likelihood dependent. In 

contrast, previous studies focusing on attitudes towards delayed resolution of risk have 
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reported evidence for likelihood dependence (Chew and Ho, 1994; Lovallo and Kahneman, 

2000; Abdellaoui et al., 2022). For medium and large winning probabilities, people prefer 

sooner resolution, but for small probabilities, the preference may change in favor of later 

resolution (a behavior consistent with hopefulness). 

Our findings showed that time interacts with risk attitudes beyond the impact of discounting 

of outcomes and timing of risk resolution. Our subjects behaved as if they became more 

optimistic about risk for consequences materializing in the future. The analysis based on the 

model proposed by Epper and Fehr-Duda (2019) provides a behavioral explanation to this 

pattern. The increase in optimism may come from the fact that the future is intrinsically 

uncertain. This uncertainty is captured by a survival probability (that discounts the probability 

of future consequences). When introduced in the model, this survival probability accounts for 

the optimism observed towards future risks. 

Since economic situations often involve decisions with consequences materializing in a more 

or less distant time horizon, our results may explain why individuals sometimes suffer from an 

optimism bias, even though risk aversion generally prevails when measured in an atemporal 

setting. Further investigations in this direction may be of particular interest in situations where 

individuals are found to make sub-optimal decisions because of too much optimism, such as 

entrepreneurship or the health domain, two contexts involving delayed consequences. 

Our results suggest that this optimism bias may arise from the perception of future 

consequences as uncertain. Thus, public or private actions that aim at reducing this uncertainty 

should reduce this bias. Examples of such actions include providing more information or more 

guaranties about the fact that future outcomes will be effective. 

5.3 Directions for further research 

Our analysis focused on non-negative outcomes only. A natural question arising from our study 

is whether the same pattern, with an increase of risk tolerance for delayed consequences may 

be expected in the loss domain. Indeed, while our investigation was limited to gains, losses are 
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of particular interest in a lot of real-life settings including insurance and investment decisions. 

Based on current empirical research, little is known about the impact of time on risk 

preferences in the loss domain. The main difficulty with such investigations is that there is no 

perfect real incentive mechanism, an aspect particularly true in the loss domain. Ingenious 

experimental procedures would thus be needed for future investigations of the impact of 

delaying losses on risk preferences. 

Further research is also needed for the development of new models capturing the richness of 

interactions between risk and time. The classical DEU model captures intertemporal 

preferences by two dimensions, utility and discounting. Yet, it inherits the descriptive 

limitations of EU. Discounted RDU (Abdellaoui et al., 2019) accounts for these limitations by 

introducing probability weighting, thereby introducing a third dimension. Nevertheless, 

interactions between risk and time concern many other aspects of preferences: attitudes 

towards the timing of resolution (von Gaudecker et al., 2011), attitudes towards the time 

correlation of outcome (Rohde and Yu, 2022), different discounting of risky and riskless future 

consequences, or attitudes towards the timing of payment, like in the present study. For the 

moment, these dimensions are mostly studied separately to isolate behavioral patterns. The 

present study followed this approach, avoiding intertemporal tradeoffs and neutralizing the 

impact of discounting. Combining in one study several of these dimensions involves a 

complexity that can hardly be addressed as new (1) methods and/or (2) models are needed. 

Regarding (1), the models of DeJarnette et al. (2020) and Epper and Fehr-Duda (2019) explain 

higher risk tolerance towards future risks through a discounting or survival probability 

parameter. Further research would consist in measuring these parameters from other choice 

contexts and test how they predict attitudes towards future risks. Concerning the model 

proposed by DeJarnette et al. (2020), this would imply a complete elicitation of attitudes 

towards riskless intertemporal choices (to identify discounting and inter-temporal utility), 

coupled with an elicitation of risk attitudes (to identify the utility under risk), which would 

require a longer experiment. Regarding the model proposed by Epper and Fehr-Duda (2019), 

this would imply an independent elicitation of the survival probability, but no such elicitation 
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method has been proposed yet. Eventually, these two models make predictions regarding 

decision contexts that are not treated in this paper: for example, DeJarnette et al. (2020) 

address attitudes towards time lotteries, and Epper and Fehr-Duda (2019) address several 

different patterns related to risk and time. Thus, a complete elicitation and assessment of 

these models would involve an investigation of several additional dimensions of risk and time 

interactions, which is beyond the scope of our study. 

Regarding (2), in our study, we observed that delaying payment increases the elevation of 

probability weighting, while Abdellaoui et al. (2022) observed that delaying resolution 

decreases both the elevation and the sensitivity of probability weighting. These opposite 

effects raise the question of how to model, with a single probability weighting function, 

attitudes towards cases where the timing of both resolution and payment vary. To our 

knowledge, no model has yet been published to separately account for attitudes towards 

delayed resolution and delayed payment of risk. These examples illustrate that the research 

about risk and time still faces a lot of challenges and has a lot of complex issues to solve. 

6 Conclusion 

This paper reported an experiment that investigated the impact of payment delays on risk 

attitudes, while neutralizing the effect of discounting and delayed resolution of risk: subjects 

exhibited higher risk tolerance when payoffs were delayed. Econometric analysis under RDU 

showed that the observed difference in risk attitudes was due to a change in probability 

weighting, which was more elevated when consequences were delayed. These results, which 

isolate the effect of delaying the sole materialization of the consequences, add a missing piece 

of evidence to the current understanding of risk attitudes for lotteries with future 

consequences. They may contribute to explain variations of risk attitudes across contexts for 

real-life decisions. 
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A Estimation method 

For each lottery k	and individual i, the elicitation of the certainty equivalent, denoted 𝑐-,/, was 

made with a precision of 5 euros. Therefore, our elicitation method produces two (multiple of 

5 euros) bounds 𝑐-,/# 	and 𝑐-,/0 , such that 𝑐-,/# < 𝑐-,/ < 𝑐-,/0 	and𝑐-,/0 −𝑐-,/# = 5. More precisely, 

each certainty equivalent elicitation task consists of building an interval (𝑐-,/# ; 	𝑐-,/0 )	including 

𝑐-,/ . We assume that the measured certainty equivalents, denoted 𝑐-,/^ , depart from the 

theoretical ones, according to a normal error:	𝑐-,/ = 𝑐-,/^ +𝜖-,/  with 𝜖/ ~𝑁(0, 𝜎2). With this 

error specification, the likelihood of a given individual observation writes: 

𝑙(𝑐-,/# , 𝑐-,/0 ) = 𝑝(𝑐-,/# < 𝑐-,/ < 𝑐-,/0 ) 	= 𝑝(𝑐-,/# −𝑐-,/^ < 𝜖-,/ < 𝑐-,/0 −𝑐-,/^ )	

	 	 	 	 = Φ:
3&,(
) #3&,(

^

4&
; − Φ:

3&,(
! #3&,(

^

4&
;    (6) 

where Φ	is the cumulative function of the normal distribution. 

We account for heteroscedasticity by assuming that σ=ρ(x−y). For aggregate level estimations, 

parameters are assumed to be constant across individuals, and are estimated by likelihood 

maximization. The log of the likelihood given by equation (6) is summed over all the stimuli 

(including the repeated ones) and over all the individuals. The standard errors are computed 

using bootstrap over 10,000 replications. For each replication, a new sample of subjects is 

drawn, with replacement from the initial one. For individual-level estimations, the log of the 

likelihood given by equation (6) is summed over all the stimuli (including the repeated ones) 

and the maximization is run for each individual separately. Because individual estimations do 

not involve a large number of observations, 50 different starting values are considered for each 

individual. Maximization is run using the BFGS algorithm. 

 

B Description of the experimental procedure 

The experiment was run through individual interviews. Upon arrival in the lab, subjects 

received instructions individually from the experimenter. The instructions consisted in two 
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parts: (1) a 10-minute presentation with a beamer and (2) practice questions on the software 

used to collect the answers. This appendix presents these two parts in detail. 

 

Presentation of the experimental instruction - Slides 

The 10-minute presentation of the experiment covered the following points: general 

presentation of the study, experimental tasks, payment information, and real incentives. 

General presentation of the study: Subjects were informed that they were going to participate 

in a decision-making experiment lasting about an hour on average. The experiment was 

computer-based. The objective of the study was to observe their choices between risky 

options. There were no right or wrong answers. We were only interested in their own 

preferences regarding the different options presented during the experiment. 

Experimental tasks: The experiment consisted of a series of binary choice questions. Each 

question implied a choice between two options, Option A and Option B. The experimental task 

consisted of indicating the preferred option between the two. The different choice situations 

presented during the experiment were independent from one other. 

The displays in Figure 4 and Figure 5 were used as supports to illustrate this part of the 

instructions. Subjects were explained that the Options A and B involved monetary 

consequences, which could be either sure, or uncertain. They only concerned gains (no losses). 

More precisely, Option A was always a sure amount of money and Option B was always a risky 

lottery that gave the possibility to gain different amounts of money based on chance. Option 

B always involved two possible outcomes with the corresponding probabilities (graphically 

represented by the surfaces in blue and in white). For Option A, the red surface was always 

100% (consistent with a sure amount). 

Two types of choice situations appeared in the study: (1) with options played and paid 

immediately (like in Figure 4) and (2) with options played immediately and paid in one year 

(like in Figure 5). In the experimental instructions, we insisted on the fact that the lotteries 

included in the study were always played immediately, meaning that after making a choice the 
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subject would learn right away the payoff. However, we also insisted on the payment time 

(now or one year later) that could vary depending on the experimental task. 

Payment: Subjects were informed that they would receive a compensation of 10 euros for their 

participation in the study. 

Real incentives: This part of the instruction, only concerned subjects in the group with real 

incentives. Subjects in this group, were informed that they could be selected (1 chance over 

20) to play for real one of the choice situations presented during the experiment. 

For this situation, the option (A or B) chosen during the study would be implemented for real 

payoff. If the option was of the type “played and paid immediately”, the subject would play 

the lottery and receive right away the corresponding payoff. If the option was of the type 

“played immediately and paid later”, the subject would play the lottery and learn immediately 

the payoff but would receive the money at the same date in one year time. In this latter case, 

the payment would take place in the presence of the experimenter, who would contact the 

respondent in advance to fix an appointment on the due date. 

At the end of the instructions, subjects were invited to ask any additional question, and then 

proceeded to the practice questions, that also included an illustration of the implementation 

of the incentives for the group with real incentives. 

 

Practice questions 

The practice questions were designed to illustrate the different types of experimental tasks 

used in the study. They included two tasks, one for the treatment “now” and one for the 

treatment “in one year from now”. For the treatment “now”, the practice questions were 

based on the lottery (250,0.5;0). For the treatment “later”, the practice questions were based 

on the lottery (500,0.5;250). We preferred to use lotteries that were not used in the 

experiment, to avoid repetitions of the same tasks that could affect the quality of respondents’ 

answers in the main tasks. 



41 

The practice questions for the treatment “now” were always presented first, to allow the 

subjects to get familiar with the visual presentation of the lotteries before insisting on the 

delayed consequences. Moreover, the two lotteries in the practice questions involved 

different minimum and maximum outcomes, to attract subject’s attention on the fact that 

these amounts could both vary, and that the minimum outcome was not always zero. The 

answers provided to the practice questions were not recorded. 

C Displays 

Figures 4 and 5 illustrate the displays used during the experiment, based on questions involving 

Lottery 11 in Table 1. Figure 4 shows an example of display for the treatment “now”, and Figure 

5 for the treatment “later”. In both cases, Option A (in red) corresponds to a lottery giving 450 

euros for sure and Option B (in blue) corresponds to the risky lottery (500,0.9;0) allowing to 

win either 500 euros with 90% chances or 0 euro. The grey arrow separating the two options 

represents time, from “now” to “one year from now”. The timeline allows to see when the 

lottery is played and when the subject receives the payoffs. 

 

Figure 4: Example of choice question for the treatment “now” 
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Figure 5: Example of choice question for the treatment “later” 

In Figure 4, the lottery and the amounts of money are all presented at the left side of the 

timeline, corresponding to the moment “now”. This means that the subject receives the 

payoffs immediately. More precisely, the subject choosing Option A gets 450 euros 

immediately and the subject choosing Option B plays immediately the lottery, and receives 

either 0 or 500 euros, depending on chance. 

In Figure 5, the lotteries A and B are presented at the left side of the timeline, corresponding 

to the moment “now”, but the payoffs appear at the right side of the timeline corresponding 

to “one year from now”. This means that the choice between Option A and Option B and risk 

resolution take place immediately. However, the subject choosing Option A receives the 

corresponding payoff of 450 euros with a delay of one year. The subject choosing Option B 

learns immediately the payoff (either 0 or 500 euros depending on chance) but receives it with 

a delay of one year. 

The subject is invited to choose between Option A and Option B by clicking on the preferred 

lottery. 
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D Use of Choice Lists to Elicit Certainty Equivalents 

The questions corresponding to the lotteries in Table 1 were organized in choice lists. For a 

given lottery (x,p;y)	(presented as Option B), the choice list included questions where the sure 

amount presented as Option A varied from y	to x	with a step of 5. More precisely, the sure 

amounts in the choice list were y,	y+5,	 ...,	 x−5,	 x. This choice list was used to estimate the 

certainty equivalent of the lottery with a precision of 5 euros. 

To fasten the completion of the list and avoid order effects in the completion process, the 

choice list was filled using the bisection procedure. The procedure was initiated with a choice 

between the lottery (x,p;y)	(Option B) and a sure value corresponding to the expected value 

of the lottery (Option A). For example, the bisection process for the lottery (500,0.9;0)	started 

with a first choice where Option A offered 450 euros (see Figure 5). If the subject indicated a 

preference for Option A (B), all the choices from the choice list corresponding to values higher 

than 450 (lower than 450) were pre-filled with a preference for Option A (B), and the subject 

faced as next choice the middle of the remaining - not yet completed - choices in the list. The 

second choice presented to the subject was thus the one where Option A was equal to 225 

(475). The process was iterated until all the choices from the list were completed. 

When the list was completed, the subject proceeded to the validation step. In the validation 

step, the entire choice list was presented to the subject for validation. Figure 6 shows an 

example of the validation step. A scrollbar allowed to navigate through all the choices of the 

list (panels a to c). For each choice, the choice made by the subject was indicated and could be 

modified, if needed. When the subject had reviewed all the choices from the list, a button 

appeared, allowing to confirm the entire list and to move to the next choice list (panel d). In 

the example illustrated in Figure 6, the respondent indicated a preference for Option A for all 

the choices where this option offered a sure amount larger or equal to 350 euros. For the other 

choices, the respondent indicated a preference for Option B. In this case, the recorded 

certainty equivalent was the midpoint of the interval [345, 350], i.e. 347.5 euros. 
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 panel a panel b 

 

 panel c panel d 

Figure 6: Validation step of a choice list 

E Additional descriptive statistics 

Lottery  Now  Later Now vs. Later 

Median IQR Median IQR Wilcoxon t Binomial 
(500,0.1; 0 ) 47.5 [ 37.50, 77.50] 70.00 [ 47.50, 97.50] 0.000 0.000 0.000 
(500,0.2; 0 ) 82.5 [ 47.50, 97.50] 97.50 [ 77.50, 99.37] 0.041 0.106 0.067 
(100,0.5; 0 ) 47.5 [ 37.50, 47.50] 47.50 [ 47.50, 57.50] 0.000 0.000 0.001 
(200,0.5; 0 ) 82.5 [ 62.50, 97.50] 87.50 [ 77.50, 97.50] 0.001 0.002 0.000 
(400,0.5; 200) 292.5 [273.75, 297.50] 292.50 [272.50, 296.25] 0.696 0.611 1.000 
(450,0.5; 150) 262.5 [217.50, 292.50] 257.50 [237.50, 292.50] 0.454 0.452 0.603 
(500,0.5; 0 ) 180.0 [117.50, 212.50] 192.50 [163.75, 230.00] 0.062 0.029 0.098 
(500,0.5; 100) 250.0 [203.75, 290.00] 252.50 [218.75, 292.50] 0.408 0.283 0.603 
(500,0.5; 200) 307.5 [288.75, 342.50] 315.00 [292.50, 342.50] 0.486 0.872 0.427 
(500,0.8; 0 ) 280.0 [242.50, 342.50] 292.50 [242.50, 342.50] 0.182 0.315 0.169 
(500,0.9; 0 ) 350.0 [273.75, 380.00] 362.50 [288.75, 392.50] 0.005 0.012 0.011 

Notes. IQR stands for interquartile range. The last column reports the p-value for the 
comparison of the certainty equivalents for the treatments “now” and “later” based on 
Wilcoxon, t and Binomial tests. 

Table 5: Nonparametric statistics and p values of comparison tests of CEs Now and Later 
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F Econometric results with Goldstein–Einhorn specification 

The Goldstein–Einhorn (GE) specification for the probability weighting is also a two-parameter 

function where δ	captures elevation and γ	captures sensitivity. Formally, it corresponds to the 

equation: 

𝑤(𝑝) =
𝛽𝑝5

𝛽𝑝5 + (1 − 𝑝)5
 

Table 6 reports the results of the aggregate and individual estimations based on our data under 

the GE specification. Note that, contrary to the Prelec specification, for the GE specification, 

the elevation of the probability weighting function increases with b. Both aggregate and 

individual estimates confirm an increase in elevation. This is consistent with the results based 

on the Prelec specification, reported in the paper.  
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Parameter Aggregate-Level Estimates Individual-Level Estimates 
Now Later Now Later 

Utility αt 
1.056 

(0.129) 
0.993 

(0.113) 
0.990 

[0.411; 2.184] 
1.067 

[0.467; 1.836] 

Elevation bt 
0.868 

(0.056) 
0.939 

(0.050) 
0.863 

[0.691; 1.228] 
0.989 

[0.751; 1.259] 

Sensitivity γt 
0.612 

(0.026) 
0.605 

(0.025) 
0.631 

[0.504; 0.857] 
0.639 

[0.505; 0.808] 
LL -6069.866  -4725.430 

Notes. For aggregate-level estimations, standard errors clustered at the individual level are 
reported between brackets, below parameter values. For individual estimations, medians of 
individual parameters are reported, as well as interquartile range between square brackets. 

Table 6: Aggregate and Individual Estimations with GE 

G Details of the Complementary Analysis 

As a complementary investigation, we re-analyze our data building on the approaches 

proposed by DeJarnette et al. (2020) and Epper and Fehr-Duda (2019). These two approaches 

accommodate our findings according to two different explanations. The model of DeJarnette 

et al. (2020) models the increase in risk tolerance by the impact of discounting on utility. We 

call this model ‘utility-based’. The model of Epper and Fehr-Duda (2019) models the increase 

in risk tolerance by the impact of a survival probability (that outcomes are indeed received in 

the future) on the weighting function. We call this model ‘probability-based’. Hereafter, we 

present how we implement these models and show how their parametric specifications were 

fitted on our data. 

DeJarnette et al. (2020) distinguish the utility of a consequence x	 in a riskless and in a risky 

intertemporal context. The two utility scales are mapped by an increasing function φ, such 

that the utility of a risky consequence x	 received at t	 is φ[δtv(x)]	where v	 is the standard 

riskless intertemporal utility and δt	is a discount factor. Under this model, the value of a lottery 
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(xt,p;yt)	 is pφ[δtv(x)]+(1−p)φ[δtv(y)]	and the value of its certainty equivalent ct	at time t	 is 

φ[δtv(c)]. This yields 

 .	 (7) 

One can note that equation (7) is a particular case of equation (4) where u0(x)=φ◦v(x)	and 

ut(x)=φ[δtv(x)], and w0(p)=wt(p)=p. To estimate the model, we assume that φ	 follows an 

exponential specification with parameter α, and v	a power specification with parameter θ. This 

leads to a utility for present risky outcomes φ[v]	 following the expo-power specification, 

popular in applied economics (Saha, 1993). Under the utility-based model of DeJarnette et al. 

(2020), the time dependence of risk attitudes is captured by the utility, which is φ[v]	when t=0	

and φ[δT	v]	when t=T.	The parameters to be estimated are thus α, θ, and δT. The latter is 

interpreted as a discount factor, even though its estimation does not involve intertemporal 

tradeoffs. 

Epper and Fehr-Duda (2019) consider that receiving a consequence at a future time t>0	 is 

intrinsically uncertain. The effect of time is to reduce the probability of getting the outcomes. 

This is captured through a survival probability parameter δt	<1. Assuming that the survival 

probability is integrated with the future lottery, the value of a lottery (xt,p;yt)	 becomes 

w(δtp)[u(x)−u(y)]+w(δt)u(y)	and the value of its CE c	received at time t	becomes w(δt)u(c). 

Under these assumptions, we have 

  (8) 

One can note that equation (8) is a particular case of equation (4) where 𝑤! =
6(7#+)
6(7#)

 and u0=ut.	

For estimation purposes, we assume that the function u	follows an exponential specification 

with parameter α, and w	follows a one-parameter Prelec specification with parameter γ. The 

parameters to be estimated are thus α, γ, and δT	. 
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Taken together, the models by DeJarnette et al. (2020) and Epper and Fehr-Duda (2019) can 

be used as a robustness check to test whether the difference in risk attitudes observed for 

delayed outcomes in our study may be attributed to utility vs. probability. To do so, we 

estimate the two models both at the aggregated and at the individual level, using likelihood 

maximization. One can note that the parametric specifications of the two models by 

DeJarnette et al. (2020) and Epper and Fehr-Duda (2019) involve the same number of 

parameters (three). This allows for a fair comparison of their goodness of fit on our data. 

 

 Aggregated level Individual level 

Model 
Utility-based 

model 
Probability-based 

model 
Utility-based 

model 
Probability-based 

model 

α 
2.212 

(0.098) 
0.902 

(0.132) 
2.231 

[1.248; 3.222] 
0.986 

[0.344; 1.537] 

θ 
1.160 

(0.035) 
 1.149 

[0.985 1.317] 
 

γ 
 0.569 

(0.022) 
 0.641 

[0.524 0.865] 

δT 
0.982 

(0.013) 
0.993 

(0.003) 
0.976 

[0.910 1.000] 
0.984 

[0.913; 0.998] 
LL -6188.354 -6074.23 -5256.062 -5026.106 

Notes. The table reports aggregated and individual estimations of the parameters 
corresponding to the utility-based model by DeJarnette et al. (2020) and to the probability-
based model by Epper and Fehr-Duda (2019). For aggregate-level estimations, standard errors 
clustered at the individual level are reported between brackets, below the parameter value. 
For individual estimations, median values of individual parameters are reported, with the 
interquartile range between square brackets. 

Table 7: Utility-based versus probability-based approach 

The results of the estimations are reported in Table 7. For aggregated-level estimations, we 

can see that the model of Epper and Fehr-Duda (2019) offers a better log-likelihood than the 

model of DeJarnette et al. (2020), indicating a better fit for our data. This is confirmed by the 

individual estimations. The individual log-likelihoods of the two models are plotted in Figure 

7. The probability-based model offers a better goodness of fit for 50 subjects (out of 70, 
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binomial test, p<0.001). This result reinforces the idea that the increase in risk tolerance is 

best captured by a change in the probability weighing function. 

The utility-based and probability-based models considered in this complementary analysis are 

specific cases of the main model8 (time-dependent RDU) introduced in Section 2.2. Therefore, 

the two models necessarily offer a lower log-likelihood than our main model. They nevertheless 

feature the following advantages. First, they provide a behavioral interpretation of the increase 

of risk tolerance between time periods: for the utility-based model, the increased risk tolerance 

is driven by the discounting of outcomes; for the probability-based model it is driven by the 

survival probability. Second, comparing these two models offers a direct test of which approach 

best accounts for our data. Third, the probability-based model may provide a parsimonious 

version of the main model. Indeed, the model captures the difference between w0	and wt	

through a single parameter δt	whereas this difference is captured by two parameters in the 

original model (β0¹βt		and γ0	¹γt). It is thus noteworthy that the goodness of fit of the probability-

based model is very close to the one of the original model (-6069.866 vs. -6074.23) although it 

involves fewer parameters. The BIC, which allows to compare models with different numbers 

of parameters, is lower for the probability-based model than for the main model (6111.363 vs. 

6129.278), suggesting that the former is indeed a suitable parsimonious version of the latter. 

  

 
8 Recall that the utility-based model imposes that ut(x)=φ[δtv(x)], and w0(p)=wt(p)=p	and the probability-
based model imposes that ut(x)=u0(x), and 𝑤+ =

,(.!/)
,(.!)

	in equation (4). 
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Figure 7: Individual log-likelihoods 
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