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Optical Actuation Performance of
Phase-Change RF Switches

I. Charlet, S. Guerber, A. Naoui, B. Charbonnier, C. Dupré, J. Lugo-Alvarez, C. Hellion, M. Allain,
F. Podevin, Member, IEEE , E. Perret, Senior Member, IEEE , and B. Reig

Abstract— Optical actuation of GeTe-based
radio frequency switches is studied for the first time
at 915-nm optical wavelength. By inducing self-heating
of the phase change material through light absorption,
this approach removes the need for integrated micro-
heaters, significantly improving the switch performances.
First, laser pulse conditions required to set the RF
switches in ON-and OFF-states are optimized. Then,
optical actuation is performed overpassing 1500 cycles,
which is much higher compared to previously reported
demonstrations. Small-signal measurements show 10%
lower OFF-state capacitances using optical actuation
compared to electrical actuation through micro-heaters.
The optical actuation demonstrated here corresponds to
a standard wavelength in integrated photonic circuits and
thus, this work constitutes a first step towards a CMOS
compatible fully-integrated optical actuation solution for
RF switches based on phase-change material.

Index Terms— Germanium Telluride, large-signal mea-
surement, optical actuation, phase change material (PCM),
radio frequency, RF switch, small-signal measurement.

I. INTRODUCTION

RADIO FREQUENCY (RF) switches based on chalco-
genide phase-change material (PCM) have been widely

studied in the last decade. They rely on the high resistivity
ratio between the amorphous and crystalline states of the PCM
that can be configured using heat pulses. Taking benefit of a
low RONCOFF figure of merit (FoM) and high power handling
performance, PCM RF switches represent an appealing solu-
tion to address sub-6G, mmW and THz applications as well as
transmit-array antenna systems. In particular, many demonstra-
tions exploiting germanium telluride (GeTe) integrated within
coplanar waveguides (CPW) are reported [1], [2], [3], [4].
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Fig. 1. (a) OFF-capacitance numerical computations for GeTe switches
with/without micro-heater (2-µm long GeTe with 2-µm wide micro-heater)
(b) optical actuation studied in this work using an optical fiber with a
915-nm laser source (c) 4-µm long and 5-µm wide GeTe (integrated
within (b) stack) energy absorption computations when excited by a
915-nm laser source for different pulse widths (d) SEM picture of
characterized devices.

Indirect electrical actuation using micro-heaters (that produces
heat through the Joule effect) constitutes the main approach
to perform the PCM state switching. Nevertheless, numerical
computations based on an electrical model [5] presented in
Fig. 1(a) show that micro-heaters and the associated biasing
circuits induce significant parasitic capacitances that limit
the switch RF performance [6]. Optical excitation represents
another solution to address PCM RF switch actuation, relying
on the high GeTe optical absorption ultimately converted into
heat. Several demonstrations are reported using laser sources
to actuate the PCM element [7], [8], [9]. Such approach
does not require micro-heaters or extra metallic elements
nearby the PCM, thus avoiding any additional parasitic RF
capacitance. However, the previously reported demonstrations
rely on extremely bulky and expansive ultraviolet lasers that
cannot be integrated on chip, prohibiting the development
of optically actuated PCM RF switches. Alternatively, inte-
grated photonics is already a mature and industrial technology
available within many CMOS foundries [10], [11], [12]. In
particular, the 915-nm wavelength is standard for LiDAR
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Fig. 2. (a) List of GeTe devices studied in this work and optical
fibers used for actuation (b) amorphization results for different pulse
widths on device B (c) crystallization results for different pulse widths
on device B (d) amorphization condition summary (e) crystallization
condition summary (f) cycle actuation testing on device C.

systems based on photonic circuits [13], [14] with cheap chip-
scale pulsed lasers [15] that can readily be integrated on
the photonic chip [16], [17]. Consequently, the co-integration
of PCM RF switches and integrated photonics represents
an appealing solution to address optical actuation. Besides,
PCM/photonics co-integration has already been demonstrated
for electro-absorption optical modulators [18], [19], [20].
In this context, we investigate experimentally and for the first
time optical actuation of GeTe-based RF switches at 915 nm,
paving the way for the realization of cheap and performant
optically actuated RF switches.

II. TESTED DEVICES

In this work, we study RF switches made of a 100-nm thick
GeTe integrated within a CPW with a 100-nm top passivation
layer made of SiN (Fig. 1(b)). As a first demonstration, optical
actuation is performed using an external 915-nm pulsed laser
source connected to an optical fiber. The optical fiber is
set 10 µm above the PCM element, with an angle of 11°
to the normal of the surface (standard value used on the
available fiber holders). The fiber is aligned with the PCM
using micro-positioners on a standard wafer-level Cascade au-
tomatic probing station. The PCM DC-resistance is extracted
through a 4-point measurement by applying 10 mV with a
Keithley B2902A source connected to four probes. As shown
in Fig. 1(c), numerical simulations based on the transfer matrix
method (TMM) are performed in one dimension in order to es-
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Fig. 3. (a) S21 parameters of optically crystallized device A and
extracted RON (b) RON extraction for all optically crystallized devices at
5 GHz (c) S21 parameters of device A in the OFF-state (d) OFF-state
capacitance extraction of device A from (c).

timate the energy absorbed by the PCM element as a function
of the laser pulse characteristics, where we consider the optical
properties of the GeTe provided in the literature [21], [22] and
the overlap between the PCM and the Gaussian-shaped beam
emitted by the optical fiber. Depending on the pulse duration
(100 – 500 ns), the theoretical energy required for GeTe
amorphization (∼1.8 nJ) can be reached using optical pulses
with reasonable peak power below 150 mW. Our studied
devices are processed following the typical integration steps
required to perform indirect electrical actuation. However,
the fabrication has been stopped just before the micro-heater
formation. Fig. 1(d) presents a top view of the characterized
devices. In this work, three devices are studied and two types
of optical fibers with different beam diameters are used. This
is summarized in Fig. 2(a).

III. OPTICAL ACTUATION

At the end of the fabrication process, the PCM elements
are in the crystalline state (switch in ON-state). First, the
PCM amorphization is studied by applying single short optical
pulses to reach the GeTe melting temperature (∼700°C) with
a short quenching time. The measured resistance variation of
device B is shown in Fig. 2(b) for different optical pulse
durations. For each curve (i.e. each optical pulse duration),
a new device is used and single optical pulses are sent while
sweeping the optical pulse power. Amorphization is clearly
obtained with resistance ratios above 2.104, corresponding to
the switch OFF-state. As expected from the simulations, the
pulse duration has a strong influence on the optical power
required to switch the PCM. Once the PCM amorphization
has been obtained, the required conditions to switch back the
PCM to its crystalline state are seeked. To do so, few µs long
single optical pulses are applied to heat the PCM element
above its crystallization temperature (∼300°C). The measured
resistance variation of device B relatively to the optical pulse
power is shown in Fig. 2(c). The resistance significantly drops
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Fig. 4. RF power handling measurements for OFF-state switches
amorphized with 200-ns long single optical pulses (a) experimental
setup for 915 MHz fundamental frequency, second harmonic variations
are measured in arbitrary unit (b) device A result (c) device C result.

for optical powers above 50 mW. Here, the optical pulse
width has only a little influence on the power required for
the phase transition. The conditions to perform the optical
actuation are summarized in Fig. 2(d-e). Using the previously
found switching conditions (amorphization: 200 ns/200 mW;
crystallization: 4 µs/50 mW), cycle testing of device C is
performed with a 4 Hz repetition rate by alternately sending
an amorphization pulse and then a crystallization pulse. After
each of these pulses, the resistance is measured and reported.
As shown in Fig. 2(f), 1500 cycles are obtained with an
OFF/ON resistance ratio above 2.104. Moreover, all the actua-
tion pulses successfully achieve the phase transition and both
ON-and OFF-state DC-resistances remain stable during this
test. These measurements validate that GeTe optical actuation
is possible at 915-nm optical wavelength.

IV. RADIO FREQUENCY PERFORMANCE

S-parameters measurements are performed on all devices
using a Keysight PNAX vector network analyzer (VNA)
in a 2-port configuration. Calibration was performed from
200 MHz to 40 GHz using a commercial Impedance Standard
Substrate (ISS). First, optically crystallized devices with 4-µs
long crystallization single pulse are studied. The ON-state
transmission of device A is shown in Fig. 3(a) with the
corresponding extracted resistance. Fig. 3(b) summarizes the
extracted resistances at 5 GHz for multiple devices that have
been optically crystallized. To do so, we performed optical
crystallization and extracted the associated RON on several
dies over a single wafer. The measured RON of device B vary
from 32 Ω up to 50 Ω. This variability can be explained by
an optical fiber/PCM misalignment for some dies since 1-µm
accurate stepper motors are used to achieve fiber alignment.
Fig. 3(c) shows the transmission of device A in the OFF-
state. Here, optically (without heater) and electrically (with
heater) actuated devices are compared for 200-ns long single
actuation pulses. To achieve this, we performed electrical
actuation on another wafer (same technological stack) with
extra fabrication steps to form the micro-heater. The corre-
sponding OFF-state capacitances are extracted in Fig. 3(d).

As expected, the optically actuated device exhibits an OFF-
capacitance lower than the electrically amorphized device by
10%. This is in perfect agreement with the simulation results
shown in Fig. 1(a). Moreover, even further improvements are
expected for wider devices (Fig. 1(a)), which are mandatory
to handle high RF power in the ON-state. This proves that
optical actuation can enhance the OFF-state capacitance and
ultimately the RONCOFF FoM.

Finally, the power handling capability of devices in the
OFF-state is measured at 915 MHz using the experimental
setup shown in Fig. 4(a). Each tested point lasts 5 s, while
the 2nd harmonics (H2) is also measured. Fig. 4(b-c) show
the power handling results for devices A and C set to the
OFF-state with a single amorphization pulse of 200 ns. The
device breakdown is visible on H2 and occurs at 24 dBm
and 38 dBm respectively for devices A and C. To the best of
our knowledge, device C exhibits the highest reported power
handling capability for a stand-alone GeTe-based RF switch
in the OFF-state.

V. SUMMARY

This letter presented experimental results for optical actu-
ation at 915 nm of GeTe-based RF switches. Switching con-
ditions for both ON-and OFF-states were found for different
PCM sizes. Cycle testing was demonstrated for at least 1500
cycles, which is the highest rate reported so far for optically
actuated PCM-based RF switch. Small-signal measurements
show smaller OFF-state capacitances for optically actuated
devices, confirming the advantage of this method over con-
ventional electrical actuation. A power handling capability of
37 dBm was measured in the OFF-state for a 4 µm-long PCM
device, which is the highest value reported so far for a stand-
alone GeTe-based RF switch. Therefore, this work paves the
way to the realization of performant RF switches that will
further take benefit of CMOS integrated photonics.



4 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

REFERENCES

[1] N. Wainstein, G. Adam, E. Yalon, and S. Kvatinsky, “Radiofrequency
switches based on emerging resistive memory technologies-a survey,”
Proceedings of the IEEE, vol. 109, no. 1, pp. 77–95, 2020.

[2] T. Singh and R. R. Mansour, “Miniaturized DC–60 GHz RF PCM
GeTe-based monolithically integrated redundancy switch matrix using
T-type switching unit cells,” IEEE Transactions on Microwave Theory
and Techniques, vol. 67, no. 12, pp. 5181–5190, 2019.

[3] N. El-Hinnawy, G. Slovin, J. Rose, and D. Howard, “A 25 THz FCO

(6.3 fs RONCOFF ) Phase-Change Material RF Switch Fabricated in a
High Volume Manufacturing Environment with Demonstrated Cycling>
1 Billion Times,” in 2020 IEEE/MTT-S International Microwave Sym-
posium (IMS). IEEE, 2020, pp. 45–48.

[4] A. Leon, B. Reig, E. Perret, F. Podevin, D. Saint-Patrice, V. Puyal,
J. Lugo-Alvarez, and P. Ferrari, “RF power-handling performance for
direct actuation of germanium telluride switches,” IEEE Transactions
on Microwave Theory and Techniques, vol. 68, no. 1, pp. 60–73, 2019.

[5] I. Charlet, B. Reig, C. Mercier, J. Delprato, V. Puyal, C. Hellion,
M. Allain, S. Monfray, A. Fleury, F. Gianesello et al., “RF Performance
of Large Germanium Telluride Switches for Power Application,” in 18th
European Microwave Integrated Circuits Conference (EuMIC), 2023.

[6] S. Gharbieh, A. Clemente, J. Milbrandt, and B. Reig, “Phase change
material based reconfigurable transmitarray: a feasibility study,” in 2022
16th European Conference on Antennas and Propagation (EuCAP).
IEEE, 2022, pp. 1–4.

[7] L. Chau, J. G. Ho, X. Lan, N. Riley, R. M. Young, N. El-Hinnawy,
D. Nichols, J. Volakis, N. Ghalichechian, and N. G. A. S. R. B. U. States,
“Reconfigurable antenna aperture with optically controlled GeTe-based
RF switches,” Northrop Grumman Aerosp. Syst., Redondo Beach, CA,
USA, Tech. Rep. NGAS, pp. 14–3165, 2015.

[8] X. Sun, E. Thelander, P. Lorenz, J. W. Gerlach, U. Decker, and
B. Rauschenbach, “Nanosecond laser-induced phase transitions in pulsed
laser deposition-deposited GeTe films,” Journal of Applied Physics, vol.
116, no. 13, 2014.

[9] M. Pinaud, G. Humbert, S. Engelbrecht, L. Merlat, B. M. Fischer, and
A. Crunteanu, “Terahertz devices using the optical activation of GeTe
phase change materials: toward fully reconfigurable functionalities,” ACS
photonics, vol. 8, no. 11, pp. 3272–3281, 2021.

[10] R. Won, “Integrating silicon photonics,” Nature photonics, vol. 4, no. 8,
pp. 498–499, 2010.

[11] P. De Dobbelaere, A. Dahl, A. Mekis, B. Chase, B. Weber, B. Welch,
D. Foltz, G. Armijo, G. Masini, G. McGee et al., “Advanced silicon pho-
tonics technology platform leveraging a semiconductor supply chain,”
in 2017 IEEE International Electron Devices Meeting (IEDM). IEEE,
2017, pp. 34–1.

[12] D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed,
L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli et al.,
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