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ABSTRACT
The annualWorkshop on Workflows in Support of Large-Scale Science
(WORKS) is a premier venue for the scientific workflow commu-
nity to present the latest advances in research and development on
the many facets of scientific workflows throughout their life-cycle.
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The Lightning Talks at WORKS focus on describing a novel tool,
scientific workflow, or concept, which are work-in-progress and
address emerging technologies and frameworks to foster discussion
in the community. This paper summarizes the lightning talks at
the 2023 edition of WORKS, covering five topics: leveraging large
language models to build and execute workflows; developing a com-
mon workflow scheduler interface; scaling uncertainty workflow
applications on exascale computing systems; evaluating a transcrip-
tomics workflow for cloud vs. HPC systems; and best practices in
migrating legacy workflows to workflow management systems.
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1 INTRODUCTION
Scientific workflows have been almost universally used across sci-
entific domains and have underpinned some of the most significant
discoveries of the past several decades. As workflows have been
adopted by a number of scientific communities, they are becoming
more complex and require more sophisticated workflow composi-
tion and management capabilities across computing environments
like edge, cloud and high-performance systems. The Workshop
on Workflows in Support of Large-Scale Science (WORKS) has posi-
tioned itself as the primary venue for workflow researchers and
developers to share and discuss innovative ideas to enhance the
landscape of workflow research. Specifically, the lightning talks
at WORKS provide a venue where the community can introduce
works in progress, emerging technologies and frameworks, and
workflow tools to lower the entry barrier and thus increase adoption
of workflow-centric approaches. This paper provides a comprehen-
sive overview of the five lightning talks from the 18th edition of
the workshop (WORKS 2023), which cover the following topics:

Large Language Models (LLMs) (Section 2). The recent de-
velopment of LLMs with multi-billion parameters, coupled with
the creation of user-friendly application programming interfaces
(APIs), has paved the way for automatically generating and exe-
cuting code in response to straightforward human queries. This
work explores how these emerging capabilities can be harnessed
to compose complex scientific workflows, eliminating the need for
traditional coding methods. This work presents initial findings from
the integration of Phyloflow with OpenAI’s function-calling API,
and outlines a strategy for developing a comprehensive workflow
management system based on these concepts.

CommonWorkflow Scheduler Interface (CWSI) (Section 3).
Scientific workflow management systems (WMS) support the work-
flow execution and communicate with the infrastructures’ resource
managers. However, the communication between WMS and re-
source managers is complicated by inconsistent interfaces between
WMS and resource managers and the lack of support for workflow

dependencies and workflow-specific properties. To tackle these
issues, previous work developed CWSI, a simple yet powerful in-
terface to exchange workflow-related information between a WMS
and a resource manager, making the resource manager workflow-
aware. Prototype implementations show that the CWSI can reduce
makespan up to 25% with simple workflow-aware strategies. This
work shows how existing workflow resource management research
can be integrated into the CWSI.

RADICAL Ensemble Toolkit (RADICAL-EnTK) (Section 4).
When running at scale, modern scientific workflows require middle-
ware to handle allocated resources, distribute computing payloads
and guarantee a resilient execution. While individual steps might
not require sophisticated control methods, bringing them together
as a whole workflow requires advanced management mechanisms.
In this work, the authors used RADICAL-EnTK—one of the SDK
components of the ECP ExaWorks project—to implement and ex-
ecute the novel Exascale Additive Manufacturing (ExaAM) work-
flows on up to 8000 compute nodes of the Frontier supercomputer at
the Oak Ridge Leadership Computing Facility. EnTK allowed the au-
thors to address challenges such as varying resource requirements
(e.g., heterogeneity, size, and runtime), different execution environ-
ment per workflow, and fault tolerance. And a native portability
feature of the developed EnTK applications allowed the authors to
adjust these applications for Frontier runs promptly, while ensuring
an expected level of resource utilization (up to 90%).

Transcriptomics Atlas pipeline (Section 5). Transcriptomics
studies the RNA present in a specific cell or tissue at a given time
or condition. This dependence on time makes the problem com-
putationally challenging, as the data generated by transcriptomics
experiments is larger than the genomics studies on DNA sequences.
The goal of the Transcriptomics Atlas project is to create a data-
base of analyzed RNA sequences corresponding to given tissue
and organ types based on the data from public repositories and
make it available for researchers. We describe our Transcriptomics
Atlas pipeline as an example of a new data- and compute-intensive
scientific workflow. After analysing the requirements of the tasks
in the pipeline, we describe our proposed cloud architecture. We
present the preliminary results of the experimental evaluation of
the pipeline in the AWS cloud, and compare the performance results
to the traditional execution on the HPC cluster.

JGI Analysis Workflow Service (JAWS) (Section 6). Legacy
workflows often present numerous challenges, such as poor main-
tainability, reduced shareability, and non-portability. Centrally ad-
ministered and supported WMS enable streamlined workflow de-
sign and execution within high-performance computing environ-
ments. Our group at the Department of Energy’s Joint Genome In-
stitute (JGI) has successfully migrated large, complex legacy work-
flows into a shared, modern WMS by leveraging the Workflow
Description Language (WDL) to describe the workflow and contain-
ers to encapsulate the environment. The JGI has developed JAWS, a
centralized workflow platform that integrates Cromwell and WDL
with Globus file transport to run computational workflows across
multiple HPC facilities, ensuring workflow portability, reusability,
and shareability. This paper explores best practices, patterns, and
anti-patterns in migrating manual or ad-hoc workflows to JAWS.

https://doi.org/10.1145/3624062.3626283
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2 LEVERAGING LARGE LANGUAGE MODELS
TO BUILD AND EXECUTE
COMPUTATIONALWORKFLOWS

By: A. Duque, A. Syed, K. V. Day, M. J. Berry, D. S. Katz, and V. V.
Kindratenko

In this position paper, we argue that in the near future it will
be possible to construct and utilize integrated scientific workflow
description and execution systems using Natural Language within
a chatbot-like environment, e.g., within the ChatGPT [35] frame-
work. We observe that ChatGPT is capable of generating codes in
various workflow description languages which then can be exe-
cuted with the help of emerging plugins and new features, such
as LangChain [5], function calling [37], Toolformer [40], code in-
terpreter [36], etc. We believe that a next-generation workflow
management system will simply provide a human-language-based
interface to describe the work to be carried out, monitor its pro-
gression, and present the results, and will call underlying tools and
methods to carry out a complex chain of computations in response.
This will greatly simplify the process of applying complex computa-
tional pipelines by domain experts without any coding experience.
To this end, we provide initial results with function calling API and
propose a ChatGPT-based workflow management system.

2.1 Preliminary Results
As a demonstration, we used Phyloflow [16] as an existing workflow
example and investigated how OpenAI’s function calling API can
be used to streamline the creation and execution of different tasks.
The code for the work presented here is available in GitHub [28].
Phyloflow is a tool for performing phylogenetic tree computations
that was initially developed in the Workflow Description Language
(WDL) [13] and later ported to Python using the Parsl library [17].
The Parsl implementation consisted of a Parsl app for each task that
corresponds to a data processing step within Phyloflow. A work-
flow is created by connecting Parsl apps through inter-application
dependencies. It is important to note that for the first step of this
Parsl workflow, we use physical files, and from there we work on
data futures, which are promises of a file that will be generated by
another running instance of a Parsl app (AppFuture).

Phyloflow employs WDL to perform calculations for phyloge-
netic analysis based on input data. This process is executed in mul-
tiple steps, beginning with the task ‘vcf-transform.’ VCF-transform
receives a VCF (Variant Calling Format) file and extracts data from
it, and transforms the data into the input format of ‘pyclone-vi’,
which allows for mutation clustering calculations to be performed.
Next, a TSV file containing the mutagenic data is created. The next
task, ’pyclone-vi’, processes the previously generated TSV file, per-
forming the mutation clustering calculations. This yields clusters
of mutations that share evolutionary relationships. The workflow
subsequently reformats this data file for processing with SPRUCE
(Somatic Phylogeny Reconstruction using Combinatorial Enumera-
tion) in a separate workflow step. The final task, ‘spruce-phylogeny’,
takes the SPRUCE-formatted TSV file as an input, and generates
a JSON file that contains the computed information necessary to
visualize the evolution of a tumor.

To enable the OpenAI function call API with Phyloflow, we cre-
ated several functions that serve as adapters for Parsl apps. For
each Parsl app, we created a function_call_from_file, which receives
the paths to the physical files, and a function_call_from_futures,
which receives the identifiers of the AppFutures on which the
Parsl app depends. The difference between the two is that a func-
tion_call_from_futures first retrieves the AppFutures of the received
IDs, and their DataFutures are extracted to be used as inputs. From
there, the operation is identical: generate a new ID, generate a
directory for outputs, run the ParslApp, index the AppFuture ref-
erence along with its ID in a global access dictionary and return
the ID. This ID binding scheme with AppFutures was required to
communicate with the OpenAI API.

Following the OpenAI specifications, we wrote function descrip-
tions in JSON format for all of the function_call_from_files and
function_call_from_futures. The communication scheme with the
OpenAI API consists of sending this set of descriptions together
with a natural language instruction prompted by the user. The job
of the LLM is to determine which function needs to be executed
to fulfill the statement, as well as the parameters to send to the
function. By doing this, we were able to run individual Parsl ap-
plications within the workflow. However, what we really need is
to chain the execution of several Parsl apps to generate complete
workflow executions. This is where the notion of adding context
and making successive API calls comes into play.

A predefined context is added, just like any other user message,
that helps to better interpret any instruction. With this context
and the user’s message, the request to the API is made. The API
responds with its choice of function to call. The function is executed,
immediately returning the ID linked to the AppFuture. For the
next API request, two new messages are added. The first message
partially includes the previous response from the API, specifically
the section of the message with the choice of the function to call
is used. The second message is a new user message indicating
the ID assigned to the newly executed Parsl app. By adding both
messages, the AI understands which step it is in relative to the
user’s instructions and can also execute subsequent steps by having
access to the scheduled AppFuture ID. This process is repeated until
the stop flag is found in the API response.

Although the use of function calling has shown promise for ex-
ecuting workflows, our current implementation has at least two
clear limitations. The first is that exceptions are not handled at the
moment, which means that if the API executes a wrong function
call, the program cannot recover from the failure. Optimally, the
error should be forwarded to the API so that it can propose alter-
natives. The second limitation is that composing more complex
workflows will eventually hit the token limit, for which there is no
straightforward solution in the proposed scheme; we would need
to invent a hierarchical schema for task decomposition.

2.2 Proposal for Next-Gen Workflow Engine
The system we discuss in §2.1 consists of two primary components:
the execution of OpenAI API calls on OpenAI’s servers and the
processing stages of the Phyloflow application on our own servers.
The current prototype sequentially executes these steps without
much consideration for the results produced at each step. However,
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a more advanced workflow engine should ensure two things: (1)
The current step is executed as expected, free of errors or warnings,
and produces the anticipated outcome; (2) The next step in the
sequence can be executed given the outcome of the current step,
the available computational resources, and other constraints.

We envision a workflow engine that accepts a high-level descrip-
tion of the work, provided in natural language. This description
is then translated into multiple steps (a plan) based on available
functional units such as executables or API calls. The engine then
attempts to execute each step from the plan, taking into account
hardware constraints such as the type of compute servers, available
memory, storage size, while ensuring the task’s completeness and
correctness. If a task fails or the outcome is not as expected, the
plan execution engine invokes a debugger. The debugger’s role is to
identify the issue so the task can be re-executed or the plan can be
modified if necessary.

Figure 1 illustrates the overall structure of this approach. The
planner, executor, and debugger are all AI agents that use LLM
to process textual input, either to execute a task or to analyze
and validate the execution results. A human operator may also be
involved if the debugger cannot resolve the issue, or if there’s a
need to resolve ambiguities and make decisions.

Figure 1: LLM agents collaborating to execute the workflow.

2.3 Conclusion
In §2.1, we successfully showcased a working prototype of a work-
flow engine that can execute a variety of tasks based on straightfor-
ward high-level user instructions. This accomplishment was made
possible by leveraging OpenAI’s function-calling API. This API
infers tasks from the user’s textual description and translates them
into user-defined functions, which constitute the computational
backbone of the actual scientific computing workflow. Furthermore,
in §2.2, we outlined our ambitious vision for an advanced work-
flow execution engine. This engine is designed to manage complex,
multi-stage workflows across an extensive computing infrastruc-
ture, all under the control of a natural human language interface.

3 THE COMMONWORKFLOW SCHEDULER
INTERFACE: STATUS QUO AND FUTURE
PLANS

By: F. Lehmann, J. Bader, L. Thamsen, and U. Leser

As workflows are becoming increasingly complex and datasets
easily exceed hundreds of gigabytes or even terabytes [14, 34], sci-
entists use scientific workflow management systems (WMS), such
as Nextflow, Airflow, or Argo, and computer clusters. One essential
feature of SMWSs is communication with a resource manager, such
as SLURM, Kubernetes, or OpenPBS. Therefore, the WMS submits
ready-to-run tasks to the resource manager, and the resource man-
ager takes over the responsibility for assigning these tasks to a
node that executes them. This simplifies the workflow execution
on large-scale computing infrastructures and hides the complexity
from the scientist. However, as with WMS, there is also a variety
of resource managers available, and different clusters may use a
different one. In a worst-case scenario, the WMS preferred by the
scientist does not support the cluster’s resource manager at all.
Even if the WMS supports a given resource manager, features be-
yond submitting tasks and awaiting their completion are frequently
not supported.

In this paper, we first give an overview of the CommonWorkflow
Scheduler (CWS) and the Common Workflow Scheduler Interface
(CWSI) which we both first presented in [31]. The CWSI is used
to exchange workflow-related information between WMSs and re-
source managers. Second, we present prior results, showing promis-
ing outcomes when using the CWSI with workflow-aware resource
management methods. Moving on, we outline WMS, where we
started to implement CWSI support and demonstrate how the CWS
can serve as a central point for provenance. Last, we illustrate how
the CWS can be extended with new scheduling, resource allocation,
and runtime prediction methods.

3.1 CommonWorkflow Scheduler
To address the challenge that resource managers schedule workflow
tasks without workflow awareness, we developed the Common
Workflow Scheduler (CWS) [31]. The CWS allows for the transfer
of essential information, such as input files, CPU, and memory
requests, along with task-specific parameters using the Common
Workflow Scheduler Interface (CWSI). Task-specific parameters
vary for each task invocation and are passed on to the utilized tools.

In Figure 2, we provide an architectural overview for a single
resource manager, in this case, for Kubernetes. The CWS runs as
a component in the resource manager and exposes the CWSI. A
resource manager has to implement the CWS with its interface
once. Conversely, a workflow engine needs to implement support
for CWSI to work with all resource managers already offering CWSI.
WMSs such as Airflow, Nextflow, or Argo send their requests, which
are then kept in memory of CWS. From this storage, the CWS
can fetch the workflow graph and task dependencies and use this
information for scheduling. This storage can further be used for
provenance to trace the workflow execution; we elaborate on this
in Section 3.3. The CWS can be extended with task runtime and
resource predictors that read task information from the storage
and learn characteristics. Such learned characteristics can then be
used to predict the demands for upcoming tasks, which is helpful
for better scheduling. We provide examples for such prediction
strategies in Section 3.4. Notably, workflow engines with CWSI
support do not need their own scheduler component. Instead, all
ready-to-run tasks are submitted to the resource manager and the
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Common Workflow Scheduler
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Figure 2: Architecture overview: The Common Workflow
Scheduler with its interface and task runtime and task re-
source predictor component for Kubernetes as an exemplary
resource manager.

scheduling happens there. We have implemented a plugin1 for the
WMS Nextflow to communicate with the CWSI and the CWS for
the resource manager Kubernetes2.

3.2 WMS support
We started by implementing the CWSI for a resource manager,
Kubernetes, and a WMS, Nextflow. We are now actively working
to extend our project to support other popular WMSs, namely
Airflow and Argo, to further explore and demonstrate the benefits
of the CWSI. Below, we describe these three WMSs and discuss the
integration of the CWSI.

Nextflow is a workflow engine initially designed for bioinfor-
matics but getting uptake also in different domains and is used
by more than 1,000 organizations [26, 32, 44]. One of the main ad-
vantages of Nextflow is its support for, at the time of writing, 20
different resource managers. The large support makes it easy to
port Nextflow workflows between environments. The support is
achieved by abstracting the resource manager from the scientist
but also from the internal Nextflow logic. Accordingly, Nextflow
only supports the basic features of resource managers. For exam-
ple, on SLURM, the task dependency feature is not used. Thus,
Nextflow can profit from providing additional workflow context to
the resource manager.

Airflow is an Apache Incubator project designed for workflow
management. Similar to Nextflow, Airflow supports Kubernetes as a
resource manager and is also not exclusively tied to it. Airflow sup-
ports workflow-aware scheduling for Kubernetes through a tailor-
made strategy exclusively implemented for the Airflow-Kubernetes
interplay. Therefore, Airflow starts a big worker on every node for
the whole workflow execution and assigns tasks into these worker
pods bypassing Kubernetes’ task assignment logic. However, this
strategy has a significant drawback: the big containers will request
resources for the entire workflow execution time regardless of the
actual load. As many workflows have a merge point somewhere,
where the entire execution is waiting for one particular task, this
strategy leads to substantial resource wastage. By integrating the
1https://github.com/CommonWorkflowScheduler/nf-cws
2https://github.com/CommonWorkflowScheduler/KubernetesScheduler

CWSI into Airflow, we aim to retain its workflow-aware schedul-
ing capabilities while preventing unnecessary resource requests
throughout the runtime. This optimization ensures more efficient
utilization of resources and minimizes wastage on a large scale. One
big difference to our already existing Nextflow interaction is the
knowledge of the physical DAG in Airflow. While this was foreseen
in the development of the CWSI, we have to make use of it in our
CWS implementation.

Argo is a WMS designed exclusively for Kubernetes. However,
since Kubernetes lacks support for task dependencies, Argo also
submits each task individually, and Kubernetes then schedules them
in a FIFO manner. This is comparable to the strategy of Nextflow
and, thus, makes Argo an ideal candidate to support our CWSI. Just
like Nextflow, Argo is expected to benefit in a similar way. We are
currently working on developing an Argo extension to achieve this.

3.3 Provenance with the CWSI
Workflow provenance is one aspect that needs to be addressed in all
WMS [14, 20, 25]. Since the CWSI takes a central role in workflow
execution, possessing comprehensive knowledge of the resource
manager and the WMS, it emerges as the most suitable entity for
the management of provenance data.

All WMS represent provenance differently, so it is very het-
erogeneous [24]. Further, resource managers and WMSs are only
designed to gather a portion of the available data, each focusing
on collecting data in its own scope [20]. Accordingly, the resource
manager traces the node states while the WMS collects task-related
metrics. The CWSI is particularly implemented for each resource
manager and can support a resource manager’s specific APIs to
collect traces while it has knowledge about the workflow. By gath-
ering and storing all metrics and task dependencies in a centralized
manner, provenance becomes more streamlined and manageable.

Another significant advantage of using the CWSI for provenance
is that the data will be available across different WMS, even if a
particular WMS does not yet provide built-in provenance data.
This interoperability ensures that provenance information can be
maintained consistently and comprehensively, enhancing workflow
traceability and reproducibility. In turn, researchers and scientists
can have greater confidence in the reliability and trustworthiness
of their results.

3.4 Advanced Resource Management with the
CWSI

As we saw in the previous section, the CWS provides information
about task executions and performance metrics. Using this informa-
tion allows possible interface extensions to derive task characteris-
tics from it. Task characteristics can be predicted runtime, CPU or
memory usage, which can be used for scheduling and fed back to
the WMS. Many scheduling strategies, such as HEFT [45], require
knowledge of this.

The CWSI provides information to train task resource predic-
tion models, e.g., the number of file inputs, input sizes, or peak
memory, which are retrieved and stored from monitoring. As these
metrics are constantly gathered and updated, also online learning
approaches are applicable. Therefore, we plan to integrate exist-
ing task resource prediction methods in our CWSI prototype to a)

https://github.com/CommonWorkflowScheduler/nf-cws
https://github.com/CommonWorkflowScheduler/KubernetesScheduler
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increase workflow performance and b) evaluate them under real-
world conditions.

Since Lotaru [18] and other research approaches that support
heterogeneous infrastructures to predict task runtimes require ma-
chine characteristics, we are extending our CWSI to store such
information and extend the prototype to gather these metrics with
Kubestone3. We are currently incorporating Lotaru into the CWSI
prototype to handle unknown workflows or workflows with a lack
of historical data. Further, we plan to implement other research
methods that perform better with more training data provided by
the provenance store of CWSI.

The CWSI, together with task runtime and resource prediction,
provides additional information to apply more sophisticated work-
flow scheduling techniques. We are currently implementing the
Tarema [19] strategy into our CWSI prototype and plan other more
sophisticated approaches enabled through the additional data pro-
vided by the CWSI and their plugins.

3.5 Conclusion
In this paper, we presented the status quo of the CommonWorkflow
Scheduler Interface and described the available plugin for Nextflow
and the integration into Kubernetes. Further, we have demonstrated
that by implementing the CWSI alongside basic scheduling ap-
proaches like rank and file size, we achieve an average runtime
reduction of 10.8%. Next, we outlined upcoming support for the
workflow engines Airflow and Argo and how to extend the storage
to become the central place for workflow provenance. Additionally,
we presented our next steps to implement resource allocation, run-
time prediction, and new scheduling methods. We assume that the
planned workflow algorithms that consider cluster heterogeneity
and task runtime, as we outlined in this paper, will further improve
resource efficiency.

4 SCALING ON FRONTIER: UNCERTAINTY
QUANTIFICATIONWORKFLOW
APPLICATIONS USING EXAWORKS TO
ENABLE FULL SYSTEM UTILIZATION

By:M. Titov, R. Carson, M. Rolchigo, J. Coleman, J. Belak, M. Bement,
D. Laney, M. Turilli, and S. Jha

The Exascale Additive Manufacturing project (ExaAM) [47] has
developed a suite of exascale-ready computational tools to model
the process-to-structure-to-properties (PSP) relationship for addi-
tivelymanufacturedmetal components. ExaAMbuilt an uncertainty
quantification (UQ) pipeline to quantify the effect that uncertainty
has on local mechanical responses in processing conditions. The
UQ pipeline consists of 3 main stages, and each stage is represented
with a corresponding workflow.

The UQ pipeline imposes certain requirements on the ensemble
management tools: (i) ability to centralize a streamline of the whole
pipeline; (ii) control different resource requirements (e.g., either
having one large batch job for all workflows or setting a work-
flow per batch job with the different numbers of acquired compute

3kubestone.io

nodes and runtime); (iii) support different heterogeneous high per-
formance computing (HPC) platforms (including different system
architectures); and (iv) fault-tolerance of the tools and executing
processes (i.e., computing tasks that represent batch job steps).

In response to the stated requirements, a corresponding work-
flowmanagement toolkit RADICAL-EnTK (Ensemble Toolkit) [21]—
part of the ExaWorks Software Development Kit (SDK) [43]—was
evaluated and chosen. EnTK provides the possibility to: (i) automate
runs of different workflows together, while providing an isolated ex-
ecution environment per each workflow; (ii) control the execution
state of a workflow and its every task individually; and (iii) handle
the size of a workflow dynamically, e.g., create a new workflow
stages based on the status of previously executed stages.

4.1 RADICAL Building Blocks
RADICAL-Cybertools (RCT) [46] are software building blocks de-
signed to develop efficient and effective tools for scientific com-
puting. Specifically, RCT allow one to develop scientific applica-
tions with up to 100,000 heterogeneous computing tasks (i.e., a
self-contained process, Python function, or executable, and can be
independently executed from other “tasks”) and executing them on
the largest HPC platforms in the world at unprecedented scale.

RCT enable writing workflow applications with task-, resource-
and platform-level heterogeneity. Each building block is designed
to work as a standalone system or integrated with other tools from
RCT, or third-party software tools. Currently, RCT integrate with
other ExaWorks [15] SDK components.

Two of the most commonly used building blocks are RADICAL-
Pilot (RP) [33] and EnTK. RP is a pilot-enabled runtime system
that allows users to concurrently execute up to 104 heterogeneous
computing tasks on up to 105 heterogeneous resources. RP manages
concurrent and sequential execution of single/multi core/GPU/node
non/MPI computing tasks on HPC platforms. EnTK is a workflow
engine designed to support the coding and execution of scientific
workflows represented using the PST model. EnTK PST stands for
Pipeline-Stage-Task, where Pipeline is a sequence of Stages, and each
Stage is a set of independent computing Tasks. Multiple pipelines
can be executed concurrently, while stages, within each pipeline,
are executed sequentially. Grouping tasks into stages represents
dependencies among tasks and enables the concurrent execution of
tasks from the same stage. EnTK utilizes RP to acquire and manage
HPC resources, and place and launch tasks on those resources.

4.2 ExaAMWorkflows
While Fig. 3 shows the full ExaAM UQ pipeline, we will focus on
its three main stages.

Stage 0 generates the UQ grid using TASMANIAN [41] and then
all the necessary directories and their input files for Stage 1.

Stage 1 can be represented as two sub-stages, where thermalmelt
pool simulations are run in one sub-stage (AdditiveFOAM [23, 30],
an extension of OpenFOAM for AM processes) and the microstruc-
ture generation is run in a subsequent sub-stage (ExaCA [38]).
Note that AdditiveFOAM includes CPU-only computing tasks and
requires even and odd runs to generate all melt pool thermal histo-
ries. These runs have an associated post-processing step to gather
all the necessary output files into a single file for the following

kubestone.io


Novel Approaches Toward Scalable Composable Workflows
in Hyper-Heterogeneous Computing Environments SC-W 2023, November 12–17, 2023, Denver, CO, USA

Figure 3: Extended schematic representation of the ExaAM
UQ pipeline.

sub-stage ExaCA. ExaCA includes CPU-GPU computing tasks. The
microstructure is generated for the cartesian product between all
the thermal pool cases and different microstructure UQ parameters.
Once those runs have completed, a post-processing step occurs to
prepare data for the local property calculations.

Stage 3 (local property calculations) runs all the ExaConstit [22]
simulations. It is driven by one Python script, which reads in all
the generated microstructures; coarsens the microstructures; and
generates all the simulation option files and directories associated
with all the different loading directions, temperature cases, and rep-
resentative volume elements (RVEs) from ExaCA microstructures.
The script then has a number of built-in job scheduler backends
(e.g., Flux, LSF) available and can run/submit all the jobs in one go.
Once all the simulations are complete, an optimization script then
calculates the necessary macroscopic material model parameters to
be used in full part-builds.

We implemented the UQ pipeline as a set of EnTK workflow
applications, where each UQ stage corresponds to the EnTK appli-
cation (with a single EnTK pipeline) and consists of one or more
EnTK stages. We implemented the pre-/post-processing operations
into dedicated EnTK tasks and grouped them into EnTK stages.
Having a dedicated application per UQ stage allows us to execute
the stages individually or as part of the whole UQ pipeline. The
developed code is located in the project’s GitHub repository [42].

UQ Stage 1 is transformed into the EnTK application with the
following EnTK stages: AdditiveFOAM’s pre-processing and Ad-
ditiveFOAM, ExaCA and ExaCA-Analysis. The various melt pool
cases (AdditiveFOAM) andmicrostructure generation cases (ExaCA)
are represented as single tasks within each of their corresponding
EnTK stages. All of the logic needed to drive Stage 1 is implemented
in one script, which acts as a standalone EnTK application. This
application handles failed tasks by re-submitting them as part of
the consecutive batch job (i.e., the next EnTK run). This automated
process helps to deal with hardware failures to run collected failed
tasks using a new job allocation. During re-submission of failed
tasks, the execution order is preserved according to the order of
the original EnTK stages.

UQ Stage 3 integrates a corresponding EnTK application to
leverage all the job ensembles (i.e., set of simulations per batch
job).Additional logic has been added so that each ensemble respects
Frontier’s job scheduling policy in terms of walltime limits per
amount of requested compute nodes. Each simulation is represented

as a single EnTK task. Task failures are handled following the same
approach as for UQ Stage 1 (re-submitted job size is smaller and
correlates to the number of failed tasks).

Using EnTK allowed us to abandon the manual creation and
management of batch scripts in favor of having a single ensemble
manager EnTK to handle everything in one large job or subsequent
smaller jobs submissions. We also introduced fault-tolerance for
task execution level, which improved the efficiency of each EnTK
application and UQ pipeline as a whole.

4.3 Frontier run
We used Crusher (an early-access testbed platform for the Frontier
system) to evaluate the upcoming exascale system’s architecture,
and to pre-configure and adjust RP components. Developed EnTK
applications are easily reconfigured for each platform via its re-
source configuration and corresponding execution environment
setup for every task type. These applications have been tested on
multiple platforms at OLCF with different job schedulers.

Early runs on Summit and Crusher utilized up to 10 compute
nodes for several hours, and were used to verify the correctness and
stability of the execution process before targeting Frontier. With
the scale-up on Frontier, resource utilization is the following:

• AdditiveFOAM workflow utilized 40 compute nodes for 2
hours (every task requires 4 nodes with 56 cores per node);

• ExaCA workflow utilized 125 compute nodes for 4 hours
(every task requires 1 node and utilizes 8 MPI ranks with
7CPUs-1GPU decomposition);

• ExaConstit workflow utilized 8000 compute nodes (85% of
Frontier’s nodes) for up to 3.3 hours to run and orchestrate
7875 tasks (every task requires 8 nodes with 8 MPI ranks
per node with the typical 7CPUs-1GPU decomposition, and
runtime ∼10-25 min).

Figure 4: Resource utilization by the EnTK application (UQ
Stage 3): 100% corresponds to 448,000 CPU cores (not consid-
ering 8 cores per node reserved for system processes) and
64,000 GPUs.

“Full” scale run for UQ Stage 3 constantly utilized most of the
available resources (total resource utilization is 90%) with a minimal
overhead (OVH) of the EnTK application (i.e., bootstrapping EnTK
components). Fig. 4 shows that OVH (light blue color) is just 85s,
while the total execution time of all simulations (TTX) is 7989s
(the job runtime is 8074s). ExaAM workflows implemented with
EnTK reached a scheduling throughput of 269 tasks/s, launching
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51 tasks/s. Those rates are part of Fig. 5 (initial slopes of blue and
orange lines), which also shows the number of tasks executing
concurrently (orange color) as well as the number of tasks pending
to be launched (blue color).

Figure 5: Concurrency of 7875 EnTK tasks (UQ Stage 3) in
scheduling and running (execution) states.

We registered only 10 task failures across the UQ Stage 3 run.
Two tasks failed on the very last simulation step due to too large of a
time step for the specific loading condition and RVE, but they were
still far enough out for the purpose of constructing the macroscopic
material model parameters. The other eight tasks failed due to
a single node failure and ran successfully once automatically re-
submitted on Frontier by EnTK.

4.4 Conclusion
In this paper, we have presented the novel ExaAM UQ pipeline and
its implementation with RADICAL-EnTK. Running simulations for
the additive manufacturing process requires an exascale heteroge-
neous machine (for CPU-GPU intensive computations), as well as
an efficient ensemble manager to automate the execution of the
whole UQ pipeline and manage varying resource requirements,
different execution environments while offering fault-tolerance. Se-
lecting EnTK as a workflow engine ensures running the UQ pipeline
efficiently and effectively. Once implemented in EnTK, these ap-
plications are portable across multiple LCF platforms. We tested
them on OLCF Summit, Crusher and Frontier. For runs on Frontier,
we progressively increased scale until executing the ExaConstit
workflow with 7875 tasks on 8000 compute nodes (85% of Frontier’s
nodes). We achieved a total resource utilization of 90%.

5 TRANSCRIPTOMICS ATLAS PIPELINE:
CLOUD VS HPC

By: P. Kica, S. Licholai, and M. Malawski

Transcriptomics is an interdisciplinary scientific field that fo-
cuses on studying the complete set of all RNA molecules present in
a specific cell or tissue at a given time, which is referred to as the
transcriptome. Transcriptomics methods, such as RNA-seq, enable
the identification, quantitative analysis, and characterization of var-
ious types of RNA, including mRNA, rRNA, tRNA, and non-coding
RNAs [29]. The aim of this work is to provide a Transcriptomics
Atlas that will allow more precise experimental design even before
the laboratory testing stage.

Given the wide range of potential uses for the RNA-seq data
in this project, we have chosen to implement two different path-
ways: a faster one: Salmon Pipeline, and a more accurate one: STAR

Pipeline. The first one is based on pseudo-alignment and the Salmon
tool [8], and we anticipate that it will provide a suitable output
for experiments involving quantitative expression analysis of in-
dividual genes. The other is based on alignment and the STAR
tool [10, 27] and allows, in addition to quantification, the analysis
of splicing variants or non-canonical forms of RNA.

The goal of this paper is to present the technical details of our
Transcriptomics Atlas pipeline. We describe the cloud architecture
design for execution of the pipeline on AWS cloud. We present the
results of our experimental evaluation of the pipeline in the AWS
cloud using a sample data set, and compare the performance results
to the traditional execution on the HPC cluster.
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Figure 6: Transcriptomics Atlas pipeline.

5.1 Transcriptomics Atlas Pipeline
To build the Transcriptomics Atlas for a given cell or tissue type, the
prerequisite is to obtain a set of identifiers of the input files (usually
100s of 1000s of files are needed per cell/tissue type) from the the
NCBI database [7]. Then, for each input id, the full pipeline needs to
be executed, each pipeline consisting of the steps described below.
Therefore, the high-level workflow consists of multiple indepen-
dent pipelines processed in parallel. The current implementation is
available in Sano’s Github repository[12].

Pipeline description Original pipeline was created for HPC
execution by a domain specialist. It consists of four steps: (1) down-
loading .sra file using prefetch tool; (2) converting into .fastq files
using fasterq-dump tool; (3) alignement and quantification of reads
using Salmon [8] or STAR [10] [27]; and (4) count normalization
using DESeq2 [3]. Both prefetch and fasterq-dump are provided by
SRA-Toolkit [9]. The general pipeline is presented in Fig. 6 with
alignment (STAR) and pseudoalignement (Salmon) paths respec-
tively. In this work we focus on Salmon path, as the STAR path is
part of future work.

Pipeline steps resource requirements Themain requirements
are given by the STAR and Salmon software. Both require an index
which will be used in alignment step. In the case of Salmon the
generated index on human transcriptome is about 1GB in size, but
in case of STAR the index is generated on human whole genome
and is much bigger - 90GB. The index generated is affected mostly
by the size of the genome/transcriptome and resulting files are
reused among the future pipeline executions. STAR also requires
significant amount (in this case over 250GB) of RAM available -
most of all to load the given index. Salmon, on the other hand is
much less demanding as it is possible to process most of the SRA
files using only 2 cores and 8GB of RAM. All other pipeline steps
do not exceed the given resource values.

Input data The input data for this pipeline are .sra files which
contain RNA sequencing data. They are hosted on NCBI [7] and
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Figure 7: Transcriptomics Atlas cloud architecture.

publicly available in multiple ways such as download using SRA-
Toolkit, direct access to buckets on either AWS S3 or Google Cloud
Storage. The specific SRA IDs which have to be processed are iden-
tified by properties such as tissue name and origin, RNA sequence,
and sequencer type. The total size of the SRA files that need to be
processed for the atlas consisting of 20 human tissues is 8.6TB.

Connecting the steps and EC2 deployment In order to de-
ploy the pipeline to the EC2 instance, it was necessary to install and
configure all the software and tools used in the pipeline, followed
by the creation of Amazon Machine Image (AMI). Then each step
of the pipeline was connected with a Python script that handles
pipeline execution order (using subprocess.run() method). This ap-
proach was extended further to allow sending execution logs to
CloudWatch, listen for messages on SQS queue, and send results
and execution metadata to S3 buckets (using boto3 library). All
deployment was automated using Terraform [11] to allow easy
infrastructure management and reproducibility. To monitor the exe-
cution of each pipeline step on EC2 instances we used CloudWatch
Agent [2] software with procstat plugin which allows to monitor
per-process metrics. It allows to gather metrics such as usage of
CPU, memory, disk and network.

Cloud Architecture An important step before designing the
cloud architecture is to gather resource requirements for each step
of the pipeline. Based on the tools’ documentations, cloud services
limits, experimental pipeline execution resource consumption and
the data provided by the genomics specialist, the suitable approach
seemed to use EC2 instances as the main compute service. The
full cloud architecture for the Transcriptomics Atlas pipeline is
presented in Fig. 7. All the generated intermediate files (e.g. .fastq)
are not needed after the pipeline has finished. Also alternative
approaches that would require splitting the pipeline steps among
services incur heavy transfer and communications costs. Therefore
each SRR file is processed on a single EC2 instance from start
to finish of the pipeline. We use Auto-Scaling Group in order to
automatically scale the number of instances. The final results are
uploaded to an S3 bucket. This is a cloud-native approach and
easy-to-scale architecture.

PipelineContainerization forHPC In order to execute several
instances of Salmon Pipeline on HPC the best approach is to con-
tainerize the pipeline and start multiple jobs with the container. The
Docker [1] image created for this purpose consists of i.a. Salmon,
preconfigured SRA-Toolkit, Python and R with dependencies (e.g.
DESeq2), and Salmon index (1GB in size). Such an image can be de-
ployed for serverless computing services due to sufficient resource
requirements in contrary to the STAR Pipeline. After creating the
Docker image we can upload it to DockerHub [4]. The container-
ization software used on the Ares cluster is Apptainer which can

pull Docker images from remote repositories and translate them
into compatible (.sif ) images. One of the limits of the Apptainer
software is that the container cannot be modified so in order to cre-
ate or modify files we need to mount external writable directories
(e.g. SCRATCH ) for intermediate pipeline files or use the Persistent
Overlays feature. In the future case of STAR Pipeline the approach
will need a modification as the index required by STAR tool is 90GB
in size thus it seems better to e.g. make the index available on
SCRATCH partition and mount it to each container.

5.2 Experiments
The goal of the experiments was to test the correctness of the
pipeline implementation, to validate our cloud deployment, and to
compare the performance of the cloud version to the HPC version.

5.2.1 Salmon Pipeline Results. The experiment with EC2 instances
delivered insightful metric results which are presented in summary
in Table 1. All 99 files were processed in about 2.7h and not a sin-
gle step failed during the execution. We can confirm that Salmon
is indeed the most resource-consuming step. The high mean of
CPU iowait in the fasterq-dump step suggests increasing the per-
formance of the attached EBS. As we can see none of the steps
exceed 4GB in RAM usage which may be a reason to use compute-
optimized instance (e.g. c6a.large type which has 2vCPU and 4GiB
RAM) for slightly more cost-efficient computation unless some
bigger .sra files will require more than 4GiB of memory.

The HPC experiment took 2.5h to complete and no failure oc-
curred on any step. Per-file comparison in execution times has been
carried on between Cloud and HPC and the results are presented
in Table. 2. The Salmon and fasterq-dump steps present relatively
better performance on HPC. However we can clearly identify that
prefetch is faster on AWS - this can be the case because we use
the "report-cloud-instance-identity" in SRA-Toolkit config which
means that we most likely download directly from S3 buckets and
through the AWS backbone network instead of going through the
Internet. The reported job efficiency for the experiment was about
72%.

5.3 Conclusion
Based on the results we are able to compare execution times be-
tween Cloud and HPC, identify strengths of each environment and
better understand the pipeline. We have created a cloud architec-
ture that fits requirements. On top of that we can monitor the EC2
instances resource usage in each step. The Salmon Pipeline was de-
ployed to the HPC using Apptainer containers. We have identified
places for further improvements and fine-tuning of the pipeline.
Both environments have their advantages for the creation of the
Transcriptomics Atlas.

The next step in this research is to create the more CPU- and
memory-intensive STAR Pipeline and perform similar or larger
experiments on HPC and Cloud. Also it can be beneficial to test
the pipelines on other supercomputers as well as to deploy Salmon
Pipeline to serverless computing services (e.g. AWS Elastic Con-
tainer Service with Fargate launch type). Integrating Lithops [39][6]
for workflow management can make the solution more portable
and robust. Interesting architecture may be obtained with hybrid
approach where we split the workload among HPC and Cloud.
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Table 1: Aggregated "instance-wide" metrics during execution of each pipeline step.
Baseline memory is approx. 300MB.

Pipeline step Prefetch Fasterq-dump Salmon DESeq2
mean max mean max mean max mean max

CPU usage 21% 70% 56% 94% 94% 100% 39% 59%
CPU iowait 3.7% 47% 26% 91% 1.5% 90% 3.4% 47%
MEM usage 323MB 410MB 394MB 760MB 840MB 2.8GB 532MB 1GB

Table 2: Performance comparison between Cloud and HPC.
Calculated as an average of relative difference in execution time.

Pipeline step Prefetch Fasterq-dump Salmon DESeq2
mean max mean max mean max mean max

Cloud execution times 0.6min 3.9min 1.4min 5.7min 9.6min 43min 11s 36s
HPC execution times 2.1min 19.6min 0.8min 3.5min 8min 34.1min 10s 12s

HPC performance 87% slower 30% faster 19% faster No difference

6 PATTERNS AND ANTI-PATTERNS IN
MIGRATING FROM LEGACYWORKFLOWS
TOWORKFLOWMANAGEMENT SYSTEMS

By: D. Cassol, J. Froula, E. Kirton, S. Sul, M. Melara, R. Kothadia, E.
Player, S. Sarrafan, S. Chan, K. Fagnan

A significant challenge with legacy workflows lies in their lack
of maintainability, shareability, and portability. Custom workflows
require a significant amount of code to orchestrate task execution
(e.g., "pipeline glue code"), and they often operate within a unique
user environment, making it difficult to ensure consistency and
reproduce results when shared among different users. To effectively
navigate this landscape, the Joint Genome Institute (JGI) adopted
a Scientific Workflow Management System (WMS) that depends
on a standardized Domain Specific Language (DSL) for workflows.
The workflow DSL is designed to easily express the actions and
relationships specific to runningworkflows, making it more suitable
for describing workflows than general-purpose languages such as
Perl, Python, or Java.

This paper explores the best practices, patterns, and anti-patterns
associated with porting manual or ad-hoc workflows to automated
WMSs, focusing on popular WMS such as Cromwell [48] and WDL.
By following these guidelines, users can streamline their processes,
enhance productivity, and realize the full potential of automated
workflow management systems. Additionally, we highlight the
creation of the JGI Analysis Workflow Service (JAWS), a centralized
workflow platform developed by JGI.

6.1 Common Strategies for Migration to
Workflow Management Systems

Modularization Modularization involves the decomposition of
complex workflows into smaller, more manageable tasks, making
migration and testing more straightforward. This strategy promotes
the creation of workflows that are easy to maintain and expandable.

Additionally, a modular framework assists in pinpointing bottle-
necks and potential areas for refinement. For instance, separating
tasks based on distinct resource requirements is crucial to ensure
efficiency, resulting in both time and cost savings. Most workflow
managers can efficiently handle fault-tolerance, task interruptions,
workflow recovery, and detect when an identical task has been run
in the past and avoid re-computing the results. By modularizing
workflows, we can leverage these features. On the other hand, how
individual commands are organized into tasks has a potentially
huge impact on efficiency, reducing the strain on the filesystem
and minimizing overhead. For instance, in one of JGI’s workflows,
by integrating four separate tasks into a single task, we cut the
execution time by 70% and decreased the number of shards by 71%.

Containerization. Containerization is a common practice for
DevOps and cloud-based architectures, and therefore, adopting it
for scientific workflows is an obvious benefit. This reduces the need
for manual processes, including source code compilation, manual
version tracking, and writing and maintaining custom code. As an
example, JGI workflows can use the same container image across
the Perlmutter, Tahoma, Dori, and Lawrencium clusters, as well as
in Amazon Web Services (AWS).

Workflow Provenance. Tracking of changes in software ver-
sions, parameters, etc. is key to enabling reproducibility. Workflow
managers automate this process, maintaining uniformity in data for-
mats, naming conventions, and directory structures. This approach
fosters better maintainability for the author and a smoother trans-
fer of the code to others. By aligning with established standards,
researchers can mitigate discrepancies, minimize errors, and confi-
dently reproduce outcomes, thereby enhancing the reproducibility
of their data analysis.

Comprehensive Documentation and Community Devel-
opment. When porting from a legacy workflow, it is crucial to
create detailed documentation of the original manual workflow and
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provide guidelines on how to use the new version. This documen-
tation not only acts as a reference but also makes it easier for the
community to repurpose the workflow.

Performance Metrics Collection. A centralized workflow ser-
vice presents an opportunity to collect performance metrics for all
workflows executed across the organization. By using tools such
as psutil and Elastic Stack, these performance metrics can give
valuable feedback on resource usage, pointing to problematic ar-
eas in the workflows themselves or bottlenecks in the workflow
management system. This approach enables accurate selection of
the amount of memory and number of CPUs, and also provides
insight into I/O patterns to be taken into account when scheduling
workflows for execution.

6.2 Anti-patterns to Avoid
Migrating Complex Workflows. Trying to port an entire legacy
workflow in a single attempt can be challenging and may not al-
ways be the most efficient approach. Such endeavors frequently
lead to overlooked or unidentified errors, making the debugging
process significantly longer and more convoluted. Instead of a blan-
ket migration, a phased and systematic approach might be more
conducive, ensuring that each workflow segment is seamlessly in-
tegrated into the new system, thereby minimizing potential hitches
and enhancing the transition’s overall efficiency. This highlights
the desire to modularize workflows, enabling individual segments
to transition into WDL while maintaining productivity.

Neglecting Version Control. Overlooking the use of version
control systems, such as Git, can present significant challenges
when developing or porting a legacy workflow. Without a robust
system to monitor modifications and trace alterations, being able
to pinpoint when and where they were made becomes increasingly
difficult. Additionally, the absence of repository management fur-
ther exacerbates these challenges. Proper repository management
ensures organized storage, easier collaboration, and a streamlined
method to revert or retrieve specific versions, enhancing overall
efficiency and reproducibility. In addition, by using version sha256
on container images for running workflows, it is possible to be very
precise about the software’s version used to execute workflows.

Inadequate Testing and Validation. Neglecting adequate test-
ing and validation during the transition from legacy pipelines in-
troduces considerable potential risks. Existing workflows should
feature a small demo dataset specifically designed for integration
tests. By adopting a test-driven development, one ensures that the
new workflow’s migration and development are reproducible, sim-
plifying the process of identifying and rectifying any issues during
both the developmental and testing phases. Testing new changes
to the pipeline can even be automated via Git’s CI/CD pipelines.

Inappropriate Parallelism. Task parallelism involves distribut-
ing tasks across independent compute nodes, primarily when no
data dependencies exist between tasks. For example, Cromwell
uses the scatter function from the WDL standard library, which
will produce parallel jobs that run a series of identical tasks on
different inputs. However, inappropriately parallelizing tasks can
lead to a series of issues. This becomes particularly problematic if
the computation task requires significant I/O filesystem operations,
resulting in unwanted overhead. Achieving optimal performance

in workflow management requires a careful balance. On one hand,
there’s the time and resources dedicated to each parallel task’s exe-
cution, and on the other, there’s the overhead in the filesystem for
managing these tasks. It is advisable that each parallel job should
have a minimum runtime of 30 minutes.

Unconstrained Task Parallelism for Shared Cluster Re-
sources. Traditional batch scheduling systems usually implement
fair share policies to prevent users from monopolizing a shared
computing resource. Legacy workflows often submit directly to a
batch scheduler under their own account, in which case fair share
is handled by the scheduler. Tools such as Cromwell have their own
interfaces into execution engines and may use a shared account for
all users who run their workflows. Cromwell does not implement
fair share policies, as a result, users sharing a single Cromwell ser-
vice may find that a single user has been able to monopolize all
resources allocated to Cromwell, for example, with a highly parallel
task. When working with WMS, it is important to explicitly review
the parallelism constraints that are configured within the WMS and
configure them to support fair share within the WMS.

6.3 Centralized Workflow Management
With access to several DOE computing resources as well as Ama-
zon Web Services, we need to guarantee effortless portability of
workflow analysis across a range of resources. To address this, we
have developed JGI Analysis Workflow Service (JAWS) as a central-
ized framework to run computational workflows across multiple
DOE resources. JAWS uses Globus and AWS S3 protocol to transfer
data and code to user-specified compute resources, subsequently
executing the computation by leveraging the Cromwell engine for
execution of WDLs and returning the results. Additionally, JAWS
uses containers (compatible with Docker, Shifter, and Singularity)
to ensure portability across computing environments and workflow
task codebases. To run the compute tasks, JAWS uses HTCondor as
the backend to Cromwell, which can manage workers on an HPC
cluster. Adopting workflow managers to route jobs and data across
multiple sites seamlessly facilitates the portability, reusability, and
shareability of the analysis workflows.

6.4 Conclusion
The journey from manual workflows to centralized, automated
workflow systems, while promising, can be strewn with challenges.
Transitioning to WMSs offers a strategic approach to optimize
computational workflows by ensuring efficient resource allocation,
improved reproducibility, and enhanced scalability. Using a stan-
dardized workflow language and fostering workflow sharing can
significantly diminish inefficiencies in analysis, in both computa-
tional and human resources. It’s essential to identify successful
patterns and avoid common pitfalls for a smooth transition from
isolated operations to collaborative and FAIR workflows. Such a
shift not only enhances performance and supports FAIR principles
but also fosters a collaborative culture using a unified workflow
platform.
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