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A B S T R A C T

In many industrial applications in aeronautical, civil, energetic, automotive and biomedical engineer-

ing, adhesion techniques have recently emerged as assembly procedures alternative to conventional

joining. Adhesive bonding is advantageous for many aspects, such as mitigation of stress concen-

tration, better resistance to corrosion and water sealing, and the possibility of assembly dissimilar

materials. In the literature, interface models are a classical modeling approach to the description of

the mechanical behavior of adhesive joints. In this paper, an original generalized interface model

is presented for both soft and hard adhesives, characterized by lower and higher stiffness than the

adherents, respectively. The proposed model is able to capture a damaging behavior of the adhesive

material, the elastic properties of which are obtained by homogenizing a microcracked media. The

cracks density in the adhesive is the damage parameter, and a kinetic law based on the generalized

standard material model describes its evolution. The role and relevance of damage velocity is

illustrated through some simple examples and with a comparison with experimental data taken from

literature. The numerical results show how the mechanical properties of the adhesive and the joint

degrade as damage evolves, indicating a transition from quasi-brittle to brittle behavior as the damage

velocity decreases.

1. Introduction

In recent decades, increasingly industrial applications

employ bonding as a common joining technique. Some

examples are GFRP pultruded beams in civil engineering

Ascione, Mancusi, Spadea, Lamberti, Lebon and Maurel-

Pantel (2015); Lamberti, Maurel-Pantel, Ascione and Lebon

(2016); Orefice, Mancusi, Dumont and Lebon (2016), com-

posites Budhe, Banea and de Barros (2018); Kupski and

de Freitas (2021) or direct bonding in aerospace engi-

neering, ship hulls in marine engineering Delzendehrooy,

Akhavan-Safar, Barbosa, Beygi, Cardoso, Carbas, Marques

and da Silva (2022); Amaechi, Chesterton, Butler, Wang

and Ye (2021), orthopedic Weber and Chapman (1984);

Farrar (2012) or dental implants Maurer, Bekes, Gern-

hardt, Schaller and Schubert (2004); Meerbeek, Peumans,

Poitevin, Mine, Ende, Neves and Munck (2010) in biomed-

ical engineering.

Bonding has emerged as an alternative to traditional join-

ing techniques, such as welding and riveting, due to several

favourable features, e.g. mitigation of stress concentration,

better resistance to corrosion and water sealing, and the

possibility of joining dissimilar materials.
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In addition, bonding is increasingly used in the trans-

portation industry because it allows the production of light-

weight structures, leading to reduced CO2 emissions. De-

spite this, there are disadvantages.

Under service conditions, durability is a major concern

limiting the use of adhesives in structural applications. In-

deed, corrosion and aging can cause microcracking phenom-

ena that can be measured by non-destructive techniques. An

additional disadvantage is the multifactorial and multiscale

nature of the damage phenomenon in adhesive joints, which

complicates validation and implementation of reliable prog-

nostic approaches.

In adhesives, the stress-strain diagram in tension or

shear typically exhibits an initially linear elastic phase fol-

lowed by collapse (brittle fracture) or softening and collapse

(ductile fracture), see Chaves, da Silva, de Moura, Dillard

and Esteves (2014); Budzik, Wolfahrt, Reis, Kozlowski,

Sena-Cruz, Papadakis, Saleh, Machalicka, de Freitas and

Vassilopoulos (2021). The cyclic behavior often exhibits

hysteresis loops (Orefice et al. (2016); Lamberti, Maurel-

Pantel, Lebon and Ascione (2022)).

Non-linearity of mechanical response indicates the pres-

ence of a microcracking process, especially in the brittle

case: pre-existing microcracks introduced during adhesive

preparation (manufacturing, heat treatment, etc.) are initially

present in the linear elastic phase and propagate during

softening, leading to debonding and cracking.

An additional difficulty is related to the stiffness of

the adhesive, varying from MPa to GPa depending on the

industrial manufacturing process. In this paper, we propose

a model for the mechanical behavior of adhesive joints able

to account for these different aspects of complexity.

Computationally, the mechanical modeling of adhesives

is complicated by the smallness of their thickness, leading
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Interfaces with Damage

to a very fine mesh, increased degrees of freedom and ill-

conditioning.

One possible simplifying approach is to use surface

models. The most popular strategy for modeling damage

in adhesives is based on cohesive zone models (CZMs)

Ramalho, Campilho, Belinha and Silva (2020), typically

described by a traction-separation law prescribed across the

cohesive surface.

Deductive interface models based on asymptotic theory

are a viable alternative to cohesive phenomenological mod-

els. Deductive models are obtained by introducing asymp-

totic expansions of the relevant fields dependent on a small

parameter (the thickness of the adhesive) into the equations

of the equilibrium problem and by studying the limit prob-

lem when the parameter tends to zero Benveniste and Miloh

(2001); Dumont, Lebon, Raffa and Rizzoni (2017); Furtsev

and Rudoy (2020); Rizzoni, Dumont, Lebon and Sacco

(2014); Licht, Orankitjaroen and Weller (2022); Geymonat,

Krasucki and Lenci (1999); Serpilli and Lenci (2012a,b).

In the limit configuration, the adhesive is replaced by a

surface whose properties are characterized by those of the

original adhesive material (stiffness, kinematics, viscosity,

inertia, damage properties, etc.). Larger complexity of the

material model yields higher accuracy of the deductive

surface model. Deductive interface models can be success-

fully applied in continuum numerical methods using joint-

element techniques, and they can be very useful for the

stress analysis of complicated structural components, see

for example Ascione et al. (2015); Lamberti et al. (2016);

Orefice et al. (2016); Lamberti et al. (2022).

In structural bonding, damage with microfracture evo-

lution is generally observed Lamberti et al. (2022). As

already proposed in previous works, the density of micro-

cracks can be considered as the damage variable Maurel-

Pantel, Lamberti, Raffa, Suarez, Ascione and Lebon (2019);

Bonetti, Bonfanti, Lebon and Rizzoni (2017). The purpose

of the present work is to propose an interface model with

damage evolution able to account for non-local effects as

described in the literature Hochard, Payan and Bordreuil

(2006); Hochard, Lahellec and Bordreuil (2007).

With respect to previous work of the authors Raffa,

Rizzoni and Lebon (2021); Raffa, Lebon and Rizzoni (2022),

in this paper we introduce a damage velocity parameter as an

element of novelty. This parameter is related to the exponent

of the dissipation potential, which is usually assumed to

be quadratic. We show that more general potentials induce

joint stress-strain responses characterized by different types

of damage. In particular, as the damage rate (the exponent)

decreases, a transition from quasi-fragile to brittle behavior

emerges.

The structure of the paper is the following. In Section

2, we introduce a general analytical model of damaging

material. The model accounts for damage evolution and non-

local effects. Section 3 is dedicated to the derivation of the

interface model and two different cases are considered: the

case of soft adhesive material and the case of hard adhesive

material. In Section 4, we present a parametric analysis

whose results show the influence of the damage parameters

on the stress-strain response of the adhesive and of the

joint. A comparison with some experimental data taken

from the literature indicates that introducing the damage

velocity allows an improved description of the experimental

findings. Finally, in Section 5, conclusions and some insight

for further study are provided.

2. A general model of damaging material

In the following, a thermodynamically-consistent formu-

lation for an elastic adhesive with damage is derived. It is

well-known that the choice of state variables is subjective,

depending on the studied phenomenon. In the proposed

model, the following variables have been chosen:

• The elastic strain tensor 𝑒(𝑢), where 𝑢 is the displace-

ment field (under the small perturbations hypothesis).

• A variable denoted 𝑅, which is a cracks density and

represents here an internal state variable of damage.

Hereafter, the process will be considered as isothermal.

The thermodynamic state of the material will then be rep-

resented locally by a potential depending on these state

variables. A "specific free energy" potential 𝜓(𝑒(𝑢), 𝑅) is

chosen as:

𝜓 (𝑒 (𝑢) , 𝑅) =
1

2
𝕂(𝑅) 𝑒(𝑢) ∶ 𝑒(𝑢) + 𝜔(𝑅) (1)

+
𝛼

𝑝
|∇𝑅|𝑝 + 𝐼[0,1](𝑅)

where 𝕂(𝑅) is the stiffness tensor of the material (with

usual symmetry and positivity properties), |.| is the Eu-

clidean norm, 𝛼 and 𝑝 are material parameters, and 𝐼𝐴 is the

indicator function of the set 𝐴 defined as follows:

𝐼𝐴(𝑥) = 0 if 𝑥 ∈ 𝐴,

𝐼𝐴(𝑥) = +∞ if 𝑥 ∉ 𝐴.

(2)

The indicator function is used to force the damage variable

to remain in the range [0, 1]. The function 𝜔(𝑅) > 0 can be

seen as an activation energy of the damage, cf. Raffa et al.

(2022). The dependence of 𝕂(𝑅) and 𝜔(𝑅) on the damage

variable𝑅will be specified in the following. The term |∇𝑅|𝑝
models a non-local character of the damage.

Classically, the stress field 𝜎 and the thermodynamic

force 𝜒 associated with the damage variable are derived as

𝜎 = 𝜓,𝑒(𝑢) = 𝕂(𝑅) 𝑒(𝑢)

𝜒 ∈ 𝜕𝑅𝜓

(3)

where (.),𝑒(𝑢) denotes the partial derivation with respect to

𝑒(𝑢) and 𝜕𝑅 denotes the subdifferential of 𝜓 with respect to

the damage variable 𝑅.

As is well known, the thermodynamic potential𝜓(𝑒(𝑢), 𝑅)

links the state variables (𝑒(𝑢), 𝑅) and their associated vari-

ables (𝜎, 𝜒), at a given time. On the other hand, this datum
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Interfaces with Damage

Table 1

List of parameters and functions deőning the damage evolu-
tion.

Parameters Unity Interpretation

𝛽 no unit damage velocity
p no unit non-local parameter
𝛼 Pa⋅𝑚𝑝 non-local effect parameter
𝜔 Pa activation energy
𝜂 Pa⋅s viscosity
𝕂 Pa stiffness tensor

does not allow to write the evolution of these variables

during a transformation. This evolution will be given by a

complementary law: the additional constitutive equation of

the material. To describe the evolution of the state variables

during the transformation, while respecting the second

principle of thermodynamics, we postulate the existence of

a dissipation potential 𝜙, expressed as a continuous scalar

function of the "flux" variables, i.e. 𝜙(𝑅̇). This potential

must be positive and zero at the origin. It is often chosen

convex even though this is not essential. In this study, the

potential is chosen as

𝜙(𝑅̇) =
1

𝛽 + 1
𝜂(𝑅)𝑅̇𝛽+1 + 𝐼[0,+∞[(𝑅̇), (4)

where 𝛽 and 𝜂 > 0 are two material parameters. The first one

allows to control damage velocity. The second one, which

depends a priori on the damage variable, can be see as a

viscosity parameter. The indicator function is used to force

the damage to be irreversible. The "dual" variable will then

be obtained from the following complementary law

𝜒 ∈ −𝜕𝑅̇𝜙. (5)

Combining the previous equations, the following damage

evolution equation is obtained:

0 ∈𝜂(𝑅)𝑅𝛽 +
1

2
𝕂,𝑅𝑒(𝑢)𝑒(𝑢) + 𝜔,𝑅(𝑅)

+ 𝛼Δ𝑝𝑅 + 𝜕𝑅𝐼[0,1](𝑅) + 𝜕𝑅̇𝐼[0,+∞[(𝑅̇),
(6)

where Δ𝑝 denotes the p-Laplacian operator

Δ𝑝𝑅 = ∇.(|∇𝑅|𝑝−2∇𝑅). (7)

Introducing an initial condition, this evolution law can be

expressed as

𝜂(𝑅)𝑅̇𝛽 = −
{
𝜔,𝑅(𝑅) +

1

2
𝕂,𝑅(𝑅)𝑒(𝑢)𝑒(𝑢) + 𝛼Δ𝑝𝑅

}
−
,

𝑅(0) = 𝑅0,

(8)

where ()− denotes the negative part of a function.

In conclusion, the model depends on the material param-

eters listed in Table 1. Note that these parameters can depend

or not on the cracks density 𝑅.

3. Derivation of the interface model

In this Section, we obtain the interface model by apply-

ing the method of asymptotic expansions. In Subsection 3.1,

we introduce the main notation and the equilibrium problem

of the joint configuration. Subsection 3.2 is devoted to the

asymptotic analysis, based on power asymptotic expansions

of the stresses and the displacements fields in the adherents

and in the adhesive. Two cases are then considered: the case

of hard adhesive material, with fixed elasticity constants,

is treated in Subsection 3.2.1; the case of soft adhesive

material, with elasticity constants rescaling like the small

parameter, is addressed in Section 3.2.2.

3.1. Notation and problem statement
An adhesive joint is geometrically described as two

solids (the adherents) in perfect contact with a thin layer (the

adhesive) of constant thickness 𝑡ℎ, as shown in Fig. 1. The

adhesive occupies a domain 𝐵𝜀 in ℝ
3 with cross-section 𝑆,

being 𝑆 an open bounded set in ℝ
2 with a smooth boundary.

A Cartesian coordinate system is introduced, with origin 𝑂

on 𝑆, (𝑥1, 𝑥2, 𝑥3) the three coordinates of a particle, and

(𝐞1, 𝐞2, 𝐞3) an orthonormal base vectors. The domain 𝑆 is

a planar surface belonging to the plane (𝑂, 𝐞1, 𝐞2).

We define the non-negative thickness ratio 𝜀 = 𝑡ℎ∕𝐿 ≪

1, with 𝐿 a representative length scale of the adherents. In

the following formulation, the ratio 𝜀 will denote the small

parameter of the asymptotic analysis. The adherents are

assumed to occupy the reference configurations Ω±
𝜀
⊂ ℝ

3.

𝑆±
𝜀

in ℝ
2 denote the planar interfaces between the adhesive

and the adherents, and Ω = Ω±
𝜀
∪𝑆±

𝜀
∪𝐵𝜀 is the whole joint

configuration. The stresses and the displacements fields are

taken to be continuous across 𝑆±
𝜀

.

In the limit of a vanishing 𝜀, the adhesive is geometri-

cally replaced by a surface across which certain conditions

on the displacements and the tractions prevail, cf. Dumont

et al. (2017). The technique based on matched asymptotic ex-

pansions is a traditional method to obtain such transmission

conditions, representing, in the form of imperfect contact

laws, the limiting behavior of a very thin adhesive, see for

example Geymonat et al. (1999); Serpilli and Lenci (2012b);

Dumont et al. (2017).

The materials composing the various parts of the joint

are taken to be homogeneous and linearly elastic, with 𝔸
± be

the fourth-rank elasticity tensors of the adherents, and 𝕂 the

elasticity tensor of the adhesive. The damaging constitutive

behavior of the adhesive has already been introduced in

Section 2. Note that, the material parameters of the adhesive,

summarized in Table 1, are assumed to depend on 𝜀, as in

Bonetti et al. (2017); Maitlo, Lebon and Bauzet (2019). The

elasticity tensors 𝔸
± have the usual symmetry properties,

with the minor and major symmetries, and are positive def-

inite, but otherwise can have arbitrary material symmetries

(anisotropy). A body force density 𝐟± is applied in Ω±, and

a surface force density 𝐠± on a part Γ𝑔 of the boundary

of the two adherents. In the adhesive, external forces are

neglected. On a part Γ𝑢 of the boundary, homogeneous

boundary conditions can be assigned.

F. Lebon, M.L. Raffa, R. Rizzoni: Preprint submitted to Elsevier Page 3 of 8
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Interfaces with Damage

Figure 1: Initial problem of bonding (adhesive in grey,
adherents in white).

3.2. Asymptotic analysis
In the following, these assumptions are made:

• Without loss of generality, the model parameters (see

Table 1) are assumed to be independent of the di-

rection perpendicular to the adhesive plane. More

complex scenarios have been considered in Maitlo

et al. (2019).

• Parameters 𝛽 and 𝑝 are independent of the relative

thickness 𝜀.

• Parameters 𝜂, 𝜔 and 𝛼 depend now on the relative

thickness 𝜀 as : 𝜂(𝜀) = 𝜂̃ 𝜀−1, 𝜔(𝜀) = 𝜔̃ 𝜀−1 and

𝛼(𝜀) = 𝛼̃ 𝜀−1. The dependency of 𝕂 on 𝜀 will be

investigated in what follows.

The method of matched asymptotic expansions can be

briefly schematized as follows.

• The displacements and the stresses fields are expanded

with respect to the thickness ratio 𝜀:

𝜎𝜀 = 𝜎0 + 𝜀𝜎1 + 𝑜(𝜀), (9)

𝑢𝜀 = 𝑢0 + 𝜀𝑢1 + 𝑜(𝜀). (10)

• A change of variables is introduced: the adhesive is

rescaled along 𝐞3 becoming of unit length, cf. Fig.2.

Correspondingly, the adherents are translated rela-

tively along 𝐞3. The final domain is now independent

of 𝜀, and the thickness parameter 𝜀 is transferred to the

operators.

• The rescaled fields are transferred to the equilibrium

and constitutive equations, and the terms at the various

orders are identified. In the present paper, only the first

and the second terms of the expansions are identified

(higher orders are neglected).

• A matching condition is introduced to relate the inter-

face law to the boundary configuration obtained for a

vanishing adhesive thickness (cf. Fig. 3).

Figure 2: Sketch of the asymptotic study (rescaled adhesive
in blue).

Figure 3: Final conőguration.

We introduce the following notation:

• [[𝑓 ]] ∶= 𝑓 (𝐱𝛾 , 0
+) − 𝑓 (𝐱𝛾 , 0

−): jump in the limit

configuration (see Fig. 3);

• ⟨⟨𝑓 ⟩⟩ ∶=
1

2
{𝑓 (𝐱𝛾 , 0

+) + 𝑓 (𝐱𝛾 , 0
−)}: average in the

limit configuration (see Fig. 3);

where 𝑓 is a generic function, 𝐱𝛾 = (𝑥1, 𝑥2), and Greek

indexes (𝛾, 𝛿 = 1, 2) are related to the in-plane (𝑥1, 𝑥2)

coordinates.

F. Lebon, M.L. Raffa, R. Rizzoni: Preprint submitted to Elsevier Page 4 of 8



A
c
c
e

p
te

d
 M

a
n

u
s
c
ri
p

t
A

c
c
e

p
te

d
 M

a
n

u
s
c
ri
p

t
Interfaces with Damage

3.2.1. The case of similar stiffness: hard interface

We now consider an adhesive material whose stiffness is

comparable to that of the adherents. An adhesive with this

characteristic gives rise to a hard interface. Mathematically,

this is equivalent to assuming that the elastic tensor of the

adhesive material is independent of 𝜀

𝕂
𝜀 = 𝕂. (11)

In the following, the matrices 𝐾𝑗𝑙, for 𝑗, 𝑙 = 1, 2, 3,

are defined such that 𝐾
𝑗𝑙

𝑘𝑖
∶= 𝕂𝑖𝑗𝑘𝑙, with 𝑖, 𝑘 = 1, 2, 3. In

this case, the following first- and second-order transmission

conditions are obtained.

• Zero-order interface law:

[[𝐮0]] = 𝟎, (12)

[[𝜎0 𝐢3]] = 𝟎. (13)

• First-order interface law:

[[𝐮1]] = (𝐾33)−1
(
𝜎0𝐢3 −𝐾

𝛾3𝐮0
,𝛾

)
− ⟨⟨𝐮0

,3
⟩⟩.
(14)

[[𝜎1 𝐢3]] = −
(
𝐾3𝛾 (𝐾33)−1

(
𝜎0𝐢3 −𝐾

𝛿3𝐮0
,𝛿

))
,𝛾

−
(
𝐾𝛿𝛾𝐮0

,𝛿

)
,𝛾
− ⟨⟨𝜎0

,3
𝐢3⟩⟩. (15)

Introducing the approximation

𝐮𝜀 ≈ 𝐮0 + 𝜀𝐮1, (16)

𝜎𝜀 ≈ 𝜎0 + 𝜀𝜎1, (17)

and using the parameter rescaling as proposed in Maitlo et al.

(2019); Raffa et al. (2022), the following damage evolution

equation can be obtained

𝜂̃(𝑅)𝑅̇𝛽 = −

{
𝜔̃,𝑅(𝑅)+

1

2
𝐊𝜀
,𝑅
(𝑅)

⎛
⎜⎜⎝

⟨⟨𝐮𝜀
,1
⟩⟩

⟨⟨𝐮𝜀
,2
⟩⟩

[[𝐮𝜀]] + 𝜀⟨⟨𝐮𝜀
,3
⟩⟩

⎞
⎟⎟⎠
.

⎛
⎜⎜⎝

⟨⟨𝐮𝜀
,1
⟩⟩

⟨⟨𝐮𝜀
,2
⟩⟩

[[𝐮𝜀]] + 𝜀⟨⟨𝐮𝜀
,3
⟩⟩

⎞
⎟⎟⎠
+ 𝛼̃Δ2

𝑝
𝑅

}

−

(18)

where the matrix 𝐊𝜀 takes the form

𝐊𝜀 =

⎛
⎜⎜⎜⎝

𝜀𝐾11 𝜀𝐾12 𝐾13

𝜀𝐾12 𝜀𝐾22 𝐾23

𝐾13 𝐾23 1

𝜀
𝐾33

⎞
⎟⎟⎟⎠
, (19)

and Δ2
𝑝

denotes the p-Laplacian on the surface 𝑆.

3.2.2. The case of non similar stiffness: soft interface

The second case studied is for a soft adhesive, composed

of a material with lower stiffness than that of adherents.

To simulate such characteristic, the elasticity tensor of the

adhesive is assumed to rescale with 𝜀, as follows:

𝕂
𝜀 = 𝜀𝕂. (20)

For the sake of simplicity, only the results at the lower

order are presented. The interface law is thus of spring-type,

characterized by the continuity of the traction vector and by

a jump discontinuity of the displacement vector:

𝜎0 𝐢3 = 𝕂[[𝐮0]], (21)

[[𝜎0 𝐢3]] = 𝟎. (22)

Introducing the zero-order approximation

𝐮𝜀 ≈ 𝐮0, (23)

𝜎𝜀 ≈ 𝜎0, (24)

the damage evolution equation now takes the form

𝜂̃(𝑅)𝑅̇𝛽 = −
{
𝜔̃,𝑅(𝑅) +

1

2
𝐊33
,𝑅
(𝑅)[[𝑢𝜀]][[𝑢𝜀]] + 𝛼̃Δ2

𝑝
𝑅

}
−
.

(25)

Equations (18) and (25) are integrated with the initial con-

dition 𝑅(0) = 𝑅0, being 𝑅0 the initial value of the cracks

density.

4. A parametric analysis

In this section, a parametric study on damage model

parameters is proposed. To this aim, two simple 1D formu-

lations are considered in both bulk and joint configuration

for the damaged adhesive material. In the 1D configuration,

the damage evolution law becomes soft and the p-Laplacian

vanishes. Experimental data from Murakami, Sekiguchi,

Sato, Yokoi and Furusawa (2016) on a quasi-brittle epoxy

adhesive (Denatite 2204, Nagase ChemteX Co., Ltd., Osaka,

Japan) have been used for comparison.

4.1. Bulk adhesive configuration
By specializing Eq. (8) to the 1D case, the damage

evolution law reads as:

𝜂(𝑅)𝑅̇𝛽 = −
{
𝜔,𝑅(𝑅) +

1

2
𝐸,𝑅(𝑅) 𝜖

2
}
−

(26)

where 𝜖 is the uniaxial strain and 𝐸,𝑅(𝑅) represents the

derivative with respect to 𝑅 of the Young’s modulus of

the damaged adhesive. Under the assumption of a damaged

material as defined in Welemane and Goidescu (2010), by a

particular homogenization process, it is obtained:

𝐸(𝑅) = 𝐸0 (1 − 2𝜋 𝑅), 𝐸,𝑅(𝑅) = −2𝜋 𝐸0 (27)

where𝐸0 represents the Young’s modulus of the undamaged

material. For the numerical simulation, a linear strain ramp
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is imposed, 𝜖(𝑡) = 𝜖̇𝑡, with 𝜖̇ the strain rate. Accordingly, the

damage evolution equation can be rewritten in the form

𝑅̇ = −
1

𝜂(𝑅)

{
𝜔,𝑅(𝑅) − 𝜋 𝐸0 𝜖̇

2 𝑡2
} 1

𝛽

−
for 𝛽 ≠ 0 (28)

In what follows, it is assumed that 𝜔,𝑅(𝑅) and 𝜂(𝑅) are

constant parameters, equal to 𝜔,𝑅(𝑅) = 𝜔̄ = 0.06 Pa,

𝜂(𝑅) = 𝜂̄ = 3.6 ⋅ 102 Pa⋅s and 𝑅0 = 0. A parametric study

is carried out here on the damage velocity 𝛽. For a complete

study on the influence of parameters 𝜔̄ (activation energy

threshold) and 𝜂̄ (damage viscosity) one could refer to Raffa

et al. (2022). Damage initiates when:

𝑡 =
1

𝜖̇

(
𝜔̄

𝜋 𝐸0

) 1

2

= 2.7, (29)

where 𝑡 represents a normalized time. Figure 4 shows the

evolution of the cracks density 𝑅 as a function of the nor-

malized time. The various curves are obtained by integrating

Eq. (28) for different values of the damage velocity 𝛽. Figure
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Normalized time [-]

C
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s
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en
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] β=0.01β=0.1β=0.2β=0.5β=1β=2β=3

Figure 4: Inŕuence of the damage velocity 𝛽: Evolution of the
cracks density 𝑅 as a function of the normalized time.

4 highlights that the parameter 𝛽 governs the rate depen-

dency of the damage phenomenon. In detail, all curves have

the same activation energy threshold 𝜔̄, which means that

damage begins at the same time, thus one can conclude that

the smaller the parameter 𝛽, the faster the damage evolves.

This aspect is also supported by the behaviour of the Young’s

modulus of the damaged material, shown in Fig. 5.

The evolution of the Young’s modulus of an adhesive

(bulk) during a tensile test was extrapolated from experimen-

tal data by Murakami et al. (2016), normalized with respect

to the modulus of the undamaged material and compared

with the proposed numerical results. It is found that the

damage velocity 𝛽 is suitable to reproduce the degradation

of mechanical properties due to damage in quasi-brittle

adhesive, as Denatite 2204. In particular, for 𝛽 = 3 a very

good agreement between experimental and numerical curves

is found. In fact, in the case of 𝛽 = 1 (black curve in

Fig. 5), which corresponds to the damage evolution law

proposed by Raffa et al. (2022), this phenomenon is not

well described. Figure 6 shows the global response (tensile

stress-strain) during the same tensile test by Murakami et al.

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
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Normalized time [-]

E
/E
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β=0.01β=0.1β=0.5β=1β=3

Figure 5: Inŕuence of the damage velocity 𝛽: Evolution of
the dimensionless Young’s modulus of the damaged adhesive
as a function of the normalized time. A comparison with the
experimental data from Murakami et al. (2016) is presented.

(2016) on the bulk specimen of Denatite 2204. Also in this

case, experimental data are compared with the numerical

results for a varying damage velocity, and for 𝛽 = 3 a good

agreement is confirmed.
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Figure 6: Inŕuence of the damage velocity 𝛽: Tensile test
behavior of the bulk damaged adhesive. A comparison with the
experimental data from Murakami et al. (2016) is presented.

Figure 6 highlights that 𝛽 governs the softening behav-

ior related to the damage accumulation until failure. As 𝛽

decreases, the adhesive behavior evolves from quasi-brittle

to brittle (see curve for 𝛽 = 0.01 in Fig. 6).

4.2. Joint adhesive configuration
For the adhesive in the joint configuration, we assume a

1D approximation of a pure torsional test. By specializing

Eq. (25) in the 1D case, the damage evolution law reads as:

𝜂̃(𝑅)𝑅̇𝛽 = −
{
𝜔̃,𝑅(𝑅) +

1

2
𝐺,𝑅(𝑅)[[𝑢]]

2
𝑠

}
−
, (30)

with [[𝑢]]𝑠 = 𝑢𝑠 𝑡 is the tangential jump in displacement,

which is imposed in the proposed numerical simulations. If

the damaging material model by Welemane and Goidescu

(2010) is assumed, 𝐺,𝑅(𝑅) = −2𝜋 𝐺0 with 𝐺0 the shear

modulus of the undamaged adhesive. For the sake of sim-

plicity, also in this configuration, it is assumed that 𝜔̃,𝑅(𝑅)

and 𝜂̃(𝑅) are constant parameters, equal to 𝜔̃,𝑅(𝑅) = 𝜔̄ = 1
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Pa/m, 𝜂̃(𝑅) = 𝜂̄ = 2 ⋅ 103 Pa⋅s/m. The joint adhesive it is

assumed to be initially undamaged 𝑅0 = 0, and we focus on

the influence of the damage velocity 𝛽.

■

■
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Figure 7: Inŕuence of the damage velocity 𝛽: Torsional test
behaviour of a damaged adhesive joint. A comparison with the
experimental data from Murakami et al. (2016) is presented.

Figure 7 shows the global response (shear stress-strain)

during a torsional test on Denatite 2204 adhesive in joint

configuration (Murakami et al. (2016)). The experimental

data are compared with the numerical results for varying 𝛽.

For 𝛽 = 1.1 a very good agreement is found. As before,

the damage velocity 𝛽 also affects the brittle behaviour of

adhesive joint.

4.3. Damage rate-independent case
The damage rate-independent case is the limit case for a

vanishing damage velocity 𝛽. In the bulk configuration, by

replacing 𝛽 = 0 in Eq. (26), it is obtained:

𝑡 =
1

𝜖̇

(
𝜂(𝑅) + 𝜔,𝑅(𝑅)

𝜋 𝐸0

) 1

2

. (31)

In the joint configuration, by replacing 𝛽 = 0 in Eq. (30), it

is obtained:

𝑡 =
1

𝑢𝑠

(
𝜂̃(𝑅) + 𝜔̃,𝑅(𝑅)

𝜋 𝐺0

) 1

2

. (32)

Both equations (31) and (32) can be interpreted as a "corre-

lation constraint" between the material functions 𝜂̃ and 𝜔̃ (or

𝜂 and 𝜔). Future work will be geared towards exploring this

correlation. It is worth highlighting that when the parameters

𝜂̃ and 𝜔̃ (or 𝜂 and 𝜔) depend on𝑅(𝑡), Eqs. (31) and (32) give

an algebraic relation governing the evolution of the cracks

density. On the contrary, when they are assumed constants,

these relationships mean that the adopted damaged material

model (Welemane and Goidescu (2010)) is not suitable

in the rate-independent case, and other models should be

explored.

5. Conclusion and perspectives

In this paper, a new generalized model of damaged

imperfect interface is proposed.

Two novelties are introduced: (i) the non-local effect of

the damage through the p-Laplacian of the damage variable

𝑅, which represents a cracks density; (ii) a rate-dependent

effect through a damage velocity 𝛽. The resulting imperfect

interface law is of the nonlinear-spring type due to the

dependence on the damage. The interface stiffness takes

into account the evolution of the damage variable. This

evolution is managed by a nonlinear differential equation

based on the generalized standard material model. Soft and

hard imperfect interface cases are explored.

A parametric analysis on the damage velocity 𝛽 is pro-

posed on simple 1D numerical examples in both bulk and

joint adhesive configurations. The role and relevance of

the damage velocity is illustrated through a comparison

with experimental data taken from literature. The numerical

results show how the mechanical properties of the bulk ad-

hesive and the joint degrade as damage evolves, indicating a

transition from quasi-brittle to brittle behavior as the damage

velocity decreases. As a perspective, it will be interesting to

explore the correlations between the three damage parame-

ters: activation energy threshold 𝜔, viscosity 𝜂 and velocity

𝛽. To this aim, an extensive parametric analysis is necessary.

Moreover, the study should be completed by investigating

the dependency of these parameters on the damage variable

𝑅.

We also plan to implement the model in a computational

software to study complex bonding geometries and to com-

pare them with experimental results. We will also study the

consistency of the model (existence and uniqueness of the

solution) and its behaviour in the presence of uncertainties,

as proposed in Bauzet, Bonetti, Bonfanti, Lebon and Vallet

(2017).
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