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Abstract—In today’s digital landscape, video streaming holds an important role in internet traffic, driven
by the pervasive use of mobile devices and the surge in streaming platform popularity. In light of this,
the imperative to gauge energy consumption takes center stage, paving the way for eco-conscious
and sustainable video streaming solutions with a minimal Carbon Dioxide (CO2) footprint. This paper
meticulously examines the energy consumption and CO2 emissions of five popular open-source and
fast video encoders: x264, x265, VVenC, libvpx-vp9, and SVT-AV1. These encoders are optimized
software implementations of three video coding standards (AVC/H.264, HEVC/H.265, VVC/H.266) and
two video formats (VP9 and AV1). To ensure a fair comparison, we also assess coding efficiency across
these encoders at four distinct presets, applying three objective quality metrics. Additional factors like
computing density and memory usage are considered. Our experiments employ the JVET-CTC video
dataset, encompassing video sequences of diverse content and resolutions. Encoding is executed
on an Intel x86 multi-core processor, while CO2 emissions are computed based on the energy mix
data from a server situated in France, reflecting an average emission rate of 101 g/kWh. Our findings
underscore that the x264 and SVT-AV1 encoders, especially at fast and faster presets, exhibit the lowest
energy consumption and CO2 emissions. Notably, x264 boasts the most energy-efficient performance,
yielding CO2 emissions of 0.28 g, 0.91 g, 2.07 g, and 9.74 g when encoding videos using faster, fast,
medium, and slower presets, respectively. Furthermore, SVT-AV1 and VVenC encoders operating at
a slower preset demonstrate superior coding efficiency, albeit at the cost of higher computational
complexity and CO2 emissions of 60.5 g and 406 g, respectively. A salient observation from our study
is that resolution and encoder presets serve as crucial parameters for curbing energy consumption
and CO2 emissions, albeit with an inherent trade-off in video quality. Comprehensive results from this
research are publicly accessible https://chachoutaieb.github.io/encoding energy co2.

CLIMATE CHANGE is one of the major environmen-
tal challenges caused by human-induced changes to the
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gases, particularly CO2. There is more CO2 in the
atmosphere today than there has been in the last two
thousand years. The higher concentration of CO2 has
changed the Earth’s energy balance and increased the
global average surface temperatures, thereby altering
long-term climatic trends.

The carbon footprint of the Information and Com-
munications Technology (ICT) sector represents a
significant portion of global CO2 emissions. These
emissions are generated by different renewable and
non-renewable energy sources used in different propor-
tions in electricity production. For example, Figure 1
illustrates how electricity is produced from nine energy
sources to power data centers. Among energy-hungry
ICT applications, we can mention machine learning
and video streaming. The energy consumption [1] and
CO2 emissions [2], [3] of machine learning algorithms
have been well investigated. For instance, recently
the authors of [4] have addressed the water footprint
required to cool servers used for training Artificial
Intelligence (AI) models (see Table 1). Moreover,
with growing concerns about the energy impact of
the video streaming industry, different initiatives have
sprung up to understand the energy consumption re-
lated to streaming. Among them, we can cite the green
of streaming [5], which is a not-for-profit members
organization that focuses the streaming industry on
developing joined-up engineering strategies to reduce
energy waste in the delivery infrastructure.

Table 1. Energy, carbon and water footprint of AI models.

Reference App. Resource

Energy CO2 Water

Strubell et al. (2019) [1] NLP∗ " % %

Lottick et al. (2019) [2] AI " " %

Lacoste et al. (2019) [3] AI " " %

Li et al. (2023) [4] AI % % "

(*) NLP: natural language processing.

According to the Sandvine report [6], in the first
half of 2022, bandwidth traffic was dominated mainly
by video streaming, accounting for 65.93% of overall
traffic. This high share of video traffic is primarily due
to the success and popularity of streaming and gaming
platforms such as Netflix, YouTube, and Twitch, as
well as bandwidth-hungry video content at high reso-
lution (4K/8K), high frame-rate, high dynamic range,
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Figure 1. The environmental impact of energy
sources used in electricity production.

and omnidirectional 360◦ video content. The COVID-
19 pandemic has accelerated these trends even further.
In Europe, YouTube traffic increased by 13%, Netflix
streaming increased by 58%, and traffic from all video
conferencing applications grew by 350% on the week
when lockdown orders were issued [7]. Many video-
streaming companies and players in this industry are
striving to reduce energy consumption, as an example,
we can cite the collaborative project named dimpact1

bringing together entertainment and media companies,
which aims to help the digital media industry to map
and manage its carbon impacts.

Currently, video streaming is responsible for 1%
of the global greenhouse gas emissions, which is
the CO2 emissions of a country like Spain [8]. As
illustrated in Figure 2, the electronic equipment and
devices ensuring end-to-end video delivery and storage
are responsible for different proportions of the energy
consumption associated with video streaming. Given
that one video can be viewed and decoded a million
times, network equipment and terminals contribute
most of the total video streaming energy. Interna-
tional video coding standards developed over the last
three decades play an essential role in reducing the
size of raw videos facilitating their transmission over
limited-bandwidth networks or their efficient storage
in data centers [9]. The most successful and widely
deployed video coding standard is by far the MPEG-4
Part 10 Advanced Video Coding (AVC)/H.264 [10],
standardized in 2003 jointly by ISO/IEC Moving
Picture Experts Group (MPEG) and ITU-T Video
Coding Experts Group (VCEG). These two groups
have then developed new standards such as High-

1https://dimpact.org/
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Efficiency Video Coding (HEVC)/H.265 [11] in 2013,
and more recently, in July 2020, the latest Versatile
Video Coding (VVC)/H.266 standard [12], [13]. Each
new standard enhances the coding efficiency by saving
up to 50% of bitrate for the same subjective video
quality compared to its predecessor. In particular,
the VVC/H.266 standard has demonstrated notable
advancements in coding efficiency compared to its
predecessor, HEVC/H.265 [14], [15]. Nevertheless, the
standard improves the coding efficiency at the expense
of extra complexity, especially on the encoder side. For
instance, the HEVC/H.265 reference software encoder
is 2 times more complex than AVC/H.264 [16], and
the VVC/H.266 reference encoder is 8 times more
complex than HEVC/H.265 encoder [17] under the
practical Random Access (RA) coding configuration.
On the other hand, the Alliance for Open Media
(AOM)2 was established by top tech companies to
develop royalty-free and interoperable solutions for the
next generation of media delivery. The AOM member
companies have developed the Aomedia Video 1 (AV1)
video format with coding efficiency competitive or
even beyond HEVC/H.265 [15], [18].

Several works have investigated the energy con-
sumption and optimization of video streaming at differ-
ent levels of the video delivery cycle: encoding [19]–
[24], transmission [25], decoding [26]–[31], and dis-
play [32], as illustrated in Figure 2 and summarized
in Table 2. For instance, in 2016, MPEG released the
energy-efficient media consumption standard ISO/IEC
23001-11 [33], also known as green metadata. The
standard defines a set of metadata that enables control-
ling the energy consumption of encoding, decoding,
and display for more sustainable video consumption.

However, developing an accurate energy consump-
tion model that considers the life cycle of a video, from

2AOM: https://aomedia.org/about/

Table 2. Energy emissions and carbon footprint estimation

of video streaming applications.

Reference Video application Resource

Enc. Dec. Tran. Dis. Energy CO2

[19]–[24] " % % % " %

[23], [27]–[30], [34] % " % % " %

[31] % " % % " "

[25] % % " % " %

[32] % % % " " %

Our " % % % " "

Enc.: Encoding, Dec.:Decoding, Tran.: Transmission, Dis.:
Display

acquisition to display, is still challenging, as several pa-
rameters (i.e., production, maintenance, transportation
of servers and devices) can have an impact on the en-
ergy footprint, requiring the availability of large-scale
data from top tech streaming companies. Moreover,
none of these solutions have considered all modern
video encoders nor estimated their CO2 emissions.
Therefore, in this paper3, we propose to focus on the
energy consumption and CO2 emissions of popular
open-source and fast video encoders, namely x264,
x265, VVenC, libvpx-vp9, and SVT-AV1, which are
based on three video coding standards (AVC/H.264,
HEVC/H.265, VVC/H.266) and two video formats
(VP9, and AV1). The contributions of the paper are
summarized as follows:

• Assess the complexity, density, memory usage,
energy consumption, and CO2 footprint of five
video modern encoder implementations for encod-
ing video sequences with different contents, resolu-
tions, and bitrates.

• Assess the encoding trade-off between energy con-

3Project page: https://chachoutaieb.github.io/encoding energy
co2
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Figure 3. BD-Rate (wPSNR) versus relative energy
consumption for the five software encoders at four
presets. The gray line (i.e., Pareto front) highlights
configurations providing the best trade-off between
compression efficiency and energy consumption.

sumption and coding efficiency based on differ-
ent quality metrics, including PSNR, SSIM, and
VMAF.

• Analyze the impact of video resolution and encoder
preset on CO2 emissions, energy consumption, and
coding efficiency.

• Provide an in-depth analysis of the pros and cons
of five open-source software video encoders at four
different presets or speed settings.

The experimental results depicted in Figure 3
demonstrate the compelling performance of the
SVT-AV1 encoder in terms of the trade-off be-
tween compression efficiency and energy consumption.
VVenC and x264 encoders follow closely behind.
Notably, among the top nine configurations, three were
accomplished by SVT-AV1 and four by VVenC en-
coders, while two were achieved by the x264 encoder.

RELATED WORK
This section briefly reviews works dealing with the

measurement, consumption, and optimization of the
decoder and encoder energy.

Decoder
The first in-depth energy consumption compar-

ative study between HEVC/H.265 and VVC/H.266
reference software decoders was conducted in [35].
The authors showed that the VVC decoder consumes
80% higher energy than the HEVC/H.265 decoder.
An energy-aware VVC/H.266 encoder configuration
was also proposed by disabling a set of coding tools.

This coding configuration reduces the decoder en-
ergy consumption by 17% on average at the cost of
around 10% bitrate overhead. An exploration algo-
rithm based on greedy search was proposed in [36] to
select the VVC/H.266 encoding profile that minimizes
the decoder-energy consumption while preserving the
coding efficiency of the reference encoder that in-
cludes all VVC/H.266 tools. The derived profiles tested
on the VVC/H.266 reference software encoder and
decoder enable different trade-offs between decoder
energy saving and bitrate loss. Kr̈anzler et al. [22]
analyzed the impact of VVC/H.266 encoder config-
urations on the decoder energy consumption using the
fast Fraunhofer Versatile Video Encoder (VVenC)4and
the real-time VVdeC5decoder. Two new coding pro-
files were derived from this study, enabling 25% and
34% decoder energy savings at the cost of 5% and
15% bitrate increases, respectively. Authors in [27]
proposed two linear energy prediction models for
HEVC/H.265 decoder based on features extracted from
the HEVC/H.265 bitstream. The best model, tested on
the reference software HEVC/H.265 decoder, achieved
an energy prediction accuracy higher than 88%. More
recently, Saha et al. [34] measured and analyzed the
energy consumption of two optimized VVC/H.266
software decoders, namely OpenVVC6 and VVdeC,
on two resource-constraint embedded NVIDIA de-
vices fitted by ARM processors. The two decoders
showed very similar performance in decoding frame-
rate and energy consumption, while OpenVVC used
lower maximum memory than VVdeC.

Work in [25] tackled the energy consumption of
both content production (headend) and mobile user
(terminal) for video streaming with different adaptation
methods on CPU and GPU. The authors identified
that adaptive frame-rate is the most energy-efficient
adaptive representation compared to varying spatial
resolution and quality. Moreover, encoding on GPU
results in additional energy saving at the headend. Au-
thors in [30] proposed to extend the traditional encoder
rate-distortion optimization to consider the decoding
energy. Thus, the HEVC/H.265 encoder selects a set of
coding tools that minimize the trade-off between rate
distortion and decoding energy. This latter is estimated
at the encoder by a bitstream feature-based model.
Experimental results showed that this solution reaches

4VVenC: https://github.com/fraunhoferhhi/vvenc
5VVdeC: https://github.com/fraunhoferhhi/vvdec
6OpenVVC: https://github.com/OpenVVC/OpenVVC

4 IEEE Consumer Electronics Magazine

ACCEPTED MANUSCRIPT / CLEAN COPY

https://github.com/fraunhoferhhi/vvenc
https://github.com/fraunhoferhhi/vvdec
https://github.com/OpenVVC/OpenVVC


Table 3. Characteristics of works targeting energy consumption of video encoders.

Ref. (Year) Standard (Encoder) Preset Dataset Hardware Quality metric CO2

[19] (2016) AVC (x264), HEVC (Kvazaar, x265) 1 preset 1 HD video x86 Intel
VP9 (Vpxenc) (Big Buck Bunny) Core i7-5820K @ 3.3 GHz PSNR, SSIM %

[20] (2017) HEVC (x265) 10 presets 10 HD videos Xeon E3-1271 @ 3.6 Ghz PSNR %

[21] (2021) AVC (x264), HEVC (x265) 9 presets One 2s video segment Cloud x86 and ARM % %

[22] (2022) HEVC (x265) 9 presets JVET-CTC, Classes: B, C, D – % %

[23] (2022) HEVC (x265) , VVC (VVenC) 1 preset JVET-CTC, Classes: B, C, D Intel Comet Lake-S
VP9 (Vpxenc), AV1 (SVT-AV1) @ 3.3 GHz PSNR, VMAF %

[24] (2023) HEVC (x265) 9 presets VCD dataset (500 UHD videos) – VMAF %

Our AVC (x264), HEVC (x265), VVC (VVenC) 4 presets JVET-CTC, Classes: Xeon(R) W-2125, @ 4 GHz PSNR, SSIM
VP9 (Vpxenc), AV1 (SVT-AV1) A1, A2, B, C, D, E, F VMAF "

up to 30% of decoding energy saving. However, de-
pending on the video sequence, a significant bitrate
overhead of 20% to 50% is introduced.

Encoder
The energy consumption and the coding efficiency

performance of four fast video encoders, including
x264, Kvazaar, x265, and libvpx-vp9, were analyzed
in [19]. The experimental results showed that in con-
trast to the x265 encoder, the x264 encoder is the
most efficient in energy consumption but provides
the lowest compression efficiency compared to other
encoders, while the libvpx-vp9 encoder achieves the
best trade-off between energy consumption and coding
efficiency. Authors in [20] conducted an in-depth en-
ergy consumption analysis of the x265 encoder consid-
ering ten presets targeting a multicore x86 processor.
The performance results in energy consumption and
coding efficiency are provided to guide the choice
of the best encoding profile according to the target
application specifications and requirements in terms of
speed, latency, energy, and coding efficiency. Authors
in [21] investigated the energy consumption, cost,
and coding efficiency of video encoding on the new
Graviton2 ARM instances introduced in the Amazon
EC2 services. A set of coding recommendations is
provided to reduce the encoding cost while achieving
the highest coding efficiency with the lowest energy
consumption. The authors recommend using ARM-
based and x86-based instances for respectively x264
and x265 encoders to reach the cheapest cost encoding.
The low encoding cost is achieved thanks to the
intensive use of low-level optimizations through Single
Instruction Multiple Data (SIMD) by the x265 encoder
for only x86 platforms. Authors in [23] performed an
analysis and comparison of the energy consumption
among four state-of-the-art codecs, namely VP9, x265,
VVenC/VVdeC, and SVT-AV1. The experimental find-

ings demonstrated that SVT-AV1 exhibited the best
trade-off between coding efficiency and energy con-
sumption when compared to the other codecs. How-
ever, it is worth noting that the comparison between
the encoders was conducted solely based on a single
preset, which varied across different encoders. In a
recent study, the authors of [24] proposed to include
the energy consumption of the encoding process in
the optimization of bitrate ladders. To achieve this,
they conducted a comprehensive analysis of energy
consumption and compression efficiency of different
x265 presets for 500 video sequences. Then, based
on their findings, a per-title model was developed to
optimize the trade-off between compression efficiency
and energy consumption. The authors mentioned that
considering energy consumption in optimizing bitrate
ladders can provide more efficient and sustainable
video streaming. In a separate work, the authors of
[22] proposed a simple linear model for predicting the
energy consumption of the x265 encoder at different
presets. Their model relied on pre-encoding with the
x265 encoder using the ultrafast preset, which enabled
high prediction accuracy across various platforms. The
energy prediction model reached an accuracy of 88%
on average over all presets. As a result, this model can
be used to optimize and deploy energy-efficient video
encoding algorithms.

This paper investigates, in addition to the energy
consumption, the CO2 emissions of five leading open-
source software video encoders at four presets. The
lack of data on the CO2 emissions of video encoders
in the literature motivates us to fill this gap with an
in-depth study and analysis of their CO2 emissions.
Further, we explore and compare the complexity, cod-
ing efficiency, density (i.e., parallelism efficiency), and
memory usage of encoders, highlighting the pros and
cons of each encoder. Table 3 summarizes the main
characteristics of described works tackling energy con-
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sumption of fast software video encoders.

SYSTEM DESCRIPTION
In a digital video transmission system, the captured

video sequence is processed by several stages, such
as encoding/transcoding, network adaptation, transmis-
sion, and decoding, before being viewed by the end
user, as illustrated in Figure 2. This section first gives
the encoding data generation and the configuration
each encoder uses for measuring energy consumption.
Second, the measurement procedure adopted is pre-
sented for both energy consumption and CO2 emis-
sions.

Encoding data generation
We conducted video encoding on the dataset

defined by the Joint Video Exploration Team
Common Test Conditions (JVET-CTC) [37] using the
five considered encoders at four different bitrates,
applying Constant QP (CQP) mode for VVenC and
Constant Rate Factor (CRF) mode for the remaining
encoders. The encoding process was carried out using
four different presets or speed settings: faster, fast,
medium and slower. Typically, in modern encoders,
a set of presets is provided, which allows easier
adjustment of certain encoding features [38]. For
instance, a slower encoding preset takes more time to
encode a video while providing higher compression
efficiency. On the other hand, a faster encoding preset
sacrifices some of the compression efficiency for
faster encoding. This can be useful when speed is
more important than quality, such as live streaming or
real-time communication applications. The encoding
process was performed on a Central Processing Unit
(CPU) instance using the open-source tool FFmpeg
for four encoders, including x264, x265, libvpx-vp9,
and Scalable Video Technology for AV1 (SVT-AV1),
while the VVenC software encoder implementation is
used for the VVC/H.266 standard. Table 4 gives the
command line used for each encoder, and below we
describe the encoders and their coding configuration
used for our experiments.

1) Advanced Video Coding (AVC)/H.264: For
assessing the AVC/H.264 standard, we have chosen
to use the x264 encoder implementation. x264 is an
open-source software library designed for real-time
applications. Its Application Programming Interface
(API) allows configuring specific video characteristics
such as the frame-rate, bitrate, bit-depth, resolution,

and the maximum number of frames to be encoded,
etc. The API also provides a flexible trade-off
between compression performance and computational
complexity by using different presets. In this work,
we encoded the videos with four different presets,
namely veryslow, medium, veryfast and ultrafast.

2) High-Efficiency Video Coding (HEVC)/H.265:
For the HEVC/H.265 standard, we opted for the x265
implementation developed by the MulticoreWare
company. x265 encoder is one of the most popular
encoders for HEVC/H.265, and it supports most of
the features of x264, including all bitrate control
modes, frame-rate change, single-pass or multi-pass
and video buffering bitrate control. As for x264, we
performed the encoding with the following presets:
veryslow, medium, veryfast and ultrafast.

3) VP9: To test the coding performance of VP9, we
used the latest version of the VP9 encoder developed
by Google named libvpx-vp9. This latter is available
as a codec with Fast Forward Moving Picture Experts
Group (FFmpeg) tool, enabling fast VP9 encoder
implementation. Furthermore, similar to x265 and
x264, libvpx-vp9 supports a multipass mode, which
results in improved rate-distortion performance.
In addition, libvpx-vp9 provides a flexible trade-
off between coding efficiency and computational
complexity using speed encoding rate control. In this
study, we considered four-speed encoding rates, 0, 3,
6, and 8, which are similar to the veryslow, medium,
veryfast, and ultrafast presets, in x264 and x265
encoders, respectively.

4) Aomedia Video 1 (AV1): The most popular
fast AV1 encoder implementation is SVT-AV1, which
has been integrated into the FFmpeg tool. The
SVT-AV1 encoder was adopted by the AOM Software
Implementation Working Group (SIWG) in August
2020. SVT-AV1 is a CPU-based multi-threaded video
encoder, and it provides many encoding features,
such as multiple encoding presets, bitrate control
modes, video scaling, etc. In our experiments,
we specifically configured the encoding preset for
different performance levels. We assigned the values
of 3, 6, 10, and 12 to represent the slower, medium,
fast, and faster encoding presets, respectively. For
this encoder, preset 0 also provides a high encoding
efficiency. Still, the encoding time is much higher
than other encoders, such as libvpx-vp9 and x265,
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Table 4. Command lines used to run the five video encoders considered in the experiments.

Standard SW encoder Version Command line

AVC/H.264 x264 0.164.3101
ffmpeg -y -f rawvideo -pix_fmt {yuv420p, yuv420p10le} -s:v {W×H} -r {fps} -i input.yuv
-c:v libx264 -pix_fmt {yuv420p, yuv420p10le} -preset {veryslow, medium, veryfast, ultrafast}
-frames:v {#frames} -crf {QP} -x264-params "keyint={GOP_size}:min-keyint={GOP_size}" output.mp4

HEVC/H.265 x265 3.5-2
ffmpeg -y -f rawvideo -pix_fmt {yuv420p, yuv420p10le} -s:v {W×H} -r {fps} -i input.yuv
-c:v libx265 -pix_fmt {yuv420p, yuv420p10le} -preset {veryslow, medium, veryfast, ultrafast}
-frames:v {#frames} -crf {QP} -x265-params "keyint={GOP_size}:min-keyint={GOP_size}" output.mp4

VVC/H.266 VVenC 1.9.0 vvencFFapp -c randomaccess_{slow, medium, fast, faster}.cfg -c sequence.cfg

VP9 libvpx-vp9 1.12.0

1) ffmpeg -y -f rawvideo -pix_fmt {yuv420p, yuv420p10le} -s:v {W×H} -r {fps} -i input.yuv -frames:v {#frames}
-c:v libvpx-vp9 -pix_fmt {yuv420p, yuv420p10le} -speed {0, 3, 6} -b:v 0 -crf {QP} -g {GOP_size} output.mp4
2) ffmpeg -y -f rawvideo -pix_fmt {yuv420p, yuv420p10le} -s:v {W×H} -r {fps} -i input.yuv -speed 8 -frames:v {#frames}
-c:v libvpx-vp9 -pix_fmt {yuv420p, yuv420p10le} -quality realtime -b:v 0 -crf {QP} -g {GOP_size} output.mp4

AV1 SVT-AV1 1.7.0 ffmpeg -y -f rawvideo -pix_fmt {yuv420p, yuv420p10le} -s:v {W×H} -r {fps} -i input.yuv -frames:v {#frames}
-c:v libsvtav1 -pix_fmt {yuv420p, yuv420p10le} -preset {3, 6, 10, 12} -crf {QP} -g {GOP_size} output.mp4

with the veryslow preset.

5) Versatile Video Coding (VVC)/H.266: For
the VVC/H.266 standard, the encoding was performed
using the VVenC. This latter is a fast and efficient
VVC/H.266 software encoder implementation
developed by Fraunhofer Heinrich Hertz Institute
(HHI). It provides a range of practical features,
including perceptual optimization based on the
XPSNR metric, Variable Bit-Rate (VBR) control
mode along with five predefined presets. The encoder
further supports multi-threading, single- and two-pass
rate control modes, and task-based parallelization.
For VVenC, we have set the encoding preset to slow,
medium, fast, and faster. Like SVT-AV1, the encoding
time of slower preset of VVenC is very high and is
not comparable to the encoding time of the other
encoders. To this end, we selected the slow preset to
ensure high coding efficiency at a reasonable encoding
time.

Energy and CO2 footprint measurement
Energy and power. In physics, energy is the

ability of a physical system to do a task. The
computation of the amount of electrical energy
transferred to an appliance depends on its power
consumption and the duration required to process
the task. The electrical energy can be computed
by multiplying the power by time and is expressed
in kilowatt-hour (kWh), referring to the energy
consumed at a rate of one kilowatt for one hour.

Energy measure and power computation. In
our work, we employed the CodeCarbon7 [3] tool to
measure the energy consumed during the encoding
process. This tool utilizes the Running Average
Power Limit (RAPL) interface integrated into Intel
processors. RAPL is an interface to report accumulated

7https://github.com/mlco2/codecarbon (version 2.3.1)

power and energy consumption of various System-on-
Chip (SoC) power domains. RAPL is not an analog
power meter but uses a software power model. This
software power model measures energy usage relying
on a set of hardware counters and I/O models. In
the Linux operating system, there are four ways
to access the RAPL interface data as described in
[40]. The CodeCarbon tool exploits the files under
/sys/class/powercap/intel-rapl/intel-

rapl:0 using the powercap interface. The RAPL
file contains the energy consumption value from
the register status, expressed in microjoules (mj).
The energy consumption value is updated roughly
every millisecond (ms), which is very suitable for
the encoding process that takes more than 2 seconds
to encode a video sequence of 10 seconds. Over
time, the value of energy is increased to the point
of overflow and then resets. The CodeCarbon tool
measures energy consumption over a specified time
interval by capturing two readings with a time
delay and then calculates the wattage based on the
difference in energy consumption and the time delay.
In our work, we perform multiple measurements until
the confidence interval is small to ensure statistical
correctness.

CO2 footprint computation. To convert the energy
consumption determined via the CodeCarbon tool into
CO2 footprint, it is first necessary to determine the
geographic location of computation servers, this can
be done via their IP address using the GeoJS8 API
or manually by providing the country of the server
location. Then, the energy mix data for that location
are used. It is important to note that this conversion
relates precisely to the electricity consumption. In our
work, the video encoding server is located in France.
The energy mix data are obtained from the electricity
maps data [39], which contain individual country

8https://www.geojs.io/
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Table 5. Electricity production ratio (EPR) of various energy sources linked to CO2 emissions intensity presented by country

in 2022 [39]. EPR refers to the share of each energy source in the total electricity production. CO2 emissions intensity (CEI)

is the amount of CO2 emitted per unit of electricity generated.

Energy source Oil Coal Gas Biomass Geothermal Solar Hydro Wind Nuclear CO2eq (g/kWh)

France CEI (g/kWh) 1014 954 625 230 38 30 11 13 5 101

EPR 0.0038 0.0063 0.0874 0.135 0 0.037 0.0657 0.0764 0.575

USA CEI (g/kWh) 1315 1081 513 15 109 26 24 11 12 408

(Texas) EPR 0 0.1669 0.4239 0 0 0.0549 0.0007 0.249 0.0971

Australia CEI (g/kWh) 650 820 490 230 38 45 24 11 12 586

(Sydney) EPR 0 0.6819 0.0365 0 0 0.1394 0.0524 0.0897 0

Note: These data are subject to change over time and the obtained results can change accordingly.

CO2 emissions and the percentage of electricity
produced from nine different energy sources: oil,
coal, gas, biomass, geothermal, solar, hydro, wind,
and nuclear (see Figure 1). The carbon emissions per
unit of power generated by energy sources are higher
for the primary fossil fuels, including coal, oil, and
natural gas, as presented in Table 5. This table also
shows a high variation in CO2 emissions for different
geographical regions.

To calculate the equivalent CO2 (CO2eq) emis-
sions for 1 kWh of energy consumed in a country, we
used Equation (1).

CO2eq =
∑
s∈S

EPRs CEIs, (1)

where EPRs and CEIs are the electricity production
ratio and the CO2 emissions intensity of a source s,
respectively. S is the set of CO2 emissions’ sources.

The CO2eq is the weighted average CO2 emissions
of the considered energy sources for 1 kWh of energy.
For example, the CO2eq emissions for 1 kWh of
energy consumed by servers located in France are
equal to 101 g/kWh9. In contrast, servers in Australia
(Sydney) emit 586 g/kWh, which is much more than
the CO2 emissions in France.

Finally, once the CO2eq is computed by Equa-
tion (1) for a particular country following data in
Table 5, the carbon footprint (g) of an encoder is
simply obtained by multiplying the encoding energy
(kWh) by the CO2eq (g/kWh).

9101 = 0.0038×1014 + 0.0063×954 + 0.0874×625 +
0.135×230 + 0×38 + 0.037×30 + 0.0657×11 + 0.0764×13
+ 0.575×5.

EXPERIMENTAL RESULTS
Experimental setup

The CO2 emissions of video encoding depend
mainly on the encoding time (i.e., video sequences
and encoder configuration), the electric grid utilized,
the energy consumption of hardware, and the energy
mix of the selected country. All these details are
provided in this section.

Video sequences. In our experiments, we selected
video sequences from the JVET-CTC dataset that
covers a wide range of typical video content,
consisting of 26 video sequences of different
resolutions, frame-rates, and bit-depths. The video
sequences are grouped by resolution classes (from
class A1 to class F), and a large number of sequences
have high spatial resolution (3840×2160) and high
frame-rate (60 fps). The JVET-CTC video sequences
were encoded at four bitrates by applying CQP
mode for VVenC and CRF mode for the remaining
encoders, resulting in a total of 2080 encoded videos
(26 videos, 4 bitrates, 5 encoders, and 4 presets).

Used hardware and energy measurements.
The encoding process was performed on a highly
efficient workstation type, specifically Intel(R)
Xeon(R) W-2125 with a 4 Core CPU running at 4.00
GHz with four DDR4 RAM modules, each one with
a size of 16 GB on Ubuntu 20.04.5 LTS Operating
System (OS). The processor supports a wide range
of SIMD, including SSE4.2, AVX, AVX2, and
AVX-512. All five encoders rely heavily on assembly
and intrinsic to take advantage of low-level CPU and
SIMD instructions (SSE, AVX, AVX-512), which
help speed up the encoding process. We used the
default configuration of x264, x265, libvpx-vp9, and
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SVT-AV1 encoders provided with the FFmpeg library
version 6.0. The proper SSE/AVX optimizations were
enabled at run time according to the instructions
supported by the CPU. For VVenC, we also compiled
the encoder with the default configuration provided
by the project GitHub through CMake.

During the encoding process, we measured
the energy consumption and the equivalence CO2
emissions for servers located in France. In addition,
we recorded the encoding time (run time) and
percentage of CPU and memory usage to analyze the
computing density and complexity of the evaluated
encoders.

Encoder settings. We considered four different
presets, namely slower, meduim, fast, and faster.
These presets corresponded to the following settings:
{veryslow, medium, veryfast, and ultrafast} for x264
and x265, encoding speeds of 0, 3, 6, and 8 for libvpx-
vp9, speed settings of 3, 6, 10, and 12 for SVT-AV1,
and {slow, medium, fast, and faster} for VVenC,
respectively. Thus, for ease of description, in the rest
of this paper, we used the terms slower, meduim,
fast, and faster to refer to these different encoding
presets. The JVET-CTC dataset [37] underwent
encoding at four different bitrates, applying CQP
mode for VVenC and CRF mode for the remaining
encoders. To ensure a comprehensive evaluation, we
have meticulously selected four specific Quantization
Parameter (QP) values for each encoder. Specifically,
for x264, x265, and VVenC, we chose the QP values
of JVET-CTC, namely {22, 27, 32, 37}. Similarly,
for the libvpx-vp9 and SVT-AV1 codecs, we used
{33, 42, 51, 59}, employing linear interpolation and
adjusting the JVET-CTC QPs to maintain a consistent
range of quality and bitrate. We also took great care
to establish a constant Group of Pictures (GOP) size,
which we consistently set at 32 frames for all the
encoders. As per the JVET-CTC, the intra-period is
configured to be 32 or 64 frames, depending on the
video frame-rate. In addition to our careful selections
of QP, GOP size, and intra-period, we chose to base
our comparisons on the default GOP configurations
of these encoders at four different presets. Moreover,
it’s worth noting that the complexity of the GOP
configuration impacts not only energy consumption
and the CO2 footprint but also the encoder coding
efficiency. By considering these metrics, we can gain
valuable insights into the overall performance and
environmental impact of encoder implementations.

Table 4 provides an overview of the command lines
utilized to execute the encoding process for the five
software encoders, along with the corresponding codec
versions. Finally, we provide a project’s GitHub10,
which contains the necessary codes allowing the
reproduction of the results of this study.

Video quality and coding efficiency. We considered
three objective full-reference quality metrics to assess
the quality of the encoded videos: Peak Signal to
Noise Ratio (PSNR) is a common metric that relies
on the Mean Squared Error (MSE) computed over
the frame pixels. Structural Similarity Index Measure
(SSIM) [41] that assesses the structural similarity
between the original and the encoded frame. The
third considered metric is the Video Multi-method
Assessment Fusion (VMAF) [42] metric, which
combines human vision modeling with machine
learning. To evaluate the average bitrate saving of
different encoders against x264 (faster) encoder, we
measured the Bjøntegaard Delta Rate (BD-Rate) [43].
This latter is commonly used for calculating the
average bitrate difference in % over the whole range
of rates. In our work, the x264 (faster) encoder
was considered as the anchor, and the BD-Rate was
computed for the three quality metrics, i.e., BD-Rate
(PSNR), BD-Rate (SSIM), and BD-Rate (VMAF).
For the PSNR calculation, we employed a weighted
PSNR (wPSNR) metric, wherein weights of 6, 1,
and 1 were assigned to the luminance and the two
chrominance components, respectively.

Results and analysis
1) Encoding complexity and coding efficiency: To

analyze the trade-off between encoding complexity and
coding efficiency, we plot in Figures 4(a) and 4(d)
the total encoding time for two presets, slower and
faster, respectively. In addition, in Figure 5, we plot
the video quality produced by the five encoders versus
the bitrate. The quality is calculated using the three
metrics averaged over the JVET-CTC dataset. From
Figures 4(a) and 4(d), we can see that the five encoders
behave similarly across all bitrates for both presets.
They perform faster encoding and low quality at a
low bitrate. Particularly, the x264 encoder is faster
than other encoders. Nevertheless, in terms of coding
efficiency, x264 (faster) achieves the lowest quality,
and the VVenC (slower) encoder outperforms other

10https://github.com/chachoutaieb/encoding energy co2
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Figure 4. Encoding performance for slower and faster encoding presets on the first and second rows,
respectively. (a) and (d) The total encoding time (run time) curve of the five encoders at different bitrates.
(b) and (e) The total energy consumption, CO2 emissions in France of encoding JVET-CTC dataset, and the
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a significant empty gap between curves.
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Figure 5. The average quality in wPSNR (dB), SSIM and VMAF at different bitrate for the five considered
encoders.

encoders on the JVET-CTC dataset. Nevertheless, the
observed improvement in coding efficiency of VVenC

(slower) comes at the cost of higher encoding time.
The increase in encoding time is mainly due to the new
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Figure 6. BD-Rate versus the relative total energy consumption for the five software video encoders.

complex tools and their high search space explored
during encoding to choose the most efficient cod-
ing configuration and coding tools. In addition, x264
encoder is well optimized with SIMD intrinsics for
the x86 platform, along with efficient multi-threading
parallelism. We also notice that for a faster preset,
SVT-AV1 (faster) gives the best trade-off between cod-
ing efficiency and encoding complexity. Particularly,
the SVT-AV1 (faster) encoder significantly reduces the
encoding time while still maintaining the highest cod-
ing efficiency compared to libvpx-vp9 (faster), x265
(faster), and x264 (slower and faster).

2) Energy consumption and CO2 emissions: Fig-
ures 4(b) and 4(e) give the total encoding energy
consumption, CO2 emissions, and the equivalent of
CO2 emissions in terms of distance traveled by car
for the five video encoders at slower and faster encoder
settings, respectively. The total energy and CO2 emis-
sions are measured for encoding the whole JVET-CTC
dataset with four fixed QPs. To understand the CO2
emissions in the physical world, we converted the
CO2 emissions to the equivalent number of meters
traveled by car. In 2018, the average CO2 emissions of
a passenger car registered in the European Union (EU)
were about 120.4 grams of CO2 per kilometer [44].
Furthermore, we found that the energy consumption
and CO2 emissions differ from one encoder to another,
increasing significantly for the newborn standards.
Compared to other encoders, the VVenC encoder re-
sults in significantly higher energy consumption and
CO2 emissions in both slower and faster encoding
presets. On the whole JVET-CTC dataset, VVenC
emits an amount of CO2 equal to 406 g and 15.18 g
when using slower and faster presets, respectively.
These CO2 emissions are very high compared to the
amount of CO2 emitted by the closest encoder in terms
of encoding complexity, i.e., x265 and libvpx-vp9

when using slower and faster presets, respectively. We
also notice that on both presets, SVT-AV1 minimizes
energy consumption and CO2 emissions compared to
x265 and libvpx-vp9. However, it is still not as effi-
cient as the x264 encoder, which achieves the lowest
energy consumption and CO2 emissions compared
to other encoders, regardless of the encoder preset
used. Overall, according to these results, the most
suitable encoder for low energy and CO2 emissions is
x264, which minimizes CO2 emissions on the whole
JVET-CTC dataset at 9.74 g when using a slower
preset, accounting for approximately 11.28%, 15.66%,
16.08% and 2.39% of the emissions of x265, libvpx-
vp9, SVT-AV1 and VVenC encoders, respectively.

3) Impact of the video resolution: The total
energy usage is compared across five different video
resolutions to analyze the impact of video resolution
on encoder energy consumption. This analysis is pre-
sented using two different presets, faster and slower,
as illustrated in Figures 4(c) and 4(f), respectively. The
total energy usage is measured for encoding a video of
10 seconds. The figures demonstrate that all encoders
exhibit similar behavior when the video resolution in-
creases. More specifically, the energy consumption of
all encoders increases with higher video resolutions be-
cause the encoder processes more data per frame. Fur-
thermore, it is apparent from the figures that the energy
consumption of the VVenC encoder rises markedly
at 3840×2160 resolution. For the slower preset, the
VVenC encoder’s energy consumption at this resolu-
tion is 159 Wh. This value represents approximately
3.2, 10.6, 11.5, and 30.2 times the energy required
by this encoder to encode 1920×1080, 1280×720,
832×480, and 416×240 resolutions, respectively.

4) Trade-off between energy consumption and cod-
ing efficiency: To illustrate the relationship between
energy consumption and coding efficiency, we provide
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Figure 7. Impact of video encoding preset on CO2 emissions and coding efficiency. (a) Total CO2 emissions
for encoding JVET-CTC dataset at four different presets, (b) BD-Rate (wPSNR) performance (%) of the five
encoders against x264 (faster) at four different presets.

in Figure 6 the BD-Rate versus the relative energy
consumption. Energy consumption and BD-Rate for
the three quality metrics are presented for each en-
coder, using two different presets (faster and slower),
compared to the anchor x264 (faster) encoder. From
these figures, we can observe that compared to x264
(faster), VVenC (slower) reached the best compression
performance in terms of wPSNR, SSIM, and VMAF,
but this codec suffers from increased computational
complexity and hence energy consumption compared
to other encoders. We can also notice that in terms of
energy consumption, the encoders consume low energy
when using a faster preset. Among all the encoders,
the SVT-AV1 (faster) encoder is the most energy-
efficient relative to the x264 (faster) encoder, achieving
a compiling trade-off between coding efficiency and
energy consumption. On the other hand, regarding
coding efficiency, the encoders using the faster preset
achieve an inferior coding efficiency compared to their
slower preset. The results also illustrate that when
using a faster encoding preset, VVenC (faster) exhibits
superior coding efficiency compared to the x264, x265,
libvpx-vp9, and SVT-AV1 encoders using a slower
preset, while SVT-AV1 (faster) outperforms only the
x264 (slower) encoder.

5) Impact of video encoding preset on CO2 emis-
sions and coding efficiency: In this evaluation, we
aim to compare the total CO2 emissions across the

four different video encoding presets, i.e., slower,
medium, fast, and faster. The total CO2 emissions are
measured for encoding the whole JVET-CTC dataset
with four fixed QPs. Additionally, the analysis takes
into consideration the coding efficiency according to
the encoding presets. By examining these factors, we
can gain valuable insights into the trade-offs between
environmental sustainability, encoding speed, and cod-
ing efficiency. From Figure 7(a), it is evident that
a notable increase in CO2 emissions occurs as the
encoding preset shifts from faster to slower preset. The
disparity in emissions becomes more pronounced with
each successive decrease in preset speed. For example,
in the case of the x265 encoder, the CO2 emissions
when using a faster preset amount to 1.36 g, which rep-
resents approximately, 43.7%, 24.8%, and 1.6% of the
CO2 emissions when using fast, medium, and slower
presets, respectively. Furthermore, it should be noted
that the SVT-AV1 encoder demonstrates effective CO2
emission reduction when utilizing the fast and faster
presets. In fact, SVT-AV1 outperforms other codecs
in terms of minimizing CO2 emissions, second only
to the x264 codec, which consistently yields lower
emissions on different presets.

In terms of coding efficiency, the analysis pre-
sented in Figure 7(b) reveals a consistent trend among
all encoders as the preset speed decreases. Notably, the
results indicate that regardless of the encoding preset,
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Figure 8. Pearson Correlation Coefficient (PCC)
of the video complexity features (Spatial Information
(SI), Temporal Information (TI), Spatial Energy (E),
Temporal Energy (h)), Resolution (R), and Encoding
Time (ET) with energy consumption at different QPs
for the SVT-AV1 encoder with the faster preset.

VVenC provides the best wPSNR quality and BD-
rate gain compared to other encoders. These results
highlight the varying strengths of different encoders
across different preset speeds.

6) Impact of content complexity on energy con-
sumption: To investigate the impact of content com-
plexity on energy consumption, we present in Fig-
ure 8 the Pearson Correlation Coefficient (PCC) of
video complexity features, namely Spatial Information
(SI) [45], Temporal Information (TI) [45], Spatial
Energy (E) [46], Temporal Energy (h) [46], as well
as Resolution (R), and Encoding Time (ER) with the
encoding energy consumption of the SVT-AV1 (faster)
encoder at different QPs. From this figure, we can
observe a low correlation between spatial and temporal
complexity features (SI, E, TI, h) and encoding energy
consumption. In contrast, a strong correlation emerges
with resolution, revealing that encoding energy con-
sumption is highly linked to video resolution. This
observation suggests that video resolution stands out as
the predominant feature influencing encoding energy.
To support these findings, we further explore the
standard deviation of encoding energy across different
resolutions, as presented in Table 6. Notably, this
table reveals a small standard deviation in energy con-
sumption for encoding videos at different resolutions,
providing empirical evidence that variations in content
complexity among videos of the same resolution have
a negligible impact on encoding energy consumption.

Table 6. Standard deviation of encoding energy at different

resolutions for the SVT-AV1 encoder with the faster preset.

Resolution #videos Energy (Wh) Standard deviation

416×240 4 0.0169 0.0023

832×480 5 0.0316 0.0030

1280×720 5 0.0325 0.0042

1920×1080 6 0.135 0.0079

3840×2160 6 0.546 0.042

7) CPU and memory usage: Encoding time perfor-
mance and computing parallelism (density) are equally
crucial for video encoding. In this evaluation, we
provide a comparison in terms of computing density by
measuring the percentage of CPU utilization for video
encoding. The high CPU utilization is an indicator
of the workload on the CPU. We also compare the
encoders in terms of memory usage. The comparison
is performed using two different encoding presets, i.e.,
slower and faster, as illustrated in Figures 9(a) and
9(b), respectively. From Figure 9(a), we found that
x264 achieves the highest computing density when
encoding video with a slower preset. These results sup-
port the fast encoding performance of the encoder, re-
sulting in the lowest total encoding time of 1.46 hours.
On the other hand, libvpx-vp9 does not use the CPU’s
capacity efficiently, exploiting, on average, only 40%
of the total computing capacity. Therefore, although
libvpx-vp9 does not use CPU capacity well, it gives
less encoding time than x265 and VVenC. Regarding
memory usage, we found that libvpx-vp9 doesn’t need
high memory to encode a video with a slower preset
compared to other codecs since it only uses 0.96%
of memory on average. We also observe that the most
memory-hungry codec for a slower preset is SVT-AV1,
which uses, on average, 7.05% of the total memory to
encode a video. From Figure 9(b), we can observe that
memory utilization differs between faster and slower
presets. Compared to the slower preset, it is apparent
that memory usage is significantly reduced for x264,
x265, SVT-AV1, and VVenC. However, for libvpx-vp9
there is an increase in memory usage. Moreover, it is
worth mentioning that for a faster preset, x265 is the
most memory-efficient encoder.

CONCLUSION AND DISCUSSIONS
In this work, we provided an extensive comparative

study of energy consumption and CO2 emissions for
leading video coding standards, aligning the results
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Figure 9. Average memory, CPU usage, and the total encoding time (run time) of JVET-CTC dataset across
five considered encoders.

with video quality and bitrate. The study encom-
passed five popular open-source and optimized video
encoders, namely x264, x265, VVenC, libxvp9, and
SVT-AV1, using four different encoder presets. The
results on the JVET-CTC dataset showed that each
newly born encoder outperforms other older encoders
in terms of coding efficiency at the expense of an
increase in complexity. The best coding efficiency is
provided by VVenC based on wPSNR, SSIM, and
VMAF quality metrics. Regarding energy consumption
and CO2 emissions, the obtained results illustrated
that the encoders consume high energy when using
the slower preset. For the four presets, VVenC ex-
hibits the highest energy consumption and CO2 emis-
sions. In contrast, the x264 encoder provides the most
negligible energy consumption and CO2 emissions,
making it the most energy-efficient encoder, while the
SVT-AV1 encoder enables the best trade-off between
coding efficiency and energy consumption. Notably,
the encoder, preset, and resolution significantly impact
energy consumption and CO2 emissions. This study
carries profound implications for both video streaming
industry stakeholders and consumers, furnishing them
with invaluable insights to craft directives and adopt
optimal strategies for curtailing and mitigating their
carbon impact. It underscores the significance of trans-
parently disclosing carbon emissions to end-users and
streamlining encoding and transcoding processes. This
optimization should encompass factors like geographi-
cal location, codec selection, and encoding parameters

such as resolution, preset, and bitrate, while also
accounting for the resultant quality and latency. Armed
with the insights and recommendations from this study,
video streaming entities have the potential to chart a
course towards more sustainable practices within the
industry, thus making a substantial contribution to the
broader endeavor of environmental impact reduction.

In addition, it would be very interesting to study
the coding efficiency and energy consumption of hard-
ware encoders, which is one of the future works to be
addressed.
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