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Abstract

Online High Definition Map (HDMap) estimation from
sensors offers a low-cost alternative to manually acquired
HDMaps. As such, it promises to lighten costs for already
HDMap-reliant Autonomous Driving systems, and poten-
tially even spread their use to new systems.

In this paper, we propose to improve online HDMap es-
timation by accounting for already existing maps. We iden-
tify 3 reasonable types of useful existing maps (minimalist,
noisy, and outdated). We also introduce MapEX, a novel on-
line HDMap estimation framework that accounts for exist-
ing maps. MapEX achieves this by encoding map elements
into query tokens and by refining the matching algorithm
used to train classic query based map estimation models.

We demonstrate that MapEX brings significant improve-
ments on the nuScenes dataset. For instance, MapEX -
given noisy maps - improves by 38% over the MapTRv2 de-
tector it is based on and by 16% over the current SOTA.

1. Introduction

Autonomous Driving [12, 24] represents a complex prob-
lem that promises to significantly change how we inter-
act with transportation. While full vehicle automation still
seems quite a ways away [41], partially autonomous vehi-
cles now populate a number of road systems in the world
[24]. These vehicles need to process a wealth of informa-
tion to function, from the raw sensor data [15] to elaborate
maps of road networks [12, 28].

High Definition maps (HDMaps), in particular, represent
a crucial component of the research on self-driving cars
[11, 12] (see Fig. 1 for a few simple examples of maps,
with road boundaries represented by green polylines, lane
dividers by lime polylines and pedestrian crossings by blue
polygons). Although maps are not a typical input of neu-
ral networks, they contain necessary information to help the
car understand the world it must navigate. As such, signif-

Figure 1. We propose to use existing map information - even if
inexact - to estimate better online HDMaps from sensor inputs.
In doing so, we simplify the problem from generating maps using
only sensors to re-using always available maps aided by sensors.

icant efforts have gone into incorporating this new type of
data into proposed solutions [12, 37]. These efforts have
in turn shown HDMaps have remarkable benefits both for
fundamental problems like Object Detection [18] to precise
trajectory forecasting problems [28, 37].

These maps are however expensive to acquire and main-
tain, requiring precise data acquisition and exacting hu-
man labeling efforts [11, 21]. There has therefore been a
strong push over the last year [5, 29] to approximate online
HDMaps from sensor data. It is interesting to note that even
seminal work on the subject has produced useful maps for
trajectory forecasting [33].
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Method Backbone Epochs Extra info mAP

MapTRv2 (Base) R50 24 ✗ 61.5
MapTRv2 (SOTA) V2-99 110 Depth pretraining 73.4
MapEX-S2a (Ours) R50 24 Inaccurate map 84.8

Table 1. MapEX strongly improves on existing online HDMap es-
timation methods and beats the current state-of-the-art mean aver-
age precision (mAP) by 16% in the median scenario on nuScenes.

While recent methods like MapTRv2 [30] have become
proficient at generating online HDMaps from raw sensors,
we feel they overlook very useful and nearly always avail-
able data: existing maps. We posit here that outdated or
lower quality maps should usually be available and could
significantly improve the acquired HDMaps as illustrated in
Fig. 1. Indeed, even “map-free” models tend to use lower-
quality satnav maps [1], and estimated maps could always
be available as long as a vehicle went through a place once.

In this paper, we explore the central postulate that in-
accurate maps can be used to improve the estimation of
HDMaps from raw sensors as shown on Fig. 1. After pro-
viding some context on our method and the field in Sec. 2,
we propose two distinct technical contributions. In Sec. 3,
we outline reasonable scenarios under which an inaccurate
map can be available along with practical implementations.
In Sec. 4, we propose MapEX, an architecture that can gen-
erate HDMaps from sensor data while accounting for exist-
ing map information. Finally, we present results in Sec. 5
with experiments on the nuScenes dataset [4].
Contributions We offer the following 3 contributions:

• We propose to account for existing Map information
when estimating online HDMaps from sensor data.

• We discuss reasonable scenarios under which existing
maps are not perfect. We also provide realistic imple-
mentations of these scenarios and code for the nuScenes
dataset.

• We introduce MapEX, a new query based HDMap acqui-
sition scheme that can incorporate map information when
estimating an online HDMap from sensors. In particular,
we introduce with MapEX both a novel way to incorpo-
rate existing map information with existing (EX) queries
and a way to help the model learn to leverage this infor-
mation by pre-attributing predictions to ground truths dur-
ing training.

We demonstrate experimentally that our contribution
lead to substantial improvements in online HDMap acquisi-
tion from sensors on the nuScenes dataset. In the scenario
where we use HDMaps with noisy (or “shifted”) map ele-
ment positions for instance, MapEX reaches a 84.8% mAP
score which is an improvement of 38% over the MapTRv2
detector it is based on and a 16% improvement over the cur-
rent state-of-the-art as shown in Tab. 1.

2. Related Work
We provide here some brief context on HDMaps in au-
tonomous driving. We begin by discussing HDMap’s use
in trajectory forecasting, before discussing their acquisition.
We then discuss online HDMap estimation itself.
HDMaps for trajectory forecasting Autonomous Driving
often requires a lot of information about the world vehi-
cles are to navigate. This information is typically embed-
ded in rich HDMaps given as input to modified neural net-
works [16, 37]. HDMaps have proven critical to the perfor-
mance of a number of modern methods in trajectory fore-
casting [9, 37] and other applications [18]. In trajectory
forecasting in particular, it is remarkable that some methods
[31, 32] explicitly reason on a representation of the HDMap
and therefore absolutely require access to a HDMap [40].
[33] reports a 10% drop in performance for a common fore-
casting technique [32] when applied without an informative
HDMap. [44] reports even more dramatic drops in perfor-
mance for other well known methods.
HDMap acquisition and maintenance Unfortunately,
HDMaps are expensive to acquire and maintain [11, 21].
While HDMaps used in forecasting are only a simpli-
fied version containing map elements (lane dividers, road
boundaries, ...) [26, 30] and foregoing much of the com-
plex information in full HDMaps [11], they still require
exceedingly precise measurements (on the scale of tens of
centimeters) [11]. A number of companies have therefore
been moving towards a less exacting Medium Definition
Maps (MDMaps) standard [17], or even towards satellite
navigation maps (Google Maps, SDMaps) [1]. Crucially,
MDMaps - with their precision of a few meters - would be
a good example of an existing map giving valuable infor-
mation for the online HDMap generation process. Our map
Scenario 2a explores an approximation of this situation.
Online HDMap estimation from sensors Online HDMap
estimation [5] has therefore emerged as a promising alter-
native to manually curated HDMaps. While some works
[5, 6, 45] focus on predicting virtual map elements, i.e. lane
centerlines, the standard formulation introduced by [26] fo-
cuses on more visually recognizable map elements: lane di-
viders, road boundaries and pedestrian crossings. Probably
because visual elements are easier to detect by sensors, this
latter formulation has seen rapid progress over the last year
[10, 29, 33]. Interestingly, the latest such method - Map-
TRv2 [30] - does offer an auxiliary setting for detecting vir-
tual lane centerlines. This suggests a natural convergence
towards the more complex settings comprising a multitude
of additional map elements (traffic lights, ...) [27, 42]. Nev-
ertheless, the standard formulation from [26] remains the
gold standard when evaluating the usefulness of additional
information such as learned global feature maps [43], satel-
lite views [13], or SDMaps [2]. We thus keep to this prob-
lem formulation to demonstrate the use of existing map in-



formation.
Our work is adjacent to the commonly studied change

detection problems [3, 34] that aim to detect a change in a
map (e.g. crossings). While rooted in more classical statis-
tical techniques [34], a few efforts have been made to adapt
them to deep learning [3, 20]. Notably, the Argoverse 2
Trust but Verify (TbV) dataset [25] was recently proposed
for this problem (see Appendix 8). This however differs
substantially from our approach as we do not try to correct
small mistakes on an existing map after aggregating from a
fleet of vehicles [22, 35]. Instead we aim to generate accu-
rate online HDMaps with the help of an existing - possibly
very different - map, which is made possible by the mod-
ern online HDMap estimation problem. Therefore, we do
not only correct small mistakes in maps but propose a more
expressive framework that accommodates any change (e.g.
distorted lines, very noisy elements).

3. What kind of existing map could we use?
We make the central claim that accounting for existing maps
would benefit online HDMaps estimation. We argue here
there are many reasonable scenarios under which imperfect
maps can appear. After defining the HDMap representa-
tions we work with in Sec. 3.1 and our general approach in
Sec. 3.2, we consider three main possibilities: only road
boundaries are available (Sec. 3.3), the maps are noisy
(Sec. 3.4), or they have changed substantially (Sec. 3.5).

3.1. HDMap representation for online HDMap es-
timation from sensors

We adopt the standard format used for online HDMaps gen-
eration from sensors [26, 29]: we consider HDMaps to be
made of 3 types of polylines, road boundaries, lane dividers
and pedestrian crosswalks, with same colors as previously
green, lime, and blue respectively, as represented on Fig. 2a.
We follow [29] by representing these polylines as sets of 20
evenly spaced points for our map generator, and using up-
sampled versions for evaluation.

While true HDMaps are much more complex [11] and
more intricate representations have been proposed [6], the
aim of this work is to study how to account for existing map
information. As such we restrict ourselves to the most com-
monly studied formulation. The work in this paper will be
directly applicable to the prediction of more map elements
[6], finer polylines [10, 39] or rasterized objectives [46].

3.2. MapModEX: Simulating imperfect maps

As acquiring genuine imprecise maps for standard map ac-
quisition datasets (e.g. nuScenes) would be costly and time
consuming, we synthetically generate imprecise maps from
existing HDMaps.

We develop MapModEX, a standalone map modification
library. It takes nuScenes map files and sample records,

(a) Ground Truth. (b) Scenario 1. (c) Scenario 2a. (d) Scenario 3a.

Figure 2. Examples of HDMaps generated by MapModEX.

and for each sample outputs polyline coordinates for di-
viders, boundaries and pedestrian crosswalks in a given
patch, around the ego vehicle. Importantly, our library pro-
vides the ability to modify these polylines to reflect various
modifications: removal of map elements, addition, shifting
of pedestrian crossings, noise addition to point coordinates,
map shift, map rotation and map warping. MapModEX will
be made available after publication to facilitate further re-
search into incorporating existing maps into online HDMap
acquisition from sensors.

We implement three challenging scenarios, outlined
next, using our MapModEX package, generating for each
sample 10 variants of scenarios 2 and 3 (scenario 1 only
admits one variant). We chose to work with a fixed set
of modified maps to reduce online computation costs dur-
ing training and to reflect real situations where only a finite
number of map variants might be available.

3.3. Scenario 1: Only boundaries are available

A first scenario is one where only a bare HDMap (without
divider and pedestrian crossings) is available as shown on
Fig. 2b. Road boundaries are more often associated with
3D physical landmarks (e.g. edge of sidewalk) whereas di-
viders and pedestrian crossings are generally denoted by flat
painted markings that are easier to miss. Moreover, pedes-
trian crossings and lane dividers are fairly commonly dis-
placed by construction works or road deviations, or even
partially hidden by tire tracks.

As such, it is reasonable to use HDMaps with only
boundaries. This would have the benefit of reducing anno-
tators costs by only asking annotators to label road bound-
aries. Furthermore, less precise equipment and less updates
might be required to situate only road boundaries.
Implementation From a practical standpoint, Scenario 1
implementation is straightforward: we remove the divider
and pedestrian crossings from available HDMaps.

3.4. Scenario 2: Maps are noisy

A second plausible case is one where we only have very
noisy maps as shown on Fig. 2c. A weak point of exist-



ing HDMaps is the need for high precision (in the order of
a few centimeters), which puts a significant strain on their
acquisition and maintenance [11]. In fact, a key difference
between HDMaps and the emergent MDMaps standard lies
in a lower precision (a few centimeters vs. a few meters).

We therefore propose to work with noisy HDMaps to
simulate situations where less precise maps could be the
result of a cheaper acquisition process or a move to the
MDMaps standard. More interestingly, these less precise
maps could be automatically obtained from sensor data. Al-
though methods like MapTRv2 have reached very impres-
sive performance, they are not yet completely precise: even
with very flexible retrieval thresholds, the precision of pre-
dictions falls far short of 80%.
Implementation We propose two possible implementa-
tions of these noisy HDMaps to reflect the various con-
ditions under which we might be lacking precision. In a
first Scenario 2a, we propose a shift-noise setting where for
each map element localization, we add noise from a Gaus-
sian distribution with standard deviation of 1 meter. This
has the effect of applying a uniform translation to each map
element (dividers, boundaries, crosswalks). Such a setting
should be a good approximation of situations where human
annotators provide quick imprecise annotations from noisy
data. We chose a standard deviation of 1 meter to reflect
MDMaps standards of being precise up to a few meters [17].

We then test our approach with a very challenging
pointwise-noise Scenario 2b: for each ground truth point
- keeping in mind a map element is made up of 20 such
points - we sample noise from a Gaussian distribution with
standard deviation of 5 meters and add it to the point co-
ordinates. This provides a worst case approximation of the
situation where the map was acquired automatically or pro-
vides very imprecise localization.

3.5. Scenario 3: Maps have substantially changed

The final scenario we consider is one where we have ac-
cess to old maps that used to be accurate (see Fig. 2d). As
noted in Sec. 3.3, it is fairly common for painted markers
like pedestrian crossings to be displaced from time to time.
Furthermore, it is not uncommon for cities to substantially
remodel some problematic intersection or renovate districts
to accommodate traffic increase by a new attraction [38].

It is therefore interesting to use HDMaps that are valid on
their own but differ from the actual HDMaps in significant
ways. These maps should often appear when the HDMaps
are only updated by the maintainer every few years to cut
down on costs. In that case, the available maps would still
provide some information on the world but might not reflect
temporary or recent changes.
Implementation We approximate this by applying strong
changes to existing HDMaps in our Scenario 3a. We delete
50% of the pedestrian crossings and lane dividers in the

map, add a few pedestrian crossings (half the amount of
the remaining crossings) and finally apply a small warping
distortion to the map.

However, it is important to note that a substantial amount
of the global map will remain unchanged over time. We ac-
count for that in our Scenario 3b, where we study the effect
of randomly choosing (with probability p=0.5) to consider
the real HDMap instead of the perturbed version.

4. MapEX: Accounting for EXisting maps
We propose MapEX (see Fig. 3), a novel framework for on-
line HDMap estimation. It follows the standard query based
online HDMap estimation workflow [29, 33] and processes
existing map information thanks to two key modules: a
map query encoding module (see Sec. 4.2) and a pre-
attribution scheme of predictions and ground truths for
training (see Sec. 4.3). We also propose an optional change
detection module in Appendix 9 for cases where true maps
are mixed with perturbed maps as in our Scenario 3b. Since
our implementation is built upon the state-of-the-art Map-
TRv2 [30], it will translate to most methods [10, 29, 33]

4.1. Overview

The core of the standard query based framework is shown
through gray elements on Fig. 3. It starts by taking sen-
sor inputs (cameras and/or LiDAR), and encodes them into
a Bird’s Eye View (BEV) representation to serve as sensor
features. The map itself is obtained using a DETR-like [7]
detection scheme to detect the map elements (N at most).
This is achieved by passing N × L learned query tokens
(N being the maximum number of detected elements, L
the number of points predicted for an element) into a trans-
former decoder that feeds sensor information to the query
tokens using cross-attention with the BEV features. The de-
coded queries are then translated into map element coordi-
nates by linear layers along with a class prediction (includ-
ing an extra background class) such that groups of L queries
represent the L points of a map element (L = 20 in this
paper). Training is done by matching predicted map ele-
ments and ground truth map elements using some variant of
the Hungarian algorithm [8, 23]. Once matched, the model
is optimized to fit the predicted map elements to their cor-
responding ground truth using regression (for coordinates)
and classification (for element classes) losses.

This standard framework has no way to account for ex-
isting maps, which necessitates introducing new modules
at two key levels. At the query level, we encode map el-
ements into non learnable EX queries (see Sec. 4.2). At
the matching level, we pre-attribute queries to the ground
truth map elements they represent (see Sec. 4.3).

The complete MapEX framework - shown on Fig. 3
- converts existing map elements into non-learnable map
queries and adds learnable queries to reach a set number of



Figure 3. Overview of our MapEX method (see Sec. 4). We add two modules (EX query encoding, Attribution) to the standard query based
map estimation pipeline (in gray on the figure). Map elements are encoded into EX queries, then decoded with a standard decoder.

Figure 4. Encoding map elements into EX queries. For each point
of the element, we encode the (x,y) coordinates along with the
element class. (div=divider, ped=crossing, bnd=boundary)

queries N ×L. This completed set of queries is then passed
to a transformer decoder and translated into predictions by
linear layers as usual. At training time, our attribution mod-
ule pre-matches a number of predictions with ground truths,
and the rest is matched normally using Hungarian Match-
ing. At test time, the decoded non background queries yield
a HDMap representation.

4.2. Translating maps into EX queries

There is no mechanism in current online HDMap estimation
frameworks to account for existing map information. We
therefore need to design a new scheme that can translate ex-
isting maps into a form understandable by standard query-
based online HDMap estimation frameworks. We propose
with MapEX a simple method of encoding existing map el-
ements into EX queries for the decoder as shown on Fig. 4.

For a given map element, we extract L evenly spaced
points, with L being the number of points we seek to predict

for any map element. For each point, we craft an EX query
that encodes in the first 2 dimensions its map coordinates
(x,y) and in the next three dimensions a one-hot encoding
of the map element class (divider, crossing or boundary).
The rest of the EX query is padded with 0s to reach the
standard query size used by the decoder architecture.

While this query design is very simple, it presents the key
benefits of both directly encoding the information of inter-
est (point coordinates and element class), and minimizing
collisions with learned queries (thanks to the abundant 0-
padding). A detailed discussion is provided in Sec. 5.3.2
with experimental comparisons to other possible designs.

Once we have NEX sets of L queries (for the NEX map
elements in the existing map), we retrieve (N −NEX) sets
of L assorted learnable queries from our pool of standard
learnable queries. The resulting N ×L queries are then fed
to the decoder following the base method we are working
on: in MapTR the N ×L queries are treated as independent
queries whereas MapTRv2 uses a more efficient decoupled
attention scheme that groups queries of a same map element
together. After we predict map elements from the queries,
we can either directly use them (at test time) or match them
to the ground truth for training.

4.3. Map element attribution

While EX queries introduce a way to account for exist-
ing map information, nothing ensures these queries will be
properly used by the model to estimate the corresponding
elements. In fact, experiments in Sec. 5.3.1 show the net-



work can fail to identify even fully accurate EX queries if
left on its own. We thus introduce a pre-attribution of pre-
dicted and true map elements before the traditional Hungar-
ian matching used at training as shown on Fig. 3.

Put plainly, we keep track for each map element in the
modified map of which ground truth map element they cor-
respond to: if a map element is unmodified, shifted or
warped we can tie it to the original map element in the true
map. To ensure the model learns to solely use useful in-
formation, we only keep matches when the average point-
wise displacement score, between the modified map ele-
ment mEX = {(xEX

0 , yEX
0 ), . . . , (xEX

L−1, y
EX
L−1)} and true

map element mGT = {(xGT
0 , yGT

0 ), . . . , (xGT
L−1, y

GT
L−1)}:

s(mEX ,mGT ) =

∥∥∥∥∥ 1

L

L−1∑
i=0

(
xEX
i

yEX
i

)
−
(
xGT
i

yGT
i

)∥∥∥∥∥
2

(1)

is below 1 meter long. In case of deletions or additions,
there are no corresponding map elements. This attribution
process can be extended to most map modifications.

Given the correspondence between ground truth and pre-
dicted map elements, we can remove the pre-attributed map
elements from the pool of elements to be matched. The re-
maining map elements (predicted and ground truth) are then
matched using some variant of the Hungarian algorithm as
per usual [8, 23]. As such, the Hungarian matching step
is only needed to identify which EX queries correspond
to non-existent added map elements, and to find standard
learned queries that fit some of the true map elements absent
from the real map (due to deletion or a strong perturbation).

Reducing how many elements must be processed by a
Hungarian algorithm is important as even the most effi-
cient variants are of cubical complexity O(N3) [8]. This
is not a major weak point in most online HDMap acqui-
sition methods currently as the predicted maps are small
[13, 30] (30m×60m) and only three types of map elements
are predicted. As online map generation progresses further
however, it will become necessary to accommodate an ever
increasing number of map elements as predicted maps grow
both larger [13] and more complete [27].

5. Experimental results
We now verify experimentally that existing maps are use-
ful for online HDMap estimation. After providing a general
overview of MapEX results in relation to the literature in
Sec. 5.1, we highlight the improvements from using existing
map information over the baseline in our different scenarios
(see Sec. 5.2). We then provide deeper understanding of the
MapEX framework through careful ablations in Sec. 5.3.
Setting We evaluate our MapEX framework on the
nuScenes dataset [4] as it is the standard evaluation dataset
for online HDMap estimation. We base ourselves on the
MapTRv2 framework and official codebase. Following

usual practices, we report the Average Precision for each of
the three map element types (divider, boundary, crossing)
at different retrieval thresholds (Chamfer distance of 0.5m,
1.0m and 1.5m) along with overall mean Average Precision
over the three classes. To be comparable to results in the
literature [10, 30, 33], we show results on the nuScenes val
set but conduct no hyper-parameter tuning on the val set to
avoid overfitting to it. We directly get training parameters
from MapTRv2 without tuning (using standard learning rate
scaling heuristics [14] to adapt to our 2 GPU infrastructure).
Our code, along with the standalone MapModEX package
will be made available upon publication. A complete de-
scription of the setting is provided in Appendix 7.

For each experiment, we conduct 3 experimental runs
using three fixed random seeds. Importantly, for a given
seed and map scenario combination, the existing map data
provided during validation is fixed to facilitate comparisons.
We report results as mean±std, up to a decimal point even
if standard deviation exceeds that precision, in order to keep
notations uniform.

5.1. Performance of MapEX

We provide in Tab. 2 an overview of results from the lit-
erature along with MapEX performance in the 5 existing
map scenarios outlined in Sec. 3: maps with no dividers or
pedestrian crossings (S1), noisy maps (S2a for shifted map
elements, S2b for strong pointwise noise), and substantially
changed maps (S3a with only those maps, S3b with true
maps mixed in). We contextualize MapEX’s performance
by comparing it both to an exhaustive inventory of existing
online HDMap estimation on comparable settings (Camera
inputs, CNN Backbone) and to the current state-of-the-art
(which uses significantly more resources).

First and foremost, it is clear from Tab. 2 that any sort
of existing map information leads MapEX to significantly
outperform the existing literature on comparable settings re-
gardless of the considered scenario. In all but one scenario,
existing map information even allows MapEX to perform
much better than the current state-of-the-art MapTRv2 [30]
model trained over four times more epochs with a large vi-
sion transformer backbone pretrained on an extensive depth
estimation dataset [36]. Even the fairly conservative S2a
scenario with imprecise map element localizations leads to
an improvement of 11.4 mAP score (i.e. 16%).

In all scenarios, we observe consistent improvements
over the base MapTRv2 model in all 4 metrics. Understand-
ably, Scenario 3b (with accurate existing maps half of the
time) yields the best overall performance by a large mar-
gin, thereby demonstrating a strong ability to recognize and
leverage fully accurate existing maps. Both Scenarios 2a
(with shifted map elements) and 3a (with “outdated” map
elements) offer very strong overall performance with good
performance for all three types of map elements. Scenario



Method Backbone Epoch Extra info Average Precision at {0.5m, 1.0m, 1.5m}
APdivider APped APboundary mAP

Previous methods

HDMapNet [26] EB0 30 ✗ 27.7 10.3 45.2 27.7
... + P-MapNet∗ [2] EB0 30 Geoloc. SDMaps 32.1 11.3 48.7 30.7
VectorMapNet [33] R50 110 ✗ 47.3 36.1 39.3 40.9
... + Neural Map [43] R50 110 Learned map feats 49.6 42.9 41.6 44.8
MapTR [29] R50 24 ✗ 51.5 46.3 53.1 50.3
... + MapVR [46] R50 24 ✗ 54.4 47.7 51.4 51.2
... + Satellite Map∗ [13] R50 24 Geoloc. Satellite views 55.3 47.2 55.3 52.6
PivotNet [10] R50 24 ✗ 56.2 56.5 60.1 57.6
BeMapNet [39] R50 30 ✗ 62.3 57.7 59.4 59.8
MapTRv2∗,† [30] R50 24 ✗ 62.4 59.8 62.4 61.5
MapTRv2∗ [30] V2-99 110 Depth pretrain 73.7 71.4 75.0 73.4

Our method

MapEX-S1 R50 24 Map w/ only boundaries 66.1± 0.6 62.5± 0.4 99.9± 0.1 76.2± 0.1
MapEX-S2a R50 24 Map w/ element shift 82 .5 ± 1 .0 78.4± 0.8 93.5± 0.4 84 .8 ± 0 .3
MapEX-S2b R50 24 Map w/ point noise 78.4± 0.1 62.1± 0.6 72.4± 0.4 70.9± 0.3
MapEX-S3a R50 24 Outdated maps 84.6± 0.3 74 .1 ± 0 .6 99.1± 0.1 85.9± 0.2
MapEX-S3b R50 24 50% outdated maps 92.8± 0.1 87.2± 0.1 99.3± 0.2 93.1± 0.1

Table 2. Comparison of MapEX to the current state-of-the-art. In all possible scenarios, MapEX improves upon the base MapTRv2 model.
In Scenarios 1, 2a, 3a and 3b it even beats the state-of-the-art obtained with a much stronger backbone. Best results are highlighted in bold,
second best are underlined, third best are in italic. (∗: Concurrent work, †: Same codebase and setting as our experiments.)

Method Improvement ∆AP = APBase+Info −APBase

∆APdivider ∆APped ∆APbound ∆mAP

Previous methods

Neural Map +02.3 +06.8 +02.6 +03.9
Satellite Map∗ +03.8 +00.9 +02.2 +02.3
P-MapNet∗ +04.4 +01.0 +03.5 +03.0
P-MapNet∗,+ +08.4 +11.1 +06.8 +08.8

Our method

MapEX-S1-onlybounds +03.7 +02.8 +37.5 +14.7
MapEX-S2a-shift +20.1 +18.6 +31.1 +23.3
MapEX-S2b-point +16.0 +02.3 +10.0 +09.4
MapEX-S3a-fullchange +22.2 +14.3 +36.7 +21.4
MapEX-S3b-halfchange +30.4 +27.4 +36.9 +31.6

Table 3. Improvements from additional information. In all consid-
ered scenarios, existing map information substantially improves
results compared to other sources of information. (∗: Concurrent
work, +: MAE [19] pretraining, Camera+LiDAR inputs)

1, where only road boundaries are available, shows huge
mAP gains thanks to its (expected) very strong retrieval of
boundaries. Even the incredibly challenging Scenario 2b,
where Gaussian noise of standard deviation 5 meters is ap-
plied to each map element point, leads to substantial gains
on the base model with particularly good retrieval perfor-
mance for dividers and boundaries.

5.2. Improvements brought by MapEX

We now focus more specifically on the improvements that
existing map information brings to our base MapTRv2

model. For reference, we compare MapEX gains with those
brought by other sources of additional information: Neu-
ral Map Prior with a global learned feature map [43],
Satellite Maps with geolocalized Satellite views [13], and
P-MapNet which uses geolocalized SDMaps [2]. Impor-
tantly, MapModEX relies on a stronger base model than
these methods. While this makes it harder to improve upon
the base model, it also makes it easier to reach high scores.
To avoid having an unfair advantage, we provide in Tab. 3
the absolute ∆AP = APBase+Info −APBase score gain.

We see from Tab. 3 that using any kind of existing map
with MapEX leads to overall mAP gains larger than any
other source of additional information (including a more so-
phisticated P-MapNet setting). We generally observe very
strong improvements to the model’s detection performance
on both lane dividers and road boundaries. A slight ex-
ception is Scenario 1 (where we only have access to road
boundaries) where the model successfully retains map in-
formation on boundaries but only provides improvements
comparable to previous methods on the two map elements
it has no prior information on. Pedestrian crossings seem
to require more precise information from existing maps as
both Scenario 1 and Scenario 2b (where a very destructive
noise is applied to each map point) only provide improve-
ments comparable to existing techniques. Scenarios 2a
(with shifted elements) and 3a (with “outdated” maps) lead
to strong detection scores for pedestrian crossings, which
might be because these two scenarios contain more precise
information on pedestrian crossings.



Method Mean Average Precision

S1 S2a-shift S2b-noise S3a-full S3b-half

MapEX 76.2± 0.1 84.8± 0.3 70.9± 0.3 85.9± 0.2 93.1± 0.1
... w/o Attribution 64.5± 1.9 84.7± 0.7 72.0± 1.9 80.3± 9.6 93.1± 0.2
... w/o Sensors 54.7± 0.9 69.5± 0.5 43.5± 0.4 73.3± 0.3 85.9± 0.3
... w/o Map (Base) 61.4 61.4 61.4 61.4 61.4

Table 4. Influence of MapEX inputs (sensors, maps, map element
correspondences) on mean Average Precision. All MapEX inputs
appear crucial to consistent overall precision.

5.3. Ablations on the MapEX framework

We conduct here extensive experiments on the impact of
MapEX inputs in Sec. 5.3.1. We then propose specialized
experiments on relevant scenarios regarding our EX queries
(Sec. 5.3.2) and our attribution scheme (Sec. 5.3.3).

5.3.1 Contribution of inputs in MapEX

Tab. 4 shows how the different types of inputs (existing
maps, map element correspondences, and sensor inputs) im-
pact MapEX. As discussed in Sec. 5.1, results demonstrate
clearly that existing maps strongly improve performance.

As much as MapEX benefits from maps however, we can
see from lines 1 and 3 of Tab. 4 that it still relies significantly
on the sensor inputs. Indeed, models solely based on map
inputs are substantially worse than complete MapEX mod-
els. This indicates sensor inputs help MapEX improve upon
its imperfect existing map inputs.

Ground truth correspondences (for pre-attribution of pre-
dictions and ground truths) seem to lower the variance of
MapEX as indicated by lines 1 and 2 of Tab. 4. This
demonstrates pre-attribution is indeed necessary to properly
leverage existing map information. A good way to under-
stand this is to consider our Scenario 1. In this scenario,
we have access to the exact boundary elements. With pre-
attribution this consistently leads to near perfect retrieval of
those elements (see Tab. 2). This is not the case without
pre-attribution unfortunately: in two out of three runs, the
network only reaches a score below 80% AP. This suggests
pre-attribution helps ensure MapEX consistently learns to
utilize the information provided by existing maps.

5.3.2 On EX query encoding

We use in Sec. 4.2 a simple encoding scheme to translate
existing map elements into EX queries. This might be sur-
prising, as one might expect learned EX queries to be more
useful (e.g. by projecting a 5-dimensional vector descrip-
tion of the element into a query). Tab. 5 shows learned EX
queries perform much worse than our simple non-learnable
EX queries. Interestingly, initializing learnable EX query
with the non-learnable values might bring very minor im-
provements that do not justify the added complexity.

Method Average Precision at {0.5m, 1.0m, 1.5m}
APdivider APped APboundary mAP

MapEX encoding 66.1± 0.6 62.5± 0.4 99.9± 0.1 76.2± 0.1
Linear encoding 63.4± 0.3 61.1± 0.3 100± 0.1 74.8± 0.1
Linear encoding w/ MapEx init. 66.6± 0.1 62.5± 0.9 100± 0.1 76.4± 0.3

Table 5. Influence of map query design on results (Scenario 1).
Our non-learnable EX query encoding does not perform any worse
than learnable EX queries while requiring no extra training.

5.3.3 On ground truth attribution

Since pre-attributing map elements is important to consis-
tently use existing map information (see Sec. 5.3.1), it might
be tempting to pre-attribute all the corresponding map ele-
ments instead of filtering them like we do in MapEX. Tab. 6
shows that discarding correspondences when the existing
map element is too different (see Sec. 4.3) does lead to
stronger performance than indiscriminate attribution. In
essence, this suggests it is preferable for MapEX to use a
learnable query instead of EX queries when the existing
map element is too different from the ground truth.

Method Average Precision at {0.5m, 1.0m, 1.5m}
APdivider APped APboundary mAP

MapEX 82.5± 1.0 78.4± 0.8 93.5± 0.4 84.8± 0.3
... w/o sim. threshold 79.5± 1.6 76.4± 0.9 91.9± 0.2 82.6± 0.7

Table 6. Influence of ground attribution schemes on results (Sce-
nario 2a). Discarding existing map elements too far from the cor-
responding ground truth significantly improves results.

6. Discussion
We propose to improve online HDMap estimation by tak-
ing advantage of an overlooked resource: existing maps. To
study this, we outline three realistic scenarios where exist-
ing (minimalist, noisy or outdated) maps are available and
introduce a new MapEX framework to leverage these maps.
As there is no mechanism in current frameworks to account
for existing maps, we develop two novel modules: one en-
coding map elements into EX queries, and another ensuring
the model leverages these queries.

Experimental results demonstrate that existing maps rep-
resent a crucial information for online HDMap estima-
tion, with MapEX significantly improving upon compara-
ble methods regardless of the scenario. In fact, the median
scenario (in terms of mAP) - Scenario 2a with randomly
shifted map elements - improves upon the base MapTRv2
model by 38% and upon the current state-of-the-art by 16%.

We hope this work will lead new online HDMap estima-
tion methods to account for existing information. Existing
maps - good or bad - are widely available. To ignore them
is to forego a crucial tool in the search for reliable online
HDMap estimation.
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[40] Rémy Sun, Diane Lingrand, and Frédéric Precioso. Explor-
ing the road graph in trajectory forecasting for autonomous
driving. In ICCV workshops, 2023. 2

[41] Siyu Teng, Xuemin Hu, Peng Deng, Bai Li, Yuchen Li,
Yunfeng Ai, Dongsheng Yang, Lingxi Li, Zhe Xuanyuan,
Fenghua Zhu, and Long Chen. 1

[42] Huijie Wang, Tianyu Li, Yang Li, Li Chen, Chonghao
Sima, Zhenbo Liu, Bangjun Wang, Peijin Jia, Yuting Wang,
Shengyin Jiang, Feng Wen, Hang Xu, Ping Luo, Junchi Yan,
Wei Zhang, and Hongyang Li. Openlane-v2: A topology rea-
soning benchmark for unified 3d hd mapping. In NeurIPS,
2023. 2

[43] Xuan Xiong, Yicheng Liu, Tianyuan Yuan, Yue Wang, Yilun
Wang, and Hang Zhao. Neural map prior for autonomous
driving. In CVPR, 2023. 2, 7

[44] Yihong Xu, Loı̈ck Chambon, Éloi Zablocki, Mickaël Chen,
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Mind the map! Accounting for existing map information
when estimating online HDMaps from sensor data

Supplementary Material

We provide in this Appendix some additional details to
understand our work:
• We provide more details on our experimental setting in

Sec. 7.
• We discuss how the Argoverse 2 Trust but Verify relates

to our problem in Sec. 8.
• We study how the model behaves with exact map inputs

in Sec. 9.
• We give pseudocode overviews of our two original

MapEX modules in Sec. 10.

7. Detailed setting and codebase

We introduce here the detailed experimental details used
for our experiments along with in-depth explaination of
how existing maps are obtained for our various scenarios.
Our code is largely based on the official MapTRv2 code1,
and will be made available along with our standalone Map-
ModEX libray upon acceptance of this paper.

Training details We largely reprise the 24 epochs train-
ing settings from our MapTRv2 [30] base, which were de-
scribed in the original paper as:

“ResNet50 is used as the image back- bone
network unless otherwise specified. The opti-
mizer is AdamW with weight decay 0.01. The
batch size is 32 (containing 6 view images) and
all models are trained with 8 NVIDIA GeForce
RTX 3090 GPUs. Default training schedule is 24
epochs and the initial learning rate is set to 6 × 10-
4 with cosine decay. We extract ground-truth map
elements in the perception range of ego-vehicle
following [...] The resolution of source nuScenes
images is 1600 × 900. [...] Color jitter is used by
default in both nuScenes dataset and Argoverse2
dataset. The default number of instance queries,
point queries and decoder layers is 50, 20 and 6,
respectively. For PV-to-BEV transformation, we
set the size of each BEV grid to 0.3m and utilize
efficient BEVPoolv2 [77] operation. Following
[16], λc = 2, λp = 5, λd = 0.005. For dense pre-
diction loss, we set αd, αp, αb to 3, 2 and 1 re-
spectively. For the overall loss, βo = 1, βm = 1,
βd = 1.”

1https://github.com/hustvl/MapTR/tree/maptrv2

Our own training setting solely differs from MapTRv2’s
in the fact that we train on 2 NVIDIA Quadro RTX 8000
GPUs. This in turn mean we need to reduce the batch size
by 4 and scale learning rates by 2 following standard scaling
heuristics for Adam optimizers [14].

Scenario 1 implementation We remove the divider and
pedestrian crossings from available HDMaps.

Scenario 2a implementation For each map element lo-
calization, we add noise from a Gaussian distribution with
standard deviation of 1 meter. This has the effect of ap-
plying a uniform translation to each map element (dividers,
boundaries, crosswalks).

Scenario 2b implementation For each ground truth point
- keeping in mind a map element is made up of 20 such
points - we sample noise from a Gaussian distribution with
standard deviation of 5 meters and add it to the point coor-
dinates.

Scenario 3a implementation We delete 50% of the
pedestrian crossings and lane dividers in the map, add a
few pedestrian crossings (half the amount of the remaining
crossings) and finally apply a small warping distortion to the
map. The warping distortion is composed of first trigono-
metric warping with horizontal and vertical amplitudes 1,
and inclination 3. We then perform triangular warping fol-
lowing a slightly perturbed grid where each point on the
regular grid is shifted according to random Gaussian noise
with standard deviation 1.

Scenario 3b implementation For each map, we draw a
uniform random value between 0 and 1. If it is below p=0.5
we keep the true HDMap, otherwise we perturb it in the
same way as in Scenario 3a.

8. On the Trust but Verify dataset
The Argoverse 2 Trust but Verify (TbV) dataset [25] offers
situations where the HDMap does not fit sensor inputs for
change detection. While TbV is an excellent dataset for
change detection, it unfortunately contains a limited num-
ber of real scenarios to train model for online HDMap ac-
quisition. Moreover, a number of the change scenarios are
indiscernible for our HDMap representation (e.g. change
in the type of divider). Interestingly, the limited number of

https://github.com/hustvl/MapTR/tree/maptrv2


hand curated change situations is reserved for the valida-
tion and test sets with the train set generated from synthetic
data. Where TbV chooses to generate synthetic views that
differ from the available HDMap, we take the opposite view
of modifying the HDMaps. While this is likely less desir-
able for change detection, it is of no consequence for online
HDMap acquisition and much lighter computationally.

9. Map change detection

9.1. Map change detector

There are a number of situations where fully accurate
HDMaps might be mixed in with the imperfect HDMaps
(e.g. our Scenario 3b). As such, we propose a lightweight
change detection module to leverage these situations.

We introduce a learned change detection query token and
perform cross-attention between this token and intermediate
map element queries at different stages of the decoder. This
token is then decoded by dense layer into a change predic-
tion c ∈ [0, 1] (with a sigmoid activation). At training time,
we train this token with a binary cross entropy loss (with
target ĉ = 1 if the map is not fully accurate and ĉ = 0 if it
is): we minimize

L = LBase + LBCE(c, ĉ), (2)

with LBase the loss of the base online HDMap estimator.
At test time, if no change is detected we output the exist-
ing HDMap instead of the prediction (and we output the
decoder predictions as usual if a change is detected).

Using the existing HDMap has two distinct benefits: it
provides a very precise HDMap (something most methods
struggle with [10]), and it provides a way to stop the map
estimation process early. Indeed, returning the existing map
removes the need for further decoding of the query tokens
which can be expensive.

9.2. Processing accurate existing maps

Finally, we take a closer look at how MapEX deals with per-
fectly accurate existing maps as it can sometimes happen in
scenarios like Scenario 3b. To this end, we compare MapEX
to variants that use an explicit map change detection module
(described in Appendix 9) and substitute the predicted map
with the input existing map if no change is detected. Tab. 7
shows MapEX does not need a change detection module:
it recognizes and uses accurate existing map elements on
its own. In fact, training a change detection module jointly
with MapEX appears to deteriorate performance.

Method Average Precision at {0.5m, 1.0m, 1.5m}
APdivider APped APboundary mAP

MapEX 92.8± 0.1 87.2± 0.1 99.3± 0.2 93.1± 0.1
... w/ substitution 92.5± 0.3 87.3± 0.3 99.4± 0.1 93.0± 0.1
... w/ sub. & optimization 92.5± 0.2 87.2± 0.2 99.3± 0.1 93.0± 0.1

Table 7. Usefulness of the change detection module (Scenario 3b).
MapEX seems to recognize and leverage existing maps without the
need for an explicit change detection scheme.

10. Pseudo code
We provide here pseudo code for our two additional mod-
ules: the EX query encoding module (Alg. 1) and the pre-
attribution code (Alg. 2).

Data: Map element
mEX = {(xEX

0 , yEX
0 ), . . . , (xEX

L−1, y
EX
L−1)}

of class c (among divider, crossing and
boundary).

Result: list query list of L H-dimensional EX
queries.

query list = [];
for i← 0 to L-1 do

/* Encode position */
pos vec = array([xEX

i , yEX
i ]);

/* Encode class */
class vec = one hot(c, num class=3);
/* Build query */
pad vec = zeros(H − 5);
query i = concatenate([pos vec, class vec,

pad vec]);
query list.append(query i);

end
return query list;

Algorithm 1: Encoding map elements into EX Queries.

Data: Predictions p = {pi}i=0,...,49, (Padded)
ground truths g = {gi}i=0,...,49,
correspondence list c = {ci}i=0,...,49 where
ci = −1 if there is no correspondence

Result: Assignment a = {ai}i=0,...,49 where ai is
the index of the ground truth associated to
the i-th prediction.

/* Split off pre-attributed pairs

*/
pp, gp, cp, pn, gn, cn, split inds = Split(p,g,c);
/* Perform Hungarian matching */
an = Hungarian(pn, gn);
/* Merge cp with an */
a = Merge(pp, an, split inds); return a;

Algorithm 2: Hungarian matching with pre-attribution.
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