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Abstract

Background and Objective: Sepsis is a life-threatening disease with high mortality, incidence, and morbidity. Corticosteroids
(CS) are a recommended treatment for sepsis, but some patients respond negatively to CS therapy. Early prediction of corticosteroid
responsiveness can help intervene and reduce mortality. In this study, we aim to develop a data mining methodology for predicting
CS responsiveness of septic patients.
Methods: We used data from a randomized controlled trial called APROCCHSS, which recruited 1241 septis patients to study the
effectiveness of corticotherapy. We conducted a thorough study of multiple machine learning models to select the most efficient
prediction model, called “signature”. We evaluated the performance of the signature using precision, sensitivity, and specificity
values.
Results: We found that Logistic Regression was the best model with an AUC of 72%. We conducted further experiments to
examine the impact of additional features and the model’s generalizability to different groups of patients. We also performed a
statistical analysis to analyze the effect of the treatment at the individual level and on the population as a whole.
Conclusions: Our data mining methodology can accurately predict cortico-sensitivity or resistance in septis patients. The signature
has been deployed into the Assistance Publique – Hôpitaux de Paris (APHP) information system as a web service, taking patient
information as input and providing a prediction of cortico-sensitivity or resistance. Early prediction of corticosteroid responsiveness
can help clinicians intervene promptly and improve patient outcomes.
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1. Introduction

Sepsis is a life-threatening organ dysfunction caused by dys-
regulation of the host’s response to infection that necessitates
special medical treatment in the intensive care units of hos-
pitals [1]. The sepsis disease life cycle involves three main
stages: Systemic Inflammatory Response Syndrome (SIRS),
severe sepsis, and septic shock [2]. In order to fight infec-
tion, the body releases additional immune system chemicals
into the bloodstream when they are damaged. This is called
the released immune system stage of sepsis, which can be ex-
tremely dangerous if it progresses rapidly. Severe sepsis occurs
if the initial sepsis is not treated or does not meet treatment and
may impact organ function. The symptoms of septic shock are
similar to those of severe sepsis, but they also include a sig-
nificant drop in blood pressure. This drop in blood pressure
can lead to heart failure, stroke, other organ failures, respira-
tory failure, and even death [3]. The global sepsis case num-
ber is difficult to determine. An estimation has been made in
2017 indicating there were 48.9 million cases and 11 million
deaths due to sepsis recorded worldwide, which represented
about 20% of all deaths worldwide [4]. In France, 2019 in-
cidence was 403/100,000 (357 in 2015), mortality 23%, dis-
ability 15%, and cost ∼16,000AC per patient [5]. Also, maternal

sepsis happens when sepsis occurs during pregnancy, during
or after childbirth, or after a miscarriage. We also talk about
neonatal sepsis when newborns are affected by the sepsis dis-
ease. Although highly preventable, maternal and neonatal sep-
sis remains one of the most serious causes of death in pregnant
women and newborns1.

With the significant progress of the clinical best practices and
the pharmaceutical industry, the risk of death was considerably
reduced. However, the number of death cases still increases
depending on the global number of varied hospitalized cases
[6]. Therefore, the major challenge behind the sepsis mortality
decrease is how to administrate the right treatment at the right
time.

Corticosteroid (CS) therapy has been shown to be related to
the majority of sepsis patients in whom age, sex, disease sever-
ity, type of infection, source of infection, or type of pathogen
do not influence survival benefit. However, the response to cor-
ticotherapy depends on the patient. The precise factors and
biomarkers of responsiveness are various and complex [7]. The
purpose of this paper is to conduct, in the context of a real-world
blinded randomized study, called RECORDS, a thorough clin-
ical investigation on patients’ responsiveness to CS by apply-

1https://www.who.int/health-topics/sepsis#tab=tab_1
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ing a robust data mining approach. Sepsis patients’ data have
been gathered from the Assistance Publique – Hôpitaux de Paris
(APHP)2, the largest French hospital system in Europe and one
of the largest in the world, with the goal to predict if sepsis pa-
tients’ are CS sensitive or CS resistant; thus contributing to a
better understanding of this condition.

We adopted a consistent data mining approach and devel-
oped a prediction model, referred to as “signature”, which aims
to promptly identify the responsiveness of patients to corti-
cotherapy. This signature guiding corticotherapy is then used
by the APHP clinicians as one of the biomarker strata during
the randomization process [8]. In fact, after the inclusion of pa-
tients, the RECORDS trial protocol stipulates the use of eleven
biomarkers to randomize the patients that are: CIRCI, Endo-
can, GILZ, DUSP-1, MDW, Transcriptomic SRS2, Endotype
B, COVID-19, Influenza, other respiratory viruses, and Cu-
taneous vasoconstrictor response to glucocorticoids. Besides
these tests, machine learning algorithms are also considered as
biomarkers. Two algorithms have been deployed, our signature
and another one trained on an international database [9]. The
randomization follows a bayesian process to assign the treat-
ment arm to the patient. This flowchart is highlighted in Figure
1; where our signature is referred to as “AI signature 1”.

Numerous studies have employed machine learning tech-
niques to predict sepsis, evaluate sensitivity to corticosteroids,
and explore related topics. These studies are elaborated upon in
what follows.

• Corticosteroid sensitivity prediction

In [10], experts showed that adults suffering from severe
sepsis do not benefit from using hydrocortisone. After an-
alyzing several statistical tests like Fisher, chi-square, t-
test, Mann-Whitney U, and log-rank, no significant differ-
ences in 28-, 90-, or 180-day mortality rates can be found
between patients who received the steroid or not. The 28-
day mortality of all sepsis patients has not improved after
hydrocortisone treatment, as shown in [11]. Despite hav-
ing demonstrated that this treatment reduces cardiovascu-
lar organ failure, it did not decrease mortality.

However, a comparative study on the effect of hydrocorti-
sone in patients with septic shock was performed in [12].
Using a logistic regression model adjusted for variable
stratification, authors demonstrated that patients receiving
hydrocortisone therapy had a more rapid resolution of sep-
tic shock. Furthermore, the work of [13] provides an ef-
fect analysis of hydrocortisone plus fludrocortisone ther-
apy in resolving organ failure in adults suffering from sep-
tic shock. They used regression models, chi-square, and
t-tests to examine the effect of the test substance on the in-
cidence of fatal events. Their research revealed that the use
of hydrocortisone plus fludrocortisone was associated with
a lower rate of all-cause mortality compared to placebo at

2https://www.aphp.fr/

90 days, discharge from Intensive Care Unit (ICU) and
hospital, and 180 days.

In [9] authors applied an ensemble machine learning ap-
proach and statistical analysis to study the Individual
Treatment Effect (ITE). They found that treating adults
with septic shock with corticosteroids resulted in a posi-
tive impact on these patients.

Authors in [14] identified a subgroup of pediatric septic
shock patients who may benefit from corticosteroid treat-
ment. The study used a combination of prognostic and
predictive strategies based on biomarkers to assign study
subjects to different endotypes. The primary endpoint was
a complicated course, defined as the persistence of two or
more organ failures at day seven of septic shock or 28-
day mortality. The study found that among patients with
intermediate to high risk of mortality, corticosteroids were
associated with a significant reduction in the risk of a com-
plicated course. The authors suggested that their findings
support the use of precision medicine strategies to iden-
tify patients who are most likely to benefit from corticos-
teroids.

• Predictive models and sepsis prediction

Authors in [15, 16, 17, 18, 19] conducted a systematic
review of machine learning models for sepsis prediction.
They used different data types and machine learning mod-
els to analyze data when diagnosing sepsis symptoms. In
particular, authors in [20] considered that early fluid ther-
apy in sepsis patients may not be effective and may possi-
bly cause major side events since the fluid is not respond-
ing. The purpose of this work was to construct prediction
models for evaluating fluid responsiveness in sepsis pa-
tients using the MIMIC III dataset and associated matched
waveform datasets during the entire ICU stay duration of
each patient. In order to extract high-frequency continu-
ous waveform data, they created a pipeline, and waveform
properties were incorporated into the prediction models.
The best Area under the ROC curve (AUC) value was reg-
istered for Random Forest when no waveform information
was supplied with a value of 84% compared to XGBoost
[21] with a value of 64%, Linear SVM [22] with a value
of 72%, and SVM Polynomial [23] with a value of 65%;
with mean arterial blood pressure and age being the main
determining factors.

In [24], authors proposed a machine learning method for
early and effective diagnosis of sepsis using metabolic
data from blood samples. The proposed method, which
combines random forest feature selection with a kernel
extreme learning machine improved by a chaotic fruit
fly optimization algorithm, achieved a recognition rate of
81.6%, sensitivity of 89.57%, and specificity of 65.77%.
The study also identified five biomarkers that showed
promising diagnostic potential for sepsis. The results sug-
gested that the proposed methodology can be a useful di-
agnostic tool for clinical decision support.

2
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Figure 1: Flowchart illustrating the recruitment and randomization procedure of the study

In [25], authors presented the effectiveness of a broad
range of standard and ensemble machine learning tech-
niques for predicting cardiac arrest for adult sepsis pa-
tients. The analysis was done using a systematic approach.
The input features incorporate the patients’ vital signs time
series, recorded over a period of 30 hours for each individ-
ual.

Authors in [26] employed a Random Forest (RF) classi-
fier to identify patients at an early stage who were at risk
of sepsis. The RF model was trained to distinguish sep-
tic and non-septic patients using 132 features which were
extracted from physiological measurements such as heart
rate, blood pressure, mean arterial pressure, and tempera-
ture. Features were retrieved from a moving window of 3
to 6 hours. The authors also showed that the RF model can
be applied with the inclusion of additional characterization
of leukocytes.

In [27], authors address the urgent need for early sepsis
detection by discussing the PhysioNet/Computing in Car-
diology Challenge 2019, which aimed to develop open-
source algorithms for this purpose. The challenge involved
participants submitting algorithms to a cloud-based test-
ing environment where they were evaluated using a novel
clinical utility-based metric, rewarding early predictions

and penalizing late or missed predictions and false alarms.
Data from over 60,000 ICU patients with a range of clin-
ical variables were sourced and analyzed using Sepsis-3
clinical criteria for sepsis onset. The study’s findings in-
dicate that various computational approaches can predict
sepsis onset several hours before clinical recognition, al-
though generalizability across different hospital systems
remains a challenge.

• Related topics

Authors in [28] presented a new approach to deduce op-
timal treatment policies for septic patients by using con-
tinuous state-space models and deep reinforcement learn-
ing. The predictive models were developed to identify
two primary medical interventions: the volume of intra-
venous (IV) fluid (adjusted for fluid tonicity) and the max-
imum vasopressor (VP) dosage administered within a 4-
hour timeframe. The model was able to learn clinically
interpretable treatment policies and could reduce absolute
patient mortality in the hospital by up to 3.6% over ob-
served clinical policies. The learned treatment policies
could aid intensive care clinicians in medical decision-
making and improve the likelihood of patient survival.
Outside the sepsis context but still related to corticother-
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apy, authors in [29] used gradient-boosted decision-tree
models to identify which COVID-19 patients treated with
either corticosteroids or remdesivir had improved survival
times. The models were trained and tested on electronic
health records from 2364 adult patients in 10 US hospi-
tals. After adjusting for confounding, the study found that
neither corticosteroids nor remdesivir use was associated
with increased survival time in the overall population or
in the subpopulation that received supplemental oxygen.
However, the machine learning models identified subpop-
ulations in which both corticosteroids and remdesivir were
significantly associated with an increase in survival time.
Specifically, in these subpopulations, corticosteroids and
remdesivir had hazard ratios of 0.56 and 0.40, respectively,
with both results having a p-value of 0.04. These findings
suggest that machine learning methods can improve pa-
tient outcomes and allocate resources during the COVID-
19 crisis by identifying which patients are most likely to
benefit from these treatments.

The presented state-of-the-art review sets the stage for the
novel contributions of our research. While previous studies
have made substantial strides in understanding sepsis and cor-
ticosteroid responsiveness, our research takes a unique path by
presenting a real case study in collaboration with the APHP
hospital, bridging the gap between cutting-edge research and
the clinical environment. What sets this work apart is its com-
mitment to predicting corticosteroid responsiveness as early as
day 0 when the patient enters the hospital, utilizing a compre-
hensive range of individual traits, from demographics to clinical
factors.

Moreover, the novelty of this study is underscored by our
comprehensive experimental approach. We conducted experi-
ments systematically, incrementally adding patient features to
predictive models, assessing their impact on prediction effec-
tiveness, and notably, doing so within a timeframe of up to two
days. This brief evaluation period for feature impact is a dis-
tinctive aspect of our work, as previous studies often extended
this duration considerably, typically up to day 7, 28, and 90
[12, 13, 9, 14, 10, 8, 11]. By focusing on the initial 48 hours,
we provide a unique perspective on the early prediction of cor-
ticosteroid responsiveness, offering clinicians a practical and
real-time window to make informed treatment decisions.

Furthermore, this study delves into uncovering the
individual-level effects of corticotherapy treatment through an
examination of both statistical analysis and predictive models.
To accomplish this, we generate predictions for patients who
received corticotherapy and those who received a placebo. Sub-
sequently, the calculated values of individual treatment effects
represent the disparity between these two sets of predictions. A
notable contribution of our research is our innovative interpre-
tation of the statistical study. In contrast to existing literature,
our calculations are based on correctly classified patients, en-
hancing the precision of our statistical analysis. This approach
not only refines the accuracy of our findings but also lays the
groundwork for future research directions, including a detailed
exploration of patient characteristics associated with beneficial

and detrimental treatment outcomes.
What further emphasizes the novelty and real-world impact

of our work is the deployment of our signature, which serves as
a guide for corticotherapy, within the APHP hospital. This sig-
nature, denoted as “AI signature 1” in Figure 1, is actively used
by APHP clinicians as one of the biomarker strata during the
randomization process, as previously highlighted in the begin-
ning of Section 1. This brings cutting-edge predictive models
directly into the hands of clinicians for timely and informed de-
cisions.

To give a clearer context about the way how our signature
is used at APHP, in a related study [8], our collaborative spe-
cialists at APHP have provided a study flowchart (Figure 1) de-
scribing the recruitment and randomization process. Initially,
patients are stratified based on various criteria, including dis-
ease strata (e.g., COVID-19, influenza virus, non-influenza res-
piratory virus), and specific biomarkers or signatures. These
biomarkers are selected based on prior research, observational
data, and national/international guidelines. In the next step,
each stratum is precisely defined according to specific criteria
relevant to the chosen biomarkers. For instance, the COVID-
19 stratum may involve the randomization of patients to re-
ceive dexamethasone in combination with fludrocortisone or a
placebo. Subsequently, the protocol identifies a set of candi-
date biomarkers/signatures (e.g., CIRCI, endocan, MDW, lym-
phocyte count, transcriptome sepsis response signature, and
machine learning algorithms (i.e., including our signature “AI
signature 1”)) that are used for patient stratification. These
biomarkers play a crucial role in distinguishing various pa-
tient profiles and treatment response characteristics. The final
step involves treatment assignments based on the randomiza-
tion process, which can include the administration of corticos-
teroid treatment or a placebo. This step is designed to assess
the effects of the treatment based on the strata and biomarkers.

Based on the aforementioned studies, it is evident that early
prediction of corticosteroid responsiveness is crucial for opti-
mizing patient care and improving clinical outcomes. Our re-
search aims to study this critical issue by developing a predic-
tive model that can accurately predict corticosteroid responsive-
ness as early as possible. With respect to this aim, we study the
effect of patients’ features, as early as day two of treatment, on
the prediction effectiveness of CS responsiveness.

This is accomplished by gathering patients’ data and by using
signatures of CS sensitivity based on each individual’s traits,
such as genetic, demographic, and clinical factors [9, 30]. We
aim to improve the accuracy and efficiency of early prediction,
which will ultimately aid in individualized treatment and bet-
ter patient outcomes. This study has significant implications
for the field of critical care medicine, as it provides a novel ap-
proach for early identification of corticosteroid responsiveness,
leading to improved patient care and outcomes.

In our work, we conducted a thorough study of several ma-
chine learning models, including investigating models’ configu-
rations (e.g., hyperparameter tuning, top feature selection), and
compared their performance in terms of recognizing CS respon-
siveness. From a clinical and data mining perspectives, we aim
to answer the following fundamental questions:
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• RQ1: Can predictive models recognize sepsis responders
and non-responders to corticosteroid treatment?

• RQ2: How can patient features affect the accuracy of the
obtained results?

• RQ3: What is the corticotherapy treatment effect at the
individual patient level and at all treated patients?

• RQ4: Can the learned model (i.e., the signature) be gen-
eralized to different sepsis cohorts?

The rest of the paper is organized as follows: Section 2 de-
scribes the system architecture of our data mining pipeline, the
preprocessing, the APHP sepsis data preparation, the model’s
actual deployment within the Assistance Publique – Hôpitaux
de Paris information system, and the experimental setup. In
Section 3, we thoroughly discuss the obtained results. Section
4 presents the discussion of the results, where we delve deeper
into the implications of our findings. Section 5 concludes this
paper and provides directions for future work.

2. Materials and methods

2.1. General system

In this section, we provide an introduction to the RECORDS
project, in which we are conducting our research, and then ex-
plain our data mining methodology. We describe the system
architecture that supports our clinical investigation.

2.1.1. Project background and knowledge acquisition
RECORDS3, a national research project coordinated by

APHP, lies at the crossroads of University Hospital and Indus-
trial partners. The aim of RECORDS is the rapid detection of a
patient’s sensitivity or resistance to the treatment of sepsis with
corticosteroids. The project’s clinical trial is an adaptive clini-
cal trial to assess the ability of biomarkers and algorithms de-
rived from machine learning to define a patient’s corticosteroid
resistance and thus optimize their management.

This project uses data collected in a unique manner to prop-
erly analyze the severity of sepsis cases. Collecting informa-
tion on patient demographics, health outcomes, and samples,
led to the construction of a first sepsis cohort, dubbed APROC-
CHSS [13, 31], which provides a unique resource for medical
research. These data sources have been used as a bootstrap of
the analysis process in RECORDS. Indeed, our initial signature
is learned on the APROCCHSS cohort.

To conduct our work on the APROCCHSS cohort, and to
be able to develop the signature that will identify specific re-
sistance or sensitivity to cortico-systemic drugs, knowledge ac-
quisition seems essential. The sources of knowledge, in this
work, include medical literature, the APHP domain expertise,
and eventually the sepsis cohort.

3https://www.fhu-sepsis.uvsq.fr/rhu-records

2.1.2. System architecture
Our system’s general architecture, composed of six key steps,

is depicted in Figure 2. The first step in this process covers
the acquisition of patients’ sepsis related data. Next, data pre-
processing is performed covering data cleaning and feature en-
gineering. Features are selected for further processing based
on whether or not the patient received corticosteroid treatment.
Data preparation presents the third step in our data mining
pipeline. It includes labeling the data, splitting the data into
training and testing, data scaling, and class balancing. In the
fourth step, machine learning algorithms are applied to choose
the best-performing one in detecting patient CS sensitivity. This
step includes four configurations using hyperparameters and
feature selection methods. Then, in order to interpret and eval-
uate the considered models, statistical analyses are performed
using different measures. Finally, in the last step, we present
the deployment of our selected machine learning model within
the APHP information system; where our model was pack-
aged within an Application Programming Interface (API) using
Flask4. It takes as input the patient’s clinical data and returns
whether the patient is sensitive or resistant to Corticosteroids.
The following sections provide detailed information about each
of these steps.

2.2. Clinical data description

2.2.1. The APROCCHSS cohort
The patients’ data have been collected through an electronic

Case Report Form (e-CRF) upon admission to the hospital. The
medical staff enters all relevant personal and medical informa-
tion for each patient, including demographics, medical history,
current condition, and treatment details, into the e-CRF. This
data collection process is time-sensitive, with a maximum win-
dow of 90 days to ensure the accuracy and completeness of
the information recorded. The data collected through the e-
CRF is used to build the APROCCHSS cohort and will require
thorough data preprocessing and data preparation for machine
learning. Figure 3 presents the flowchart that shows the screen-
ing process of the patient cohort.

The APROCCHSS cohort comprises data from 1241 pa-
tients, described by 5645 health characteristics (i.e., risk fac-
tors) with a specification of whether they were treated with cor-
ticosteroids or a placebo. Since we need to know the resis-
tance/sensitivity of the patient to the treatment before actually
taking the drug, only data before the hospitalization (i.e., Day
0) have been considered to build the machine learning signa-
ture. Table 1 presents the list of relevant selected features at
Day 0 along with their description and their corresponding for-
mat. These features will undergo further preprocessing.

2.2.2. Characteristics of the cohort
The APROCCHSS cohort results from a randomized con-

trolled trial. The advantage of randomization is that it limits
selection bias, thus allowing known and unknown prognostic

4https://flask.palletsprojects.com/en/2.2.x/
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Table 1: Considered set of relevant features at Day 0
Reference Description Format
DATINF Diagnosis date Precision = JJ/MM/YYYY, Min = DATHOSP

(Hospital admission date), Max = Current date
SITINF Infection location 0 = Lung, pleura, 1 = Peritoneal, 2 =Urogenital, 3

= Central Nervous System (CNS), 4 = Endocardi-
tis, mediastinum, 5 = Sepsis, 6 = Soft tissue, 7 =
Bones and joints, 8 = Other

ID1191S12V11 Indicates if the patient has bacteriological
documentation

0 = No, 1 = Yes

EXAMINF CHOICE Indicates which examination has been per-
formed on the patient

1 = Blood culture, 2 = Stool culture, 3 = Cyto-
bacteriological examination of urine , 4 = Sinus
puncture, 5 = Bronchial sample, 6 = Biopsy, 7 =
Catheter, 8 = cerebrospinal fluid (CSF), 9 = Op-
eration site, 10 = plevre, 11 = Peritoneum, 12 =
Joint, 13 = Soft tissue, 14 = Prosthesis, 15 = Le-
gionellosis diagnosis

ID1191S12V13 CHOICE Indicates the type of medical Radiology
the patient took

1 = Radio, 2 = ultrasound, 3 = Magnetic reso-
nance imaging, 4 = Scanner

ID1191S12V12 Indicates the probability of infection 0 = Unlikely, 1 = Likely, 2 = Certainty
PREBROINF Indicates the type of bronchial sampling

the patient take
0 = Bronchial Aspiration, 1 = Brush ≥ 1.000
UFC/ml, 2 = Brush < 1.000 UFC/ml, 3 = Com-
bicath ≥ 1.000 UFC/ml, 4 = Combicath < 1.000
UFC/ml, 5 = Expectoration, 6 = Bronchoalveolar
lavage, 7 = Bronchoalveolar lavage

SEX Indicates patient sex 1 =Male, 2 = Female
PATWGHT Indicates the weight of the patient Min = 36, Max = 154
ORIGIN Indicates the patient ORIGIN 1 = City, 2 = Hospital, 3 = Institution
AGE Indicates patient age Min = 18, Max = 97
SOFA INC2 Used in intensive care to identify and track

the status of a patient in organ failure [32]
and indicates the worst value calculated in
the 6 hours prior to inclusion

Min = 8, Max = 17

KNAUS J0 Activity and medical follow-up in the six
months prior to admission

1 = Stage D Major activity restriction due to ill-
ness, including bedridden or hospitalized patients,
2 = Stage C Chronic illness causing significant but
not total activity restriction, 3 = Stage B Moderate
or moderate activity limitation due to illness (lim-
ited work activities), 4 = Stage A Good health, no
activity limitation

MACCABE J0 Description of the patient’s condition be-
fore the episode leading to ICU

1 = Absence of underlying disease or underlying
disease not life-threatening, 2 = Underlying dis-
ease life-threatening within 5 years, 3 = Underly-
ing disease estimated to be fatal within one year

SOFA ADM Indicates the worst case value up to 3 hours
after admission

Min = 2, Max = 16

ID1191S12V3 Indicates the temperature of the patient Min = 10.0, Max = 50.0
IGS3 ADM Index of Gravity simplified that indicates

the worst case value up to 3 hours after ad-
mission

Min = 32, Max = 132

GLYCEMIC Indicates the level of Blood Glucose Unit: mmol/L
LACTATES J0 Lactic acid is a blood glucose metabolite

produced by body tissues when they are
lacking oxygen

Unit: mmol/L

IGSII ADM TYP Indicates the admission type of the patient 0 = Scheduled surgery, 6 =Medical, 8 =Unsched-
uled surgery
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Figure 2: The system architecture

Figure 3: Patient APROCCHSS cohort screening process flowchart

factors to be evenly distributed between groups [33]. As pre-
viously mentioned, APROCCHSS contains information about
1241 sepsis patients. After reviewing the data by the medical
experts, some patients were reclassified from cortico-resistant
to cortico-sensible and some others were removed as they do
not align with some defined criteria (see Section 2.5.1). It is
also to be noted that one patient withdrew his/her consent to use
his/her data. As a result, a total of 1234 sepsis patients remained
in the cohort. As the aim of this clinical study is to primarily
focus on investigating CS responsiveness, we will only include
patients who received corticotherapy; a total of 612 patients.
The remaining 622 patients who were treated with placebo will
be included in the phase where we will conduct the evaluation
of the treatment effectiveness.

2.3. Data cleaning and feature engineering

Data cleaning and feature engineering are essential steps in
data analysis, particularly in critical fields like health. These
tasks can impact the accuracy and effectiveness of machine
learning models and ultimately affect the decision-making pro-
cess. This study encountered several challenges in dealing with
the collected raw sepsis data.

2.3.1. Feature selection
Sepsis is a time-sensitive disease, where early identification

and treatment greatly increase the chances of survival. In or-
der to optimize early detection, this study focuses on utilizing
features available at the earliest stage, specifically at Day 0 of
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hospitalization (Table 1), for predicting patients’ sensitivity to
corticotherapy. However, it is worth noting that additional fea-
tures until Day 2 of hospitalization have been also considered
in our experimental setup, in order to provide a more com-
prehensive understanding of the patients’ health status during
treatment with corticotherapy, and to study the impact that such
features (from Day 0 to Day 2) can have on the prediction gen-
erated by the considered machine learning models. This will be
later discussed in Section 2.7 and Section 3.

As we only consider the patient’s data that are known at max-
imum Day 2, feature selection starts by pruning the unused vari-
ables related to the observations made during the hospitaliza-
tion, until Day 90 (which reduces the number to 238 out of the
initial pool of 5645 features). Then, we rely on the expertise of
the medical team to select 24 essential features among the 238.

There are two categories of the collected data: static, re-
ferring to the metadata, and dynamic referring to the follow-
up/monitoring data (Table 1). The first category consists of data
on the current status of the patient as well as personal data such
as identifier, sex, weight, age, origin, date of hospitalization,
and whether or not he/she was given an antibiotic before Day 0.
These characteristics are recorded during the time of admission
and do not change during hospitalization. The second category
includes dynamic (the monitoring) features related to patient vi-
tal signs and laboratory tests that can be recorded one or more
times per day during hospitalization. Examples of these fea-
tures that have been recorded one time include infection date,
infection site, and examination type, which are mostly collected
before giving the treatment. Examples of features registered
along all the hospitalization days and which are related to pa-
tients sensitivity to treatment include SOFA score, ventilation,
vasopressor usage, and given treatment dose.

2.3.2. Handling missing values
Patients data are manually entered into the e-CRF by trained

personnel. The APROCCHSS cohort has a low rate of miss-
ing data, but in order to effectively handle the missing cases,
we have implemented two approaches. If the missing value
is associated with a temporal feature, such as a measurement
taken at a specific time point, we use the last recorded value as
a substitute. For example, if the “GLYCEMIC” (level of Blood
Glucose) feature at Day 5 is missing, it will be replaced with the
value recorded at Day 4. On the other hand, if the missing value
is associated with a non-temporal feature, we replace it with -
1 as a remarkable constant value. For instance, for the SITINF
feature, referring to the infection location, its actual observation
value ranges between 0 and 8. If its value is missing then we
replace it with -1 as its actual observation value cannot be -1.
By doing so, the absence of infection will be taken into account
in the model.

2.3.3. Data enrichment
Data enrichment in the medical field refers to the process

of creating new variables based on existing ones in order to
further describe the data and improve the accuracy of predic-
tion systems. It helps in identifying patterns and relationships
in the data that were not previously visible. According to the

APHP medical specialists’ indications, we created the variable
AR INF Type that indicates the origin of infection and which
was derived from the DATINF (diagnossis date) and DATHOSP
(Hospital admission date) variables using the following for-
mula:

AR INF Type =

1, if (min(DATINF, DATHOSP)) ≤ 2
2, otherwise

(1)

where 1 refers to community-acquired (i.e., infection is ac-
quired outside the hospital) and 2 refers to hospital acquired.
Also, the cortisol variable values are being corrected using a
dataset provided by medical experts, which contains accurate
values for this feature. This correction process is performed by
merging the corrected cortisol dataset with APROCCHSS and
then replacing the original cortisol values with the corrected
ones. This ensures that our prediction models use the most ac-
curate and reliable data available.

Knowing whether a patient took an antibiotic before being
admitted to the hospital is crucial for accurate diagnosis and
treatment. This information is important not only for the ma-
chine learning model but also for the medical staff’s decision
making regarding appropriate dosages during the patient’s hos-
pital stay. In order to capture this information, a new feature
named ANTIBIOTIC needs to be created. A value of 1 of this
feature indicates that the patient received an antibiotic and a
value of 0 indicates that he/she did not. This feature creation is
based on the following criteria:

ANTIBIOTIC =


1, if (( DADEBTT J0 ≥ -7)AND(DADEBTT J0 < 0))

OR((DAFINTT J0 ≥ -7)AND(DAFINTT J0 < 0))

OR((DADEBTT J0 ≤ -7)AND(DAFINTT J0 ≥ -7)))

0, otherwise
(2)

The variables ADEBTT J0 and DAFINTT J0 refer to the
start and end dates of antibiotic use prior to hospital admission
(Day 0), respectively. The new variable “ANTIBIOTIC” con-
tains data on 550 patients who took antibiotics before hospital
admission and 690 patients who did not.

2.4. Data transformation

For data transformation, we utilized two methods. The first
is based on the use of an ordinal encoding method for fea-
tures related to infection, where a value of 1 was assigned to
non-null feature values and 0 for null values. Date features
were also transformed to numeric values based on Day 0. The
second method concerns the use of one-hot-encoding imple-
mented through the Pandas library in Python5. For example,
the SEX feature was converted into two new features, SEX1
and SEX2. SEX1 was filled with a value of 1 if the patient
was a male and SEX2 was filled with a value of 0 if the patient
was a female. One-hot-encoding was applied to the ORIGIN,
SEX, DATINF, SITINF, ID1191S12V11, EXAMINF CHOICE,

5https://scikit-learn.org/stable/modules/generated/

sklearn.preprocessing.OneHotEncoder.html
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ID1191S12V13 CHOICE, ID1191S12V12, PREBROINF, and
IGSII ADM TYP features presented in Table 1. As a result,
the number of features increased from 24 to 127 after one-hot-
encoding was applied.

2.5. Data preparation

After being processed, data needs to be properly prepared be-
fore using machine learning models. The purpose of data prepa-
ration is to create a training model that accurately predicts the
sensitivity of new patients to corticotherapy. Data preparation
includes: labeling data, splitting data, balancing class distribu-
tion, and scaling features.

2.5.1. Data labeling
After enrolling a patient in the study on Day 0, he/she be-

gin receiving corticosteroid treatment or a placebo every 4 to 6
hours while monitoring a series of features that indicate the pa-
tient’s progress. Each patient is monitored for 90 days and fea-
ture values are recorded daily. The APHP medical experts have
established clear criteria for determining whether a patient will
respond to corticotherapy or not [13, 31]. Specifically, patients
are classified as cortico-sensitive (i.e., responders) if all of the
following four criteria are met after 14 days of treatment:

• The patient did not die,

• The vasopressor treatment is absent for at least 24 hours,

• The patient is free from mechanical ventilation for a least
24 hours,

• The SOFA score is less than 6.

If the criteria are not met, the treatment response is con-
sidered negative, meaning the patient is cortico-resistant or a
non-responder. Therefore, data is labeled as 1 or 0, indicating
whether the patient responded or did not respond to the treat-
ment on Day 14. Finally, in order to maintain the integrity of
our data, and with respect to the medical experts guidelines,
patients who did not align with the rule mentioned above were
removed from the cohort; leading to 1234 patients as previously
mentioned. Table 2 highlights the distribution of patients in the
APROCCHSS cohort.

2.5.2. Data splitting
To analyze the performance of our machine learning models,

the data need to be split between training and testing. In our
setup, we used 80% of data to fit and train our models and op-
timize their parameters. After training, we used the remaining
20% of the data for testing. This applied when using the same
cohort for training and testing. The training and testing were
performed on specific cohorts as presented in Table 3 with a
thoroughly defined experimental protocol that will be detailed
in Section 2.7.3.

2.5.3. Class balancing
The training set contains more cortico-resistant patients

(62%) than cortico-sensitive patients (38%). In order to achieve
the best accuracy for both classes, it was necessary to balance
the training data to have equal amounts of cortico-resistant and
cortico-sensitive patients. To do so, we have applied the Syn-
thetic Minority Over-sampling Technique (SMOTE) [34].

2.5.4. Feature scaling
The final step in data preparation is feature scaling. As the

cohort’s features have different units of measurement and dif-
ferent ranges of values, we have converted all feature values
to the same scale of [0,1]. This process is important as it can
help prevent bias and improve the performance of the machine
learning models.

2.6. Deployment of the signature
This section describes the deployment of a web service for

predicting cortico-sensitivity or resistance in sepsis patients.
The deployment was accomplished using Flask, a Python-based
web service framework, and hosted on the Assistance Publique
– Hôpitaux de Paris information system. The web service
takes patient data as input and provides a prediction of cortico-
sensitivity or resistance as output. Figure 4 presents the deploy-
ment phase. In practice, the deployment of the sepsis prediction
model, which is based on Logistic Regression with the SMOTE
variant and Feat Imp Default configuration is achieved through
the use of the APHP client application CleanWeb. CleanWeb
communicates with the Flask web service by sending patient
data through an HTTP request. The preprocessing script within
the Flask web service prepares the data and applies the signa-
ture, which then generates a prediction of cortico-sensitivity or
resistance. The output is returned to the CleanWeb client appli-
cation, enabling healthcare professionals at the APHP to easily
access the predictions generated by the signature. This integra-
tion of the prediction model into the APHP information system
provides a seamless and efficient process for accessing the pre-
dictions. As previously mentioned, the signature will allow the
APHP health specialists to stratify the patient groups during the
randomization process. The prediction algorithm is considered
as one of the biomarkers in this process, and thus will be in-
tegrated in future tests at the patient’s bedside to reinforce the
other biological tests.

It is to be noted that the selection of Logistic Regression with
the SMOTE variant and Feat Imp Default will be explained
later in the results section (Section 3).

2.7. Experimental setup
In this section, we will present a comprehensive description

of the experimental setup for our approach to detect Corticos-
teroid sensitivity. This includes information on the considered
cohorts, the machine learning algorithms utilized to predict a
patient’s susceptibility to corticotherapy, the experimental pro-
tocol followed, and the performance evaluation metrics that
encompass both metrics related to the evaluation of machine
learning models, as well as metrics used to analyze the treat-
ment’s effects at both the individual and population levels.
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Table 2: Distribution of patients in APROCCHSS and RECORDS
Cohorts APROCCHSS RECORDS-OBSERVATIONAL
Group Features Sensitive Resistant Total Features Sensitive Resistant Total

Corticosteroid 5645 233 379 612 21388 235 311 546
Placebo 213 409 622 81 120 201

Total 5645 446 788 1234 21388 316 431 747
Characteristic APROCCHSS randomized controlled trial Patients affected by COVID-19

Table 3: Experimental protocol used on APROCCHSS and RECORDS

Features Training Testing
APROCCHSS RECORDS APROCCHSS RECORDS

Mod 1 Day 0 X X
Mod 2 Day 0 & Day 1 X X
Mod 3 Day 0 & Day 1 & Day 2 & Diff(Day 2, Day 1) X X
Mod 4 Day 0 X X
Mod 5 Day 0 X X

Figure 4: Deployment mode of our system

2.7.1. Considered cohorts

New patients are recruited to form the RECORDS random-
ized clinical trial (RCT) study during the RECORDS project
which is a PIA (Investments for the Future program) project.
The targeted size of the cohort at the end of the 5-year project
is 1800 patients recruited in 25 intensive care units in France.
Sequential intermediate analyses will occur every 500 patients
to identify relevant predictive biomarkers/signatures.

During the initial period of the project, an observational
study was conducted, which consisted in collecting the same
clinical data as in the running period but without randomization
(i.e., having treated and placebo groups). It is worth mentioning
that the observational cohort coincided with the period when the
COVID-19 pandemic was the highest. The CS therapy was ab-
sent in the first period of the pandemics whereas it was highly
recommended in the second half. This allowed us to make a
parallel with non-treated and treated patients and test the previ-
ously learned signature from the APROCCHSS cohort.

Several processing steps were applied to the RECORDS

observational cohort in order to use the same parameters in
APROCCHSS cohort. Therefore, we identified a mapping be-
tween the two cohorts with some modifications for multiple fea-
tures. This observational cohort is characterized by the fact that
most patients were affected by COVID-19. Table 2 shows the
breakdown of sensitive and resistant patients to corticotherapy
as well as the number of initial variables. RECORDS contains
747 sepsis patients. Unlike the APROCCHSS cohort, after re-
viewing RECORDS data by the medical experts, the number
of patients remains unchanged. This study will only include
patients who received corticotherapy, a total of 546 patients.
The remaining 201 patients who were treated with placebo will
be discarded. Figure 5 presents the flowchart that shows the
screening process of the RECORDS cohort’s patients.

As detailed in Section 2.2.2, our models will be tested on the
APROCCHSS cohort which resulted from a randomized con-
trolled trial. The objective behind using two different cohorts
in our study is to evaluate the generalization of the prediction
model in terms of detecting CS responsiveness when confronted
to different data characteristics (i.e., COVID-19 effect).
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Figure 5: Patient RECORDS cohort screening process flowchart

2.7.2. Machine learning models
In our conducted experiments, we explored a range of ma-

chine learning algorithms to choose the best-performing one in
detecting patient CS sensitivity. Particularly, we investigated
the performance of the following classifiers: Logistic Regres-
sion (LR) [35], Gradient Boosting (GB) [36], Random For-
est (RF) [37], Support Vector Machine (SVM) [38], Stochastic
Gradient Descent (SGD) [39], and Decision Tree (DT) [40].

For each model, we set two test configurations: default and
optimized. The default version tests the performance of each
classifier with its default hyperparameters defined in the scikit-
learn library [41]. The optimized version, on the other hand,
aims to improve the efficiency of the default variant through
two strategies: hyperparameter tuning and forward feature se-
lection. In the hyperparameter tuning strategy, we used the Ran-
domizedSearchCV technique 6 to select the best combination of
values for the model’s hyperparameters.

The forward feature selection strategy7, on the other hand,
aims to identify the key features that contribute the most to the
model’s performance. In our experiments, both the hyperpa-
rameter tuning and forward feature selection strategies were ap-
plied separately and in combination to improve the performance
of the models. Experiments were run in the APHP secure envi-
ronment, including the secure access to the APROCCHSS and
RECORDS cohorts. We used Jupyter framework with a 64-bit
Linux operating system of 188 GB RAM.

6https://scikit-learn.org/
7https://scikit-learn.org/stable/modules/feature_

selection.html

2.7.3. Experimental protocol
Our experimental protocol is divided into two stages. The

first stage focuses on learning an initial signature that aims
to answer the question of the efficacy of machine learning in
distinguishing sepsis responders and non-responders to corti-
costeroid treatment. The second stage is devoted to explor-
ing the impact of using additional features collected over time
on the accuracy of the model, as well as to investigate the
generalizability of the model when applied to different patient
groups belonging to the different two cohorts: APROCCHSS
and RECORDS. The two stages are outlined as follows:

• Experiment 1: We evaluated the performance of vari-
ous machine learning models using Day 0 features from
the APROCCHSS cohort. The models were tested on
four different preprocessed data versions: (i) “Original”
(i.e., without scaling or balancing), (ii) “Scaled”, (iii)
“balanced” (SMOTE), and (iv) “balanced and scaled”
(SMOTE/Scaled). In addition, we configured each
model into four variants: (i) “default” version which
represents the default version of the model, (ii) the
“Hyper-Tuning” version which shows the version of
the model after running the hyperparameter tuning pro-
cess, (iii) the “Feat Imp Tunning” version with forward
feature selection and hyperparameter tuning, and (iv)
the “Feat Imp Default” version which specifies the de-
fault version of the model after performing forward fea-
ture selection but no hyperparameter tuning. Based on
the obtained experimental results, we selected the best-
performing model, referred to as “BestMod”. Conducting
this experiment will allow us answer RQ1, mentioned in
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Section 1, which is related to the capacity of the machine
learning models to recognize sepsis responders and non-
responders to corticosteroid treatment.

• Experiment 2: The goal of this experiment is to test the
performance of the best model returned by the first experi-
ment, “BestMod”, under different conditions and settings.
Specifically, we implemented “BestMod” in five model
variants (Mod1 to Mod5), where each model takes as in-
put a different set of features or samples in training and/or
testing. The aim is to evaluate the gain/loss in performance
when incorporating additional features known at Day 1
and/or Day 2, or when applying “BestMod” to different pa-
tients’ characteristics (APROCCHSS vs RECORDS). Ta-
ble 3 presents a list of models and the feature sets used
in our protocol, which will help us understand the impact
of these factors on model performance. As seen from Ta-
ble 3, Mod1, Mod4, and Mod5 take the same set of fea-
tures corresponding to Day 0. They are trained either on
different cohorts (Mod1 and Mod5 trained with APROC-
CHSS and Mod4 trained with RECORDS) or on a differ-
ent testing cohort (Mod1 tested with APROCCHSS and
Mod4 and Mod5 tested with RECORDS). Mod2 takes the
feature sets corresponding to Day 0 and Day 1. Mod3 uses
features ranging from Day 0 to Day 2 with additional ones
reflecting the difference between the values of features of
Day 2 and those of Day 1. Table 4 summarizes the list
of features used in each experimental setting. Conduct-
ing this experiment will allow us answer RQ2 and RQ4,
mentioned in Section 1, which are tied to the influence of
the considered features on the obtained results, and to the
model’s generalization when it is learned on different co-
horts, respectively.

2.7.4. Applied statistical framework
Our experimental study involves algorithms with a non-

deterministic nature, meaning they may produce varying re-
sults across multiple runs. To address this stochastic element
of the results, the utilization of statistical testing becomes nec-
essary. Given that we are comparing more than two algorithms,
we have opted to employ the Kruskal-Wallis test [42]. This test
serves as a non-parametric alternative to the ANOVA test, elim-
inating the need to assess whether the cohort follows a normal
distribution. We conducted 30 experimental runs and analyzed
the statistical differences in the results with a confidence level
of 95% (α = 0.05). The Kruskal-Wallis test evaluates the null
hypothesis H0, which posits that the outcomes of all algorithms
are samples from continuous distributions with equal medians.
It is juxtaposed with the alternative hypothesis, H1, suggesting
that they are not. The p-value from the Kruskal-Wallis test rep-
resents the probability of rejecting the true null hypothesis H0
(a type I error). If the p-value is less than or equal to α(≤ 0.05),
we accept H1 and reject H0. Conversely, a p-value greater than
α(> 0.05) leads to the opposite conclusion. To conduct this test,
we employed the Python routine kruskal(). However, one lim-
itation of this test is its inability to identify a single algorithm
that may significantly differ from the others, while the rest re-

main statistically similar. To address this issue, we incorpo-
rated another Python function, namely posthoc dunn(), to per-
form additional pairwise comparisons, enabling the detection of
statistical differences between algorithms in a one-versus-one
manner.

2.7.5. Performance assessment
In this section, we will introduce the metrics adopted to eval-

uate the performance of our Corticosteroid sensitivity detection
approach. This includes the metrics used to measure the treat-
ment’s effect on individual patients and the overall population,
as well as the metrics used to evaluate the performance of the
machine learning models used in our protocol.

Metrics to evaluate treatment effectiveness. Individual Treat-
ment Effect (ITE) and Average Treatment Effect (ATE) are two
important metrics used to evaluate the effectiveness of treatment
in randomized controlled trials. To compute ITE, we compare
the outcome of patients who received corticosteroid treatment
(T=1) with the outcome of patients who did not receive the
treatment (T=0). We calculate predictions for patients who re-
ceived corticotherapy and those who received a placebo, and
subsequently, the computed values of individual treatment ef-
fect represent the disparity between these two predictions. ITE
can be used to identify patients who are most likely to benefit
from a treatment and can help to personalize treatment deci-
sions [43]. ATE, on the other hand, measures the average effect
of a treatment across all patients in the study. It can be used
to estimate the overall benefit of the treatment and can help to
determine whether a treatment is effective for a population as a
whole. ITE is defined as follows [43]:

IT E = Y(X = 1) − Y(X = 0) = Y(T = 1) − Y(T = 0) (3)

where, Y(T = 1) denotes the outcome value for the pa-
tients who took the corticosteroid treatment (i.e., X = 1), and
Y(T = 0) denotes the outcome of not receiving the CS treat-
ment referring to those who took the placebo (i.e., X = 0). ATE
is defined as follows [43]:

AT E = E(Y(T = 1)) − E(Y(T = 0)) (4)

where E(Y(T = 1)) is the average outcome of receiving the
CS treatment, and E(Y(T = 0)) is the average outcome of not
receiving the CS treatment; referring to those who took the
placebo. Additionally, we used the Conditional Average Treat-
ment Effect (CATE) which measures the ATE within a certain
subgroup or condition. It is calculated by taking the average
treatment effect within a specific subgroup or condition, rather
than across the entire population.

The Absolute Risk Reduction (ARR) [44] and the Number
Needed to Treat (NNT) [45] are two additional metrics that
we have used to evaluate the effectiveness of the CS treatment.
ARR is the difference in the incidence of an event between the
treated group and the control group. It is a measure of the ab-
solute benefit of the treatment, and is calculated by subtract-
ing the incidence of the event in the control group from the
incidence of the event in the treatment group. The event for
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Table 4: Set of features used in each experimental setting on APROCCHSS and RECORDS
Features Total

Mod 1, Mod 4
and Mod 5

ORIGIN, SEX, IGSII ADM TYP, AR Cortico, PATWGHT, AGE, SOFA INC2,
KNAUS J0, MACCABE J0, SOFA ADM, ID1191S12V3, IGS3 ADM,
GLYCEMIE, LACTATES J0, Cort DiffMax, Cort Rep, AR INF Type, SIT-
INFx, ID1191S12V11 SITINFx, DATINF SITINFx, ID1191S12V12 SITINFx,
ID1191S12V13 SITINFx, ID1191S12V13 CHOICE1Y SITINFx, EXAM-
INF CHOICEx, PREBROINFx

24

Mod 2 Same to Mod 1 + DOSMAXAD J11, DOSMAXDOB J12, DOSMAXDOP J13,
DOSMAXNA J14, DOSMINAD J15, DOSMINDOB J16, DOSMINDOP J1, DOS-
MINNA J19, DOSTERL J110, DOSVASOP J111, ’SOFA J1’, VENTIL J1, VIVANT J1

37

Mod 3 Same to Mod 2 + DOSMAXAD J21, DOSMAXDOB J22, DOSMAXDOP J23,
DOSMAXNA J24, DOSMINAD J25, DOSMINDOB J26, DOSMINDOP J2, DOS-
MINNA J29, DOSTERL J210, DOSVASOP J211, SOFA J2, VENTIL J27, VIVANT J28,
DOSMAXAD Diff 1 2, DOSMAXDOB Diff 1 2, DOSMAXDOP Diff 1 2, DOS-
MAXNA Diff 1 2, DOSMINAD Diff 1 2, DOSMINDOB Diff 1 2, DOSMIN-
DOP Diff 1 2, DOSMINNA Diff 1 2, DOSTERL Diff 1 2, SOFA Diff 1 2

60

1 Max dose Adrenaline (mg/h), 2 Dose maxi dobutamine (µg/kg/min) 3 Max dose dopamine (µg/kg/min)
4 Max dose Noradrenaline (mg/h) 5 Minimum dose Adrenaline (mg/h) 6 Minimum dose dobutamine (µg/kg/min)
7 Assisted ventilation 8 Indicates whether or not the patient is alive 9 Minimum Noradrenaline dose (mg/h)
10 Terlipressin (IU/h) 11 Vasopressin (IU/h)

ARR in our study is a significant clinical outcome such as a pa-
tient’s positive response to corticosteroid treatment. ARR quan-
tifies the difference in the incidence of this event between the
treated group (corticosteroid treatment) and the control group
(placebo). ARR can also be calculated as the negative of ATE,
which aligns with its definition. The formula for ARR is [44]:

ARR = P(event in control group) − P(event in treatment group) (5)

or simply:

ARR = −AT E (6)

On the other hand, NNT is a measure of the number of pa-
tients that need to be treated in order to prevent one event. NNT
is calculated as the reciprocal of ARR. The formula for NNT is
[45]:

NNT =
1

ARR
(7)

Both ARR and NNT are used to evaluate the effectiveness of
a treatment, but they provide different perspectives on the treat-
ment’s performance. These performance assessment metrics
will allow us respond to RQ3, mentioned in Section 1, which is
tied to the effectiveness of the treatment.

Other evaluation metrics and metrics interpretation. To evalu-
ate the performance of our machine learning models under dif-
ferent configurations and settings, we used the following com-
mon metrics: accuracy (Ac), precision (Pr), recall (Re), F1
score, and the Area Under the Curve (AUC). Referring to [46],
in case where AUC > 0.9 then it indicates a highly accurate
model, if 0.7 ≤ AUC < 0.9 then this indicates a moderately

accurate model, and if AUC < 0.7 then this indicates a low ac-
curate model.

As previously presented, we have used metrics to evaluate
treatment effectiveness. The ITE values can be positive, neg-
ative or zero. In our study, the outcome is binary. Therefore,
the ITE values are reported as 1, 0, or -1, rather than a specific
numerical value. A value of -1 for ITE indicates that the treat-
ment had a beneficial effect on the individual patient. A value
of 0 indicates that the treatment had no effect on the individ-
ual patient, and a value of 1 indicates that the treatment had a
detrimental effect on the individual patient.

Similarly, the values of ATE can be positive, negative or zero.
A negative ATE value indicates that the treatment had a bene-
ficial effect on the population as a whole, a positive ATE value
indicates that the treatment had a detrimental effect on the pop-
ulation as a whole, and a zero ATE value indicates that the treat-
ment had no effect on the population as a whole. It is important
to note that even if the ATE is positive, it does not mean that
the treatment would work well for all patients. Some individ-
ual patients may not benefit from the treatment, or even may
experience negative effects. The ATE is an average of all pa-
tients in the study and it might not reflect the individual patient
experience.

The values of ARR can be positive, negative, or zero. A
negative ARR value indicates that the incidence of the event is
higher in the treatment group than in the control group, which
means that the treatment is not effective in reducing the risk
of the event and can be harmful. A positive ARR value indi-
cates that the incidence of the event is lower in the treatment
group than in the control group, which means that the treat-
ment is effective in reducing the risk of the event. A zero ARR
value indicates that there is no difference in the incidence of the
event between the treatment group and the control group, which
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means that the treatment is not effective in reducing the risk of
the event.

A positive NNT with a low value indicates that the treatment
is very effective in reducing the risk of the event and that a small
number of patients need to be treated to prevent one event. A
positive NNT with a high value indicates that the treatment is
less effective in reducing the risk of the event and that a large
number of patients need to be treated to prevent one event. It is
to be noted that a negative NNT reflects the number of patients
needed to harm. An NNT value of infinity means that the treat-
ment is not effective in reducing the risk of the event at all and
that no matter how many patients are treated, the event will not
be prevented.

3. Results

In this section, we present the obtained results with respect
to our defined experimental protocol.

3.1. Experiment 1: empirical results
The results obtained from different machine learning models

with various settings are presented in Table 5. From the table,
it can be observed that:

• Most of the models in our study demonstrated that when
the most relevant features were selected in combination
with hyperparameter tuning (i.e., Feat Imp Tuning), they
achieved the highest level of AUC in their predictions.
This is likely because feature selection and hyperparam-
eter tuning are both important steps in optimizing the per-
formance of machine learning models. Feature selection
helps to identify the most important variables that have the
greatest impact on the outcome, while hyperparameter tun-
ing helps to optimize the performance of the model by se-
lecting the best set of parameters for a given dataset. When
used together, these two techniques can help improve the
performance of the model and reduce overfitting.

In the results presented in Table 5, the best AUC values
were obtained by models that used this combination of
feature selection and hyperparameter tuning. For example,
Gradient Boosting, and Support Vector Machine achieved
an AUC value of 71%, and Stochastic Gradient Descent
and Decision Tree achieved an AUC of 70%. Random For-
est registered 71% with the Hyper Tuning setting. How-
ever, unexpectedly, the best AUC value was registered for
Logistic Regression with a value of 72% when the most
relevant features were selected within the default version
(i.e., Feat Imp Default). Figure 6 shows a better visualiza-
tion of these results.

• From Table 5, it can be observed that in most cases
(all models except Stochastic Gradient Descent), the
models performed better when using the SMOTE and
SMOTE/Scaled variants compared to the other config-
urations (i.e., Original and Scaled). The SMOTE and
SMOTE/Scaled variants improved the performance of the
machine learning models. This is likely because the

SMOTE technique helps to balance the dataset by creat-
ing synthetic samples of the minority class, which in turn
increases the diversity of the data and provides a more rep-
resentative sample of the sepsis population. The better the
data quality, the more informative the dataset becomes,
which in turn makes the machine learning model more ca-
pable of performing its prediction task.

• To supplement the above, by analyzing the performance
metrics of the different models, the accuracy, precision,
recall, and F1 metrics, we can also conclude that the best
model which achieved the best results is Logistic Regres-
sion. Particularly, Logistic Regression registered 72%,
75%, 72%, and 73% for the accuracy, precision, recall, and
F1-score, respectively, in comparison to Random Forest
with 74%, 71%, 71%, and 71%, Gradient Boosting with
71%, 68%, 69%, and 68%, Support vector machine with
72%, 74%, 72%, and 72%, Stochastic Gradient Descent
with 72%, 68%, 68%, and 68% and finally, Decision Tree
with 69%, 66%, 68%, and 67% for the accuracy, precision,
recall, and F1-score, respectively.

• Based on the data provided in Table 5, it is clear
that the computed p-values fall below the significance
level α = 0.05. For each classifier, we calculated
the p-values for various input data configurations, in-
cluding original, scaled, SMOTE, and SMOTE Scaled.
These p-values range from 1.267057943824278E-25 to
1.2670579438242684E-25. Furthermore, the p-values
for each classifier consistently remain at the value of
1.267057943824278E-25. Consequently, we can conduct
a statistical comparison among the algorithms under con-
sideration. Table 6 indicates that the logistic regression
algorithm exhibits statistical differences compared to Gra-
dient Boosting, Support Vector Machine, Stochastic Gra-
dient Descent, and Decision Tree. Notably, logistic regres-
sion demonstrates superior performance when compared
to these algorithms, especially Gradient Boosting and Sup-
port Vector Machine. This observation aligns with the re-
sults obtained from the experiments.

• In conclusion, Logistic Regression is considered to be the
best model for our study based on the analysis of the ac-
curacy, precision, recall, F1 metric, and AUC. With the
SMOTE variant and Feat Imp Default configuration, Lo-
gistic Regression achieved the highest values among all
the models and hence selected as the “BestMod” to be used
for the rest of our experimental protocol.

3.2. Experiment 2: empirical results and discussion

The results obtained from applying the Logistic Regression
model with the SMOTE setting on the previously defined dif-
ferent variant models (Table 3) are presented in Table 7. The
following observations can be made:

• Similarly to the results obtained in Experiment 1, in
most configurations, the models achieved the high-
est AUC when using the combination of selecting the
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most important features with hyperparameter tuning (i.e.,
Feat Imp Tuning). Even with more features (Mod 2 and
Mod 3) and by considering different cohorts, this config-
uration proves its importance and impact on the efficiency
of the Logistic Regression model. From Table 7, Mod 1
(i.e., the best model) achieved an AUC value of 72%, Mod
2 achieved an AUC value of 75%, Mod 3 achieved an AUC
value of 76%, and Mod 4 achieved an AUC value of 69%.

• From Table 7, it can be observed that the best AUC score
was registered for Mod 3 with the value of 76% when the
most relevant features are selected from Day 0, Day 1, Day
2, and the difference between Day 2 and Day 1 (see Table
3) using the same Feat Imp Tuning configuration. This
confirms the fact that training the model with more fea-
tures increases its performance.

• In addition to the AUC value, by evaluating the remaining
performance metrics (i.e., accuracy, precision, recall, and
F1 score) of the different models’ variants, we can also
conclude that Mod 3 is the best variant model that achieved
the best results. Especially, the accuracy, precision, recall,
and F1 score are set to 75%, 73%, 76%, and 73% with
Mod 3 in comparison to Mod 1 with 72%, 75%, 72%, and
73%, Mod 2 with 74%, 73%, 76%, and 73%, Mod 4 with
69%, 69%, 70%, and 69%, and Mod 5 with 52%, 56%,
55%, and 50% for the accuracy, precision, recall, and F1
score, respectively.
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• In most cases, models performed better when using the
APROCCHSS cohort and by considering additional fea-
tures compared to models applied to RECORDS. Let us
recall that the RECORDS cohort includes patients affected
by COVID-19 (Section 2.7.1). This data property could
have an influence on the model distribution and therefore
impacted the prediction results.

• By comparing the results of Mod 1 and Mod 4 hav-
ing the same features at Day 0 but trained with differ-
ent cohorts, the application of the initial signature to the
RECORDS cohort presents less accurate predictions. With
the Feat Imp Tuning configuration, Mod 1 achieved an
AUC value of 72%, however, Mod 4 achieved an AUC
value of 70% with the same setup. This might be due to
the COVID-19 effect that is present on the RECORDS co-
hort.

• In all configuration setups (i.e., default, hyperparameter
tuning, Feat Imp Tuning, and Feat Imp Default), Mod 5
presents less accurate results compared to other variants.
For example, the model achieved an AUC value of 55%
with default and Hyper tuning, which are considered to be
among the most performing configurations. This can also
be explained by the fact of including COVID-19 patients
in the RECORDS cohort. Therefore, a generalization may
not be applied to different sepsis causes; as other fac-
tors might influence the behaviour of the machine learning
model. We conclude that viral versus bacterial sepsis may
lead to different signatures.

• Based on the data provided in Table 7, it is clear that the
computed p-values fall below the significance level α =
0.05. For each mod, we calculated the p-values for vari-
ous configurations, including Default, Hyper tuning, Feat
Imp Tuning, and Feat Imp Default. These p-values range
from 1.26705794382425E-25 to 1.2670579438242684E-
25. Furthermore, the p-values for each mod consistently
remain at the value of 3.334325930239449E-31. Conse-
quently, we can conduct a statistical comparison among
the algorithms under consideration. Table 8 indicates that
Mod 3 exhibits statistical differences compared to Mod
4 and Mod 5. We also notice a statistical difference
between Mod 1 and Mod 2 when added additional fea-
tures. Notably, Mod 3 demonstrates superior performance
when compared to the other experiments. This observa-
tion aligns with the results obtained from the experiments.
However, we have noticed that there is no statistical differ-
ence between Mod 3 and Mod 2. This necessitates further
investigation. This encourages us to analyze the added
features per day in the initial stage and then enhance the
model with the difference in feature values between con-
secutive days.

3.3. Evaluation of treatment effectiveness
Evaluating treatment effectiveness will allow us to respond to

RQ3: What is the effect of corticotherapy on individual treated

and all treated patients? To complement the analysis conducted
in Experiment 1 and Experiment 2, we will analyze the effect
of corticotherapy on individual treated patients and all treated
patients as a whole using the treatment effectiveness metrics
defined in Section 2.7.5. We will measure ITE, ATE, ARR,
and NNT, for the four different Logistic Regression variants
(based on SMOTE) using various feature sets (Mod 1 to Mod 4)
with the four different configurations: default, Hyper Tuning,
Feat Imp Tuning, and Feat Imp-Default. The results of these
metrics are presented in Table 10. Mod 5 was not considered in
the analysis as it was trained and tested using a separate cohort,
and its results would not provide meaningful insights into the
conclusions of our study.

To ensure the accuracy and reliability of our findings and
evaluations, the reported results for all statistical metrics are
based solely on patients who were correctly predicted by the
models. The calculation of the metrics’ values is based on the
same sample set. To achieve this, we first identified the cor-
rectly classified patients and subsequently determined the in-
tersection of all patients. This approach not only maintains a
consistent sample size but also ensures uniformity in patient
identifiers. Based on the results shown in Table 10, the ITE
measure may vary considerably depending on the configuration
used for the Logistic Regression. The obtained results can be
interpreted as follows:

• For Mod 1, for the different configurations (i.e., de-
fault, hyperparameter tuning, Feat Imp Tuning, and
Feat Imp Default), the percentage of patients with an ITE
= 0, varies from 77.33% to 87.67%, indicating that it is dif-
ficult to decide whether the treatment is effective or not. In
addition, the positive impact of the treatment on patients
indicating ITE = -1 shows a small variation between the
different settings, ranging from 9% to 15.67%. Patients
having a detrimental effect when using the treatment show
a relatively low percentage, varying from 2.33% to 9.33%.
Figure 7 shows a better visualization of these results.

• For Mod 2 (Figure 7), for the different configurations, the
percentage of patients with an ITE = 0 varies from 82% to
85.33%. In addition, the beneficial impact of the treatment
on patients indicating ITE = -1 shows a slight variation be-
tween the configurations, ranging from 8.67% to 10.33%.
Patients having a detrimental effect using the treatment
(ITE = 1) show a relatively low percentage, varying from
4.67% to 8%.

• Figure 7 shows the results obtained from Mod 3. The per-
centage of patients with an ITE = 0 varies from 84.33%
to 88%, indicating that it is difficult to decide whether the
treatment is effective or not. The positive impact of the
treatment on patients (i.e., ITE = -1) presents a low per-
centage, ranging from 3.33% to 8.33%, similarly to the
percentage reflecting the negative effect which varies from
7% to 9.33%.

• For Mod 4 (Figure 7), for the different configurations, the
percentage of patients with an ITE = 0, varies from 73%
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Table 6: Dunn’s test performance for experiment 1 – p-values based on mean AUC values generated across 30 runs
Logistic regression Gradient boosting Random forest Support vector machine Stochatic Gradient Descent Decision Tree

Logistic regression 1.0 1.8092987633461E-28 0.355944493430778 9.1472313444385E-05 1.7481136093207E-10 2.2262610723402E-18
Gradient boosting 1.8092987633461E-28 1.0 2.2262610723402E-18 1.7481136093207E-10 9.1472313444385E-05 0.355944493430778

Random forest 0.355944493430778 2.2262610723402E-18 1.0 0.355944493430778 9.1472313444385E-05 1.7481136093207E-10
Support vector machine 9.1472313444385E-05 1.7481136093207E-10 0.355944493430778 1.0 0.355944493430778 9.1472313444385E-05

Stochatic Gradient Descent 1.7481136093207E-10 9.1472313444385E-05 9.1472313444385E-05 0.355944493430778 1.0 0.355944493430778
Decision Tree 2.2262610723402E-18 0.355944493430778 1.7481136093207E-10 9.1472313444385E-05 0.355944493430778 1.0

Figure 6: ROC curves pf the Best Model applied on APROCCHSS cohort

to 81%, indicating that it is difficult to decide whether the
treatment is effective or not. In addition, the positive im-
pact of the treatment on patients indicating ITE = -1 shows
a small variation between the different settings, ranging
from 11% to 14%. Patients having a detrimental effect
when using the treatment show a relatively low percent-
age, varying from 8% to 13%.

• From Table 10, it can be observed that the high percent-
age with positive treatment effect was obtained by models
(except for Mod 4) that used especially feature selection
combined with either hyperparameter tuning or the default
model (i.e., Feat Imp Tuning and Feat Imp Default). This
confirms the outcomes found in Experiments 1 and Ex-
periments 2 tied to the best configurations. However, for
Mod 3, we can notice a significant decrease in the ben-
eficial effect on the individual patient values (ITE = -1),
observed for all configurations, compared to Mod 1 and

Mod 2 recorded values. For example, for ITE = -1, Mod 3
achieved only a percentage of 3.33%, 4.67%, 8.33%, and
8.33%, in comparison to Mod 1 which achieved 9.33%,
9%, 15.67%, and 10% and to Mod 2 which achieved 10%,
8.67%, 10.33%, and 10% for the Default, Hyperparameter
tuning, Feat Imp Tuning, and Feat Imp Default configu-
rations, respectively.

As for the ATE interpretations, results may be interpreted in
a similar way to ITE; as follows.

• From Table 10, for Mod 1 and Mod 2, for all configura-
tions, the negative ATE values indicate that the treatment
had a beneficial effect on the population as a whole. Mod
1 ATE values vary from -0.09 to 0 while for Mod 2 ATE
values vary from -0.05 to -0.02.

• In Mod 3, both Default and Hyper Tuning configurations
exhibit positive ATE values of 0.05, suggesting potential
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Table 7: Evaluation of model variants applied on APROCCHSS and RECORDS cohorts based on mean values generated across 30 runs
Mod Default Hyper Tuning Feat Imp Tuning Feat Imp Default p-value p value GobalAuc. Ac. Pr. Re. F1 Auc. Ac. Pr. Re. F1 Auc. Ac. Pr. Re. F1 Auc. Ac. Pr. Re. F1
Mod1 0.69 0.73 0.70 0.70 0.70 0.64 0.67 0.68 0.67 0.68 0.72 0.72 0.75 0.72 0.73 0.63 0.64 0.62 0.63 0.62 1.267057943824278 E-25

3.334325930239449 E-31
Mod 2 0.68 0.69 0.67 0.69 0.66 0.68 0.68 0.66 0.68 0.65 0.75 0.74 0.73 0.76 0.73 0.75 0.74 0.73 0.76 0.73 1.26705794382425 E-25
Mod 3 0.69 0.68 0.67 0.69 0.67 0.65 0.65 0.64 0.66 0.63 0.76 0.75 0.73 0.76 0.73 0.74 0.74 0.72 0.75 0.72 1.2670579438242684 E-25
Mod 4 0.67 0.67 0.67 0.68 0.67 0.67 0.67 0.68 0.68 0.67 0.69 0.69 0.69 0.7 0.69 0.68 0.65 0.69 0.69 0.69 1.267057943824278 E-25
Mod 5 0.54 0.52 0.56 0.55 0.5 0.54 0.52 0.56 0.55 0.5 0.49 0.52 0.48 0.49 0.41 0.52 0.55 0.54 0.52 0.46 1.2670579438242684 E-25

Table 8: Dunn’s test performance for experiment 2 – p-values based on mean AUC values generated across 30 runs
Mod 1 Mod 2 Mod 3 Mod 4 Mod 5

Mod 1 1.0 4.789919835201660E-07 0.0634364490986529 0.0634364490986529 4.789919835201660E-07
Mod 2 4.789919835201660E-07 1.0 0.0634364490986529 2.647075928862760E-15 9.468492290506880E-27
Mod 3 0.0634364490986529 0.0634364490986529 1.0 4.789919835201660E-07 2.647075928862760E-15
Mod 4 0.0634364490986529 2.647075928862760E-15 4.789919835201660E-07 1.0 0.0634364490986529
Mod 5 4.789919835201660E-07 9.468492290506880E-27 2.647075928862760E-15 0.0634364490986529 1.0

Figure 7: Percentage ITE

Table 9: Statistical analysis: APROCCHSS vs RECORDS
Cohort Treatment / No treatment Number of Female Patients Number of Male Patients

APROCCHSS Corticosteroid 187 355
Placebo 178 395

RECORDS Corticosteroid 136 329
No treatment 51 121
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Table 10: Statistical metrics for the different modes
Default Hyper Tuning Feat Imp Tuning Feat Imp Default

Mod 1

Correctly classified patients 300

ITE
(-1, 9.33%)
(0, 83.67%)

(1, 7.0%)

(-1, 9.0%)
(0, 81.67%)
(1, 9.33%)

(-1, 15.67%)
(0, 77.33%)
(1, 7.0%)

(-1, 10.0%)
(0, 87.67%)
(1, 2.33%)

ATE -0.02 0 -0.09 -0.08
ARR 0.02 0 0.09 0.08
NNT 50 - 11.11 12.5

Mod 2

Correctly classified patients 300

ITE
(-1, 10.0%)
(0, 82.0%)
(1, 8.0%)

(-1, 8.67%)
(0, 84.67%)
(1, 6.67%)

(-1, 10.33%)
(0, 84.67%)
(1, 5.0%)

(-1, 10.0%)
(0, 85.33%)
(1, 4.67%)

ATE -0.02 -0.02 -0.05 -0.05
ARR 0.02 0.02 0.05 0.05
NNT 50 50 20 20

Mod 3

Correctly classified patients 300

ITE
(-1, 3.33%)
(0, 88.0%)
(1, 8.67%)

(-1, 4.67%)
(0, 86.0%)
(1, 9.33%)

(-1, 8.33%)
(0, 84.67%)
(1, 7.0%)

(-1, 8.33%)
(0, 84.33%)
(1, 7.33%)

ATE 0.05 0.05 -0.01 -0.01
ARR -0.05 -0.05 0.01 0.01
NNT -20 -20 100 100

Mod 4

Correctly classified patients 80

ITE
(-1, 14.0%)
(0, 73.0%)
(1, 13.0%)

(-1, 14.0%)
(0, 73.0%)
(1, 13.0%)

(-1, 13.0%)
(0, 77.0%)
(1, 10.0%)

(-1, 11.0%)
(0, 81.0%)
(1, 8.0%)

ATE -0.01 -0.01 -0.03 -0.03
ARR 0.01 0.01 0.03 0.03
NNT 100.00 100.00 33.33 33.33

harm to the overall patient population due to the treatment.
Conversely, for Feat Imp Tuning and Feat Imp Default
configurations, negative ATE values of -0.01 are consis-
tently observed, indicating potential benefit for all patients
from the treatment.

• For Mod 4, for all configurations, the negative ATE values
indicate that the treatment had a beneficial effect on the
population as a whole which varying from -0.03 to -0.01.

• By analyzing the results of Mod 1, Mod 2, and Mod 3,
we noticed that the longer a model uses patients’ moni-
toring data (i.e., more features), the benefit will decrease.
As noticed above, negative values are observed for Mod 1
and Mod 2, with better values achieved for Mod 1, in con-
trast to Mod 3 which registered positive values for ATE.
Therefore, additional data is necessary for a more confi-
dent analysis and to refine the approach.

From Table 10, we can also interpret the results of the Num-
ber Needed to Treat (NNT) according to the Absolute Risk Re-
duction (ARR) (see Equation 7) measure. The results’ interpre-
tation can be given as follows:

• For Mod 1 and Mod 2, for the different configurations,
the positive NNT values mean that the treatment is effec-

tive in reducing the risk of the event. Mod 1 NNT values
vary from 11.11 to 50 meaning that for the default model’s
configuration, for instance, we have to treat 50 patients
with CS to prevent one additional bad outcome. For Mod
2 NNT values vary from 20 to 50. It is to be noted that
there is no other therapy for sepsis, so in this case, we
cannot decide whether the values of NNT are low or high.
This NNT interpretation is also based on the ARR mea-
sures which present positive values, for Mod 1 and Mod
2. This shows that the incidence of the event is lower in
the treatment group than in the control group which means
that the treatment is effective in reducing the risk of the
event. Mod 1 ARR values vary from 0 to 0.09 while for
Mod 2 ARR values vary from 0.02 to 0.05.

• In Mod 3, NNT values for Default and Hyper Tuning con-
figurations are negative, with a magnitude of 20, indi-
cating the number of patients needed to potentially ex-
perience harm. This is in line with the negative ARR
(Absolute Risk Reduction) values of -0.05, suggesting a
higher event incidence in the treatment group compared
to the control group. In this context, the treatment does
not appear effective and might even be harmful. Con-
versely, for Feat Imp Tuning and Feat Imp Default con-
figurations, NNT values are positive at 100, signifying the

20



Table 11: Statistical metrics for the different modes applied on male data
Default Hyper Tuning Feat Imp Tuning Feat Imp Default

Mod 1

Correctly classified patients 209

ITE
(-1, 16.27%)
(0, 80.38%)
(1, 3.35%)

(-1, 16.75%)
(0, 79.9%)
(1, 3.35%)

(-1, 17.22%)
(0, 76.56%)
(1, 6.22%)

(-1, 19.62%)
(0, 78.95%)
(1, 1.44%)

ATE -0.13 -0.13 -0.11 -0.18
ARR 0.13 0.13 0.11 0.18
NNT 7.69 7.69 9.09 5.56

Mod 2

Correctly classified patients 209

ITE
(-1, 15.69%)
(0, 80.88%)
(1, 3.43%)

(-1, 15.12%)
(0, 80.98%)
(1, 3.9%)

(-1, 13.88%)
(0, 81.34%)
(1, 4.78%)

(-1, 13.88%)
(0, 81.82%)
(1, 4.31%)

ATE -0.12 -0.11 -0.09 -0.1
ARR 0.12 0.11 0.09 0.1
NNT 8.33 9.09 11.11 10.00

Mod 3

Correctly classified patients 209

ITE
(-1, 12.14%)
(0, 80.58%)
(1, 7.28%)

(-1, 11.27%)
(0, 78.92%)
(1, 9.8%)

(-1, 12.5%)
(0, 80.77%)
(1, 6.73%)

(-1, 11.96%)
(0, 79.9%)
(1, 8.13%)

ATE -0.05 -0.01 -0.06 -0.04
ARR 0.05 0.01 0.06 0.04
NNT 20.00 100.00 16.67 25.00

Mod 4

Correctly classified patients 95

ITE
(-1, 10.53%)
(0, 68.42%)
(1, 21.05%)

(-1, 14.74%)
(0, 64.21%)
(1, 21.05%)

(-1, 8.42%)
(0, 72.63%)
(1, 18.95%)

(-1, 11.58%)
(0, 73.68%)
(1, 14.74%)

ATE 0.11 0.06 0.11 0.03
ARR -0.11 -0.06 -0.11 -0.03
NNT -9.09 -16.67 -9.09 -33.33

number of patients needed to potentially benefit. This cor-
responds to lower event incidence in the treatment group,
indicating an effective reduction in the risk of the event.

• From Table 10, we can also notice that for these first three
models (Mod 1, 2, and 3), when applied to APROCCHSS,
the mean ARR has an average of 0.25. This means that
the average reduction in risk with corticosteroid treatment
for sepsis patients is estimated to be 25% in the APROC-
CHSS cohort. For Mod 4, results show, when applied to
RECORDS, that the mean ARR has an average of 0.02.
This means that the average reduction in risk with corti-
costeroid treatment for sepsis patients is estimated to be
2% in the RECORDS cohort.

To further study and analyze these treatment effectiveness
measures, we have used the Conditional Average Treatment Ef-
fect (CATE) measure [47]. In our analysis, CATE is reported
based on the distribution of females and males over treatment
and placebo groups. Table 9 shows some statistical analysis of
APROCCHSS and RECORDS reflecting the considered groups
for CATE analysis.

• From Table 11, for the male group study, it can be ob-
served that for Mod 1, Mod 2, and Mod 3, for the different

configurations, the percentage of patients with an ITE = -
1, varies from 11.27% to 19.62%, indicating that the treat-
ment had a positive impact on the individual patient. This
is endorsed by the obtained negative ATE values which
vary from -0.01 to -0.18, and by the positive ARR values
which vary from 0.01 to 0.18. Also, the positive NNT val-
ues, varying from 5.56 to 100, indicate that the treatment is
effective in reducing the risk of the event. Same as above,
we are unable to determine if the values of NNT in this
trial are low or high because no other treatment for sepsis
is currently being examined.

In Mod 4, for the different configurations, the percent-
age of patients with an ITE = -1, varies from 8.42% to
14.74%, indicating that the treatment had a positive im-
pact on the individual patient. This is endorsed by the ob-
tained positve ATE values which vary from 0.03 to 0.11,
and by the negative ARR values which vary from -0.11 to
-0.03. Also, the negative NNT values, varying from -33.33
to -9.09, indicate that the treatment is not effective in re-
ducing the risk of the event. Same as above, we are unable
to determine if the values of NNT in this trial are low or
high because no other treatment for sepsis is currently be-
ing examined.
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Table 12: Statistical metrics for the different modes applied on female data
Default Hyper Tuning Feat Imp Tuning Feat Imp Default

Mod 1

Correctly classified patients 118

ITE
(-1, 10.71%)
(0, 70.54%)
(1, 18.75%)

(-1, 11.5%)
(0, 73.45%)
(1, 15.04%)

(-1, 15.79%)
(0, 66.67%)
(1, 17.54%)

(-1, 11.4%)
(0, 76.32%)
(1, 12.28%)

ATE 0.08 0.04 0.02 0.01
ARR -0.08 -0.04 -0.02 -0.01
NNT -12.50 -25.00 -50.00 -100.00

Mod 2

Correctly classified patients 118

ITE
(-1, 9.4%)

(0, 78.63%)
(1, 11.97%)

(-1, 9.32%)
(0, 77.12%)
(1, 13.56%)

(-1, 8.47%)
(0, 78.81%)
(1, 12.71%)

(-1, 8.47%)
(0, 79.66%)
(1, 11.86%)

ATE 0.03 0.04 0.04 0.03
ARR -0.03 -0.04 -0.04 -0.03
NNT -33.33 -25.00 -25.00 -33.33

Mod 3

Correctly classified patients 118

ITE
(-1, 10.17%)
(0, 74.58%)
(1, 15.25%)

(-1, 8.47%)
(0, 72.03%)
(1, 19.49%)

(-1, 12.71%)
(0, 70.34%)
(1, 16.95%)

(-1, 11.02%)
(0, 71.19%)
(1, 17.8%)

ATE 0.05 0.11 0.04 0.07
ARR -0.05 -0.11 -0.04 -0.07
NNT -20.00 -9.09 -25.00 -14.29

Mod 4

Correctly classified patients 100

ITE
(-1, 7.94%)
(0, 82.54%)
(1, 9.52%)

(-1, 8.75%)
(0, 80.0%)
(1, 11.25%)

(-1, 13.75%)
(0, 75.0%)
(1, 11.25%)

(-1, 12.5%)
(0, 77.5%)
(1, 10.0%)

ATE 0.02 0.03 -0.03 -0.03
ARR -0.02 -0.03 0.03 0.03
NNT -50.00 -33.33 33.33 33.33
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Figure 8: Percentage CATE male and female for Mod 1 with APROCCHSS

• From Table 12, for the female group study, it can be ob-
served that for Mod 1, Mod 2, and Mod 3, the negative
impact of the treatment on patients and the whole popula-
tion, was for all configurations. The percentage of patients
with an ITE = -1 varies from 8.47 to 15.79% with an ATE
varying from 0.01 to 0.11. For Mod 4, for all configura-
tions, patients had a beneficial effect when using the treat-
ment indicating ITE = -1; ranging from 7.94 to 13.75%.
Negative ARR values for Mod1, Mod 2, and Mod 3, indi-
cate that the incidence of the event is higher in the treat-
ment group than in the control group, which means that the
treatment is not effective in reducing the risk of the event
(values vary from -0.11 to -0.01). A negative NNT varying
from -100 to -9.09 reflects the number of patients needed
to harm.

• From Figures 8 and 9, it can be noticed that corticother-
apy has a more positive effect (ITE = -1) on males than
on females. For Mod 1 (Figure 8), for all configurations,
the negative percentage of ITE values for males varies
from 16.27% to 19.62% while for females values vary
from 10.71% to 15.79%. For Mod 2 (Figure 9), for all
configurations, the negative percentage of ITE values for
males varies from 13.88% to 15.69% while for females
the values showing small variation vary from 8.47% to
9.4%. However, for Mod 3 (Figure 10), corticotherapy has
a more positive effect (ITE = -1) with a slight difference
on males than on females. The negative percentage of ITE
values for females varies from 8.47% to 12.71% while for
males the values vary from 11.27% to 12.5%. For Mod 4
(Figure 11), it can be observed that corticotherapy has a
more positive effect (ITE = -1) on males than on females.
For Mod 4, for all configurations, the negative percentage
of ITE values for males rages from 8.42 to 14.74%; while
on females ITE values ranging from 7.94 to 13.75%.

4. Discussions

In this section, we aim to interpret and analyze the results
obtained in this study, highlighting the main findings, and ad-
dressing their implications.

4.1. Experiment 1

The performance of machine learning models can be im-
proved by combining feature selection and hyperparameter tun-
ing [48]. This approach helps identify the most important vari-
ables that have the greatest impact on the outcome and opti-
mizes the model’s performance by selecting the best set of pa-
rameters for a given cohort. In addition, balancing the cohort
using the SMOTE technique can increase the diversity of the
data and provide a more representative sample of the sepsis
population. Several recent studies have shown the effective-
ness of feature selection, hyperparameter tuning, and SMOTE
in improving the performance of machine learning models in
healthcare applications [49]. Logistic Regression was found to
be the best model among all the models evaluated in the study,
achieving the highest values in accuracy, precision, recall, F1
metric, and AUC. Therefore, it was selected as the “BestMod”
for the rest of the experimental protocol. Moreover, Logistic
Regression accurately distinguished sepsis responders and non-
responders to corticosteroid treatment with an AUC of 72%.
This result is consistent with recent research in the field of ma-
chine learning for healthcare, where Logistic Regression has
been shown to be effective in predicting outcomes in a variety
of clinical settings.

4.2. Experiment 2

To address the research question of whether patient features
affect the accuracy of the obtained results RQ2, we carried out
Experiment 2. By analyzing the findings obtained from the
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Figure 9: Percentage CATE male and female for Mod 2 with APROCCHSS

model’s variants, regarding only patients who got the corticos-
teroid treatment, we found that when more information is added
to the model (Day 0, Day 1, Day 2, and the difference between
Day 2 and Day 1), the prediction results are improved. Our
best-performing model, which is Mod 3 achieved an AUC score
of 76.1%. Moreover, to answer the fourth research question
of whether the learned model can be generalized to different
sepsis cohorts RQ4, we trained the model on APROCCHSS
and tested it on the RECORDS cohort (Table 3). By inter-
preting the results obtained from Mod 5 (AUC score 55% with
Feat Imp Tuning), we can conclude that the answer is negative.
Thus, patient characteristics (such as those affected by COVID-
19) can completely reduce the performance of a learned model;
hence, the model cannot be generalized to different cohorts.

4.3. Assessment of the effectiveness of the treatment
To complement the analyses conducted in Experiments 1 and

2, evaluating the effectiveness of the treatment will enable us to
address RQ3, which pertains to the impact of corticotherapy
on both individual treated patients and all treated patients as a
whole. The reported findings are based on patients who were
correctly predicted by the models, ensuring the accuracy and
reliability of the results. The analysis of the results reveals that
the ITE measure may vary significantly depending on the con-
figuration used for the Logistic Regression. Additionally, the
ATE interpretations demonstrate that the longer a model uses
patients’ monitoring data, the less benefit it may have, with
Mod 1 and Mod 2 achieving negative ATE values while Mod
3 registered positive values for default and Hyper Tuning con-
figurations. Analysis of the results within the RECORDS co-
hort (Mod 4) indicates that the ITE measure’s performance is
highly dependent on both the predictive models and the specific
cohort used. These results consistently demonstrate the treat-
ment’s overall benefit for all patients. These findings suggest
that additional data is necessary for a more confident analysis

and to refine the approach. Overall, this study provides valuable
insights into the potential of using machine learning models to
predict treatment effects and highlights the importance of care-
ful evaluation and interpretation of results [50].

In order to conduct a more thorough examination of the ef-
ficacy of the treatments, our study utilized the CATE measure.
The results show that the effectiveness of corticotherapy varies
depending on the gender and the specific model configuration
used. For male patients, the treatment had a positive impact
on individual patients, as indicated by the negative ATE values
and positive ARR values. The NNT values also suggest that the
treatment is effective in reducing the risk of the event. How-
ever, for female patients, the treatment had a negative impact
on individual patients, as indicated by the positive ATE values
and negative ARR values. The NNT values also suggest that
the treatment is not effective in reducing the risk of the event.
The analysis also reveals that corticotherapy has a more positive
effect on males than females in all model configurations, but in
the model based on RECORDS cohort, it has a more positive
effect on females. These findings suggest the need for further
investigation to better understand the gender differences in the
effectiveness of corticotherapy and to optimize the treatment
approach for each gender [51].

To enhance the robustness of our statistical analysis and ob-
tain more precise results, we performed additional calculations
using our signature. It’s important to note that our signature
is based on a Logistic Regression model trained with SMOTE
data, and we employed default parameters for feature impor-
tance configuration. The primary motivation behind this in-
vestigation lies in the active utilization of the signature within
the APHP. Offering further insights into treatment effectiveness
could greatly assist specialists in early patient intervention.

To achieve this, Figure 12 demonstrates the signature’s abil-
ity to accurately predict patients who respond to the treatment
as CS-sensitive with a 70% success rate. Among these correctly
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Figure 10: Percentage CATE male and female for Mod 3 with APROCCHSS

predicted patients, 20% exhibited genuine improvement, as in-
dicated by an ITE score of -1. Conversely, the signature also
effectively identifies CS-resistant patients, again with a 70%
accuracy rate. Among these correctly identified patients, 6%
experienced true deterioration, as denoted by an ITE score of 1.

These results not only enhance the precision of our findings
but also lay the groundwork for future research avenues. This
could include a more in-depth exploration of patient character-
istics associated with positive and negative treatment outcomes.

5. Conclusion and future directions

In this paper, we implemented a consistent data mining ap-
proach and developed a prediction model, referred to as “sig-
nature”, which aims at promptly identifying the responsive-
ness of patients to corticotherapy. We have considered the
APROCCHSS and RECORDS cohorts. APROCCHSS results
from a randomized controlled trial covering 1241 sepsis pa-
tients and the RECORDS cohort includes sepsis patients af-
fected by COVID-19. Data was gathered and collected by the
APHP clinicians.

Two experiments were conducted to study the effectiveness
of our approach to identify whether a sepsis patient is sensible
or resistant to corticosteroid treatment. In the first experiment,
we carried out a thorough study of several machine learning
models and compared their performance in terms of recogniz-
ing CS responsiveness. Additional configurations have been
included in order to further study the performance of our mod-
els, including hyperparameter tuning and selecting the most im-
portant features. We noticed that in the obtained results most
of the models demonstrated that when the most relevant fea-
tures were selected in combination with hyperparameter tun-
ing (i.e., Feat Imp Tuning), they achieved the highest level of
performance. Logistic Regression is considered to be the best

model for our study with an AUC value of 72% with the config-
uration Feat Imp Default; showing good performance in distin-
guishing sepsis responders and non-responders to corticosteroid
treatment.

The second experiment is devoted to exploring the generaliz-
ability of the Logistic Regression model by testing it using addi-
tional data collected over time or from different patient groups
belonging to another cohort: RECORDS. We found that the
prediction results are improved when more information about
the patient has been added to the model (Mod 3). Specifically,
we noticed a statistical significant difference between Mod 1
and Mod 2 where we have added additional features (from Day
0 to Day 0 and Day 1 features). Mod 3 achieved an AUC score
of 76% which confirms that training the model with more fea-
tures increases its performance. On the other hand, when train-
ing the model on the APROCCHSS cohort and testing it on the
RECORDS cohort, the model was not effective as it recorded
an AUC value of 54% with the Default and Hyper Tuning con-
figurations (i.e., Mod 5). As a consequence, a generalization
may not be applied to different sepsis cohorts, especially that
the RECORDS testing set includes COVID-19 patients.

In addition, to complement the analysis realized in experi-
ment 1 and experiment 2, we analyzed the effect of corticos-
teroid treatment on individual treated patients and all treated
patients as a whole using treatment effectiveness metrics: ITE,
ATE, ARR, and NNT. These measures have been calculated
using Logistic Regression (based on SMOTE) using various
feature sets (Mod 1 to Mod 4) with the four different con-
figurations: default, Hyper Tuning, Feat Imp Tuning, and
Feat Imp Default. The obtained results showed, in most cases,
it is difficult to decide whether the treatment is effective or not
with the percentage of patients with an ITE = 0 varying from
73.1% to 84.7% for the different model variants. Moreover,
we observed a decreasing benefit when the model uses patient
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Figure 11: Percentage CATE male and female for Mod 4 with RECORDS

Figure 12: Predictive performance of the signature for treatment response for APROCCHSS

monitoring data for a longer period (Mod 3), which calls for
a cautious interpretation and the need for further input data to
refine the signature. Also, when investigating the CATE mea-
sure taking as a factor the sex of patients, we observed that the
treatment had a positive impact on males more than on female.

Limitations of this study stem from its reliance on the ini-
tial release of the RECORDS project data, which restricts the
depth of analysis. Moreover, it is important to note that the
RECORDS observational cohort used in this experiment had a
limited observational period, providing only preliminary clin-
ical and biological data. However, working with the full trial
version of the cohort is expected to yield more precise and accu-
rate predictions in the future. This expanded cohort will likely
enhance the reliability and robustness of the study’s findings
and predictions. Additionally, the absence of the placebo group

in the current research limits the analysis and restricts our find-
ings. Another limitation of this work is the size of the APROC-
CHSS cohort used for prediction. Generally, the performance
of predictive models relies not only on the quality of the input
data but also on the size of the dataset. The larger the cohort
used for training, the more accurate the model will be.

The RECORDS project is still ongoing, and this signature
presents the first release. It will be further updated and re-
fined as new data and variables become available. As future
directions, we will add more data and features which will be
made at disposal from the RECORDS project such as multi-
omics data. The accessibility to multi-omics data has revolu-
tionized the study of biology and medicine by creating path-
ways for integrated system-level approaches. In addition, com-
bining multi-omics data with clinical information has reached a
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high level of significance in order to obtain useful information
[52]. Moreover, exploring computer vision techniques in the
medical domain may provide us with interesting insights and
can improve the detection of CS-sensitivity in sepsis patients by
analyzing radiological images which can be more precise than
clinical data in terms of locating the infection site as early as
possible. Based on the idea of having more input data, and ex-
ploiting more advanced methods, sophisticated deep learning-
based techniques will be interesting in our future perspectives.
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Gaëtan, Quenot Jean-Pierre, Reignier Jean, Robine Adrien,
Rottman Martin, Roux Anne-Laure, Schneider Francis, Siami
Shidasp, Tissieres Pierre, Troché Gilles, Uhel Fabrice, Zeitouni
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