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Rémy Sun13 * , Clément Masson1, Gilles Hénaff1
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Abstract

Leveraging unlabeled examples is a crucial issue for boosting performances in semi-

supervised learning. In this work, we introduce the SAMOSA framework based on

semantic augmentation for mixing semantic components from labeled examples and

non semantic characteristics from unlabeled data. Our approach is based on a novel

reconstruction module that can be grafted onto most state of the art networks. The pro-

posed approach leans on two main aspects: an architectural component optimized to

disentangle semantic and auxiliary non semantic representations using an unsupervised

loss, and a semantic augmentation scheme that leverages this disentangling module to

generate artificially labeled examples preserving known class information while con-

trolling auxiliary variations. We demonstrate the ability of our method to improve

the performance of models trained according to standard semi-supervised procedures

Mean Teacher [1], MixMatch [2] and FixMatch [3].
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(a) Classic mixing creates between-class hybrids. (b) SAMOSA creates in-class hybrids

Figure 1: While classical mixing combines general content (i.e. semantic ”S” + non-semantic “NS”) from

both parents, SAMOSA clearly mixes semantic content (“S”) from one parent and non semantic content

(“NS”) from the other.

1. Introduction

Deep architectures have proven capable of reliably solving a variety of tasks such

as classification [4, 5], object detection [6] or machine translation [7]. This is however

contingent on there being a large amount of labeled data to train models in a supervised

fashion. This is seldom the case in practical applications where labeling comes at a5

significant cost.

A more realistic setting is defined by Semi-Supervised Learning (SSL), where some

labeled data is provided but most of the available data is unlabeled. The unlabeled data

has been leveraged to improve model performance, most notably through the use of

consistency based methods [8, 1, 9]. Consistency based methods guide models towards10

solution stable with regard to small perturbations around samples. Recently, mixing

augmentations - which mix (Fig. 1a) two samples/label pairs by interpolating samples

and labels - have been used to great success [2, 10, 11, 12] in SSL by combining labeled

sample/label pairs and unlabeled sample/pseudotarget pairs.

Mixing augmentations present an interesting data augmentation paradigm in that15
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they can be used to create new samples, something particularly appealing in low label

settings. However, most mixing augmentations tend to mix semantic content from

both parent samples which leads to the creation of between class samples (Fig. 1a).

In fact, this justifies the use of soft targets in mixing augmentations and explains their

regularizing effect observed both empirically and theoretically [13, 14, 15]. While this20

is a desirable effect, this prevents the generation of “true” samples.

We propose in this paper to create artificial labeled samples that only inherit the

label of one parent through mixing (Fig. 1b). This could be used to expand the limited

pool of labeled samples in semi-supervised learning. By mixing the semantic content

from available samples with the non-semantic content (or “context”) of unlabeled sam-25

ples, such an augmentation method could help further leverage the many unlabeled

samples provided in semi-supervised learning.

The main challenge when performing such mixing lies in the proper separation

of semantic and non-semantic content. We propose a novel neural architecture that

separates input information into semantic information useful to a classifier, and auxil-30

iary information necessary for reconstruction. Furthermore, our SAMOSA framework

leverages its novel asymmetrical decoder (inspired by work in generative modeling and

edition [16, 17]) to mix any two extracted semantic and non-semantic content. Fig. 1b

shows how SAMOSA combines a bird picture with color tones from a plane picture.

We develop three main contributions in this paper 1) A novel learning scheme and35

architecture - SAMOSA - that separates semantic components from non semantic com-

ponents in inputs and can be grafted on top of most pre-existing SSL methods to im-

prove classifiers 2) A new mixing data augmentation for Semi-Supervised Learning

that can mix the semantic content of labeled samples with non-semantic information

of unlabeled samples 3) A thorough experimental validation of how the methods de-40

veloped in this paper can be used to improve three well established Semi Supervised

Learning algorithms: Mean Teacher [1], MixMatch [2] and FixMatch [3].

After discussing the relevant literature in Semi-Supervised Learning and Data Aug-

mentation (Sec. 2), we introduce our SAMOSA Framework and elaborate on how it can

be used in Semi-Supervised Learning (Sec. 3). Finally, we validate experimentally the45

performance of our SAMOSA Framework in Sec. 4
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Notations. We refer in this paper to neural networks as capitalized letters (e.g. C for

a classifier). Layers in a neural network are noted using an exponent (e.g. C(i) refers

to ith layer of C), successive layers are discussed using a range exponent (e.g. C(i..j)

refers to the ith to jth layers of C). In general, samples are named using letter x, labels50

using letter y and z refers to latent variables. The � operator refers to Hadamard

product, ◦ is used to denote function composition.

2. Semi-Supervised Learning and Hybridization

We first introduce the semi-supervised problem before providing a quick overview

of the relevant literature. In semi-supervised learning, the datasetD = Dl∪Du contains55

two sub-datasets: a labeled Dl dataset and an unlabeled Du dataset. At the core of

semi-supervised learning therefore lies the question of how to find ways to leverage

Du to extract information relevant to the task of interest.

This has been achieved in a number of ways, ranging from generative modeling [18]

to graph based methods [19, 20]. While generative models have mostly relied on unsu-60

pervised generative training [18], label propagation methods have been used in a num-

ber of graph based methods to infer labels for unlabeled data [19]. In general, pseudo-

labeling [19, 3] has been used to guess labels for unlabeled samples [21, 22, 23], often

paired with entropy minimization techniques to improve model confidence [2]. Recent

advances in self-supervised learning are often hijacked for Semi-Supervised Learn-65

ing by jointly performing supervised training with labeled samples and self-supervised

learning on unlabeled samples [24, 22] However, deep networks have most notably

leveraged unlabeled data through the use of consistency losses [1, 8] that stabilize

network predictions. Early solutions explored perturbing input samples [8], model

predictions [8] or even the model itself [1]. More recently, more disruptive mixing70

data augmentation techniques have proven very effective for consistency based train-

ing [2, 10, 12].

Mixing data augmentations. [13] introduced the idea of mixing content from two sam-

ples x1 and x2 to generate new samples to train a classifier on. In the original work,

pairs of samples are drawn and a new sample as a linear interpolation between the pixel75
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values of the parent samples according to a certain ratio. Formally, given two sam-

ple/label pairs x1, y1, x2, y2, MixUp generates a new sample x′ = λx1 + (1 − λ)x2

and label y′ = λy1 + (1 − λ)y2 for some λ ∈ [0, 1] drawn from a symmetric beta

distribution.

Subsequent work on mixing augmentations has mostly focused on two main as-80

pects: how the mixing is performed (in terms of mathematical operations) and on what

features the mixing is performed (e.g. pixels vs. model features). CutMix took inspi-

ration from another recent augmentation method - CutOut - by drawing a rectangular

mask M ∈ {0; 1}H×W with values 1 inside a rectangle zone and 0. Parent samples are

combined by CutMix as x′ = Mx1 + (1−M)x2. Put simply, a small patch from x2 is85

pasted onto x1. This formalism has been further extended with more complex masks

[25] and the use of saliency maps to guide mask selection [26].

[27] proposed performing MixUp between intermediate representations of a clas-

sifier to ensure both parent sample provide relevant content. By embedding x1 and x2

in the latent space of a classifier before mixing, [27] observed significant gains in the90

regularizing ability of mixing augmentations. This line of attack has since then been

extended to use more complex mixing operations [28].

In both cases, the focus of the subsequent work has clearly leaned towards ensuring

semantic content from both parent samples is present in the mixed sample. Conversely,

our method provides an alternative tool where we can mix the semantic content of one95

sample with the non-semantic content from another. Mixed samples generated from

this method could be especially useful in semi-supervised learning, as traditional mixed

samples have already been used to great effect in semi-supervised learning. Concur-

rently to this work, SciMix [29] proposed to mix semantic and non-semantic contents

but introduced explicit hybridization objectives contrarily to our approach which lets100

non-semantic influences emerge on their own.

Mixing augmentations in Semi-Supervised learning. MixUp, along with other mixing

augmentation methods, has been used to mix labeled samples from Dl and unlabeled

samples from Du [2, 10, 12]. In general, existing approaches have relied on generat-

ing pseudo targets for unlabeled samples before performing MixUp using the inferred105
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pseudo targets. Interpolation consistency training [12] extend the notion of consistency

targets by using MixUp on the consistency targets and inputs. MixMatch and ReMix-

Match [2, 10] further extended this idea by considering pseudo-labels for unlabeled

samples instead of consistency targets.

Building upon the idea of mixing samples, we propose in this paper to work on110

“hybrid” samples that associate semantic content of one (labeled) sample and auxiliary

non semantic characteristics of another (Fig. 1b), as well as directly transfer the one-hot

label target (0 1). This is in contrast to MixUp which would simply average entire input

images (Fig. 1a for λ = 0.5). This however requires being able to separate semantic

content from auxiliary non semantic content.115

Separating Semantic Information from Irrelevant Information. Input reconstruction or

generation has been used to leverage unlabeled data [30, 18] to improve the features of

classifiers. [30] however points out that classifiers aim to be invariant to non-semantic

information that would be required for accurate reconstruction. If, for instance, we

sought to classify images of numbers on colored backgrounds, color would be required120

to reconstruct the images but would be superfluous noise to a classifier. Separation of

semantic and non-semantic information in [30] fails to truly differentiate between the

two modalities, which we address in this work through the use of a special decoder

architecture.

This idea of separating semantic from non-semantic content has previously been125

studied in multiple domains such as Domain Generalization [31, 32] (where a model

is trained to transfer well to any new domain) or unsupervised image to image transla-

tion [33, 34] (where a model learns to modify pictures to take on new characteristics in

an unsupervised fashion). In most cases however, non-semantic information is either

simply discarded in the case of Domain Generalization or treated mostly as a general130

content vs. domain issue in unsupervised image to image translation. Like in Do-

main Generalization techniques, we need to isolate class specific information but we

also need to re-synthesize hybrid images like in image-to-image translation where sim-

pler concepts are usually manipulated. This means no easy parallel can be drawn for

such techniques in Semi-Supervised Learning: we cannot separate unlabeled data into135
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Figure 2: Overview of the SAMOSA framework. zc and zr are extracted from input x. zc alone is used to

classify the input (to optimize the base L0,X loss). x̂ (which reconstructs x due to ΩSAMOSA’s sub-loss

Lrec) is computed from both extracted features zc and zr . Ec is regularized by the learned decoder (through

the Ωrec regularizer of ΩSAMOSA)

different domains like in Domain Generalization and there is absolutely no semantic

notion to work with in unsupervised image-to-image translation frameworks.

Our work therefore aims to create an encoder decoder system that separates mostly

independent semantic and non-semantic component. In particular, we seek to lever-

age such a disentangled hybrid generation process for semantically consistent mixing140

augmentation.

3. SAMOSA

We detail in this section our proposed SAMOSA Framework. After a brief overview

of the general framework, we give a detailed account of our novel asymmetrical de-

coder in Sec. 3.1 and detail SAMOSA’s atypical learning scheme in Sec. 3.2. Finally,145

we discuss how our SAMOSA framework can be used in a SSL setting in Sec. 3.3.

First and foremost, we introduce in this paper a novel architecture presented in

Fig. 2. It is composed of two encoders Ec and Er (one semantic - with regards to the
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classification process - and one non semantic), a simple classifier C and a bi-modal

decoder D that takes inputs from a semantic modality zc and a non-semantic modal-150

ity zr. SAMOSA is meant to be added on top of existing semi-supervised learning

algorithms for neural architectures. In this sense, an input x is mapped to a fea-

ture representation zc = Ec(x), which is then used to obtain a classifier prediction

ŷ = C(zc) = C(Ec(x)). We further elaborate on the peculiarities of our additional

reconstruction modules Er and D in Sec. 3.1.155

To train such an architecture, we optimize the modules necessary for classification

(Ec and C) to minimize a two component loss LSAMOSA (Eq. 1, Fig. 2). Our novel

regularizer ΩSAMOSA (in Eq. 1) differs substantially from standard reconstruction reg-

ularizers by leveraging peculiarities of SAMOSA’s architecture. On the other hand, the

base loss L0,X term in Eq. 1 acts as a proxy to represent the base method (which we160

seek to improve) “X”’s training process (see Fig. 2). For instance, the three base losses

we considered are L0,MT from Mean Teacher [1], L0,Mix from MixMatch [2] and

L0,F ix from FixMatch [3]. As the basic algorithms we consider are meant to function

on standard classifier models, L0,X is only minimized for Ec ◦ C. The training and

manipulation of the remaining modules as well as the regularizer term ΩSAMOSA are165

specific to SAMOSA, and are elaborated upon in Sec. 3.2.

LSAMOSA({xl, yl}Dl
∪ {xu}Du

) = L0,X({xl, yl} ∪ {xu})

+ ΩSAMOSA({xl} ∪ {xu}).
(1)

As such, the method trains a standard classifier Ec ◦ C according to a base SSL

method X with loss L0,X . Our contribution consists in adding a reconstruction regu-

larizer ΩSAMOSA, a non-semantic encoder Er and a special bi-modal decoder D to be

optimized and trained simultaneously with the base SSL classifier. The bi-modal de-170

coder in particular requires careful design to mix semantic and non-semantic content.

3.1. Adding a Non-Supervised Reconstruction Module

Our goal is to mix the semantic content of one sample with the non-semantic con-

tent of another. This requires both separating the two contents from samples and re-

constructing from those contents in a modular fashion. To some extent, this has been175
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Figure 3: Our proposed asymmetrical decoder D reconstructs x from zc, with zr modulating which parts of

D are active.

achieved in style transfer [16] and generative modeling [17]. [16] and [17] for instance

have shown manipulating activation statistics of intermediate activation maps in an au-

toencoder can be used to train a model capable of reconstructing an input image in a

number of different ways. Those methods however either explicitly define what “style”

(which we liken to non semantic information) is through a specifically designed loss180

functions and targets [16], or perform adversarial optimization that does not allow for

specific reconstructions [17]. We propose here an architecture operating along similar

principles, but that can reconstruct inputs without any pre-conception of what consti-

tutes non-semantic information.

We retain the base model’s Ec as our semantic encoder, and add a separate en-185

coder Er for the remaining non-semantic information. A novel asymmetrical bi-modal

decoder D is then used to reconstruct the input images from the outputs of the en-

coders Ec and Er. Practically, an input x is mapped to an additional non semantic

feature representation zr = Er(x), which is then used in conjunction with zc to obtain

a reconstructed image x̂ = D(zc, zr) = D(Ec(x), Er(x)). This last reconstruction190

process is facilitated by the very peculiar structure of D.

Asymmetrical decoder D. Crucially, we design a novel decoder module (Fig. 3) to

combine semantic and non semantic feature spaces. An immediate concern when re-

constructing from two latent spaces as we propose is that an unconstrained non se-

mantic feature space is liable to store all the necessary information to reconstruct the195
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input, thereby leaving a decoder free to ignore the semantic feature space zc. Previous

work [30] ran into this issue when generating two partial reconstructions - one from

semantic features and one from non-semantic features - and summing the two to obtain

a complete reconstruction. This was addressed by forcefully stopping gradient flows

of one partial reconstruction right before combination (depending on which partial re-200

construction needs more training). However, this method led to both Ec and Er each

contributing very similar information as this process only ensures the two modalities

contribute to the reconstruction. Conversely, we design an asymmetrical decoder that

uses the two input modalities differently.

To prevent zr from encoding all the information, we shift its role from affecting205

what is on the reconstruction to affecting how the semantic latent space zc is translated

to a reconstruction. As figured in Fig. 3, D can be broken down into two sub decoders

Dpre and Dpost such that h = Dpre(zc) ∈ RS×H×W can be construed as a stack of

S intermediate reconstruction maps. zr serves as a set of S gating weights ∈ [0, 1]

(through the use of a final linear projection and softmax activation) such that the final210

reconstruction Dpost(h
′) mostly relies on a few intermediate activation maps h′ =

zr�h (e.g. only the red and yellow maps remain in Fig. 3). While this can be seen as a

rescaling of feature maps (like in style transfer) [16, 17, 34], the absence of style targets

might lead to zr selecting all maps with a method such as AdaIN. To address this, we

ensure only a few maps are selected by zr to contribute to the final reconstruction for215

each sample using a softmax activation (though no hard thresholding is applied). While

it should be useful to have more intermediate maps to select from in theory, we find the

method fairly robust in this regard (see Appendix. C.1).

This architecture allows us to reconstruct samples while avoiding the pitfall of forc-

ing the classifier’s feature extractor Ec to keep irrelevant information at minimal cost:220

computing the non-semantic attention weights requires computing zr (equivalent to

computing Ec) and performing a O(d × S) linear projection which is negligible with

respect to the overall model computation.Furthermore, we propose a learning scheme

that pushes the semantic encoder Ec to leverage the decoder D to identify what it

should keep track of through the second term ΩSAMOSA of the loss given in Eq. 1.225
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Figure 4: Optimization of LSAMOSA in the modules. The base SSL loss L0,X loss optimizes the classifier

modules while the reconstruction loss Lrec optimizes the additional modules Er and D. Ec is benefits from

the reconstruction module through the Ωrec regularizer

3.2. Learning Scheme

Model optimization. SAMOSA relies on a regularizer term ΩSAMOSA to leverage its

peculiar architecture:

ΩSAMOSA({xl}Dl
∪ {xu}Du

) =λrecLrec({xl} ∪ {xu})

+ λSAMOSAΩrec({xl} ∪ {xu}),
(2)

with the term Lrec used to optimize Er and D for reconstruction of inputs, and the

auxiliary regularizer Ωrec used to refine Ec through knowledge learned by D. This230

differs significantly from traditional work in SSL that uses reconstruction for regular-

ization as we do not directly optimize the classifier for reconstruction. Rather, we lever-

age our asymmetrical decoder’s peculiar structure to regularize the classifier so that it

solely learns to reconstruct information identified as semantic by our framework.

Lrec = 1
#D

∑
x∈D‖D(Ec(x), Er(x)) − x‖22 (figured on Fig. 4) tries to match235

inputs x to model reconstructions D(Ec(x), Er(x)) through the L2 distance between

the two. Ec is deliberately not optimized here as skip connections [4] in modern neural

networks already let a lot of input information trickle down to their feature space. In

our experiments, we found optimizing Ec for reconstruction led D to rely entirely on

Ec and ignore Er.240
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Figure 5: A trained model can then be used to combine semantic content from a boat picture and non semantic

content from a plane picture.

Ωrec = 1
#D

∑
x∈D‖E

(0..(dc−2))
c (x) − D(0)(Ec(x), Er(x)))‖22 leverages our de-

coder’s asymmetrical structure to regularize Ec (Fig. 4). Importantly, the first few

intermediate reconstructions are purely semantic as they are prior to re-modulation by

zr (the style input Er(x) in D(Ec(x), Er(x)) is of no effect). Therefore, training Ec

to match these early decoder features provides a novel reconstruction regularizer for245

the feature extractor that is not polluted by non-semantic information (i.e. information

injected by Er(x) in the reconstruction). In practice, Ωrec ties the last intermediate

features E(0..(dc−2))
c (x) extracted by Ec (layer E(dc−2)

c ) to the first intermediate re-

constructions D(0)(Ec(x), Er(x)) generated by D (layer D(0)). Here, dc refers to the

depth of Ec, E(0..(dc−2))
c to the composition of the first dc − 1 convolutional layers of250

Ec (all but the last one), and D(0) to the first convolutional layer of D. We tie the last

intermediate features of Ec to the first intermediate reconstructions of D to regularize

as much of the semantic encoder as possible. Which intermediate reconstruction pre-

cisely is used matters little as long as it provides a viable target to train the semantic

encoder (see Appendix C.2).255

This training process yields an architecture capable of generating hybrids that in-

corporates non-semantic content from a sample x2 into a sample x1 while preserving

x1’s semantic content. We now discuss how this can be put to use in a Semi-Supervised

Learning setting.
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Algorithm 1 Algorithm for the hybridization procedure.
Require: Batch B = Bl ∪ Bu, Modules Ec, Er, C,D

function HYBRIDIZE(Bl,Bu)

O = ∅

for (x(1), y(1)), x(2) ∈ zip(Bl,Bu) do

z
(1)
c = Ec(x

(1))

z
(2)
r = Er(x(2))

xh = D(x(1), x(2))

if argmax(C(Ec(xh))) == y(1) then

xh = x(1)

end if

O = O ∪ {(xh, y(1))}

end for

return O

end function

3.3. Making use of the SAMOSA framework in Semi-Supervised Learning260

We introduce a novel asymmetrical decoder that is modular by design with regard

to semantic and non semantic content, as well as propose an adapted training scheme.

In practice, the learning scheme itself can be used to regularize classifiers, but the

trained models can also be used to generate augmented samples to train models on. For

instance, a model could be trained to optimize LSAMOSA, then used to generate a set265

of artificial labeled samples through SAMOSA hybridization and the model could then

be re-trained on the augmented dataset.
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Algorithm 2 Skeleton of SAMOSA integration with the Mean Teacher Framework.

Additions to the Mean Teacher Framework are in blue.
Require: Dataset D = Dl ∪Dl, Number of complete training cycles ncycles, Number

of epochs in a cycle nepochs.

for cycle in 1. . . n cycles do

Dl,0 = Dl

for epoch in 1. . . n epochs do

for B = Bl ∪ Bu in Batch(D) do

Compute LSAMOSA(B) = L0,MT (B)+ΩSAMOSA(B)

Optimization step for LSAMOSA(B)

end for

end for

for epoch in 1. . . 10 do

Dh = ∅

for Bl,Bu in zip(Batch(Dl,0), Batch(Du)) do

O = Hybridize(Bl,Bu)

Dh = Dh ∪ O

end for

end for

Dl = Dl,0 ∪ Dh

end for

Indeed, generating hybrids given a trained model is straightforward (Alg. 1 and

Fig. 5). Specifically, given samples x(1) (with known label y(1)) and x(2), we extract

the relevant features z(1)c = Ec(x
(1)), z(1)r = Er(x(1)), z(2)c = Ec(x

(2)) and z(2)r =270

Er(x(2)). xh = D(z
(1)
c , z

(2)
r ) is now a sample with class y(1). As a conservative

measure, we only keep the generated hybrid if C(Ec(xh)) = y(1) to avoid disturbing

decision boundaries too much. Note that with this, we generate a strong augmentation

of x1 and teach the classifier to group x1 with its strongly augmented version in a

similar line to work in contrastive representation learning [35].275
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Algorithm 3 Skeleton of SAMOSA integration with the MixMatch Framework. Ad-

ditions to the MixMatch Framework are in blue.
Require: Dataset D = Dl ∪ Dl, Number of epochs during training nepochs

Dl,0 = Dl

for epoch in 1. . . n epochs do

for B = Bl ∪ Bu in Batch(D) do

Xl,Yl := Bl
Xu := Bu
Estimate pseudo-targets Yu as per [2]

W := Concat({(xl, yl)}, {xu, yu})

W̃ := Shuffle(W)

p ∼ Random(0, 1)

if p < 1
5 then

B̃ = Hybridize(W, W̃)

else

B̃ = MixUpbiased(W, W̃)

end if

Compute LSAMOSA(B̃) = L0,Mix(B̃)+ΩSAMOSA(B̃)

Optimization step for LSAMOSA(B̃)

end for

end for

As previously discussed, SAMOSA can be deployed in SSL systems in a variety of

ways, two of which are explored experimentally paper. We study a first framework that

trains a SSL model to optimize LSAMOSA, generates hybrids using labeled samples

for the semantic component and unlabeled samples for the non-semantic component,

and re-trains the model on the augmented set (Alg. 2). We also show a more intri-280

cate incorporation of SAMOSA in the MixMatch framework (Alg. 3) by occasionally

replacing the MixUp procedure with our in-class hybridization in the training of a Mix-

Match model optimizing LSAMOSA. Furthermore, we also incorporate SAMOSA into

the state of the art FixMatch framework (Alg. 4) by sometimes hybridizing the strongly
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augmented samples used by FixMatch in the training of a FixMatch model optimizing285

LSAMOSA.

Algorithm 4 Skeleton of SAMOSA integration with the FixMatch Framework. Addi-

tions to the FixMatch Framework are in blue.
Require: Dataset D = Dl ∪ Dl, Number of epochs during training nepochs

Dl,0 = Dl

for epoch in 1. . . n epochs do

for B = Bl ∪ Bu in Batch(D) do

Get labeled samples Xw
l ,Yl := Bl

Get weakly and strongly augmented pairs Xw
u ,X s

u := Bu
Estimate pseudo-labels Yu as per [3]

X̃ s
u := Shuffle(X s

u)

p ∼ Random(0, 1)

if p < 1
5 then

X s
u = Hybridize(Xw

u , X̃ s
u)

end if

Compute LSAMOSA(B) = L0,F ix(X̃ s
u ,Yu)+ΩSAMOSA(B)

Optimization step for LSAMOSA(B)

end for

end for

4. Experiments

We demonstrate here how the disentangling reconstruction module and resulting

hybridization capabilities can be leveraged to improve upon two existing methods:

Mean Teacher [1], MixMatch [2] and FixMatch [3] (refer to Sec. 4.1 for how we apply290

SAMOSA to these methods). We chose Mean Teacher as a reference pure consistency-

based baseline. Beyond its widespread use in SSL, consistency induces a stabilization

we feel would play a significant role to extract invariant semantic features. MixMatch

was chosen to illustrate interactions of the method with more modern methods that

make use of mixing techniques (such as CutMix, CowMix, ICT and ReMixMatch).295
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FixMatch finally provides an insight into how SAMOSA can interact with strong data

augmentations that apply very destructive perturbations to images, and most state of

the art [21, 22, 23] methods are based upon FixMatch to this day. We conduct ex-

periments on the CIFAR10 dataset, which is a standard evaluation benchmarks in the

semi-supervised learning literature. We also conduct additional experiments for the300

Mean Teacher backbone of SAMOSA on the SVHN dataset with very few labels and

the more complex CIFAR100 dataset.

CIFAR10 dataset. The CIFAR10 dataset [36] is a subset of the TinyImages dataset

comprised 32 × 32 RGB images from ten classes: airplane, car, truck, boat, bird,

cat, deer, dog, frog and horse. Available samples are split between 50000 training305

samples and 10000 test samples. We mainly keep 1000 labeled training samples for

our ablation studies and to compare model performances in general. In addition, we

consider an intermediately difficult setting with 500 labeled samples, and perform an

ablation study on a difficult 250 labeled samples setting for the Mean Teacher based

SAMOSA.310

SVHN dataset. The SVHN dataset [37] is comprised of 32× 32 RGB images of street

numbers (divided along ten classes: one per digit). Available samples are split between

73257 training samples and 26032 test images. We use the SVHN dataset to study

the very challenging setting where only 100 labeled samples are available, which is un-

advisable on CIFAR10 due to the very uneven quality of labeled examples in CIFAR10.315

Samples are randomly flipped horizontally (only for CIFAR10) and shifted by up to

4 pixels both horizontally and vertically with reflect padding. The resulting augmented

samples are then standardized channel-wise according to train set statistics. No holdout

validation set is kept for either dataset but hyper-parameters are mostly directly adapted

from [30, 2].320

CIFAR100 dataset. The CIFAR100 dataset [36] (like CIFAR10) is a subset of the Tiny-

Images dataset comprised 32×32 RGB images from a hundred classes. Available sam-

ples are split between 50000 training samples and 10000 test samples. This more com-

plex dataset allows us to further study the behavior of SAMOSA in situations where
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there are many different semantic classes to keep track of.325

Experimental Setting. We operate on a standard WideResNet-28-2 [38] which is widely

used in the Semi-Supervised Learning literature as a base model (Ec ◦ C). Er follows

the same architecture as Ec with an additional final linear layer and softmax activation

to obtain activation gates. The skeleton of D follows an inverted 13-layer 4-4-4 CNN

architecture, with Dpre being a 4-4 block and Dpost being made up of the last 4 block330

and final convolution. Hyperparameters and optimizers were generally taken to follow

settings reported in the base methods’ original papers [1, 2]. More details are briefly

provided in the relevant incremental gains section, but exact details are provided in the

supplementary material for each experiment and architecture.

We evaluate performance through classification accuracy. Results are presented as335

µ± σ, with µ the average value and σ the standard deviation across three seeded runs

(random initializations). All results presented are run from the same code base and

computation servers as per [39]. In particular, the same three initializations were used

for all methods. For better comparison, we perform paired one-sided t-test to evaluate

improvements brought by SAMOSA and bold results where p ≤ 0.1 as an indication340

(full results provided in the supplementary) in the following.

4.1. SAMOSA Gains

We show here that SAMOSA can improve performance when added to Mean Teacher,

MixMatch (Tab. 1) and FixMatch (discussed below). In each table, we also report for

reference the accuracy of models trained in a purely supervised fashion on the available345

labeled samples as a lower bound.

Mean Teacher (MT). We evaluate a first application of SAMOSA for augmentation to

show improvements on Mean Teacher (the procedure is detailed in Alg. 2). We train

the model normally for 300 epochs (with the reconstruction module), then we hybridize

every labeled sample with 10 unlabeled samples. For every generated hybrid, we keep350

the artificial example only if it still gets predicted by the model as being part of the

1Reproduced by adapting available code (see Supplementary)
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Method
CIFAR10

250 500 1000

Purely supervised (lower bound) 27.8± 0.9 35.4± 1.9 43.5± 2.4

Mean Teacher1, [1] 61.3± 3.3 76.4± 3.1 87.6± 0.3

Mean Teacher + SAMOSA (ours) 68.1± 3.3 82.4± 1.3 88.7± 0.3

MixMatch12, [2] 82.4± 0.4 86.8± 0.2 90.4± 0.1

MixMatch + SAMOSA (ours) 84.1± 2.2 89.4± 0.8 90.7± 0.3

Table 1: Comparative accuracies (%) with SAMOSA as an add-on module on CIFAR10.

right class, otherwise the hybrid is replaced by its semantic “parent”. The model is

then retrained with this additional labeled data over 300 epochs. Afterwards, another

hybridization procedure is repeated and a final training is conducted, still over the same

number of epochs.355

The model is trained using a SGD optimizer with cosine learning rate (base 0.2

learning rate) for 300 epochs over the unlabeled samples for CIFAR10 for one training

cycle. After each training and subsequent augmentation step, the learning rate is reset

and training resumes (for an overall 900 epochs). In the following training passes, the

model is only optimized over the augmented dataset (instead of the true dataset) from360

epoch 150 to 250 of each cycle (following discussions in [40, 41]) with λrecons = 0.25

and λSAMOSA = 0.5/0.1. Exact details in the supplementary material.

As a baseline, we check the performance of the model trained under the same pro-

cedure (3 training cycles) but with no reconstruction regularizer, and no artificial sam-

ples. Tab. 1 shows improvements from using the SAMOSA framework on top of Mean365

Teacher. Notably, we have very noticeable gains for 250 labels, which suggests the

method is particularly useful when labeled information is lacking. To explore perfor-

mance with very few labels, we furthermore tested the model with 100 labels on SVHN.

An important accuracy gain from 62.5 ± 3.7 to 66.2± 2.2 is observed which is sig-

nificant given such very low label settings are especially interesting in applied settings.370

The same gains are also reliably observed on the more complex CIFAR100 datasets

where SAMOSA improves the Mean Teacher baseline from 24.9± 0.7 to 27.6± 2.3
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with 1000 labels (and from 48.1± 0.8 to 51.0± 0.5 with 2500 labels).

MixMatch (Mix). We showcase a more intricate use of SAMOSA on MixMatch by

directly incorporating our augmentation process in MixMatch’s native hybridization375

(MixUp) as detailed in Alg. 3. We train the reconstruction module along the base clas-

sifier model, as well as optimize for the reconstruction regularizer. Every batch, with

probability p = 0.2, we replace the MixUp examples with Hybrids generated from our

reconstruction module. For every reconstructed hybrid, we keep the label/pseudolabel

corresponding to its semantic “parent”. Contrarily to the Mean Teacher case, we gen-380

erate hybrids that have both labeled and unlabeled samples as semantic “parents” (as is

done by MixUp in MixMatch) and leverage the pseudo-label MixMatch naturally gen-

erates throughout its course for MixUp. Exact details are given in the supplementary

material, but are similar to the Mean Teacher ones. We follow [2] and report results

from a weight averaged model.385

As a baseline comparison, we check the performance of the model trained under

the same procedure (which is basically the normal training procedure) but with no

reconstruction regularizer, and no artificial samples. As can be seen from Tab. 1, sizable

gains are achieved on both the 500 and 250 labels CIFAR10 settings, and are consistent

even when 3 runs are not enough to definitely verify improvements. Interestingly,390

adding SAMOSA to MixMatch increases the variance of the model which is not the

case in the Mean Teacher case. The use of MixUp hybrids in MixMatch strongly

influences the hybrids generated by SAMOSA (discussed in Sec. 4.3). This and the

random nature of MixUp could lead to a stronger variability in the quality of hybrids

learned by a SAMOSA generator. Considering how reliant SAMOSA’s classifier is395

on the quality of the generated hybrids for regularization, we believe this explains the

higher variance on MixMatch + SAMOSA.

FixMatch (Fix). We additionally demonstrate SAMOSA can combine with strong data

augmentation techniques by also studying a FixMatch based version of SAMOSA as

detailed in Alg. 4. We train the reconstruction module along the base classifier model,400

2Different setting from [2] for fast training.
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as well as optimize for the reconstruction regularizer. Every batch, with probability p =

0.2, we further perturb the strongly augmented samples in FixMatch by hybridizing

them through our reconstruction module. For every generated “strong” hybrid, we

keep the label/pseudolabel corresponding to its semantic “parent”. We follow [2] and

report results from a weight averaged model.405

As a baseline comparison, we check the performance of the model trained under

the same procedure (which is basically the normal training procedure) but with no re-

construction regularizer, and no artificial samples on a very challenging low label set-

ting (CIFAR 10 with 100 labels). The newly described Algorithm 4 leads to significant

gains on FixMatch (from 91.5±0.6 to 92.1± 0.2) which demonstrates SAMOSA can410

combine a state-of-the-art framework based on strong data augmentation and pseudo-

labeling.

With SAMOSA’s ability to improve existing methods like Mean Teacher, Mix-

Match and FixMatch well established, we now study the individual relevance of its

internal components.415

4.2. Ablation Study: General Components of SAMOSA

We now validate our two main contributions on CIFAR 10, ie the incorporation

of a reconstruction module that allows mixing semantic and non semantic information

from different samples, and the use of hybrid samples as data augmentation to further

refine model features. We mainly study the ablations on challenging settings so that420

performance gains can be as clear as possible. As such, we consider the 500 label

setting on CIFAR10 for both the Mean Teacher backbone and the MixMatch backbone

(due to high MixMatch variance at 250 labels).

Results from Tab. 2 show that both the reconstruction regularization loss and the

augmented hybrids provide significant gains in accuracy. Moreover, the best perfor-425

mance is attained when stacking the two components. Interestingly, the gain from

using the regularizer Ωrec is the greatest influence for both experiments. This shows

the relevance of the reconstruction scheme to regularize training, which is especially

pronounced in low data regimes. Nevertheless, improvements can consistently be ob-

served from adding augmented samples to the regularized model. Interestingly, opti-430
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L0 Ωrec Aug
Mean Teacher MixMatch

500 500

X 7 7 76.4± 3.1 86.8± 0.2

X X 7 82.1± 1.5 88.5± 1.2

X X X 82.4± 1.3 89.4± 0.8

Table 2: Ablation Study on the components of SAMOSA. Accuracies (%) on the CIFAR10 settings for both

studied backbones

mizingEc withLrec leads to hybrids identical to the semantic parent and poor accuracy

of the trained classifier.

4.3. Qualitative Study: Generated Hybrids

We show in Fig. 6 hybrids generated by the method. As can be observed, SAMOSA

learns to isolate a variety of visually identifiable non semantic characteristics (number435

colors, light exposition, color hues, some irrelevant colorations) without any more su-

pervision than simple L2 reconstruction. Interestingly, the MixMatch based variant is

more aggressive in combining samples (the background in particular) while still pre-

serving the outline of the relevant semantic content. This can be attributed to interplay

between the MixUp procedure and our hybridization procedure, and suggests there is440

indeed complementarity between our method and other mixing augmentation methods.

Figures presented in the supplementary material suggest SAMOSA’s ability to identify

such characteristics is correlated with model performance, which can account for the

lack of strong effect of hybrid augmentation in the low label CIFAR10 setting. This

actually reinforces the intuition behind SAMOSA: the non semantic encoder picks up445

redundancies discarded by the semantic encoder. When the classifier’s accuracy is not

very high, it fails to discard redundant information which leads to little dependence

on zr. While this means the model will not benefit from SAMOSA, it is fortunately

unlikely this will significantly deteriorate its performance. Indeed, such failure cases

tend to result in hybrids being complete reconstructions of their semantic parent and450

therefore have no effect.
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(a) SVHN MT base (b) SVHN Mix base

(c) CIFAR10 MT base (d) CIFAR10 Mix base

Figure 6: Hybrids between true samples x1 and x2. Results for both Mean-Teacher and MixMatch based

SAMOSA trained on SVHN (100 labels) and CIFAR10 (1000 labels).
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In addition to verifying zr does indeed cause non-semantic changes in reconstruc-

tion/hybridization, we also observe that it does not contain a lot of semantic informa-

tion. Training a classification head (with all 50000 labeled training samples) on the

non-semantic space of a trained MT-SAMOSA model (1000 label CIFAR 10 setting)455

does lead to low classification accuracy (about 30%). This contrasts with the 88% accu-

racy obtained by a linear layer trained on the semantic space zc with only 1000 labeled

samples in previous experiments. As such, we verify that zr does not extract specif-

ically semantic features in accordance with SAMOSA’s design. What little semantic

information remains in zr is ignored by the decoder D as generated hybrids only in-460

herit the class of their non-semantic parents in about 10% of cases (random chance).

Furthermore, we can verify that expunging semantic content from zr is pointless. zr

can be made wholly non-semantic by training a linear classifier to classify from zr,

and training Er to fool this classifier. While a model trained this way retains almost

no semantic information in non-semantic space zr (about 18% accuracy for a linear465

classifier trained on the frozen projection), such a model fails to better classify samples

(accuracy of 88.5± 0.1 vs. 88.7± 0.3).

To verify these intuitions, we investigate this from a more quantitative point of

view.

4.4. Case Study: Component Separation470

We now investigate the composition of generated hybrids on reduced settings (MT

Base) to verify the model’s ability to generate hybrids that correctly inherit their par-

ent’s semantic and non-semantic components. To this end, at various points during

training, we generate a study dataset of hybrid samples DH . The dataset is generated

by mixing every sample in the labeled set with ten random unlabeled samples such that475

#DH = 10×#Dl.

Inheritance of semantic and non-semantic features. We start by assessing how well

generated hybrids inherit semantic/non-semantic features with respect to our model’s

learned projections. The quality of the inherited semantic component can be approx-

imated straightforwardly by considering the accuracy sc of our trained classifier on480
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hybrids (ie, checking how many hybrids are correctly classified as belonging to the

same class as their semantic parent). As we do not have access to such a clear cri-

terion for the non-semantic component, we use a proxy metric in the non-semantic

latent space. We consider the distance dl := ‖zhr − z1r‖22 (resp. dr := ‖zhr − z2r‖22)

between the extracted non-semantic feature zhr = Er(xh) of a hybrid xh and those of485

its semantic parent z1r (resp. non-semantic parent z2r ). If dl ≥ dr, then we conclude

the hybrid correctly inherited its non-semantic parent’s style component. As such, we

can define a non-semantic separation accuracy sr by the proportion of hybrids in DH

correctly identified as being closer to their non-semantic parent. In other words, we

monitor whether the hybrid’s non-semantic content is indeed closer to its non-semantic490

parent’s.

The accuracy of the semantic and non-semantic separation tasks are presented in

(Tab. 3a) along with the average distances in non-semantic space to the hybrid’s parent

samples dl and dr at the end of training. On both datasets, we can observe that hybrids

mostly inherit the correct semantic and non semantic characteristics at the end of train-495

ing. In particular, non-semantic features of hybrids are about 10 times closer to their

non-semantic parents’ compared to their semantic parents’.

Importantly, the observed inheritance of semantic/non-semantic features signifi-

cantly improves over the course of the entire training. For instance, with 1000 labels

on CIFAR10, semantic accuracy sc on generated hybrids at the end of the first training500

cycle (300 epochs, no hybrid augmentation yet) is 74.1 ± 2.5, 93.0 ± 2.5 at the end

of the second (trained with hybrid augmentation) and 97.3 ± 0.6 at the end of train-

ing. In theory, two inputs reconstructed from the same semantic features but different

non-semantic features should lead to extracting the same semantic features. However,

in practice generated hybrids constitute new samples an overfit model could have trou-505

ble accommodating, or present combinations of semantic/non-semantic features that

interfere with each other. As per the previous results, our augmentation strategy helps

the model deal with those new problematic samples by presenting them as training

samples.
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Method
CIFAR10 SVHN

1000 250

Accuracy sc (%) 97.3± 0.6 100± 0.0

Accuracy sr (%) 100± 0 98.2± 0.3

Ratio of mean dc
dr

15.5± 2.6 7.6± 1.4

(a) Component separation (CIFAR10 and SVHN).

Method
MNIST-M

100

Accuracy sc (%) 99.9± 0.2

Accuracy sr (%) 96.8± 3.1

Ratio of mean dc
dr

11.0± 4.0

(b) Background inheritance (MNIST-M).

Table 3: Identification of semantic and non-semantic parents on a hybrid dataset DH at the end of training

on multiple datasets. Both the semantic separation sc and the non-semantic separation sr accuracies show

the model properly incorporates semantic and non-semantic information during hybridization. The ratio of

the average non-semantic distances dc
dr

between hybrids and their semantic/non-semantic parent is given to

complement non-semantic separation scores sr .

Inheritance of non-semantic background in MNIST-M. To better understand non-semantic510

features, we run an additional experiment by generating an MNIST-M-style dataset

[42] by combining each digit picture in the MNIST [43] dataset with a random crop

from the BSD 500 dataset [44] (Fig. 7). A model is trained following our standard pro-

cedure over 50000 training samples (100 labeled samples), and we track the hybrids

generated during training as outlined previously.515

Once again, we assess the correct inheritance of semantic content from the seman-

Figure 7: Hybrids for MNIST-M (format: see Fig. 6).
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tic parent by tracking the classification accuracy sc over hybrids. This experiment

however differs from the previous one in how the non-semantic distances dl and dr

are computed. Instead, of considering the distances in zr latent space we leverage the

construction of MNIST-M to propose a more interpretable criterion.520

The MNIST-M dataset presents one known non-semantic feature: the background

of the samples. We therefore verify experimentally that the background of hybrids gen-

erated by our procedure closely matches the background of their non-semantic parents

(more closely than the one of their semantic parent) instead of considering zr distances.

By construction of MNIST-M, we know which pixels in images correspond to a digit525

and which correspond to a BSD 500 background: we know which MNIST sample was

used to generate the sample. As such, we can have access to a mask that zeroes out

pixels corresponding to the digit and does not alter background pixels for MNIST-M

images. As qualitative studies (Fig. 7) suggest hybrid samples do correctly inherit digit

outline from their semantic parent, we approximate the background of hybrids to be the530

same as that of their semantic parent. Therefore, we calculate the background of hybrid

samples bh = m1 ∗ xh by applying a mask m1 that zeroes out pixels corresponding

to the digit in the semantic parent (known by construction). The backgrounds b1 and

b2 of the parent samples are also known by construction (corresponding to the BSD

500 backgrounds used to generate samples). Similarly to our previous procedure, if535

dl := ‖bh−m1 ∗b1‖22 ≥ dr := ‖bh−m1 ∗b2‖22, then we conclude the hybrid correctly

inherited its non-semantic parent’s style component.

The separation accuracies sc and sr as well as the distances between the hybrid’s

background and its parents’ are given in Tab. 3b. Results suggest a clear separation

of semantic and non-semantic content in hybrids. The nature of the pixel distances540

tracked in this experiment strongly correlate the model’s notion of non-semantic fea-

tures with the known background modularity as expected. As such, the results strongly

suggest that at least in simple cases, SAMOSA is capable of correctly identifying and

separating the semantic and non-semantic factors in training data.
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5. Discussion545

In this paper, we introduced SAMOSA, a framework that improves existing SSL

algorithms by refining classifier features through unsupervised reconstruction, and by

generating hybrid samples for data augmentation. Thanks to its separation of seman-

tic and non semantic components, SAMOSA generates hybrids mixing the semantic

content and non semantic characteristics of different samples.550

We verified experimentally the framework improves the performance of the Mean

Teacher, MixMatch and FixMatch algorithms, with noticeable gains given little la-

beled data. We also demonstrated the usefulness both of our reconstruction module

for classifier regularization, and of the semantically consistent hybrid augmentation.

Furthermore, we displayed convincing hybrids by human standard, showing our asym-555

metrical decoder’s ability to hybridize samples. Further investigation demonstrated the

good quality of the generated hybrids and provided an interpretation of non-semantic

content on the toy MNIST-M dataset.

We explored in this paper content hybridization of samples (as opposed to pixel

interpolation) in Semi-Supervised Learning. We believe mixing augmentations with560

hard predictive labels is currently insufficiently studied relative to strong augmentations

for consistency optimization. In particular, how this new hybridization - which behaves

somewhat like a pseudo-labeling scheme - should be leveraged for model hybridization

remains to be explored in more details.
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[14] L. Carratino, M. Cissé, R. Jenatton, J.-P. Vert, On mixup regularization, in: ArXiv610

preprint, 2020.

[15] S. Thulasidasan, G. Chennupati, J. A. Bilmes, T. Bhattacharya, S. Michalak, On

mixup training: Improved calibration and predictive uncertainty for deep neural

networks, in: Advances in Neural Information Processing Systems, 2019, pp.

13888–13899.615

[16] X. Huang, S. Belongie, Arbitrary style transfer in real-time with adaptive instance

normalization, in: Proceedings of the IEEE International Conference on Com-

puter Vision, 2017.

[17] T. Karras, S. Laine, T. Aila, A style-based generator architecture for generative

adversarial networks, in: Proceedings of the IEEE/CVF Conference on Computer620

Vision and Pattern Recognition, 2019. doi:10.1109/CVPR.2019.00453.

[18] C. LI, T. Xu, J. Zhu, B. Zhang, Triple generative adversarial nets, in: Advances

in Neural Information Processing Systems, Vol. 30, 2017.

[19] A. Iscen, G. Tolias, Y. Avrithis, O. Chum, Label propagation for deep semi-

supervised learning, in: Proceedings of the IEEE/CVF Conference on Computer625

Vision and Pattern Recognition, 2019. doi:10.1109/CVPR.2019.00521.

30

http://dx.doi.org/10.24963/ijcai.2019/504
http://dx.doi.org/10.24963/ijcai.2019/504
http://dx.doi.org/10.24963/ijcai.2019/504
http://dx.doi.org/10.1109/CVPR.2019.00453
http://dx.doi.org/10.1109/CVPR.2019.00521


[20] O. Chapelle, B. Schlkopf, A. Zien, Semi-Supervised Learning, The MIT Press,

2006. doi:10.5555/1841234.

[21] B. Zhang, Y. Wang, W. Hou, H. Wu, J. Wang, M. Okumura, T. Shinozaki, Flex-

match: Boosting semi-supervised learning with curriculum pseudo labeling, in:630

Advances in Neural Information Processing Systems, 2021.

[22] B. Kim, J. Choo, Y. Kwon, S. Joe, S. Min, Y. Gwon, Selfmatch: Combining con-

trastive self-supervision and consistency for semi-supervised learning, in: ArXiv

preprint, 2021.

[23] Y. Xu, L. Shang, J. Ye, Q. Qian, Y.-F. Li, B. Sun, H. Li, R. Jin, Dash: Semi-635

supervised learning with dynamic thresholding, in: International Conference on

Machine Learning, 2021.

[24] X. Zhai, A. Oliver, A. Kolesnikov, L. Beyer, S4l: Self-supervised semi-supervised

learning, in: Proceedings of the IEEE/CVF International Conference on Com-

puter Vision, 2019.640

[25] K. Baek, D. Bang, H. Shim, Gridmix: Strong regularization through local con-

text mapping, Pattern Recognition 109 (2021) 107594. doi:10.1016/j.

patcog.2020.107594.

[26] J.-H. Kim, W. Choo, H. O. Song, Puzzle mix: Exploiting saliency and local statis-

tics for optimal mixup, in: Proceedings of the 37th International Conference on645

Machine Learning, Vol. 119, 2020, pp. 5275–5285.

[27] V. Verma, A. Lamb, C. Beckham, A. Najafi, I. Mitliagkas, D. Lopez-Paz, Y. Ben-

gio, Manifold mixup: Better representations by interpolating hidden states, in:

Proceedings of the 36th International Conference on Machine Learning, 2019,

pp. 6438–6447.650

[28] Cutmix: Regularization strategy to train strong classifiers with localizable fea-

tures, in: 2019 IEEE/CVF International Conference on Computer Vision, 2019,

pp. 6022–6031. doi:10.1109/ICCV.2019.00612.

31

http://dx.doi.org/10.5555/1841234
http://dx.doi.org/10.1016/j.patcog.2020.107594
http://dx.doi.org/10.1016/j.patcog.2020.107594
http://dx.doi.org/10.1016/j.patcog.2020.107594
http://dx.doi.org/10.1109/ICCV.2019.00612
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