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Abstract—Performing data mining tasks in the medical domain
poses a significant challenge, mainly due to the uncertainty
present in patients’ data, such as incompleteness or missingness.
In this paper, we focus on the data mining task of clustering
corticosteroid (CS) responsiveness in sepsis patients. We address
the issue and challenge of missing data by applying Game-
Theoretic Rough Sets (GTRS) as a three-way decision approach.
Our study considers the APROCCHS cohort, comprising 1240
sepsis patients, provided by the Assistance Publique–Hôpitaux
de Paris (AP-HP), France. Our experimental results on the
APROCCHS cohort indicate that GTRS maintains the trade-off
between accuracy and generality, demonstrating its effectiveness
even when increasing the number of missing values.

I. INTRODUCTION

Due to its high mortality, incidence, and morbidity, sepsis
is regarded as one of the most serious diseases that impact
people’s lives. The Third International Consensus Definition
for Sepsis and Septic Shock (Sepsis-3), in 2016, defined
sepsis as a “life-threatening organ dysfunction resulting from
dysregulated host responses to infection” [1]. Immunologi-
cally, the human body releases some immune chemicals into
the blood to fight the encountered infection. These released
substances cause extensive inflammation, resulting in blood
clots and leaking blood vessels. As a consequence, blood
flow is disrupted, depriving organs of nutrition and oxygen,
and hence, resulting in organ damage. The Sequential Organ
Failure Assessment (SOFA) score [2] is used to codify the
degree of organ dysfunction. It is difficult to estimate the
global burden of sepsis. The study conducted in [3], estimated
that in 2017 there were 48.9 million cases and 11 million
sepsis-related deaths all over the globe, which accounted for
almost 20% of all global deaths. There is no current diagnostic
test for sepsis.

Knowing that there are still no specific interventions to
control immune responses to invading pathogens [4], for
sepsis, researchers have looked at the biological underpinnings
of sepsis to see if there are any treatments that could help.
Because of their impact on the immune system, corticos-
teroids have received a lot of attention [5]. The hormonal
route from the hypothalamic-pituitary gland to the adrenal
glands promotes corticosteroid synthesis in sepsis [6], [7].

These hormones affect inflammation through the formation
of white blood cells, cytokines, and nitric oxide. The timing
of corticosteroid administration may be a key component in
therapy response. Short-term mortality was found to be higher
in observational studies when hydrocortisone was started later.
It is expected that corticosteroid treatment is advantageous for
sepsis patients for these reasons and that variations in dose,
timing, or duration of corticosteroid treatment may alter the
patient response to treatment differently [8].

This paper delves into the data mining task [9] of
clustering corticosteroid (CS) responsiveness in sepsis pa-
tients using the APROCCHS cohort provided by Assistance
Publique–Hôpitaux de Paris (AP-HP), France. The cohort
includes 1240 sepsis patients. A key challenge in this task
is the presence of missing data.

Grouping data with missing values is one of the primary
difficulties in clustering. There are commonly two strategies
to deal with missing values [10]. The first strategy is based on
preprocessing techniques [11]. Generally, it adopts deleting the
whole row containing missing values or replacing the missing
values based on experts’ rules [12]. Some common missing
values imputation techniques include replacing missing values
with the mean, median, or mode of the available data for that
feature [13]. The hot Deck Imputation method is replacing
missing values by randomly selecting a value from another
similar data point in the same dataset [14]. Using the values
of K-nearest neighbors in the feature space to estimate the
missing value [15]. Linear Regression Imputation aims to
predict the missing values using linear regression based on
other variables in the dataset [16].

The process of filling in missing values can potentially
introduce a significant amount of imputation bias and uncer-
tainty. It is important to recognize that missing values can
be informative and carry meaningful implications. In certain
instances, the absence of data itself can convey valuable
information or signify a particular category or state. Imputing
these missing values may result in distorting the original
meaning or introducing artificial patterns into the dataset. In
such situations, it is advisable to treat the missing values as a
distinct category or conduct a separate analysis specifically



on the subset of data that contains missing values. Also,
imputation during preprocessing has reportedly been found
to compromise the accuracy and consistency of classification
outcomes. Thus, these methods are not recommended specif-
ically when we deal with medical data because they can bias
the medical results.

The second strategy relies on incorporating mechanisms in
the clustering model [17] which means that we will not impute
or preprocess the missing values, but the internal functioning
of the algorithm will handle automatically the missing values.
Examples of works belonging to this strategy are [18] which
allocated missing value objects to a cluster with a large number
of missing values and [19] which assigned objects containing
missing data to clusters based on their neighbors.

Moreover, the theory of rough sets provides a valuable
framework for analyzing incomplete information through the
use of approximations [20]. This approach allows us to delve
into the realms of uncertain and imprecise data, aiding in our
understanding of complex systems. According to the research
conducted by [21], the application of rough set theory has been
observed across various fields and domains. In [22], authors
integrated the Variable Precision Rough Set (VPRS) approach
with Bayesian principles. In [23], the idea is to combine
VPRS with fuzzy rough set methods to create flexible decision
rules. In essence, both papers share a common objective of
tackling information imprecision by employing probabilities
(within the framework of VPRS) and fuzziness (which allows
for handling partial matching of rules’ antecedents). Their
ultimate aim is to derive interpretable decision models from
the available data. Authors in [24] introduced the Learn++.MF,
an innovative ensemble-of-classifiers algorithm designed to
address the challenge of missing features in supervised clas-
sification. It creates an ensemble of classifiers, each trained
on a random subset of available features. When classifying
instances with missing values, the algorithm employs majority
voting from classifiers that were trained without the missing
features. The study demonstrates that Learn++.MF effectively
handles significant amounts of missing data, with only a
gradual decline in performance as the missing data increases.
In biomedicine and healthcare, rough set theory has been
applied for disease diagnosis [25], medical image analysis
[26], and patient profiling [27].

Focusing on the second strategy, mentioned above, and
tackling the challenge of missing data in sepsis patients’
records, we apply Game-Theoretic Rough Sets (GTRS) as a
three-way decision approach. The aim is to assign patients with
incomplete records to the appropriate clusters automatically. In
order to study the efficiency of the algorithm application on
our clinical data, we aim to answer the following research
questions:

• RQ1: How can the percentage of missing values affect
the performance of the algorithm?

• RQ2: Does the k nearest neighbors has an impact on the
results?

• RQ3: Can the percentage of increasing and decreasing
initial values of α and β influence the results?

The rest of this paper is structured as follows. Section II
presents the fundamentals of three-way decisions using GTRS.
Section III details the application of GTRS, as a three-way
decision approach for handling missing data, for clustering
CS-responsiveness in sepsis patients. The experimental setup
is introduced in Section IV. The results of the performance
analysis are discussed in Section V, and conclusions are
presented in Section VI.

II. THREE-WAY DECISIONS USING ROUGH SETS

A. Three-way clustering

The theoretical foundation of three-way clustering is based
on the theory of three-way decisions introduced by Yao [28].
Assuming the existence of a set U = {o1, o2, o3, ...} which
is referred to as the universe of objects, a clustering method
will produce a collection of sets {c1, c2, c3, ...}, where each
set ck contains a group of objects belonging to that specific
cluster. Every object oi in the set has A attributes, represented
as oi = (o1i , ..., o

A
i ), with oai indicating the value of the ath

attribute associated with the ith object.
In traditional clustering, a cluster is usually represented by

a single set, indicating that objects within the set definitely
belong to a cluster and those outside the set definitely do not
belong to it. In situations characterized by uncertainty and a
lack of information, two-way decisions are not always feasible
from a decision-making perspective, such as in the case of
clustering.

A practical and reasonable alternative is to adopt a three-
way decision approach, which introduces three options for
decision-making, rather than the traditional binary choice.
Specifically, we can decide whether an object belongs to a
cluster, whether it does not belong to a cluster, or whether
it is uncertain whether the object belongs to a cluster or not.
This concept of three-way decision-making leads to what is
known as three-way clustering.

To define three distinct regions - inside, partial, and outside
- an approach involving an evaluation function and a set of
thresholds can be employed. The evaluation function quantifies
the association or correlation between an object and a cluster,
while the thresholds set limits on this relationship for inclusion
in each of the regions. Let e(ck, oi) be an evaluation function
that represents the association between a specific cluster ck
and an object oi, and let (α, β) be a pair of thresholds. The
three regions are defined as follows.

Inside(ck) = {oi ∈ U |e(ck, oi) ≥ α}, (1)

Outside(ck) = {oi ∈ U |e(ck, oi) ≤ β}, (2)

Partial(ck) = {oi ∈ U |β < e(ck, oi) < α}, (3)

This means that when the evaluation of an object is equal
or above the threshold α, it is considered to be part of
the Inside(ck) group. Conversely, if the evaluation is at or
below the threshold β, the object is regarded as being in the
Outside(ck) group. If the object’s evaluation falls between the
two thresholds, it is included in the Partial(ck) group. Thus,



inclusion in distinct regions is governed by the thresholds
(α, β), and varying their settings results in different regions.
The automatic determination of these thresholds is a crucial
research topic in this context.

In this regard, and based on the work proposed in [29], we
utilize the three-way framework to handle data with missing
values which involves three steps. The overall functioning
is presented in Figure 1. Initially, the set of objects U is
partitioned into two sets: C and M . Set C comprises objects
that have no missing data, while set M contains those that
have missing values. Objects in set C are clustered using
conventional algorithms, such as K-means [30], under the
assumption that since these objects have no missing values,
the level of uncertainty is low, and conventional approaches
are more suitable for clustering such objects (Figure 1 (1)).

The second step (Figure 1 (2)) involves creating an in-
complete data set from C while maintaining a similar rate
of missing values to that of dataset U . For instance, if
30% of objects in the original dataset has missing values,
approximately 30% of objects will be randomly chosen from
C to induce missing values. This results in partitioning C into
two additional sets: the constructed dataset comprising objects
with missing values denoted as Um, and the remaining objects
in C with no missing values designated as Uc. This step assists
in selecting appropriate values for (α, β) thresholds that will
enable the clustering of objects with missing values.

The third step (Figure 1 (3)) involves determining the
inclusion of objects with missing values, denoted as M , in the
three-way framework. To employ three-way clustering on data
with missing values, it is necessary to calculate the evaluation
function e(ck, oi), as specified in Equations 1, 2, and 3. This
function measures the association between an object oi and
cluster ck and can be defined in various ways. In our case,
and as proposed in [29], we utilize an evaluation function that
is based on the proportion of nearest neighbors for object oi
that belongs to cluster ck:

e(ck, oi) =
Number of oi neighbors belonging to ck

Total neighbors of oi
(4)

In order to determine the neighbors, a specific distance
metric is required. For this example, we utilize the euclidean
distance as follows:

d(i, j) =

√√√√ A∑
a=1

(
Oa

i −Oa
j

)2
(5)

Here, oai represents the value of the ath attribute of the ith

object and any attributes with missing values are disregarded
during distance computation. By utilizing the aforementioned
distance metric, it is possible to calculate the distances of
each oi with missing values from all objects in Uc. After
sorting these distances, the nearest neighbors for each oi
can be determined. Upon sorting these distances, the nearest
neighbors can be identified. After determining the evaluation
functions, Equations 1, 2, and 3 can be employed to determine
the inclusion of objects into one of the three regions.

The goal of this approach is to enhance the clustering quality
of data containing missing values. In this regard, two metrics
need to be calculated based on the thresholds (α, β) as follows:

Accuracy(α, β) =
Correctly clustered objects

Total clustered objects
, (6)

Generality(α, β) =
Total clustered objects

Total objects in U
(7)

where Accuracy refers to how well we cluster objects with
missing values, whereas generality refers to the fraction of
objects that were clustered in the first place. Thus, as defined
in [29], this goal can be approached from the perspective of
a trade-off between accuracy and generality of the clustering.

B. Game theoretic rough sets

GTRS is based on a game-theoretic concept and formulation
to estimate thresholds of the three-way decisions [31], [32].
The thresholds are interpreted based on a trade-off solution
between numerous criteria used to analyze rough sets in a
game scenario [33], [32]. Specifically, to increase the overall
quality of three-way decisions, GTRS formulates strategies
for players in the form of adjustments in thresholds. Each
player contributes to the game by configuring the thresholds
in order to optimize the game’s benefits/rewards and utilities.
The overall goal of a game in GTRS is to choose appropriate
thresholds for three-way decisions with respect to the available
criteria and presented information.

In GTRS (Figure 1 (4)), a typical game consists of three
main elements: (i) game players, (ii) strategies, and (iii) payoff
or utility functions. These components are usually defined as
a tuple {P, S, u}, where [34]:

• Game players: The game players are denoted by a set
P . The players in the game are selected to reflect the
overall purpose of the game.

• Strategies: In the game, each player contributes by
playing different strategies. The set of strategies available
to player i is denoted by Si. All possible strategy sets
are denoted by the following Cartesian product: S =
S1 × S2 × . . . × Sn, where S contains ordered pairs of
the form (s1, s2, . . . , sn) such that s1 ∈ S1, s2 ∈ S2 and
sn ∈ Sn. Each ordered pair in S is called a strategy
profile and represents a certain situation encountered in
a game.

• Payoff functions or utility: The payoff function, also
called utility, for the players are defined via a set u =
(u1, . . . , un); where each ui represents a real-valued
utility function for player i and it maps the strategy
profiles to real values (ui : S 7→ ℜ). The payoffs reflect
the utilities of performing or selecting a specific strategy.

Every player in a game seeks to execute a strategy that
maximizes its payoff. The players’ strategies, on the other
hand, have an impact on their opponents’ payoffs. The game
solution is used to select a balanced and trade-off point based
on all players’ utilities. The Nash equilibrium is generally used
to determine game solution or game outcome in GTRS.



Let us consider a strategy profile s−i =
(s1, s2, . . . , si−1, si+1, . . . , sn). s−i is a strategy profile
of all the players in the game except player i, and which
can be further denoted as s = (si, s−i). This means that all
the players except i are committed to play s−i and player i
choosing si. The strategy profile (s1, s2, . . . , sn) = (si, s−i)
is a Nash equilibrium, when [35],

∀i,∀s
′

i ∈ Si, ui(si, s−i) ≥ ui(s
′

i, s−i), where(s
′

i ̸= si) (8)

This means that for all players i, their respective strategies,
i.e., si is the best response to s−i. In other words, a strategy
profile constitutes a Nash equilibrium when no player is
benefited from changing his/her strategy alone. The description
presented above formulates a game in GTRS. It is to be noted
that we may not be able to reach effective thresholds that
meet the demands of the underlying applications with a single
and non-repeated game. We, therefore, need to play the game
several times; where in each play the goal is to keep modifying
and refining the thresholds until we attain certain performance
goals; e.g., a balance between accuracy and generality. The
GTRS seeks an appropriate design of the threshold levels that
are used in the three-way decisions framework, presented in
Section II-A, by forming a game and applying concepts such
as game solution and repeating games.

III. APPLICATION

A. Data Source

RECORDS1 is a European research project that aims to
quickly detect whether a patient is sensitive or resistant to the
treatment of sepsis with corticosteroids. The project’s clinical
trial is an adaptive clinical trial that evaluates the efficacy
of biomarkers and machine learning algorithms in defining
patients’ corticosteroid resistance, with the goal of optimizing
their management. The project has adopted a distinctive ap-
proach to effectively analyze the severity of sepsis cases by
collecting data on patients’ demographics, health outcomes,
and samples. This data collection has resulted in the creation
of a first sepsis cohort, known as APPROCHS, which serves
as an exceptional resource for medical research.

The paper considers the APROCCHS cohort that has been
provided by the Assistance Publique–Hôpitaux de Paris (AP-
HP) which is the university hospital trust operating in Paris,
France, and its surroundings. It is the largest hospital system
in Europe and one of the largest in the world. The goal of the
cohort is to allow the investigation of qualitative interactions
between clinical phenotypes and survival benefits or harms
from corticosteroids (CS), i.e., to permit defining sensitivity
and resistance to CS.

B. Data Description

The APROCCHS cohort gathers 1240 adult septic shock
patients who are treated with or without CS. Each patient

1https://www.fhu-sepsis.uvsq.fr/rhu-records-4

is characterized by 5645 features, also, called risk factors
reflecting characteristics until Day 90.

Data were collected with a specification indicating whether
the patients were treated with corticosteroid or with a placebo.
A placebo is a substance or treatment that is given in the same
manner as an active drug or treatment being tested but does
not have any active ingredients or therapeutic effects [36].

C. Data Pre-processing

In this section, we explain the different data pre-processing
tasks that we have performed on the APROCCHS cohort,
namely: feature selection, data enrichment, data labeling and
data cleaning.

1) Feature selection: Because sepsis is a time-sensitive
disease, the likelihood of survival is significantly increased
by early detection and treatment. This study focuses on using
variables accessible at the earliest stage, especially at Day
0 of hospitalization, for predicting patients’ responsiveness
to corticotherapy in order to optimize accurate intervention.
Specifically, from the initial pool of 5645 features –which
reflects features from Day 0 until Day 90–, and by focusing
only on features at Day 0, we were able to carefully choose a
selection of 24 critical attributes following significant consul-
tation with the respected medical specialists at APHP. This
selection procedure entailed careful study and examination
of each feature’s relevance and significance in regard to our
research with respect to the guidance and experience of the
APHP healthcare experts.

The collected data is divided into two categories: static
and dynamic. The first category includes information on the
patient’s current condition as well as personal information such
as identification number, sex, weight, age, origin, date of hos-
pitalization, and whether or not an antibiotic was administered
before Day 0. These traits are noted at the time of admis-
sion and remain constant during hospitalization. The second
category consists of dynamic elements that can be captured
once or more times daily during hospitalization and are related
to patient vital signs and laboratory testing. Admission type,
infection date, infection place, and examination type are a few
examples of dynamic characteristics that have only been once
recorded. These data are often gathered before administering
treatment. The sequential organ failure assessment (SOFA)
score [37], ventilation, vasopressor use, and prescribed therapy
dose are a few examples of characteristics that were recorded
during the whole hospital stay and are associated with patients’
responsiveness to treatment.

2) Data enrichment: Data enrichment relies on the process
of adding new variables based on pre-existing ones in order
to further explain the data and increase the precision of
prediction algorithms. It improves detecting previously hidden
relationships and patterns in the data. Following the guidelines
of the APHP medical specialists, we generated the variable
AR INF Type, which represents the source of infection and
which was obtained from the diagnosis date and the hospital
admission date variables. Furthermore, the values of the corti-
sol variable have been adjusted using a dataset that was given

https://www.fhu-sepsis.uvsq.fr/rhu-records-4


by medical professionals and provides appropriate values for
this characteristic. For a proper diagnosis and treatment plan,
it is essential to know whether a patient received an antibiotic
before being brought to the hospital. The medical staff’s choice
of the proper doses for the patient during their hospital stay
will depend on this information, in addition to the machine
learning model. A new feature entitled “ANTIBIOTIC” was
created in order to acquire this information. A value of 1 of
this characteristic implies that the patient took an antibiotic
while a value of 0 means that he/she did not. The new variable
“ANTIBIOTIC” comprises information on 690 patients who
did not receive antibiotics prior to admission to the hospital
and 550 patients who did.

3) Data labelling: For a patient who is enrolled in the
study on Day 0, either corticosteroid medication or a placebo
is administered every 4 to 6 hours while a number of features
that indicate the patient’s improvement are tracked. Daily
feature values are recorded while each patient is observed for
90 days. The APHP healthcare experts have created precise
standards for figuring out whether a patient would benefit from
corticotherapy or not. Patients are specifically categorized as
cortico-sensitive (i.e., responders) if all four of the following
conditions are satisfied after 14 days of therapy:

• The patient survived.
• For at least 24 hours, there has been no vasopressor

treatment.
• For at least 24 hours, the patient has been off of mechan-

ical ventilation.
• The SOFA score is under 6.

The patient is generally considered cortico-resistant or a non-
responder if the conditions are not satisfied, which is regarded
a negative therapy response. As a result, the label is set to
1 or 0, indicating whether or not the patient reacted to the
therapy on Day 14. Finally, patients who did not adhere to
the aforementioned rule were eliminated from the cohort,
leaving 1234 patients. This was done to preserve the integrity
of our data and in accordance with the guidelines provided
by medical specialists. The distribution of patients in the
APPROCCHS cohort is shown in Table I.

4) Data cleaning: Particularly in important domains such
as health, data cleaning and feature engineering are crucial
steps in the data analysis process. These aspects have a
significant impact on the decision-making process and the per-
formance and accuracy of machine learning models. Dealing
with the raw sepsis data that was gathered presented multiple
challenges for this investigation. The APROCCHS cohort has a
low rate of duplicate data, but in order to have accurate results
with the three-way approach clustering, we have dropped
duplicated patients. As a result, 1233 sepsis cases were still
included in the cohort.

D. Three-way clustering with Game-theoretic rough sets

In this section, the application of the three-way cluster-
ing with GTRS, recently proposed in [29], is demonstrated
using the pre-processed APROCCHS cohort. The objective
is to cluster sepsis patients into two groups to reflect their

responsiveness or not to CS while the model internally handles
missing values.

1) Missing data description and handling: The only data
pre-processing step that was not applied so far to the APROC-
CHS cohort is the task of handling missing values. As previ-
ously mentioned in Section I, the fact of imputing (replacing)
or deleting the tuples containing missing values may signifi-
cantly influence the conclusions drawn from the applied data
mining task; specifically when it comes to a sensitive and
critical domain as such is the medical domain. Pre-processing
missing values may jeopardize the quality and reliability of the
machine learning results; which is in our case the clustering
task. As mentioned in Section I, a more appropriate and
suitable strategy, to handle missing values, is to equip the
clustering model with a mechanism able to handle data with
missing values. In our study, this will be achieved by applying
GTRS for three-way clustering.

However, it is still important to mention that, with respect
to the medical experts’ guidelines, some missing values had
to be filled based on the following received recommendations:

• Risk factors which are tied to the vasopressor treatment,
life status, mechanical ventilation, and SOFA score: Re-
place the missing value found at Dayi using the same
non-missing value which is registered at Dayi−1. This
is explained by the fact that if the value has not been
registered at Dayi then this means that there has been
no change in the patient’s risk factor at Dayi−1.

• The label: To ensure the data’s integrity and in accor-
dance with the guidelines of medical experts, some pa-
tients have been updated from cortico-sensitive to cortico-
resistant.

By applying these guidelines, the APROCCHS cohort still
witnesses some missing values. These are distributed over 7
risk factors which are tied to the KNAUS score indicating the
impact of a disease (i.e., sepsis) on the patient’s activities,
the MACCABE score indicating the presence of an additional
fatal disease and its severity, the SOFA score in the last 3 hours
after admission to intensive care, the body temperature at the
entrance to the unit of intensive care, the severity index, the
glycemic index, and the blood lactate level.

These will be taken care of at the GTRS clustering model
level instead of modifying the data itself, i.e., will neither be
imputed nor deleted; as will be explained in the next sections.

2) Game formalization: As described in Section II-B, the
players, the strategies, and the payoff or utility functions,
are the three components which are needed to be defined to
analyze problems with GTRS. The game formalization is as
follows:

a) The objective of the game: The aim of this game is to
improve the clustering performance of datasets with missing
values. As stated in [29], this objective can be achieved by
balancing the accuracy and generality of the clustering, as
described by Equations 6 and 7.

b) The players: The game’s ultimate objective and goal
should be reflected in the players. In this regard, the players
in this game present the clustering’s accuracy and generality



TABLE I
DISTRIBUTION OF PATIENTS IN APPROCCHS

Cohort APPROCCHS
Group Features Sensitive/Improved Resistant/Not improved Total

Corticosteroid 233 379 612
Placebo 5645 213 409 622

Total 5645 446 788 1234
Characteristic APPROCHS randomized controlled trial

features. Let A denote player Accuracy and let G denote the
player Generality. P = {A, G} represents the player’s set.

c) The strategies: The strategies denote the different
actions that a player can take in a game. To maximize
her/his rewards/benefits, each player adopts a strategy. As
demonstrated in [29], when different thresholds are used in the
game, the properties of accuracy and generality are influenced
differently. Consequently, changes and variations in thresholds
can be considered as feasible strategies. Three strategies are
considered in our context:

• Decreasing the threshold α — defined as (α ↓)
• Increasing the threshold β — defined as (β ↑)
• Decreasing α and increasing β simultaneously — defined

as (α ↓ β ↑)
d) The utility functions: The outcomes of choosing a

specific strategy are measured using a payoff function. The
utility function is defined to reflect a player’s potential perfor-
mance gains or benefits from pursuing a specific strategy. As
previously mentioned, different threshold values effect the two
players A and G. Considering a certain strategy profile, say
(sm, sn) leading to thresholds (α, β), the associated payoffs
of the players are described as follows:

uA(sm, sn) = Accuracy(α, β), (9)

where uA is the payoff function of player A, and
Accuracy(α, β) is defined in Equation 6, and

uG(sm, sn) = Generality(α, β), (10)

where uG is the payoff function of player G, and
Generality(α, β) is defined in Equation 7.

For player A and player G, a value of 1 refers to a maximum
utility while a value of 0 reflects a minimum payoff.

3) The trade-off between accuracy and generality:
a) Determining the Nash equilibrium: The game is

viewed as a competition between the accuracy and generality
measures of clustering. This is highlighted in Table II, where
the table’s rows refer to the strategies of player A and the
columns refer to the strategies of player G. Each cell in
Table II corresponds to a strategy profile, (sm, sn), where
sm represents player A’s strategy and sn represents player
G’s strategy. The goal of each player is to choose a strategy
that configures the (α, β) thresholds in order to maximize
her/his utility. uA(sm, sn) and uG(sm, sn) are the payoffs for
players A and G, respectively, according to the strategy profile
(sm, sn).

The logic in a game is that a player chooses a strategy with
a larger payoff over other strategies with a lower payoff. For

the two-player game under consideration, a strategy profile
will be Nash equilibrium, with respect to the definition given
in Equation 8, if,

Accuracy : ∀sm ∈ SA, uA(sm, sn) ≥ uA(s
′

m, sm), (11)

where (s
′

m ̸= sm), and

Generality : ∀sn ∈ SG, uG(sm, sn) ≥ uG(sm, s
′

n), (12)

where (s
′

n ̸= sn). This signifies that no player will gain from
changing her/his strategy other than the strategy specified by
the profile (sm, sn).

b) Determining the changes in the thresholds: Essen-
tially, there are four ways for changing the thresholds (α, β)
[29]:

1) A single player proposes to decrease the value of α —
denoted as (α−);

2) Both of the two-game players propose to decrease the
value of α — denoted as (α−−);

3) A single player proposes to increase the value of β —
denoted as (β+);

4) Both of the two-game players propose to increase the
value of β — denoted as (β ++);

These four ways can be used to associate threshold pairs
with a certain strategy profile. For example, a strategy profile
with (s2, s2) which is equal to (β ↑, β ↑) is represented as
(α, β ++), since player A and player G propose to increase
the value of β.

4) The learning mechanism defining the values of the
thresholds: A single game run has minimal utility in terms of
finding appropriate values for the (α, β) thresholds. A learning
process will emerge as a result of iteratively changing the
thresholds with the goal of improving the payoffs for the
players. In this regard, the learning rule or criterion is based
on the relationship between threshold modification and the
influence on the players’ utility. This relationship is used to
define the four variables (α−, α − −, β+, β + +). This is
accomplished through the use of an iterative game.

Let (α, β) be the initial thresholds for a particular iteration
of an iterative game. As previously mentioned, the Nash
equilibrium will be utilized to compute and decide the game
solution as well as the associated thresholds; which will be
denoted as (α′, β′). The four variables (α−, α−−, β+, β++)
are calculated based on a fixed percentage of either increasing
or decreasing the strategies’ values in every iteration. For
example, if the initial values of (α, β) = (1, 0), the percentage
of increasing and decreasing the strategies is equal to 5%, and
a strategy profile with (s1, s2) which equals to (α ↓, β ↑)



TABLE II
PAYOFF TABLE FOR THE GAME.

Generality (G)
s1 = α ↓ s2 = β ↑ s3 = α ↓ β ↑

Accuracy (A)
s1 = α ↓ uA(s1, s1), uG(s1, s1) uA(s1, s2), uG(s1, s2) uA(s1, s3), uG(s1, s3)
s2 = β ↑ uA(s2, s1), uG(s2, s1) uA(s2, s2), uG(s2, s2) uA(s2, s3), uG(s2, s3)

s3 = α ↓ β ↑ uA(s3, s1), uG(s3, s1) uA(s3, s2), uG(s3, s2) uA(s3, s3), uG(s3, s3)

is represented as (α−, β+). The new values of (α, β) =
(0.95, 0.05). The process can be halted once a satisfactory level
of performance has been attained.

IV. EXPERIMENT SETUP

In this section, we will present a comprehensive description
of the experimental setup for the three-way clustering with
the GTRS approach to cluster Corticosteroid sensitivity with
missing values.

A. Considered cohort

The used APROCCHS cohort includes patients who re-
ceived corticotherapy and placebo treatment. A total number of
1233 patients is maintained after selecting the most important
features, applying data enrichment, labeling the data, and
deleting the duplicates (1 duplicate raw was found in the
data and was deleted). In our preliminary study, and based
on a ranking strategy, we worked with only 10 risk factors,
presented in Table III, among the 24 features. The initial
APROCCHS dataset contains 26 instances having missing
values (i.e., 2%) which will form the set M .

B. Experimental Plan, Tests, and Tools

Our experimental protocol is divided into three stages. The
first stage focuses on simulating data with missing values
that aims to answer the question of the performance of the
algorithm when adding more missing values. The second stage
is devoted to exploring the impact of a parameter of the
algorithm. Specifically, we study the impact of changing the
value K of the nearest neighbors component which is part of
the evaluation function e(ck, oi) (see Section II-A). Finally,
in the third stage, various percentages of the strategies’ initial
values are considered to study the influence of these values on
the obtained results. Below is an outline of the three stages:

• Experiment 1: We evaluated the performance of the three-
way clustering approach by using in each experiment
several percentages of the missing values. As a first
investigation, the algorithm was tested on four differ-
ent missing data versions. The rate of missing values
randomly chosen in this regard is based on 5%, 10%,
15%, and 20%. This experiment will enable us to respond
to the following research question (RQ1): How can the
percentage of missing values affect the performance of
the algorithm?

• Experiment 2: The aim of this experiment is to explore
the k nearest neighbors used in calculating the evaluation
function to investigate its impact on the results. For this
purpose, we choose to work with k = 5 and k = 7.

Conducting this experiment will lead us to answer the
following question (RQ2): Does the k nearest neighbors
has an impact on the clustering results?

• Experiment 3: We assessed the choice of the strategies’
initial values percentages and their effect on the obtained
results. In this experiment, the algorithm takes as input a
different set of α−, α−−, β+ and β ++. In our case,
we tried to decrease α and increase β by 7% having
initial values of α− equals to 0.93, α−− equals to 0.86,
β+ equals to 0.07, and β + + equals to 0.14, and by
10% having initial values of α− equals to 0.90, α − −
equals to 0.80, β+ equals to 0.10, and β + + equals
to 0.20. By carrying out this experiment, we will be
able to respond to the following question (RQ3): can the
percentage of increasing and decreasing initial values of
α and β influence the results?

Although the number of iterations is not defined, a maxi-
mum number is given to prevent the algorithm from continuing
in an endless loop if it does not converge. While setting
a maximum iteration of 20, the algorithm often converged
between 3 and 4 iterations, based on the APROCCHS cohort.
As for the clustering part, the k-means algorithm was used
with k=2.

V. RESULTS AND DISCUSSION

A. Experimental results of GTRS approach

The results obtained from different GTRS-based approach
runs with the various percentages of missing values inputs are
shown in Tables IV – VII. The tables present the following
observations:

• From Table IV (and similarly to all other Tables V –
VII), it can be observed that in most runs the algo-
rithm converge in the third iteration. We can also see
how the thresholds are altered across the game’s several
iterations and how this affects generality and accuracy.
For the experiment with 5% missing values, the initial
thresholds of (α, β) = (1, 0) are set before the game
starts, resulting in an accuracy of 0.98 and a generality
of 0.88. However, in the second iteration, the accuracy
and generality are still the same, while the threshold α is
decreased and β increased by 0.14. For the experiment
with 10% missing values, the accuracy is stable while
the generality increased from 84% to 93%. For 15% and
20% missing values, we can notice a slight decrease in
the accuracy (for 15% missing values: from 1 to 98%,
for 20% missing values: from 99% to 96%) with an
increase in generality (for 15% missing values: from 87%
to 94%, for 20% missing values: from 83% to 91%) –



Fig. 1. Main functioning of the three-way clustering with Game-theoretic rough sets

TABLE III
CONSIDERED SET OF RELEVANT FEATURES AT DAY 0

Reference Description Format
DATINF Diagnosis date Precision = JJ/MM/YYYY, Min = DATHOSP (Hospital ad-

mission date), Max = Current date
SITINF Infection location 0 = Lung, pleura, 1 = Peritoneal, 2 = Urogenital, 3 = Central

Nervous System (CNS), 4 = Endocarditis, mediastinum, 5 =
Sepsis, 6 = Soft tissue, 7 = Bones and joints, 8 = Other

SEX Indicates patient sex 1 = Male, 2 = Female
PATWGHT Indicates the weight of the patient Min = 36, Max = 154
ORIGIN Indicates the patient ORIGIN 1 = City, 2 = Hospital, 3 = Institution
AGE Indicates patient age Min = 18, Max = 97
KNAUS J0 Activity and medical follow-up in the six months

prior to admission
1 = Stage D Major activity restriction due to illness, including
bedridden or hospitalized patients, 2 = Stage C Chronic illness
causing significant but not total activity restriction, 3 = Stage
B Moderate or moderate activity limitation due to illness
(limited work activities), 4 = Stage A Good health, no activity
limitation

MACCABE J0 Description of the patient’s condition before the
episode leading to ICU

1 = Absence of underlying disease or underlying disease
not life-threatening, 2 = Underlying disease life-threatening
within 5 years, 3 = Underlying disease estimated to be fatal
within one year

SOFA ADM Indicates the worst case value up to 3 hours after
admission

Min = 2, Max = 16

IGSII ADM TYP Indicates the admission type of the patient 0 = Scheduled surgery, 6 = Medical, 8 = Unscheduled surgery

a trade-off maintaining the required balance. To explore
the research question RQ1 of whether the percentage of
missing values affects the performance of the algorithm,
we performed the first experiment. By examining the
outcomes of the GTRS algorithm via results presented in
Tables IV – VII, when increasing the number of randomly
chosen missing values, the trade-off accuracy/generality
will not be lost.

• In the results presented in Table V, we have increased
the value of k from 5 to 7. In comparison with the initial
thresholds (α, β) = (1, 0) and when testing with only
5% of missing values, we can observe that there is a

slight decrease in accuracy (i.e., 1%) while the generality
improved with 9% reaching 95%. When testing with 10%
and 20% missing values, the GTRS algorithm shows a
minor reduction in accuracy varying from 1% to 3%
with an increase in generality (between 8% and 13%).
Thus, the GTRS model delivers an acceptable trade-
off between accuracy and generality. For the experiment
with 15%, and while comparing the results to the 5%
missing values, we can note that there is an increase
in the accuracy showing 98% (97% with 5% missing
values) with a 1% decrease in generality. In order to
investigate the research question of whether the value of



k nearest neighbors has an impact on the results RQ2,
Experiment 2 was carried out. Through the interpretation
of the results obtained from the GTRS algorithm, when
increasing the percentage of missing values, and by
increasing k to 7, we can notice a slighter loss in the
trade-off accuracy/generality in comparison to k = 5.

• Table VI and Table VII show the results obtained when
varying the strategies’ initial values with decreasing α
and increasing β by 10% having initial values of α−
equals to 0.90, α−− equals to 0.80, β+ equals to 0.10,
and β++ equals to 0.20. Consistent with the findings in
Table IV, from Table VI, we can notice that from 5% to
15% of missing values the accuracy demonstrates stability
in its values with 98% while the generality presents
a significant increase varying from 88% to 94%. For
20% missing values, the obtained results show a slight
decrease in accuracy with 3% (reaching 96%) and a slight
increase in generality with 2% (reaching 91%).
As was the case in Table V, by analyzing the obtained
results in Table VII, we can notice that when compared
to the initial thresholds (α, β) = (1, 0) and tested with
only 5% of missing values, we observed a slight decrease
in accuracy (by 1%), but a significant improvement in
generality (by 9%). Moreover, for experiments with 10%,
15%, and 20% one can observe that accuracy values
were decreased by approximately 2% while generality
increased by up to 14%. Also, for instance, with initial
values equal to 7%, k = 5, and 20% of missing values
(Table IV), the final values are 96% and 91% for accuracy
and generality, respectively. With initial values equal to
10%, k = 5, and 20% of missing values (Table VI),
the final values are the same registering 96% and 91%
for accuracy and generality, respectively. To answer the
third research question RQ3 to what extent can variations
in the percentage of initial values of α and β, whether
increased or decreased, impact the results, Experiment
3 was implemented. By looking at the obtained results
and interpreting them (Table IV, V, VI, and VII), it is
noticeable that the final output of the GTRS algorithm
is relatively stable regardless of the initial values of the
strategies.

As expected, from the different tables, when using k = 5, the
execution time is observed to be lower than when using k =
7, indicating that a smaller value of k can lead to faster com-
putations. However, for more exploration, the execution time
can be minimized by using several techniques such as Multi-
threading [38], Single Instruction Multiple Data (SIMD) [39],
and Open Multi-Processing (OpenMP) [40]. By employing
these parallelism techniques, the GTRS algorithm execution
time can be reduced, leading to marked improvements in both
its performance and efficiency.

B. Three-way clustering approach evaluation

The previously obtained results show the effectiveness of
the three-way clustering approach with GTRS in handling
missing values. Therefore, in almost all the experiments, for

clustering CS responsiveness, the trade-off accuracy/generality
is maintained. The best trade-off found is with an accuracy
value of 97%, and the generality presents 95%; with k =7 and
5% of missing values.

The final step (Figure 1 (3,5)) in the GTRS algorithm is to
evaluate objects with missing values in M using Equation 4
and then select the best values of (α, β) and test them on the
set M with missing values. As mentioned in Section IV-A, set
M contains 26 patients having missing data (i,e., only 2%).
Table VIII summarizes the obtained results after applying the
three-way clustering approach on the set M and using k = 7
as value of k nearest neighbors. It can be observed that the
accuracy/generality trade-off was preserved, presenting 96%
accuracy and 92% generality. The results revealed that the best
thresholds values for (α, β) = (0.58, 0.42). These final (α, β)
values are used for assigning objects to different regions of a
clusters as follows:

Inside(ck) = {oi ∈ U |e(ck, oi) ≥ 0.58}, (13)

Outside(ck) = {oi ∈ U |e(ck,oi) ≤ 0.42}, (14)

Partial(ck) = {oi ∈ U |0.42 < e(ck, oi) < 0.58}, (15)

.
After applying Equations 13, 14, and 15 to assign objects

in set M to clusters, we observed that the algorithm’s non-
deterministic nature resulted in some sepsis patients being
found in the partial region. This means that these sepsis pa-
tients could not be clustered to a specific region as CS(placebo)
sensitive(improved) or resistant(not improved); despite that we
had their correct label in the cohort. In addition to this, when
we examined the patients clustered by GTRS, we found some
false negatives. This suggests that the results were not entirely
deterministic, and further statistical analysis is required to
validate them. One possible explanation to these preliminary
results is that we have only considered 10 risk factors out of
the 24 variables. Despite this, we still can consider that the
initial results in terms of trade-off accuracy and generality are
promising and indicate that GTRS has potential in addressing
the issue of missing data in sepsis patients.

VI. CONCLUSION

The aim of this paper is to investigate the issue of clustering
with missing values in clinical data using a three-way approach
with GTRS. The study utilized data from the APPROCHS
cohort, which included 1240 sepsis patients enrolled in a
randomized controlled trial, and collected by clinicians from
APHP. An important challenge in implementing this approach
was setting appropriate thresholds to determine the three types
of decisions. GTRS was found to be a promising alternative
for clustering objects with missing values.

To evaluate the effectiveness of the GTRS model, three
experiments were conducted. In the first experiment, the
algorithm was tested with varying percentages of missing
data, and the results showed that accuracy and generality can
be preserved despite an increase in the number of missing



TABLE IV
OBTAINED RESULTS OF GTRS ALGORITHM APPLIED ON APROCCHS COHORT USING MULTIPLE MISSING VALUES PERCENTAGES AND FIXED VALUES OF

K = 5 AND INITIAL VALUES = 7%

Missing values k Initial values Iteration Alpha Beta Accuracy Generality Execution Time
1 1 0 0.98 0.885% 5 7% 2 0.86 0,14 0.98 0.88 22 min

1 1 0 0.98 0.84
2 0.86 0.14 0.98 0.8410% 5 7%
3 0.72 0.28 0.98 0.93

47 min

1 1 0 1 0.87
2 0.86 0.14 1 0.8715% 5 7%
3 0.72 0.28 0.98 0.94

79 min

1 1 0 0.99 0.83
2 0.86 0.14 0.99 0.8320 % 5 7%
3 0.72 0.28 0.96 0.91

154 min

TABLE V
OBTAINED RESULTS OF GTRS ALGORITHM APPLIED ON APROCCHS COHORT USING MULTIPLE MISSING VALUES PERCENTAGES AND FIXED VALUES OF

K = 7 AND INITIAL VALUES = 7%

Missing values k Initial values Iteration Alpha Beta Accuracy Generality Execution Time

5% 7 7%

1 1 0 0.98 0.86

28 min2 0.93 0.07 0.98 0.86
3 0.72 0.28 0.98 0.89
4 0.58 0.42 0.97 0.95

10% 7 7%

1 1 0 0.99 0.8

54 min2 0.86 0.14 0.99 0.8
3 0.72 0.28 0.96 0.88
4 0.58 0.42 0.95 0.93

15% 7 7%
1 1 0 1 0.87

78 min2 0.86 0.14 1 0.87
3 0.72 0.28 0.98 0.94

20% 7 7%

1 1 0 0.99 0.8

180 min2 0.86 0.14 0.99 0.8
3 0.72 0.28 0.99 0.85
4 0.58 0.42 0.96 0.93

TABLE VI
OBTAINED RESULTS OF GTRS ALGORITHM APPLIED ON APROCCHS COHORT USING MULTIPLE MISSING VALUES PERCENTAGES AND FIXED VALUES OF

K = 5 AND INITIAL VALUES = 10%

Missing values k Initial values Iteration Alpha Beta Accuracy Generality Execution Time
5% 5 10% 1 1 0 0.98 0.88 26 min

1 1 0 1 0.82
2 0.8 0.2 0.98 0.910% 5 10%
3 0.66 0.34 0.98 0.9

50 min

1 1 0 1 0.87
2 0.8 0.2 0.98 0.9415% 5 10%
3 0.66 0.34 0.98 0.94

79 min

1 1 0 0.99 0.82
2 0.80 0.20 0.96 0.9120 % 5 10%
3 0.66 0.34 0.96 0.91

104 min

TABLE VII
OBTAINED RESULTS OF GTRS ALGORITHM APPLIED ON APROCCHS COHORT USING MULTIPLE MISSING VALUES PERCENTAGES AND FIXED VALUES OF

K = 7 AND INITIAL VALUES = 10%

Missing values k Initial values Iteration Alpha Beta Accuracy Generality Execution Time
1 1 0 0.98 0.86
2 0.9 0.1 0.98 0.865% 7 10%
3 0.7 0.3 0.97 0.95

28 min

1 1 0 1 0.78
2 0.8 0.2 1 0.8610% 7 10%
3 0.66 0.34 0.98 0.92

39 min

1 1 0 1 0.83
2 0.8 0.2 1 0.8915% 7 10%
3 0.66 0.34 0.99 0.94

78 min

1 1 0 0.99 0.80
2 0.8 0.2 0.99 0.8520% 7 10%
3 0.66 0.34 0.96 0.93

106 min



TABLE VIII
BEST (α, β) VALUES EVALUATION ON THE SET M WITH MISSING VALUES

Missing values k Iteration Alpha Beta Accuracy Generality
1 1 0 0.95 0.85
2 0.86 0.14 0.95 0.85
3 0.72 0.28 0.95 0.852% 7

4 0.58 0.42 0.96 0.92

values. The second experiment examined how the selection
of the k nearest neighbors in the evaluation function affected
the results. The third experiment evaluated the impact of the
percentages of initial values of the strategies on the results,
and the stability of the final output of the GTRS algorithm
was apparent as it did not significantly vary with the initial
values of the strategies.

As future work, we aim to use four clusters, instead of two,
to further represent sepsis patients (Cortico-sensitive, Cortico-
resistant, improved status with placebo, and unimproved status
with placebo). This may improve the performance of the
algorithm. Also, we aim to explore alternative approaches
such as Reinforcement learning [41]. This approach would
consider accuracy and generality as agents, and increasing
and decreasing α and β strategies as actions to be taken in
the environment. Players would learn a policy through trial
and error that maximizes their rewards. Additionally, one can
expand the evaluation of the results achieved by taking into
account the quality of the model to address concerns related
to overlearning [42], overfitting [43], and the assessment
parameters used to measure the model’s performance.
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